EEG CLOUD

00000

0 0 0 0

Capstone Project

Supervisor: Phan Duy Hung

Team member

Nguyen Pham Hung Anh

Nguyen Ba Manh

Phi Anh Tuan

Nguyen Nam Hung

Nguyen Huu Lam

Contents

- 1. Introduction
- 2. CloudThink
- 3. Applications for EEG Headsets
- 4. Result
- 5. Discussion
- 6. Future Work
- 7. Demo
- 8. **Q&A**

Abstraction

 Exploring the feasibility of using a cloud-based approach to analyzing EEG signals

- Cloud-based benefits:
- Allows us to leverage demanding analysis algorithms from mobile devices such as smart phones/tablets with limited resources and using these devices to stream data to cloud.
- Have a much larger database to train the neural networks.
- Opens up possibilities for statistical and analysis with big data.

5

Introduction

EEG collection devices become smaller and more mobile, so we need to perform EEG analysis on small-factor devices such as mobile phones or tablets

Android smart phones/tablets and Microsoft Azure cloud to transmit data, analysis and classifying brain's state intention and nonintention.

Microsoft **Azure**

Brain Computer Interfaces (BCI)

A brain–computer interface (BCI) is a direct communication pathway between the brain and an external device.

Brain Computer Interfaces (BCIs) had some achievements in recent years.

Brain Computer Interfaces (BCI)

Application Areas of BCI

forensics military Process control

Microsoft Azure Cloud

Microsoft Azure is a cloud computing platform and infrastructure, created by Microsoft, for building, deploying and managing applications and services through a global network of Microsoft managed and Microsoft partner hosted datacenters.

Microsoft Azure is Microsoft's application platform for the public cloud.

Microsoft Azure Cloud

Catalog of Services

EEG Device

Power: 9V (5V - USB connect) Input: 1 DRL + 4 Electrode connectors Output: via Bluetooth 2.0, 1 start bit, 8 data bits, 1 stop bit, no parity, 57600 bits per second. Data package structure: 17 byte uint8 t sync0; // = 0xA5 (decimal 165) uint8_t sync1; // = 0x5A (decimal 90) uint8_t version; // = 2 uint8 t count; // packet counter. Increases by 1 each packet uint16 t data[6]; // 10-bit sample (= 0 - 1023) in big endian (Motorola) format uint8_t switches; // =0 Sampling frequency: 256 Hz

CloudThink

CloudThink is the product of this research topic. It is an integrated system including hardware and software.

CloudThink mix compute clouds and electroencephalograms (EEG) together. Using Cloud-Based Analysis of EEG Signals for BCI Applications.

We implemented the project in two phases:

- 1. Move the results of the "Electroencephalography Processing" project to Azure cloud.
- 2. Explore the Azure cloud capabilities to achieve desired results.

Overview

Overview

Main functions:

- **1. Classification EEG data:** Gathering user's EEG data and create machine learning web service that allows classification EEG data to intention and non-intention.
- 2. Applications using classification result: Providing a platform for developers create applications using EEG data. Such as monitoring the brain health of an individual, playing game, ...

Overview

Connect Bluetooth

User information screen

Connect bluetooth

Receive Data App

EEG Chart

Pre-EEG Chart Screen

EEG chart screen

78.4			_		
WE 7			-		
MMM/	www	winaw	mum	mount	aparter la
- MMMAR	www	Murrilli	Myr-1	Murana	All March
	www	Mm-MM	May M	Muranan	anon a
······································	www	MM-MM	ener and a second	Muran	www.ly

EEG raw chart

FFT chart

Upload data to cloud

Confirm Upload dialog

0		* 🔻 📶 🚊 10:47
M CloudT	hink	
MIND	CHARTS	DATA
EEGData_14	149494371	2015-12-07
Intention - 0	:26:663	20:19
EEGData_14 Non-intention	149494455 on - 0:27:455	2015-12-07 20:20
EEGData_14	149495027	2015-12-07
Non-intentio	on - 0:24:831	20:30
EEGData_14	149907295	2015-12-12
Intention - 0	:52:820	15:01
EEGData_14	149907381	2015-12-12
Intention - 0	:48:745	15:03
(1) EEGData_14	149907479	2015-12-12
Non-intentio	on - 0:02:172	15:04
EEGData_14	149907514	2015-12-12
Non-intentio	on - 0:34:520	15:05
EEGData_14	1 49908760	2015-12-12
Intention - 0	:43:534	15:26
\bigtriangledown	0	

List saved data

Action dialog

Web API

Web App

We using Web App in azure to create Web Api to connect Mobile app to Storage in Microsoft Azure.

Then we using machine leaning in Azure to lean data in Storage

Web API

API Apps

API Apps is one of four app types offered by Azure App Service.

WEB APPS Web apps that scale with business

Mobile Device Build mobile apps for any device

LOGIC APPS Automate business process across SaaS and on-premises

API APPS Build and consume APIs in the cloud

CloudThink API

- Table storage easy to adapt your data as the needs of your application evolve
- Table storage is easy to use, so developers can create applications quickly
- Data queries faster and easier.
- It is non-SQL and suitable to store big data.

CloudThink API

Overview API App

Collect Data API

Application API

Analysis EEG Data

Analysis EEG data

Analysis Data

Using characteristics inherit from previous projects group Analyze EEG data to 9 characteristics

Features	Туре
Percent Alpha	1x4 vector
Percent Beta	1x4 vector
Power Spectral Density Alpha	1x4 vector
Power Spectral Density Beta	1x4 vector
Mean of abs values of first different of normalized signals Mean of abs values of second different of normalized signals Skewness Kurtosis AR Burg	a scalar a scalar a scalar a scalar 1x6 vector

Receive raw data, split EEG data to segments in 2 seconds sample (512 samples) and overlap 16 samples. Extract features and storage in CloudThink table.

Step 1: Push data on to Azure

- Mobile App use web API to push data onto the Azure
- Data is pushed up in the form Json
- data include name, age, gender and EEG data

Step 2: Analyze EEG Data

Using Analysis EEG data to Analysis data is push up. Result is 9 characteristics

Step 3: Store data to Storage Table in Azure

Using Analysis EEG data to Analysis data is push up. Result is 9 characteristics

- When we have 9 characteristics we store them on Storage Table in Azure .
- Data in Storage Table are used as training data for Machine Learning service.

Application API

Receive segment data (512 samples), extract features and call Machine Learning Web service to return classification result to client.

Application API

- When Machine Learning API is receive from Mobile
- Application , API will call web service in Machine learning.
- In Machine Learning EEG data will be analyze and then result
- Intention or Non-Intention to API
- When API have result , it will push result to mobile application
- Mobile Application can using result to play game

Machine Learning

Introduction

Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions, rather than following strictly static program instructions.

Algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions

Machine Learning

Machine learning type

Supervised learning

Unsupervised learning

Reinforcement learning

Machine Learning

Initialize Model

Workflow

Training experiment

Get data

udthink -	2 🛎 🕒				
Properties	>				
▲ Reader					
Data source					
Azure Table	•				
Authentication ty	pe				
Account	•				
Table account na	me				
cloudthink					
Table account key	/ =				
Table name	_				
cloudthink					
Rows to scan for	property nam				
TopN	•				
Bows count for Tr	20N				
10					
START TIME	11/28/2015				
	0:00:12.866				
STATUS CODE	Finished				
STATUS CODE	None				
View output log					

lo

35

Pre-process data

	_					
cloud	think -		8	*	0	
Properties						>
▲ Project Colu	mns					
Select colum	ns					
Selected co All column Exclude co PartitionKey	s s lumn n /,RowKe	a mes: :y,Timest	amp,Na	ame		
L	aunch d	olumn s	elector			
START TIME	1	1/28/201	15 10:14	:18 PM		
END TIME	1	1/28/201	15 10:14	:21 PM		
ELAPSED TIM	E O	:00:03.33	5			
STATUS COD	F	inished				
STATUS DETA	ILS N	lone				
View output	log					

Split data

cloudthin	-	?	**	;;	
Properties)
▲ Split Data					
Splitting mode					
Split Rows				•	
Fraction of rows i	n the first ou	tput da	taset	=	
0.8					
🖉 Randomized	split			=	
Random seed					
0					
Stratified split					
False				•	
START TIME	11/28/2015	10:14:	24 PM		
END TIME	11/28/2015	10:14:	27 PM		

0:00:03.266

Finished

None

ELAPSED TIME

STATUS CODE

STATUS DETAILS

View output log

Apply a learning algorithm

Train Model

(cloudthink	- 🎴 🛛 🖀 🕄			
Propertie	es		>		
▲ Train M	lodel				
Label c	olumn				
Select Colum	ted colum nn names:	ns: IsIntention			
	Launch column selector				
START 1	TIME	11/28/2015 10:14:29 PM			
END TI	ЛЕ	11/28/2015 10:14:34 PM			
ELAPSE	D TIME	0:00:05.867			
STATUS	CODE	Finished			
STATUS	DETAILS	None			
View o	utput log				

(_		_	_		_	_	_			_	Droportion
- Coareb our or		0	Training ex	periment	Predictiv	e experimen	t							Properties
search experi	CloudThin	ik 🔰 Score Ma	del > Score	d dataset										×
Saved	rows	columns												
Traine	351	20												
Data I	ercent_alpha	percent_beta	psd_alpha	psd_beta	arburg_1	arburg_2	arburg_3	arburg_4	arburg_5	arburg_6	Scored Probabilities	Scored Probabilities	Scored Labels	Statistics
											for class 0	IOF Class T		
Feature				III.	.dh.	.dlt.	.dh.		Illi.	Jh.		L		▲ Visualizations
T Mach	.022512	0.061111	-0.009528	0.030453	-0.532815	0.188877	-0.137813	-0.178037	0.15587	-0.495941	0.999987	0.000013	0	
Mach	.018368	0.063246	-0.010336	0.029756	-0.576012	0.174315	-0.170172	-0.129761	0.065447	-0.363706	0.000003	0.999997	1	
Open	.03073	0.13261	-0.008653	0.029885	-0.621503	0.071205	-0.113612	-0.127254	0.077605	-0.286295	0.000001	0.999999	1	
Pytho	.029151	0.028982	-0.009343	0.029742	-0.51924	0.13105	-0.197433	-0.134192	0.09876	-0.37884	0	1	1	To create a graph, select a
R Lan	.015427	0.049293	-0.004875	0.032215	-0.522091	0.153662	-0.187549	-0.079975	0.085978	-0.449858	0.922676	0.077818	0	column in the table
∑ul Statis	.019153	0.058115	-0.012002	0.029049	-0.600395	0.158135	-0.115649	-0.17202	0.105731	-0.375713	0.000005	0.999995	1	
Text (.008682	0.03954	-0.013798	0.030016	-0.607336	0.100402	-0.128194	-0.181705	0.130863	-0.31388	0.000007	0.999993	1	
	.026562	0.062611	-0.009287	0.030336	-0.598013	0.177173	-0.128018	-0.093691	0.06811	-0.425488	0.000063	0.999937	1	
Web !	019858	0.097328	-0.011617	0.029689	-0.550324	0.191597	-0.21409	-0.151545	0.093656	-0.369117	0.039862	0.960097	1	
Vepre Depre	02839	0.043408	-0.010504	0.03047	-0.553124	0.208274	-0.125933	-0.192647	0.169569	-0.506004	0.996342	0.003655	0	
).	050925	0.041253	-0.006883	0.030527	-0.590315	0.189363	-0.200579	-0.111262	0.137794	-0.424897	0.002292	0.997715	1	
	.02467	0.072816	-0.008896	0.031387	-0.567892	0.18404	-0.164591	-0.148151	0.14955	-0.452807	0.973883	0.026113	0	
).	.017357	0.066098	-0.011894	0.029524	-0.557987	0.210158	-0.153543	-0.19177	0.13249	-0.439174	0.995778	0.004202	0	
	.029873	0.066574	-0.010024	0.031123	-0.495545	0.137495	-0.20844	-0.108886	0.062339	-0.386873	0.000001	0.999999	1	
	.00449	0.013454	-0.013378	0.030433	-0.58046	0.166294	-0.141115	-0.189824	0.132335	-0.387035	0.758152	0.241046	0	
)	.031131	0.072134	-0.007014	0.027461	-0.537115	0.122827	-0.154788	-0.10577	0.000146	-0.325206	0	1	1	
	.019071	0.059339	-0.013296	0.029016	-0.556784	0.214573	-0.157736	-0.147619	0.056953	-0.4093	0.012374	0.987674	1	
	.019971	0.059323	-0.012308	0.030996	-0.600288	0.110387	-0.190071	-0.136105	0.124733	-0.308529	0	1	1	
	.018624	0.08308	-0.010663	0.030358	-0.534328	0.189934	-0.192755	-0.166799	0.039977	-0.335918	0.000336	0.999664	1	
	.028013	0.047576	-0.008794	0.030166	-0.6126	0.166894	-0.246149	-0.158259	0.153906	-0.303642	0.000001	0.999999	1	
	.0183	0.014153	-0.01231	0.03211	-0.477351	0.218754	-0.185426	-0.244538	0.139178	-0.450464	0.986416	0.013598	0	•
			□] ()—		-+ 1:	1 🐺 🤅							,	
														,

Machine Learning Web Service

Predictive experiment

Machine Learning Web Service

Web Service

Micro	soft Azure Machine Learning	Home Studio Gallery		cloudthink +	2 8 🖀 😌
Л	cloudthink [predicti	ve exp.]			
	DASHBOARD CONFIGURATION				
	General				
3	Published experiment				
	View snapshot View latest				
	Description				
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	No description provided for this web service	te.			
	Training web service				
	CloudThink				
	API key				
	g/1UMmILbR/gZiO7p09eBGwusWW8c	qxvjsfBsarHf6FbToa7ebpHMwWzJRCXEtxDnU40ghUI8ptEYn4AY5aV41Q==	· · · · · · · · · · · · · · · · · · ·		
	Default Endpoint				
	API HELP PAGE	TEST	APPS	LAST UPDATED	Q ↓
	REQUEST/RESPONSE	Test	ā b Download Excel Workbook	11/28/2015 10:17:20 PM	
	BATCH EXECUTION			11/28/2015 10:17:20 PM	
	Additional endpoints Number of additional endpoints created fo	or this web service: 0			

Manage endpoints in Azure management portal

Applications for EEG Headsets

Game

Applications for EEG Headsets

CloudThink Analytics Application

Applications for EEG Headsets

CloudThink Analytics Application

Classification EEG data

Classification personal EEG data Classification Multiple personality EEG data

Apply results of training

Playing real-time game

Dataset:

- Collected from 1 women and 10 men aged around 22, healthy and right-handed.
- All of subjects are from FPT University and were informed the purpose of this experiment

1. Classification personal EEG data

22	Male	1
22	Male	0.997061
22	Male	1
22	Male	0.987551
22	Male	0.993466
22	Male	0.985646
22	Male	0.991244
22	Male	0.982345
22	Male	1
22	Male	0.981564
22	Male	0.998546
22	Female	0.976125

2. Classification Multiple personality EEG data

0.989243
0.976512
0.969243
0.959243

Apply results of training

Play real-time game

Play real-time game

Case 1: Play game with classification result of his/her EEG data

Case 2: Play game with classification result of multiple personality EEG data

Play real-time game

User Experience Checklist

	Question	Answer
1	Have you played Save angle?	
2	Do you play any similar game ?	
3	Do you think this game would be suitable for you?	
4	What do you think about the difficulty of the game?	
5	Do characters move follow your desire or not?	
6	Are you satisfied with what you were able to achieve while playing the game?	
7	Do characters move quickly and smoothly?	
8	Will you continue to play this game beyond this test? Why or why not?	
9	If you had a magic wand, how would you improve this game?	

Play real-time game

Case 1: Play game with classification result of his/her EEG data

- The majority of volunteers are satisfied with the game satisfied with the game.
- The player can control the characters move in subjective consciousness.

Case 2: Play game with classification result of multiple personality EEG data

- Players do not get stuck to control the character.
- The player can control the characters move in subjective consciousness similar playing game with classification result of his/her EEG data.
- We conducted experiments on volunteers is not in the database has been learned. Results playing game remains as expected.

Discussion

In the future, to achieve more accurate results, we need to conduct experience with longer duration, greater number of users.

We have explored methods of supporting multiple users concurrently.

Develop a small-form models, which allow quick classifications on the mobile device itself.

Future Work

The design described in this paper is the idea to carry a wearable headband that is easily connected to the smartphone, which acts as a medium to transfer data to the cloud network for analyses.

DEMO

A&Q