
Vietnam Journal of Mathematics 36:3(2008) 1–9

 

 

Vietnam Journal  

o f   

MATHEMATICS  

     © VAST 2008 

  
 
 
 
 
 
 
 
 

A Class of Fractional Stochastic
Differential Equations

Nguyen Tien Dung

Department of Mathematics, Vietnam National University,
334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam

Received August 15, 2007

Revised April 15, 2008

Abstract. In this paper we consider the fractional case of a class of stochastic dif-

ferential equations that has many important applications. Based on an approximation

approach we solve the equation with polynomial drift and fractional noise. The explicit

solution is found and some applications are investigated.
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1. Introduction

The fractional Brownian motion (fBm) of Hurst parameter H ∈ (0, 1) is a
centered Gaussian process BH = {BH

t , t ≥ 0} with the covariance function
RH(t, s) = E[BH

t BH
s ]

RH(t, s) =
1
2

(
t2H + s2H − |t − s|2H

)
.

In the case where H =
1
2
, the process BH is a standard Brownian motion. If

H 6=
1
2
, BH is neither a semimartingale nor a Markov process and the stochastic

calculus developed by Itô cannot be applied. There are various approaches to
fractional stochastic calculus by using some difficult tools such as: Malliavin
calculus (see, for instance [1, 4]), theory of Wick product [5]. However, it is not
easy to find explicit solutions from these methods for many practical problems.
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In this paper using an the approximation approach in L2(Ω) we investigate
a class of fractional stochastic equations of form

dXt = (aXn
t + bXt)dt + cXtdBt , (1.1)

where n ∈ N, n ≥ 2 and Bt is a fractional Brownian motion of Liouville form
that is defined below.

This equation is a generalization of many important equations such as: the
Black-Sholes equation in mathematical finance, the Ginzburg-Landau equation
in the theoretical physics, the Verlhust equation in population study.

In [8] Mandelbrot has given a representation of BH of the form:

BH
t =

1
Γ(1 + α)

[
Ut + Bt

]
,

where Ut =
0∫

−∞

(
(t − s)α − (−s)α

)
dWs, Bt =

t∫
0

(t − s)αdWs and α = H − 1
2

.

Bt is a process possessing main properties of BH
t such as of long memory and

called a fractional Brownian motion of Liouville form [2, 6].

It is known that Bt is approximated in L2(Ω) by stochastic processes

B̃t =

t∫

0

(t − s + ε)αdWs ,

where B̃t is a semimartingale and the convergence is uniform in t ∈ [0, T ] .

The paper is organized as follows: In Sec. 2 we recall some important results
from the approximation approach and formulate our approximation problem.
Section 3 contains main results of this paper. In Sec. 4 some applications to
finance and physics are introduced.

2. An Approximation Method

Our method is based on a result on approximation of the fractional process

Bt =
t∫
0

(t − s)αdWs by semimartingales given in [9] that we recall below:

For every ε > 0, as in [1] we define:

B̃t =

t∫

0

(t − s + ε)αdWs , α = H − 1
2
∈ (−1

2
,
1
2
) . (2.1)

Then we have
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Theorem 2.1. I. The process {B̃t, t ≥ 0} is a semimartingale. Moreover

B̃t = αI(t) + εαWt , (2.2)

where ϕε(t) =
t∫
0

(t − s + ε)α−1dWs and I(t) =
t∫
0

ϕε(s)ds .

II. The process B̃t converges to Bt in L2(Ω) when ε tend 0. This convergence
is uniform with respect to t ∈ [0, T ] , i.e:

lim
ε→0

sup
0≤t≤T

‖B̃t − Bt‖2 = 0 (2.3)

Proof. Refer to [9]. �

Corollary 2.2. For any p ≥ 1, the process B̃t uniformly converges in t to Bt in
Lp(Ω) when ε tends 0.

Proof. Noting that B̃t ∼ N (0, σ̃2
t ) and Bt ∼ N (0, σ2

t )

σ̃2
t := E|B̃t|2 =

(t + ε)2H − ε2H

2H
and σ2

t := E|B(t)|2 =
t2H

2H
.

Since t ∈ [0, T ] and ε → 0+, it follows that both σ̃2
t and σ2

t are bounded by some
positive constant. Thus, the Gaussian processes Bε(t) and B(t) have null means
and finite variance. Hence they have their finite moments of any order.

If 1 ≤ p ≤ 2 then by applying the Lyapunov inequality, we obtain

(
E|B̃t − Bt|p

) 1
p ≤

(
E|B̃t − Bt|2

) 1
2 → 0 when ε → 0.

If p > 2 then it follows from Hölder inequality that

E|B̃t − Bt|p ≤
(
E|B̃t − Bt|2

) 1
2
(
E|B̃t − Bt|2p−2

) 1
2

≤ ‖B̃t − Bt‖2

[
22p−3

(
E|B̃t|2p−2 + E|Bt|2p−2

)] 1
2

because E|X + Y |p ≤ 2p−1(E|Y |p + E|Y |p) for any p ≥ 1.

Since B̃t and Bt have moments of any order so there exists some constant
Mp depending only p such that

E|B̃t − Bt|p ≤ Mp‖B̃t − Bt‖2.

The proof is thus complete. �
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Next, let us consider the following fractional differential equation in a com-
plete probability space (Ω,F , P )





dXt =
(
a Xn

t + b Xt

)
dt + c Xt dBt

Xt|t=0 = X0

(2.4)

or 



Xt =
t∫
0

(
a Xn

s + b Xs

)
ds + c

t∫
0

Xs dBs

Xt|t=0 = X0

(2.5)

where the stochastic integral
t∫
0

Xs dBs will be defined as the L2-limit of
t∫
0

Xs dB̃s

when ε → 0, if it exists. The initial value X0 is a measurable random variable
independent of {Bt : 0 ≤ t ≤ T}.

As we said in the introduction, for the fractional stochastic calculus it is not
easy to find explicit solutions of fractional stochastic differential equations. In
order to avoid this difficulty and moreover, because B̃t ⇒ Bt it will be fully
natural to approximate (2.4) by the following equation





dX̃t =
(
a X̃n

t + b X̃t

)
dt + c X̃t dB̃t

X̃t|t=0 = X0

(2.6)

And then the solution of equation (2.4) will be limit in L2(Ω) of the solution of
(2.6) when ε → 0.

3. Main Results

The equation (2.6) is a stochastic differential equation driven by a semimartin-
gale with a polynomial drift and a constant volatility. So the existence and
uniqueness of its solution are assured. Using formula (2.2) we can rewrite equa-
tion (2.6) as follows





dX̃t =
(
a X̃n

t + b X̃t + c αϕε(t)X̃t

)
dt + c εα X̃t dWt

X̃t|t=0 = X0

(3.1)

We have the following theorem.

Theorem 3.1 The solution of equation (2.6) can be explicitly given by

X̃t = e(b− 1
2 c2ε2α)t+c B̃t

(
X1−n

0 + (1 − n)a

t∫

0

e(n−1)
(
(b−1

2 c2ε2α)s+c B̃s

)
ds

) 1
1−n
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Proof. Put
Yt = e−c εαWt

According to the Itô formula we have:

dYt = Yt

(1
2
c2ε2αdt − c εαdWt

)
(3.2)

We consider Zt = X̃tYt and then an application of the integration-by-part for-
mula gives us

dZt = X̃tdYt + YtdX̃t − c2ε2αX̃tYt dt

=
{

a e(n−1)cεαWt(Zt)n +
(
b + c α ϕε(t) − 1

2
c2 ε2α

)
Zt

}
dt

(3.3)

This is an ordinary Bernouilli equation of the form

Z′
t = P (t)Zn

t + Q(t)Zt

and the solution Zt is given by

Zt = e

t∫
0

Q(u)du(
Z0 +

t∫

0

(1 − n)P (s)e
(n−1)

s∫
0

Q(u)du

ds

) 1
1−n

where P (t) = a e(n−1) c εα Wt , Q(t) = b − 1
2 c2 ε2α + c αϕε(t)

and
t∫
0

Q(u)du = (b − 1
2c2ε2α)t + c α I(t) .

Hence, the solution Zt of equation (3.3) can be expressed as

Zt = e(b− 1
2 c2ε2α)t+c α I(t)

(
Z0+(1−n)a

t∫

0

e(n−1)
(
(b− 1

2 c2ε2α)s+c α I(s)+cεαW (s)
)
ds

) 1
1−n

Combining the latest expression and B̃t = αI(t) + εαWt we obtain the solution
of the approximation equation (2.6)

X̃t = e(b− 1
2 c2ε2α)t+c B̃t

(
X1−n

0 + (1 − n)a

t∫

0

e(n−1)
(
(b−1

2 c2ε2α)s+c B̃s

)
ds

) 1
1−n

The proof is thus complete. �
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Theorem 3.2. Suppose that X0 is a random variable such that X0 > 0 a.s and

E[X2n
0 ] < ∞. If H >

1
2

and a ≤ 0 then the stochastic process X∗
t defined by

X∗
t = ebt+c Bt

(
X1−n

0 + (1 − n)a

t∫

0

e(n−1) (bs+c Bs)ds

) 1
1−n

(3.4)

is the limit in L2(Ω) of X̃t . This limit is uniform with respect to t ∈ [0, T ] .

Proof. Put θε(t) = e(b− 1
2 c2ε2α)t+c B̃t and θ(t) = ebt+c Bt then it is clear that

for each m ≥ 1 there exists a finite constant Mm > 0 such that E[θm
ε (t)] ≤

Mm , E[θm(t)] ≤ Mm for every t ∈ [0, T ] . Indeed,

E[θm(t)] = embtE[em c Bt ] = embte
1
2 (m c bt)

2
= embt+ 1

2 m2c2b2
t < ∞,

and
E[θm

ε (t)] = em(b− 1
2 c2ε2α)t+ 1

2 m2c2b̃2
t < ∞ .

Moreover, applying the Hölder inequality we have following estimates for any
m, k ≥ 1 :

E[θm
ε (t) θk(t)] ≤ (E|θε(t)|2m)

1
2 (E|θ(t)|2k)

1
2

So there exists a finite constant Mm,k > 0 such that

E[θm
ε (t) θk(t)] ≤ Mm,k ∀ t ∈ [0, T ] . (3.5)

We now can prove that θε(t)
L2

→ θ(t) uniformly with respect to t ∈ [0, T ] , i.e:

lim
ε→0

sup
0≤t≤T

‖θε(t) − θ(t)‖2 = 0 . (3.6)

Indeed, we see that

‖θε(t) − θ(t)‖2 ≤ ‖θ(t)‖4‖ exp
(
− 1

2
c2ε2αt + c(B̃t − Bt)

)
− 1‖4

≤ M4‖ exp
(
− 1

2
c2ε2αt + c(B̃t − Bt)

)
− 1‖4

(3.7)

Using the relation ex − 1 = x + o(x), we obtain

‖ exp
(
− 1

2
c2ε2αt + c(B̃t − Bt)

)
− 1‖4

≤ ‖ − 1
2
c2ε2αt + c(B̃t − Bt)‖4 + ‖o(...)‖4

≤ 1
2
c2ε2αT + ‖c(B̃t − Bt)‖4 + ‖o(...)‖4

(3.8)

and thus (3.6) follows from Corollary 2.2
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We have also that
t∫
0

θn−1
ε (s)ds

L2

→
t∫
0

θn−1(s)ds uniformly with respect to

t ∈ [0, T ] . Indeed, we have the following estimate:

E

∣∣∣∣
t∫

0

θn−1
ε (s)ds −

t∫

0

θn−1(s)ds

∣∣∣∣
2

≤ t

t∫

0

E|θn−1
ε (t) − θn−1(t)|2ds ∀ t ∈ [0, T ] .

(3.9)

Once again, an application of the Hölder inequality yields for every t ∈ [0, T ]

E|θn−1
ε (t) − θn−1(t)|2

= E[|θε(t) − θ(t)|Aε(t)]
≤ ‖θε(t) − θ(t)‖2 ‖Aε(t)‖2

(3.10)

where Aε(t) = |θε(t) − θ(t)|
(
θn−2
ε (t) + θn−3

ε (t) θ(t) + ... + θn−2(t)
)2

.

Using inequalities of the form (3.5) we see that there exists a finite constant
Mn > 0 such that

‖Aε(t)‖2 ≤ Mn ∀ t ∈ [0, T ] . (3.11)

It follows from (3.9),(3.10) and (3.11) that

E

∣∣∣∣
t∫

0

θn−1
ε (s)ds −

t∫

0

θn−1(s)ds

∣∣∣∣
2

≤ Mn t2 sup
0≤t≤T

‖θε(t) − θ(t)‖2

≤ Mn T 2 sup
0≤t≤T

‖θε(t) − θ(t)‖2 ∀ t ∈ [0, T ] .

(3.12)

The late inequality assures that

sup
0≤t≤T

∥∥∥∥∥∥

t∫

0

θn−1
ε (s)ds −

t∫

0

θn−1(s)ds

∥∥∥∥∥∥
2

→ 0 as ε → 0 .

Put ηε(t) = X1−n
0 +a(1−n)

t∫
0

θn−1
ε (s)ds and η(t) = X1−n

0 +a(1−n)
t∫
0

θn−1(s)ds .

From results above we can see that ηε(t)
L2

→ η(t) uniformly with respect to
t ∈ [0, T ] . Next we will show that

η
1

1−n
ε (t) L2

→ η
1

1−n (t) uniformly with respect to t ∈ [0, T ] . (3.13)
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Indeed, since a ≤ 0, we have ηε(t) ≥ X1−n
0 and η(t) ≥ X1−n

0 a.s for every
t ∈ [0, T ] .

The theorem of finite increments applied to the function g(x) = x
1

1−n yields
∥∥∥∥η

1
1−n
ε (t) − η

1
1−n (t)

∥∥∥∥
2

≤ 1
n − 1

‖Xn
0 (ηε(t) − η(t))‖2 .

By an argument analogous to the previous one, we get
∥∥∥∥η

1
1−n
ε (t) − η

1
1−n (t)

∥∥∥∥
2

≤ M ‖ηε(t) − η(t)‖2 ∀ t ∈ [0, T ] .

where M > 0 is a finite constant. And (3.13) follows from this estimate.

As a consequence we have following assertion

X̃t = θε(t)η
1

1−n
ε (t) L2

→ θ(t)η
1

1−n (t) = X∗(t) .

The proof of theorem is thus complete. �

4. Applications

We can easily verify that some famous equations can be considered as particular
cases of our fractional equation studied in this paper.

1. The fractional Black-Scholes model given by

dXt = µXt dt + νXt dBt ,

(a = 0, b = µ, c = ν )
Xt = X0 eνBt+µ t . (4.1)

2. The fractional Verhulst equation

dXt = (−X2
t + λXt) dt + σXt dBt ,

(a = −1, b = λ, c = σ, n = 2)

Xt = eσBt+λt
(
X−1

0 + (−1)(−1)

t∫

0

eσBs+λsds
)−1

Xt =
X0 eσBt+λt

1 + X0

t∫
0

eσBs+λsds
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3. The fractional Ginzburg-Landau equation

dXt = (−X3
t + (α +

σ2

2
)Xt) dt + σXt dBt ,

(a = −1, b = α + σ2

2 , c = σ, n = 3 )

Xt =
X0 eσBt+(α+ σ2

2 )t

(
1 + 2X2

0

t∫
0

eσBs+(α+ σ2
2 )s

) 1
2
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