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Abstract. The aim of this paper is to introduce an approximation approach to
fractional stochastic integration. Based on our obtained result, we find explicit
solution of some fractional stochastic differential equations and study the ruin
probability in the asset liability management (ALM) model.

1 Introduction

The fractional Brownian motion (fBm) and related problems have been inves-
tigated by several authors from different approaches [1–4,6–8]. A fBm with
Hurst parameter H ∈ (0,1) is a Gaussian process WH = {WH

t ,0 ≤ t ≤ T } with
E[WH

t ] = 0 and the covariance function RH(t, s) = E[WH
t WH

s ] defined as

RH(t, s) = 1

2
(t2H + s2H − |t − s|2H) (1.1)

for all t, s ∈ [0, T ].
In [8] Mandelbrot has given a representation of WH of the form

WH
t = 1

�(1 + α)

[
Ut +

∫ t

0
(t − s)α dWs

]
, (1.2)

where W is a standard Brownian motion, α = H − 1
2 and Ut = ∫ 0

−∞((t − s)α −
(−s)α) dWs . The process {Ut,0 ≤ t ≤ T } is of absolutely continuous trajectories.
It is known that the second term of (1.2) is the main part expressing the long
memory of WH

t and is called a fractional Brownian motion of Liouville form [3,
6,9].

In this paper we consider the fBm of Liouville form with parameter H ∈ (1
2 ,1)

Bt =
∫ t

0
(t − s)α dWs. (1.3)

In [1] Alòs, Mazet and Nualart used the Mallivin Calculus method to approximate
Bt by semimartingales Bε

t defined as follows:

Bε
t =

∫ t

0
(t − s + ε)α dWs, ε > 0. (1.4)
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And an important result was given by Thao [9] who has proved that Bε
t

L2(�)−→ Bt

when ε → 0+ and that the convergence is uniform with respect t ∈ [0, T ]. Using
Thao’s results, we prove that for a stochastic process f ∈ ⋃

μ>3/4 Cμ[0, T ] we
have ∫ t

0
f (s) dBε

s

L1(�)−→
∫ t

0
f (s) dBs ∀t ∈ [0, T ],

where the left-hand side is an integral with respect to a semimartingale and the
right-hand side is a pathwise integral, which is constructed by Zähle [12,13]. We
use the obtained results to study a class of fractional stochastic differential equa-
tions and the ruin probability in the asset liability management (ALM) model.

2 Preliminaries

For the sake of convenience, we recall an important result, which will be the basis
of this paper. For every ε > 0 we define

Bε
t =

∫ t

0
(t − s + ε)α dWs, α = H − 1

2
. (2.1)

We have the following theorem:

Theorem 2.1. Let H ∈ (0,1). Then

I. The process {Bε
t ,0 ≤ t ≤ T } is a semimartingale. Moreover

Bε
t =

∫ t

0
ϕε(s) ds + εαWt, (2.2)

where ϕε(t) = α
∫ t

0 (t − u + ε)α−1 dWu.
II. The process Bε

t converges to Bt in L2(�) when ε tends 0. This convergence
is uniform with respect to t ∈ [0, T ].
Proof. The detailed proof of this theorem can be found in [9]. In case H > 1

2 , we
suggest a different way, as follows:

For all a, b > 0 we have the following inequality

(a + b)α ≤ aα + bα ∀α ∈ [0,1]. (2.3)

Applying this inequality to a = t − u,b = ε we obtain

E|Bε
t − Bt |2 = E

(∫ t

0
[(t − u + ε)α − (t − u)α]dWu

)2

=
∫ t

0
[(t − u + ε)α − (t − u)α]2 du

≤
∫ t

0
ε2α du = ε2αt ∀t ∈ [0, T ].
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So

E|Bε
t − Bt |2 ≤ T ε2α ∀t ∈ [0, T ]. (2.4)

�

Remark 2.1. We recall some results on a generalization of the Stieltjes integral
introduced by Zähle [12].

(i) We have the following estimate for all t ∈ [0, T ] and f ∈ Wλ,1[0, t], g ∈
W 1−λ,∞[0, T ] ∣∣∣∣

∫ t

0
f dg

∣∣∣∣ ≤ C(λ)‖f ‖λ,1‖g‖1−λ,∞. (2.5)

(ii) If f ∈ Cλ[0, T ] and g ∈ Cμ[0, T ] with λ + μ > 1, it is proved that the
integral

∫ t
0 f dg coincides with the Riemann–Stieltjes integral.

3 Main results

Proposition 3.1. Suppose that H ∈ (1
2 ,1) and ε ∈ (0,1).

(a) The following estimates hold for all t, s ∈ [0, T ]
E|Bt − Bs |2 ≤ c1|t − s|2H , (3.1)

E|Bε
t − Bε

s |2 ≤ c1|t − s|, (3.2)

where c1 is a positive constant, depends only on H and T .
(b) Put Dε

t = Bε
t − Bt then

E|Dε
t − Dε

s |2 ≤ c2ε
α|t − s|1/2 ∀t, s ∈ [0, T ], (3.3)

where c2 is some constant depending only on H and T .
(c) For all 0 < λ < 1

4 we have the following estimate

E‖Bε − B‖λ,1 ≤ c3ε
α/2,

where c3 depends only on H,T and λ.

Proof. (a) The inequality (3.1) is elementary property of fBm and its proof can be
found in [6]. The inequality (3.2) can be proved as follows:

Without loss of generality we may assume that s ≤ t . By virtue of the Itô isom-
etry we see that

E|Bε
t − Bε

s |2 =
∫ t

0
(t − u + ε)2α du +

∫ s

0
(s − u + ε)2α du

− 2
∫ s

0
(t − u + ε)α(s − u + ε)α du.
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We consider the right-hand side of the latest equality as a function in t ∈ [s, T ],
denoted by f (t). It is clear that f ∈ C∞[s, T ] and we have f (s) = 0, f ′(s) = ε2α ,
f ′(t) = (t + ε)2α − 2α

∫ s
0 (t − u + ε)α−1(s − u + ε)α du. Therefore

|f ′(t)| ≤ (t + ε)2α + 2α

∫ s

0
(s − u + ε)2α−1 du

= (t + ε)2α + (s + ε)2α − ε2α ≤ 2(T + 1)2α ∀s ≤ t ≤ T .

The theorem of finite increment applied to the function f (t) yields

f (t) = |f (t) − f (s)| ≤ 2(T + 1)2α|t − s|.
(b) Using (2.4) we obtain

E|Dε
t − Dε

s |2 ≤ 2(E|Dε
t | + E|Dε

s |) ≤ 4T ε2α. (3.4)

On the other hand,

E|Dε
t − Dε

s |2 ≤ 2(E|Bε
t − Bε

s |2 + E|Bt − Bs |2)
(3.5)

≤ 2c1
(
1 + (2T )2H−1)|t − s|.

Combining (3.4) and (3.5) yields

E|Dε
t − Dε

s |2 ≤ c2ε
α|t − s|1/2,

where c2 = √
8T c1((2T )2H−1 + 1).

(c) We have

E‖Bε − B‖λ,1 =
∫ T

0

E|Dε
s |

sλ
ds +

∫ T

0

∫ s

0

E|Dε
s − Dε

y |
(s − y)λ+1 dy ds.

Using the estimates (2.4) and (3.3) we obtain

E‖Bε − B‖λ,1 ≤
∫ T

0

εα
√

T

sλ
ds +

∫ T

0

∫ s

0

√
c2εα

√
(s − y)

(s − y)λ+1 dy ds

≤ εα/2
(∫ T

0

√
T

sλ
ds +

∫ T

0

∫ s

0

√
c2

(s − y)λ+3/4 dy ds

)
.

The integrals in the bracket above are finite because of 0 < λ < 1/4.
Thus, there exists a finite constant c3 such that

E‖Bε − B‖λ,1 ≤ c3ε
α/2.

The proof is complete. �

The next theorem is a basic result of this paper.
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Theorem 3.1. Suppose that a stochastic process f : [0, T ] × � → R, satisfies the
following condition: For some δ > 0 there exists a finite constant M > 0 such that

‖f ‖C3/4+δ[0,T ] < M a.s.

Then for all t ∈ [0, T ]
∫ t

0
f (s) dBε

s

L1(�)−→
∫ t

0
f (s) dBs as ε → 0.

Proof. We first recall that

E|Bt − Bs |2 ≤ c1|t − s|2H

for all t, s ∈ [0, T ]. As a consequence, the process B has β-Hölder continuous
path for all 0 < β < H , that is, B ∈ ⋂

0<β<H Cβ[0, T ] with probability one. More-
over, the process f ∈ C3/4+δ[0, T ]. It follows from Remark 2.1 that the integral∫ t

0 f (s) dBs can be understood as a Riemann–Stieltjes integral. An application of
the integration-by-parts formula to both integrals

∫ t
0 f (s) dBs and

∫ t
0 f (s) dBε

s we
obtain∫ t

0
f (s) dBε

s −
∫ t

0
f (s) dBs =

∫ t

0
f (s) d(Bε

s − Bs)

= f (t)(Bε
t − Bt) −

∫ t

0
(Bε

s − Bs)df (s).

Hence∣∣∣∣
∫ t

0
f (s) dBε

s −
∫ t

0
f (s) dBs

∣∣∣∣ ≤ |f (t)(Bε
t − Bt)| +

∣∣∣∣
∫ t

0
(Bε

s − Bs)df (s)

∣∣∣∣.
Applying the Hölder inequality and the relation (2.4) yields

E|f (t)(Bε
t − Bt)| ≤ ‖f (t)‖‖Bε

t − Bt‖ ≤ M
√

T εα, (3.6)

where ‖ · ‖ stands for the L2(�)-norm.
Moreover, since f ∈ C3/4+δ[0, T ] ⊂ W(3+δ)/4,∞[0, T ] a.s., it follows from the

inequality (2.5) with λ = 1−δ
4 that

∣∣∣∣
∫ t

0
(Bε

s − Bs)df (s)

∣∣∣∣ ≤ C(δ)‖Bε − B‖(1−δ)/4,1‖f ‖(3+δ)/4,∞.

An easy computation leads us to the inequality

‖f ‖(3+δ)/4,∞ ≤ M

(
1 + 4

3δ

)
T 3δ/4 := M1 a.s.

Hence from Proposition 3.1 we see that

E

∣∣∣∣
∫ t

0
(Bε

s − Bs)df (s)

∣∣∣∣ ≤ M1C(δ)c3ε
α/2.
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Combining this inequality and (3.6) we have

E

∣∣∣∣
∫ t

0
f (s) dBε

s −
∫ t

0
f (s) dBs

∣∣∣∣ < c4ε
α/2

with c4 = M
√

T + M1C(δ)c3.
The theorem is thus proved. �

4 An application to fractional stochastic differential equation

In this section, we will give the explicit solution for an important class of fractional
stochastic differential equations of the form{

dXt = b(t,Xt ) dt + σ dBt ,

Xt |t=0 = X0,
(4.1)

where b(t, x) = α(t)x + β(t) and σ is a constant. We assume that α(t), β(t) are
deterministic functions on [0, T ] and α(t) is a function bounded by some constant
K > 0.

A classical example of equations (4.1) is the Langevin equation

dXt = (α − bXt) dt + σ dBt .

We consider the corresponding approximation equation{
dXε

t = b(t,Xε
t ) dt + σ dBε

t ,

Xε
t |t=0 = X0.

(4.2)

By extending a result by Thao and Nguyen [11] we will prove that the solution of
the equation (4.1) is the limit in L1(�) of the solution of (4.2) as ε tends to 0.

Proposition 4.1. Suppose that H ∈ (1
2 ,1). Then the solution Xε

t of the equa-
tion (4.2) converges to the solution Xt of (4.1) in L1(�) as ε → 0 uniformly with
respect to t ∈ [0, T ].
Proof. We have

Xε
t = Xε

0 +
∫ t

0
b(s,Xε

s ) ds + σ

∫ t

0
dBε

s ,

Xt = X0 +
∫ t

0
b(s,Xs) ds + σ

∫ t

0
dBs

then

|Xε
t − Xt | ≤

∫ t

0
|b(s,Xε

s ) − b(s,Xs)|ds + σ |Bε
t − Bt |

≤
∫ t

0
|α(s)(Xε

s − Xs)|ds + σ |Bε
t − Bt |.
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Using the estimate (2.4) and since |α(s)| ≤ K ∀s ∈ [0, T ] we obtain

E|Xε
t − Xt | ≤ K

∫ t

0
E|Xε

s − Xs |ds + σ
√

T εα (4.3)

for all 0 ≤ t ≤ T . A standard application of Gronwall’s lemma starting from (4.3)
will give us

E|Xε
t − Xt | ≤ σ

√
T εαeKt .

It follows that

sup
0≤t≤T

E|Xε
t − Xt | ≤ σ

√
T εαeKT .

So Xε
t

L1(�)−→ Xt when ε → 0+, and the convergence is uniform with respect to
t ∈ [0, T ]. �

Next, we will find the explicit solution of the equation (4.2).

Proposition 4.2. Suppose that H ∈ (1
2 ,1) and X0 is a random variable. Then the

solution of (4.2) is given by

Xε
t = e

∫ t
0 α(u)du

(
X0 +

∫ t

0
β(s)e− ∫ s

0 α(u)du ds + σ

∫ t

0
e− ∫ s

0 α(u)du dBε
s

)
.

Proof. By (2.2) we can rewrite the equation (4.2) in the following form:

dXε
t = (

α(t)Xε
t + β(t) + σϕε(t)

)
dt + σεα dWt . (4.4)

We split (4.4) into two equations:

dX1(t) = (
α(t)X1(t) + β(t)

)
dt + σεα dWt, (4.5)

dX2(t) = (
α(t)X2(t) + σϕε(t)

)
dt. (4.6)

The solution of (4.2) will be Xε
t = X1(t) + X2(t). We see that (4.5) is an Itô

stochastic differential equation and its solution is given by

X1(t) = e
∫ t

0 α(u)du

(
X1(0) +

∫ t

0
β(s)e− ∫ s

0 α(u)du ds + σεα
∫ t

0
e− ∫ s

0 α(u)du dWs

)
.

The equation (4.6) is an ordinary differential equation for every fixed ω and its
solution is

X2(t) = e
∫ t

0 α(u)du

(
X2(0) + σ

∫ t

0
ϕε(s)e

− ∫ s
0 α(u)du ds

)
.

Thus, noting that dBε
s = ϕε(s) ds + εα dWs , we see that the solution of (4.2) is

Xε
t = X1(t) + X2(t)

= e
∫ t

0 α(u)du

(
X0 +

∫ t

0
β(s)e− ∫ s

0 α(u)du ds + σ

∫ t

0
e− ∫ s

0 α(u)du dBε
s

)
.
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The proposition is proved. �

Now the most important result of this section can be stated as follows.

Theorem 4.1. Suppose that H ∈ (1
2 ,1) and X0 is a random variable such that

E|X0| < ∞. Then the solution of (4.1) is the unique and given by

Xt = e
∫ t

0 α(u)du

(
X0 +

∫ t

0
β(s)e− ∫ s

0 α(u)du ds + σ

∫ t

0
e− ∫ s

0 α(u)du dBs

)
.

Proof. First of all, by Proposition 4.1 and Proposition 4.2 we have only to prove
that ∫ t

0
f (s) dBε

s

L1(�)−→
∫ t

0
f (s) dBs ∀t ∈ [0, T ], (4.7)

where f (s) = exp(− ∫ s
0 α(u)du). This is obvious since f ∈ C1[0, T ].

The uniqueness of the solution of (4.1) follows from that of L1-limit. If X
(1)
t

and X
(2)
t are limits of Xε

t in L1(�), then

E
∣∣X(1)

t − X
(2)
t

∣∣ ≤ E
∣∣X(1)

t − Xε
t

∣∣ + E
∣∣X(2)

t − Xε
t

∣∣ → 0 as ε → 0.

This complete the proof. �

5 The ruin probability in the ALM model

In finance and economics, it is usual to model the evaluation of the assets and the
liabilities of a bank or an insurance company with the use of stochastic processes
for both parts of the balance sheet. This leads to useful models used in theory and
practice of the asset liability management (ALM).

In this section, we consider an ALM model where the asset Xt and the liability
Yt satisfy the following stochastic differential equations:⎧⎪⎨

⎪⎩
dXt = μ1Xt dt + σ1Xt dB

(1)
t ,

dYt = μ2Yt dt + σ2Yt dB
(2)
t ,

X|t=0 = X0, Y |t=0 = Y0 < X0,

(5.1)

where μ1,μ2, σ1, σ2 are non-negative parameters.
B

(1)
t = ∫ t

0 (t − s)α dW
(1)
s , B

(2)
t = ∫ t

0 (t − s)α dW
(2)
s being two fractional Brown-

ian motions whose correlation coefficient is ρ with |ρ| ≤ 1.
It is known from [9,10] that the solution of fractional Black–Scholes model

dXt = μXt dt + σXt dBt

is St = S0e
μt+σBt . It follows from this fact that

Xt = X0e
μ1t+σ1B

(1)
t , Yt = Y0e

μ2t+σ2B
(2)
t
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and
Xt

Yt

= X0

Y0
exp

(
(μ1 − μ2)t + σ1B

(1)
t − σ2B

(2)
t

)
.

Note that W(1),W(2) have the same ρ for their correlation coefficient ρ be-
cause B(1),B(2) have correlation coefficient ρ. Hence

σ2W
(2)
t − σ1W

(1)
t

is probabilistically equivalent to the process σWt , where Wt is a standard Brown-
ian motion and

σ =
√

σ 2
1 + σ 2

2 − 2ρσ1σ2. (5.2)

We obtain

σ1B
(1)
t − σ2B

(2)
t =

∫ t

0
(t − s)α d

(
σ1W

(1)
s − σ2W

(2)
s

)

= −σ

∫ t

0
(t − s)α dWs =: −σBt

and
Xt

Yt

= X0

Y0
exp(μt − σBt), μ = μ1 − μ2. (5.3)

We now see that the lifetime τ of the bank or the insurance company can be natu-
rally defined as the first value of t such that Xt < Yt , or equivalently

τ = inf
{
t : ln

Xt

Yt

< 0
}

and the ruin probability with a finite time horizon [0, t] is

ϕ(X0, Y0, t) := P(τ < t) = P

(
ln

Xs

Ys

< 0 for some s < t

)

and for infinite time horizon

ϕ(X0, Y0) := lim
t→∞ϕ(X0, Y0, t).

It follows from (5.3) that

ϕ(X0, Y0) = P

(
ln

Xt

Yt

< 0 for some t ≥ 0
)

= P(−μt + σBt > u for some t ≥ 0)

= P
(
sup
t≥0

(−μt + σBt) > u
)
,

where u = ln X0
Y0

. In order to estimate ϕ(X0, Y0) we use a result by Dȩbicki [5],
Corollary 4.1, which says that
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Proposition 5.1. For 1
2 ≤ H ≤ 1

lim
u→∞

1

u2−2H
lnP

(
A(Bo

H , c) > u
) = −h, (5.4)

where Bo
H (t) = √

2HBt , A(Bo
H , c) = sup{Bo

H (t) − ct : t ≥ 0} and

h = 1

2

(
c

H

)2H (
1

1 − H

)2−2H

.

Now we can state the following theorem:

Theorem 5.1. If μ1 ≥ μ2 then the ruin probability for the ALM model (5.1) satis-
fies the relation:

lim
u→∞

lnϕ(X0, Y0)

u2−2H
= − μ2H

Hσ 2

(
H

1 − H

)2−2H

, (5.5)

where μ = μ1 − μ2, σ =
√

σ 2
1 + σ 2

2 − 2ρσ1σ2 and u = ln X0
Y0

.

Proof. We have

ϕ(X0, Y0) = P

(
sup
t≥0

(
Bt − μ

σ
t

)
>

u

σ

)

= P

(
sup
t≥0

(
Bo

H (t) −
√

2Hμ

σ
t

)
>

√
2Hu

σ

)

therefore (5.5) follows from Proposition 5.1. The theorem is completed. �
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