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LINEAR MULTIFRACTIONAL STOCHASTIC VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

Nguyen Tien Dung

Abstract. In this paper we prove the variation of parameters formula for linear
Volterra integro-differential equations driven by multifractional Brownian motion.
To do this, an approximation result for the Stratonovich stochastic integral with
respect to the multifractional Brownian motion is given. Based on our obtained
results we study the almost sure exponential convergence of the solution. Also,
the existence and uniqueness of the solution of a multifractional Volterra integro-
differential equation with time delay are proved.

1. INTRODUCTION

Let H : [0, +∞) → (0, 1) be a Hölder function of exponent β > 0, i.e. for any
t1, t2 ∈ [0, +∞) such that |t1 − t2| < 1, there exists a constant c0 > 0 such that

|Ht1 − Ht2| ≤ c0|t1 − t2|β.

According to the definition given by Peltier and Lévy-Véhel in [12], a multifractional
Brownian motion (mBm), BHt

t , with Hurst functional parameter Ht ∈ (0, 1) is a
stochastic process of the following form

(1.1) BHt
t =

1
Γ(Ht + 1

2 )

( 0∫
−∞

[(t−s)Ht− 1
2 − (−s)Ht− 1

2 ]dWs +

t∫
0

(t−s)Ht− 1
2 dWs

)
,

where Ws is a standard Brownian motion. In the case, where Ht is a constant, mBm
reduces to fractional Brownian motion (fBm).
As showed in the literature (for example, see [3, 7, 12]), mBm seems to be a more

flexible model than fBm. The almost sure Hölder exponent of mBm is allowed to vary
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along the trajectory, a useful feature when one needs to model processes whose regu-
larity depends in time, such as Internet traffic or images. Because of these advantages,
it is desirable to construct the stochastic integral with respect to mBm, as well as to
study the related problems. However, the same as fBm, mBm is not a semimartingale
if Ht �= 1

2 , and we cannot use the classical Itô theory in our context.
Several authors considered the second term in the right hand side of (1.1) as a

definition of mBm which is called a mBm of the Riemann-Liouville type (RL-mBm)
(for example, see [8]). More precisely, we use the following definition for RL-mBm.

Definition 1.1. Let H : [0, +∞) → (0, 1) be a Hölder function of exponent
β > 0. The multifractional Brownian motion of the Riemann-Liouville form (RL-
mBm) with Hurst functional parameter H ∈ (0, 1), denoted by {WHt

t , t ≥ 0}, is a
centered Gaussian process defined by

(1.2) WHt
t =

t∫
0

(t − s)αtdWs , αt = Ht − 1
2
.

Throughout the paper, we assume that Ht is a continuously differentiable function
on [0, +∞). Since RL-mBm is a Gaussian process, we can use the stochastic calculus
developed by Alòs et al. in [1] to get a definition for stochastic integral with respect
to WHt , named the Stratonovich integral. In this paper we use Stratonovich integral
with respect to RL-mBm with Hurst functional parameter Ht > 1

2 to study linear
multifractional stochastic Volterra integro-differential equations that are described in
forms

(1.3) dXt =
(

aXt +

t∫
0

G(t − u)Xudu

)
dt + σtdWHt

t ,

the initial condition X0 = x is a real constant.
The volatility σt does not depend on Xt, we can employ the traditional iteration

method to prove the existence and uniqueness of the solution. After doing this, we
develop a semimartingale approximate approach to prove a variation of parameters
formula for the solution which plays an important role in theory of Volterra equations.
Our obtained formula allows us to study exponential convergence of the solution via
deterministic Volterra equations. Moreover, it also plays a key role in proving the
existence and uniqueness of the solution for the stochastic delay Volterra equation
driven by RL-mBm:

(1.4) dXt =
(

aXt +

t∫
0

G(t − u)Xudu

)
dt + b(Xt−r)dWHt

t ,

Xt = φ(t), t ∈ [−r, 0], where φ ∈ C[−r, 0].
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This paper is organized as follows: In Section 2, we recall some fundamental
facts about the Malliavin calculus and introduce the Stratonovich stochastic integral
with respect to RL-mBm. We also point out that RL-mBm as well as stochastic
integral with respect it can be approximated by semimartingales. Section 3 contains
the main results of this paper regarding the equation (1.3) which proved the variation of
parameters formula for the solution and the almost sure exponential convergence of the
solution to zero. Section 4 is devoted to study the multifractional stochastic Volterra
integro-differential equations with time delay.

2. STRATONOVICH INTEGRAL WITH RESPECT TO RL-mBm

The aim of this section is to introduce the Stratonovich stochastic integral with
respect to RL-mBm with Hurst parameter Ht > 1/2 and being a continuously differ-
entiable function.
First of all, let us recall some elements of stochastic calculus of variations with

respect Brownian motion. Fixed T > 0, for h ∈ L2([0, T ], R), we denote by W (h)
the Wiener integral

W (h) =

T∫
0

h(t)dWt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of those classes of random
variables of the form

(2.1) F = f(W (h1), ...,W (hn)),

where n ∈ N, f ∈ C∞
b (Rn, L2([0, T ], R)), h1, ..., hn ∈ L2([0, T ], R). If F has the form

(2.1), we define its derivative as the process DW F := {DW
t F, t ∈ [0, T ]} given by

DW
t F =

n∑
k=1

∂f

∂xk
(W (h1), ..., W (hn))hk(t).

More generally, for each k ≥ 1 we can define the iterated derivative operator on a
cylindrical random variable by setting

DW,k
t1,...,tk

F = DW
t1 ...DW

tk
F.

For any p ≥ 1 we shall denote by D
1,p
W the closure of S with respect to the norm

‖F‖1,p :=
(

E|F |p +

T∫
0

E|DW
r F |pdr

) 1
p

.
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We now apply the stochastic calculus with respect to Gaussian processes developed
by Alòs et al. [1] to introduce a definition of stochastic integration with respect to
RL-mBm WHt

t . In [1], for regular kernels, the following hypothesis is required.

Hypothesis (K4). For all s ∈ [0, T ), K(., s) has bounded variation on the interval

(s, T ] and
T∫
0

|K|((s, T ], s)2ds < ∞ (where, for all s ∈ [0, T ), |K|((s, T ], s) denotes

the total variation of K(., s) on (s, T ]).
In our context, it is obvious that the kernelK(t, s) = (t−s)αt fulfils the hypothesis

(K4) because αt = Ht− 1
2 is a differentiable function with bounded derivative in [0, T ].

In the remaining of the paper, we set K(t, s) := (t − s)αt . Denote by E the set of
step functions on [0, T ] and consider the norm on E :

‖ϕ‖2
K :=

T∫
0

( T∫
s

|ϕt|∂1K(t, s)dt

)2

ds,

where ∂1K(t, s) = ∂
∂tK(t, s). The completion of E with respect to the ‖.‖K-norm

will be denoted by HKr . Also denote by D
1,2
W (HKr) the space of stochastic processes

satisfying the following two conditions:

(C1) E‖u‖2
K = E

T∫
0

( T∫
s

|ut|∂1K(t, s)dt

)2

ds < ∞,

and

(C2) E

T∫
0

‖DW
r u‖2

Kdr = E

T∫
0

T∫
0

( T∫
s

|DW
r ut|∂1K(t, s)dt

)2

dsdr < ∞.

Let u = {ut, t ∈ [0, T ]} be a stochastic process in D
1,2
W (HKr), one can define the

divergence integral of u with repsect to RL-mBm by (see formula (21) in [1])

t∫
0

usδW
Hs
s =

t∫
0

( t∫
r

us∂1K(s, r)ds

)
δWr,

where δWr is Skorohod differential. Moreover, r 	→
t∫
r

us∂1K(s, r)ds is Stratonovich

integrable with respect to W. By taking into account the relation between Skorohod
integral and Stratonovich integral, we use in this paper the following definition for
mutifractional stochastic integral.
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Definition 2.1. Assume thatHt > 1/2 and is a continuously differentiable function.
Let u ∈ D

1,2
W (HKr), the Stratonovich stochastic integral of u with respect to RL-mBm,

WHt , is defined by
t∫

0

usdWHs
s =

t∫
0

usδW
Hs
s +

t∫
0

t∫
s

DW
s ur ∂1K(r, s)drds,

where ∂1K(r, s) = (r − s)αr−1[α′
r(r − s) ln(r − s) + αr].

Remark 2.1. When Ht = H is a constant, the divergence integral with respect to
fBm with H ∈ (0, 1) has also been defined by Privault in [13, Definition 10].

Proposition 2.1. Let u = {ut, 0 ≤ t ≤ T} be an adapted process bounded in the
norm of the space D

1,2
W , i.e.

sup
0≤t≤T

(
E|ut|2 +

T∫
0

E|DW
r ut|2dr

)
< ∞.

Then u ∈ D
1,2
W (HKr).

Proof. By using Hölder inequality it is easy to check the conditions (C1) and
(C2).

We end this section by showing that RL-mBm can be approximated by semimartin-
gales. This approximation will be the background of the paper and before stating it in
Theorem 2.1, let us recall a fundamental property of RL-mBm.

Lemma 2.1. Let {WHt
t , 0 ≤ t ≤ T} be a RL-mBm with Ht ∈ (0, 1). Then for

each p > 0, there exists CT,p > 0 such that

E|WHt1
t1

− W
Ht2
t2

|p ≤ CT,p|t1 − t2|pmin( 1
2
,β,h) ∀ t1, t2 ∈ [0, T ],

where h = min
t∈[0,T ]

Ht.

Proof. We refer to [12, page 7].

Theorem 2.1. Assume that Ht be a continuously differentiable function.
I. Let Ht ∈ (0, 1). RL-mBm {WHt

t , 0 ≤ t ≤ T} can be approximated in Lp(Ω), p > 0
by semimartingalesWHt,ε

t which are defined as follows for every ε > 0

(2.2) WHt,ε
t :=

t∫
0

(t − s + ε)αt+εdWs , αt = Ht − 1
2
.
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II. Let u = {ut, 0 ≤ t ≤ T} be an adapted process bounded in the norm of the space
D

1,2
W . Then

t∫
0

usdWHs
s = lim

ε→0+

t∫
0

usdWHs,ε
s in L2(Ω),

uniformly in t ∈ [0, T ], provided that Ht > 1/2 ∀ t ∈ [0, T ].

Proof. I. Firstly, we show that WHt,ε
t is a semimartingale. Indeed, we have the

following semimartingale decomposition for stochastic Volterra integrals
t∫

0

g(t, s)dWs =

t∫
0

g(s, s)dWs +

t∫
0

( s∫
0

∂

∂s
g(s, u)dWu

)
ds,

provided that integrals in the right hand side exist. And then by choosing g(t, s) =
(t − s + ε)αt+ε we get

(2.3) WHt,ε
t =

t∫
0

εαs+εdWs +

t∫
0

ϕε
sds , t ∈ [0, T ],

where ϕε
s =

s∫
0

∂1K(s + ε, u)dWu, ∂1K(s + ε, u) = (s − u + ε)αs+ε−1[α′
s+ε(s − u +

ε) ln(s − u + ε) + αs+ε].
By the Itô isometry formula and Lemma 2.1 we have

(2.4)

E|WHt,ε
t − WHt

t |2 = E

∣∣∣∣
t∫

0

(t − s + ε)αt+εdWs −
t∫

0

(t − s)αtdWs

∣∣∣∣2

=

t∫
0

(t − s + ε)2αt+εds − 2

t∫
0

(t − s + ε)αt+ε(t − s)αtds +

t∫
0

(t − s)2αtds

≤
t+ε∫
0

(t − s + ε)2αt+εds − 2

t∫
0

(t − s + ε)αt+ε(t − s)αtds +

t∫
0

(t − s)2αtds

= E|WHt+ε

t+ε − WHt
t |2 ≤ CT ε2 min( 1

2
,β,h).

Since both WHt,ε
t and WHt

t are Gaussian processes, (2.4) implies that for each p > 0,
there exists CT,p such that

E|WHt,ε
t − WHt

t |p ≤ CT,pε
p min( 1

2
,β,h)

which means that WHt ,ε
t converges to WHt

t in Lp(Ω), p > 0 when ε → 0, uniformly
in t ∈ [0, T ].



Multifractional Volterra Integro-differential Equations 339

II. From the decomposition (2.3) and by the integration by parts formula for the
Skorohod integral we have

(2.5)

t∫
0

us dWH,ε
s =

t∫
0

usε
αs+ε dWs +

t∫
0

us

s∫
0

∂1K(s + ε, r)dWrds

=

t∫
0

usε
αs+ε dWs+

t∫
0

s∫
0

us∂1K(s + ε, r)δWrds+

t∫
0

t∫
r

DW
r us∂1K(s+ε, r)dsdr

=

t∫
0

usε
αs+ε dWs +

t∫
0

t∫
r

us∂1K(s + ε, r)dsδWr+

t∫
0

t∫
r

DW
r us∂1K(s+ε, r)dsdr.

As a consequence,

(2.6)

E

∣∣∣∣
t∫

0

us dWH,ε
s −

t∫
0

us dWH,ε
s

∣∣∣∣
2

≤ 3E

∣∣∣∣
t∫

0

usε
αs+ε dWs

∣∣∣∣
2

+3E

∣∣∣∣
t∫

0

t∫
r

us(∂1K(s + ε, r) − ∂1K(s, r))dsδWr

∣∣∣∣
2

+3E

∣∣∣∣
t∫

0

t∫
r

DW
r us(∂1K(s + ε, r) − ∂1K(s, r))dsdr

∣∣∣∣
2

:= 3(A + B + C).

It is obvious that A → 0 as ε → 0, uniformly in t ∈ [0, T ]. By Meyer’s inequality (see,
[11]) we have

B ≤
t∫

0

∥∥∥∥
t∫

r

us(∂1K(s + ε, r)− ∂1K(s, r))ds

∥∥∥∥2

1,2

dr

which implies that B → 0 uniformly in t ∈ [0, T ] as ε → 0 because the process us is
bounded in the norm ‖.‖1,2. Similarly, C → 0 since

C ≤
∥∥∥∥

t∫
r

us(∂1K(s + ε, r)− ∂1K(s, r))ds

∥∥∥∥
2

1,2

.

The Theorem thus is proved.

3. LINEAR MULTIFRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATION

In this section, we consider the linear multifractional Volterra integro-differential
equation without time delay (1.3). We first prove the existence and uniqueness of the
solution with the help of the following lemma.
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Lemma 3.1. Suppose that G ∈ L1[0, T ] and u ∈ Lp([0, T ]× Ω), p > 1. Then

E

t∫
0

( s∫
0

G(s − r)urdr

)p

ds ≤ Lp

t∫
0

E|ur|pdr,

where L =
T∫
0

G(s)ds being a finite constant.

Proof. An application of Hölder inequality yields
(3.1)

t∫
0

( s∫
0

G(s − r)urdr

)p

ds ≤
t∫

0

( s∫
0

G(s − r)up
rdr

)( s∫
0

G(s − r)dr

)p−1

ds

≤ Lp−1

t∫
0

t∫
r

G(s − r)up
rdsdr ≤ Lp

t∫
0

up
rdr.

The Lemma is proved.

Proposition 3.1. Suppose that G ∈ L1[0, T ] and σ ∈ D
1,2
W (HKr). Then the equa-

tion (1.3) has a unique solution.

Proof. Since the multifractional stochastic term in the right hand side of (1.3)
does not contain of Xt, we can prove our theorem by the classical method of Picard
iteration. For all t ∈ [0, T ], consider the functional sequence {X (n)

t , n ≥ 0} defined
by

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

X
(0)
t = X0 +

t∫
0

σsdWHs
s ,

X
(n+1)
t = X0 +

t∫
0

(
aX

(n)
s +

s∫
0

G(s − u)X (n)
u du

)
ds +

t∫
0

σsdWHs
s .

We have

(3.3) E|X (1)
t − X

(0)
t |2 ≤

t∫
0

(a2 + L2)E
(
|X0|2 +

∣∣∣∣
s∫

0

σrdWHr
r

∣∣∣∣2
)

ds := L1 < ∞,

uniformly in t ∈ [0, T ]. For a generic n, we thus have

(3.4)

E|X (n+1)
t − X

(n)
t |2 ≤

t∫
0

(a2 + L2)E|X (n)
s − X (n−1)

s |2ds

≤ (a2+L2)n−1

t∫
0

s1∫
0

...

sn−1∫
0

E|X (1)
sn

−X (0)
sn

|2dsn...ds1≤ L1T
n(a2+L2)n−1

n!
.
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From (3.4) we get the existence and uniqueness of the solution by using standard
arguments of the method of iteration.

The first main results of this section are stated in the following.

Theorem 3.1. Suppose that G ∈ L1[0, T ] and σ is an adapted process bounded
in the norm of the space D

1,2
W .

I. Consider the linear Volterra integro-differential equation driven by semimartin-
gales

(3.5) dXε
t =

(
aXε

t +

t∫
0

G(t − u)Xε
udu

)
dt + σtdWHt,ε

t , Xε
0 = X0 = x.

Then the solution Xε
t of the equation (3.5) converges in L2(Ω) to the solution Xt of

the equation (1.3) as ε tends to zero.

II. The unique solution Xt of the equation (1.3) admits the representation which
is so-called the variation of parameters formula

(3.6) Xt = ZtX0 +

t∫
0

Zt−sσsdWHs
s ,

where Zt is a unique solution of the resolvent equation

(3.7) dZt =
(

aZt +

t∫
0

G(t − u)Zudu

)
dt , Z0 = 1.

Proof. I. We have

Xt = X0 +

t∫
0

(
aXs +

s∫
0

G(s − u)Xudu

)
ds +

t∫
0

σsdWHs
s ,

Xε
t = X0 +

t∫
0

(
aXε

s +

s∫
0

G(s− u)Xε
udu

)
ds +

t∫
0

σsdWHs,ε
s .

Hence,

E|Xε
t − Xt|2 ≤ 3a2

t∫
0

E|Xε
s − Xs|2ds + 3E

t∫
0

( s∫
0

G(s − u)|Xε
u − Xu|du

)2

ds

+3E

∣∣∣∣
t∫

0

σsd(WHs,ε
s − WHs

s )
∣∣∣∣
2

.
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By Lemma 3.1 we get

(3.8) E|Xε
t − Xt|2 ≤ 3(a2 + L2)

t∫
0

E|Xε
s − Xs|2ds + fε(t),

where fε(t) = 3E

∣∣∣∣ t∫
0

σsd(WHs,ε
s −WHs

s )
∣∣∣∣
2

that converges to zero as ε → 0, uniformly

in t ∈ [0, T ].
Applying a generalization of the Gronwall-Bellman inequality (see, [6]) to (3.8) we

get

(3.9) E|Xε
t − Xt|2 ≤ fε(t) + 4(a2 + L2)

t∫
0

fε(s)e4(a2+L2)(t−s)ds.

We finish the proof by dominated convergence theorem.

II. Firstly, we consider the following two equations with the initial conditionsU0, V0

such that U0 + V0 = X0

(3.10) dU ε
t =

(
aU ε

t +

t∫
0

G(t − u)U ε
udu

)
dt + εαt+εσtdWt,

(3.11) dV ε
t =

(
aV ε

t +

t∫
0

G(t − u)V ε
u du + σtϕ

ε
t

)
dt.

The equation (3.10) is a stochastic Volterra integro-differential equation in the sense
of Itô and for every fixed ω ∈ Ω, (3.11) is a deterministic Volterra integro-differential
equation. And then by the classical variation of parameters formula we have

U ε
t = ZtU0 +

t∫
0

Zt−sε
αs+εσsdWs,

V ε
t = ZtV0 +

t∫
0

Zt−sϕ
ε
sσsds.

On the other hand, from the decomposition (2.3) we see that Xε
t = U ε

t +V ε
t is solution

of (3.5). Consequently,

(3.12) Xε
t = ZtX0 +

t∫
0

Zt−sσsdWHs,ε
s .

The formula (3.6) follows directly from (3.12) by taking the limit in L2(Ω) as ε → 0.

The Theorem thus is proved.
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Corollary 3.1. The solution of multifractional Langevin equation

dXt = −bXtdt + σdWHt
t

is unique and given by

Xt = e−btX0 +

t∫
0

σe−b(t−s)dWHs
s .

We now give a sufficient condition for the almost sure exponential convergence
of the solution. Thank to the variation of parameters formula (3.6), this can be done
via exponentially asymptotic stability given by Murakami [10] for the deterministic
Volterra equations:

(3.13) dxt =
(

axt +

t∫
0

G(t− u)xudu

)
dt , t ≥ t0,

the initial condition xt = φ(t), t ∈ [0, t0], where φ ∈ C([0, t0], R).

Lemma 3.2. Suppose that f ∈ C(R+, R
+) ∩ L1(R+) satisfies

∞∫
0

f(t)eγtdt < ∞ for some γ > 0.

If λ > 0 and λ′ = λ ∧ γ then

t∫
0

e−λ(t−s)f(s)ds < e−λ′t
∞∫
0

f(s)eγsds.

Proof. Refer to [2, Lemma 3.1].

We now are position to formulate the next main results of this section.

Theorem 3.2. Suppose that σ is a deterministic function and that the zero solution
of (3.13) is uniformly asymptotically stable, and that the following conditions hold

(3.14)
∞∫
0

|G(s)|eλ1sds < ∞ for some λ1 > 0,

(3.15)
∞∫
0

σ2
s

(
α′

s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
e2λ2sds < ∞ for some λ2 > 0.
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Then
I. there exists γ > 0 and Mp(X0) > 0 such that for each p > 0, the solution of (1.3)
satisfies

(3.16) E|Xt|p ≤ Mp(X0)e−pγt , t ≥ 0.

II. the solution of (1.3) is almost surely exponentially convergent, i.e. there exists
β0 > 0 such that

(3.17) lim sup
t→∞

1
t

log |Xt| ≤ −β0 , a.s.

Proof. I. We observe that if u is a deterministic function then
t∫

0

usdWHs
s =

t∫
0

( t∫
r

us∂1K(s, r)ds

)
dWr,

where dWr is the classical Itô differential. Thus, for each t the integral
t∫
0

usdWHs
s is

centered Gaussian random variable with the variance satisfying the following estimate

(3.18)

E

( t∫
0

usdWHs
s

)2

=

t∫
0

( t∫
r

us∂1K(s, r)ds

)2

dr

≤
t∫

0

( t∫
r

|us|2∂1K(s, r)ds

)
K(t, r)dr

≤ tαt

t∫
0

t∫
r

|us|2∂1K(s, r)dsdr = tαt

t∫
0

s∫
0

|us|2∂1K(s, r)drds

= tαt

t∫
0

|us|2
(

α′
s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
ds.

Let Zt be the solution of (3.7). Since the zero solution of (3.13) is uniformly asymp-
totically stable and (3.14) holds, there exists C > 0 and λ > 0 such that (see, [10, 2])

(3.19) |Zt| ≤ Ce−λt , ∀ t ≥ 0.

From (3.6) and using the estimates (3.18), (3.19) we have

(3.20)

E|Xt − ZtX0|2

≤ tαt

t∫
0

|Zt−sσs|2
(

α′
s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
ds

≤ C2tαt

t∫
0

e−2λ(t−s)|σs|2
(

α′
s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
ds.
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Let λ′ = min(λ, λ2) and γ = λ′
2 . By Lemma 3.2

(3.21)

E|Xt − ZtX0|2

≤ C2tαte−2λ′t
∞∫
0

|σs|2
(

α′
s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
e2λ2sds

≤ C2
2e−2γt,

where C2
2 = C1

∞∫
0

|σs|2
(

α′
s

αs+1sαs+1(ln s − 1
αs+1 ) + sαs

)
e2λ2sds and C1 = sup

t∈(0,∞)

C2tαte−λ′t.
In order to establish (3.16) we need two technical results:

(i) Let Y denote a random variable following an N (0, σ2) law. Then for any p > 0
we have

E|Y |p =
2p/2Γ(p+1

2 )
Γ( 1

2 )
σp.

(ii) (a + b)p ≤ cp(ap + bp) ∀ a, b > 0, where cp = 1 if 0 < p ≤ 1 and cp = 2p−1 if
p > 1.
We now have

E|Xt|p ≤ cp(E|Xt − ZtX0|p + |ZtX0|p)
= cp

(
2p/2Γ(p+1

2 )
Γ( 1

2 )
(E|Xt − ZtX0|2)p/2 + |ZtX0|p

)

= cp

(
2p/2Γ(p+1

2 )
Γ( 1

2 )
Cp

2 e−pγt + |X0|pCpe−pλt

)
≤ Mp(X0)e−pγt,

where Mp(X0) = cp

(
2p/2Γ( p+1

2
)

Γ( 1
2
)

C
p
2 + |X0|pCp

)
.

II.We use the Theorem 4.3.1 in [9] to prove (3.17), it is enough to show that there
exists a constant γ1 > 0 such that

(3.22) E

(
sup

n−1≤t<n
|Xt|2

)
≤ Me−γ1(n−1) ∀ n ≥ 1.

Indeed, if (3.22) is true then β0 = γ1
2 .

We have for each t ≥ n − 1

Xt = Xn−1 +

t∫
n−1

(
aXs +

s∫
0

G(s − u)Xudu

)
ds +

t∫
n−1

σsdWHs
s ,
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and then

(3.23)

E

(
sup

n−1≤t≤n
|Xt|2

)

≤ 3
(

E|Xn−1|2 + E

n∫
n−1

(
aXs +

s∫
0

G(s − u)Xudu

)2

ds

+E

(
sup

n−1≤t≤n

∣∣∣∣
t∫

n−1

σsdWHs
s

∣∣∣∣2
))

≤ 3
(

E|Xn−1|2 + (a2 + L2)

n∫
n−1

E|Xs|2ds

+E

(
sup

n−1≤t≤n

∣∣∣∣
t∫

n−1

σsdWHs
s

∣∣∣∣2
))

.

By the Burkholder-Davis-Gundy inequality, there exists C3 > 0 such that

(3.24)

E

(
sup

n−1≤t≤n

∣∣∣∣
t∫

n−1

σsdWHs
s

∣∣∣∣
2)

≤ C3

n∫
n−1

( n∫
r

σs∂1K(s, r)ds

)2

dr

≤ C3

n∫
n−1

|σs|2
(

α′
s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
ds

≤ C3e
−2λ2(n−1)

∞∫
n−1

|σs|2
(

α′
s

αs + 1
sαs+1(ln s − 1

αs + 1
) + sαs

)
e2λ2sds

≤ C4e
−2λ2(n−1),

where C4 = C3

∞∫
0

|σs|2
(

α′
s

αs+1sαs+1(ln s − 1
αs+1 ) + sαs

)
e2λ2sds < ∞.

Combining (3.16), (3.23) and (3.24) we get

E

(
sup

n−1≤t<n
|Xt|2

)
≤ 3

((
M2(X0) + a2 + L2

)
e−2γ(n−1) + C4e

−2λ2(n−1)

)
≤ Me−γ1(n−1),

where γ1 = 2γ and M = M2(X0) + a2 + L2 + C4.

The Theorem thus is proved.

Remark 3.1. In the classical case, where RL-mBm reduces to a standard Brow-
nian motion, the exponential convergence of the solution is discussed more details by
Appleby and Alan in [2].
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4. MULTIFRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH TIME DELAY

The aim of the section is to prove the existence and uniqueness of the solution of
the multifractional stochastic Volterra integro-differential equation with time delay:

(4.1) dXt =
(

aXt +

t∫
0

G(t − u)Xudu

)
dt + b(Xt−r)dWHt

t , t ∈ [0, T ],

Xt = φ(t), t ∈ [−r, 0], where φ ∈ C[−r, 0].
Noting that since multifractional stochastic integral defined in Definition 2.1 con-

tains of Skorohod integral and Malliavin derivative, we cannot use traditional methods
to prove the existence and uniqueness of the solution. However, fortunately, the delay
time, r, is discrete we can use the method of induction to do this. Our idea is as
follows: first prove the result for the interval [0, r], then we use this solution process
as the initial condition to solve the equation within the interval [r, 2r], and so on. We
need the following two lemmas.

Lemma 4.1. Let u be a adapted stochastic process bounded in the norm of the
space D

1,2
W such that for all r ∈ [0, T ], stochastic process DW

r u also does. We have
for any r ≤ t

DW
r

( t∫
0

usdWHs
s

)
=

t∫
r

DW
r usdWHs

s +

t∫
r

us∂1K(s, r)ds.

Proof. From the decomposition (2.3) we have
t∫

0

us dWH,ε
s =

t∫
0

εαs+εus dWs +

t∫
0

usϕ
ε
sds.

By taking Malliavin derivative

(4.2)

DW
r

( t∫
0

usdWH,ε
s

)

= εαr+εur +

t∫
r

εαs+εDW
r us dWs +

t∫
r

ϕε
sD

W
r usds +

t∫
r

us∂1K(s + ε, r)ds

= εαr+εur +

t∫
r

DW
r us dWHs,ε

s +

t∫
r

us∂1K(s + ε, r)ds.

Taking limit above expression in L2(Ω) as ε → 0 and by closability of Malliavin
derivative we get desired result.
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For fixed k ≥ 1, we denote by Dk,2 the space of stochastic processes such that
u ∈ D

k,2
W and

sup
s∈[0,T ]

E|us|2 + sup
r1,...,rl,s∈[0,T ]

E|DW,l
r1,...,rl

us|2 ≤ Ll

for any l ≤ k, where Ll is a finite constant.
By Proposition 2.1 we have Dk,2 ⊂ D

1,2
W (HK).

Lemma 4.2. Suppose that σ ∈ Dk+1,2. The unique solution Xt of (1.3) belongs
to Dk,2.

Proof. Let Z is the solution of the resolvent equation (3.7). Since Z is a continuous
deterministic function and σ ∈ Dk+1,2, we have σsZt−s belongs to Dk+1,2. From

Lemma 4.1 and by using the method of induction, {
t∫
0

σsZt−sdWHs
s , t ∈ [0, T ]} ∈

Dk,2. Consequently, the fact the solution Xt of (1.3) belongs to Dk,2 follows from the
variation of parameters formula (3.6).

Theorem 4.1. Suppose that b(x) is N -order differentiable function with bounded
derivatives, where N is the smallest integer not smaller than T

r and that b(0) is
bounded. Then (4.1) admits a unique solution in [0, T ]. Moreover, the solution can be
explicitly expressed by

(4.3)

⎧⎨
⎩

Xt = φ(t), t ∈ [−r, 0],

Xt = ZtX0 +
t∫
0

Zt−sb(Xs−r)dWHs
s , t ≥ 0,

where Zt is the solution of the resolvent equation.

Proof. For simplicity let us assume T = Nr, where N is a positive integer
number. Our induction hypothesis, for n < N, is the following:

(Hn) The equation

(4.4) Xt = φ(0)+

t∫
0

(
aXs+

s∫
0

G(s−u)Xudu

)
ds+

t∫
0

b(Xs−r)dWHs
s , t ∈ [0, nr],

with Xt = 0 , t > nr, has a unique solution in DN−n,2.
We check (H1) at first. Let t ∈ [0, r], the equation (4.4) now becomes

(4.5) Xt =φ(0)+

t∫
0

(
aXs+

s∫
0

G(s−u)Xudu

)
ds +

t∫
0

b(φ(s−r))dWHs
s t ∈ [0, r],

It is obvious that σs := b(φ(s− r)) ∈ DN,2 because φ is a continuous deterministic
function. From Lemma 4.2 we have that (4.5) has a unique solution and that this
solution belongs to DN−1,2. Thus, (H1) is true.
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We now assume that (Hi) is true for any i ≤ n, where n < N. We need to check
that (Hn+1) is also true. Put

Yt =

⎧⎪⎨
⎪⎩

φ(t − r), 0 ≤ t ≤ r,

Xt−r, r < t ≤ (n + 1)r,
0, t > (n + 1)r,

where X is the solution found in (Hn). It is easy to see that Y ∈ DN−n,2 since
X ∈ DN−n,2 and

DW,k
s Yt =

{
DW,k

s Xt−r, r < t ≤ (n + 1)r,
0, otherwise.

The equation (4.4) now becomes (1.3):

(4.6) Xt = φ(0)+

t∫
0

(
aXs+

s∫
0

G(s−u)Xudu

)
ds+

t∫
0

σsdWHs
s , t ∈ [0, (n+1)r],

where σs = b(Ys).
Since b(x) has bounded derivatives up to order N, b(0) is bounded and Y ∈

DN−n,2, it is clear that σ ∈ DN−n,2. As a consequence, (4.6) has a unique solution
and this solution belongs to DN−n−1,2.
We complete the proof of this theorem.
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12. R. F. Peltier and J. Lévy-Véhel, Multifractional brownian motion: definition and pre-
liminary results, Rapport de recherche de l'INRIA, 2645, 1995.

13. N. Privault, Skorohod stochastic integration with respect to non-adapted processes on
Wiener space, Stochastics Stochastics Rep., 65(1-2) (1998), 13-39.

Nguyen Tien Dung
Department of Mathematics
FPT University
No 8 Ton That Thuyet
Cau Giay, Hanoi
VietNam
E-mail: dung nguyentien10@yahoo.com

dungnt@fpt.edu.vn


