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1 Introduction

Advanced differential equations were first discussed by Myschkis (1955) [17] and Bellman &

Cooke (1963) [2]. Such equations represent a system in which the rate of change of a quantity

depends on present and future values of the quantity and were proved to be valuable tools to

model the dynamics of many processes in various fields of science and engineering. Indeed, we

can find numerous applications in optimal control problems with delay [18], population growth

[6, 15], population genetics [1], neural networks [7], the field of time symmetric electrodynamics

[20], the study of wavelets [22, 23], and economics [8, 11], etc.

In 1980’s, the existence and uniqueness of the solution to linear and nonlinear advanced

differential equations were investigated by Shah et al [19, 21], and the oscillation properties of

the solution were studied by Kitamura & Kusano [12], and Ladas & Stavroulakis [14]. Since

then, particularly in the last decade, the fundamental problems in the theory of advanced

differential equations have attracted much attention by different authors; for example, the

existence and uniqueness of the solution [10], the oscillation properties [4, 13, 16], and numerical

approximations [9]. However, a general theory of advanced differential equations has not yet

been developed completely. To our best knowledge, the results regarding stability properties of

the solution are scarce. The aim of this article is to partially fill up this gap. We consider the

linear advanced differential equations of the form

ẋ(t) + a(t)x(t + h(t)) + b(t)x(t + r(t)) = 0, t ≥ t0, (1.1)

where a(t) and b(t) are continuous on [t0,∞), and the advanced arguments h(t), r(t) are con-

tinuous functions with h(t) ≥ 0 and r(t) ≥ 0.
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As pointed out by Bellman & Cooke [2], the standard techniques developed for delay dif-

ferential equations can not be effectively applied to (1.1) even when a(t), b(t), h(t), and r(t) are

constants. About fifteen years ago, a new technique of fixed points was developed for studying

stability of delay differential equations (see, for example, [5]). In this article, we show that this

technique can work on (1.1) and then establish sufficient conditions ensuring that the solution

(exponentially) converges to zero. We also obtain a necessary condition for the convergence to

zero.

The rest of this article is organized as follows. Section 2 contains the main results of this

article. In Section 3, we generalize the results to the advanced differential equations with several

terms; an example is also given in this section.

2 Main Results

In this section, we state and prove our main results. Before doing these, let us recall a

definition of the solution to (1.1).

Definition 2.1 A continuously differentiable function x : [t0,∞) → R is called a solution

of equation (1.1), if it satisfies the relation (1.1) for all t ≥ t0.

We need a technical lemma which plays a key role in this article. This lemma transforms

(1.1) into an equivalent integral equation for which the method of fixed points can work.

Lemma 2.2 Let x(t) be the solution of (1.1) on [t0,∞). Then, x(t) satisfies the following

integral equation

x(t) = x0e
−

∫

t

t0
D(u)du

+

∫ t

t0

e−
∫

t

s
D(u)dua(s)

(
∫ s+h(s)

s

Ex(u)du

)

ds

+

∫ t

t0

e−
∫

t

s
D(u)dub(s)

(
∫ s+r(s)

s

Ex(u)du

)

ds, t ≥ t0, (2.1)

where x0 = x(t0), D(t) = a(t) + b(t), and Ex(t) = a(t)x(t + h(t)) + b(t)x(t + r(t)).

Proof Using the relation

x(u) − x(t) =

∫ u

t

ẋ(s)ds,

we can rewrite equation (1.1) as follows,

ẋ(t) = −[a(t) + b(t)]x(t) − a(t)

∫ t+h(t)

t

ẋ(s)ds − b(t)

∫ t+r(t)

t

ẋ(s)ds.

After substituting ẋ from (1.1), we obtain

ẋ(t) = −[a(t) + b(t)]x(t) + a(t)

∫ t+h(t)

t

(

a(s)x(s + h(s)) + b(s)x(s + r(s))

)

ds

+b(t)

∫ t+r(t)

t

(

a(s)x(s + h(s)) + b(s)x(s + r(s))

)

ds,

or equivalently,

ẋ(t) + D(t)x(t) = a(t)

∫ t+h(t)

t

Ex(s)ds + b(t)

∫ t+r(t)

t

Ex(s)ds. (2.2)
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Multiplying both sides of (2.2) by the factor e
∫

t

t0
D(u)du

and then integrating from t0 to t, we

obtain

x(t)e
∫

t

t0
D(u)du

− x(t0) =

∫ t

t0

e
∫

s

t0
D(u)du

a(s)

(
∫ s+h(s)

s

Ex(u)du

)

ds

+

∫ t

t0

e
∫

s

t0
D(u)du

b(s)

(
∫ s+r(s)

s

Ex(u)du

)

ds,

which means that x(t) is the solution of (2.1).

The lemma is proved. �

Theorem 2.3 Assume that the following conditions hold,

lim
t→∞

∫ t

t0

D(s)ds = ∞, (2.3)

sup
t≥t0

∫ t

t0

e−
∫

t

s
D(u)du

(

|a(s)|

∫ s+h(s)

s

(|a(u)| + |b(u)|)du

+|b(s)|

∫ s+r(s)

s

(|a(u)| + |b(u)|)du

)

ds := α < 1. (2.4)

Then, any solution {x(t), t ≥ t0} of (1.1) converges to zero, that is,

lim
t→∞

x(t) = 0.

Proof Let {x∗(t), t ≥ t0} be an arbitrary solution (1.1). We then can define x0 := x∗(t0).

Thanks to Lemma 2.2, we know that {x∗(t), t ≥ t0} is a solution of equation (2.1) with a initial

condition x(t0) = x0. As a consequence, in order to obtain the desired result, it is enough to

show that equation (2.1) with the initial condition x(t0) = x0 has an unique solution and this

solution converges to zero as t tends to ∞.

Denote by C the space of bounded continuous functions x(t) on [t0,∞) such that x(t0) = x0.

It is seen that C is a complete metric space with metric

ρ(x, y) = sup
t≥t0

|x(t) − y(t)|.

We define the operator P on C as

(Px)(t) = x0e
−

∫

t

t0
D(u)du

+

∫ t

t0

e−
∫

t

s
D(u)dua(s)

(
∫ s+h(s)

s

Ex(u)du

)

ds

+

∫ t

t0

e−
∫

t

s
D(u)dub(s)

(
∫ s+r(s)

s

Ex(u)du

)

ds, t ≥ t0. (2.5)

Obviously, we have P(C) ⊂ C. Let x, y ∈ C, then x(t0) = y(t0) = x0 and hence, we have

|(Px)(t) − (Py)(t)| ≤

∫ t

t0

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

|Ex(u) − Ey(u)|du

)

ds

+

∫ t

t0

e−
∫

t

s
D(u)du|b(s)|

(
∫ s+r(s)

s

|Ex(u) − Ey(u)|du

)

ds, t ≥ t0, (2.6)

where

|Ex(u) − Ey(u)| ≤ |a(u)||x(u + h(u)) − y(u + h(u))| + |b(u)||x(u + r(u)) − y(u + r(u))|

≤ (|a(u)| + |b(u)|)ρ(x, y).
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As a consequence, we have

|(Px)(t) − (Py)(t)| ≤

[
∫ t

t0

e−
∫

t

s
D(u)du

(

|a(s)|

∫ s+h(s)

s

(|a(u)| + |b(u)|)du

+|b(s)|

∫ s+r(s)

s

(|a(u)| + |b(u)|)du

)

ds

]

ρ(x, y), t ≥ t0.

This combine with (2.4) yields

ρ((Px), (Py)) ≤ αρ(x, y).

As α < 1, we can conclude that P is a contractive operator.

We now consider a closed subspace S of C :

S = {x ∈ C : lim
t→∞

x(t) = 0}.

We claim that P(S) ⊂ S. Indeed, let x ∈ S, then we have

|(Px)(t)| ≤ |x0|e
−

∫

t

t0
D(u)du

+

∫ t

t0

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

|Ex(u)|du

)

ds

+

∫ t

t0

e−
∫

t

s
D(u)du|b(s)|

(
∫ s+r(s)

s

|Ex(u)|du

)

ds

:= I1 + I2 + I3, t ≥ t0, (2.7)

where

I1 = |x0|e
−

∫

t

t0
D(u)du

, I2 =

∫ t

t0

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

|Ex(u)|du

)

ds,

and

I3 =

∫ t

t0

e−
∫

t

s
D(u)du|b(s)|

(
∫ s+r(s)

s

|Ex(u)|du

)

ds.

By (2.3) we obtain I1 → 0 as t → ∞. Moreover, it follows from the fact x ∈ S that for any

ε > 0, there exists T ≥ t0 such that |x(t)| < ε
2 for all t ≥ T. Hence, we have

I2 =

∫ T

t0

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

|Ex(u)|du

)

ds

+

∫ t

T

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

|Ex(u)|du

)

ds

<

∫ T

t0

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

|Ex(u)|du

)

ds

+
ε

2

∫ t

T

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

(|a(u)| + |b(u)|)du

)

ds, t ≥ T. (2.8)

We observe that the first term in the right hand side of (2.8) converges to zero as t → ∞ due

to condition (2.3). Thus, there exists T1 ≥ T , such that

I2 <
ε

2
+

ε

2

∫ t

T

e−
∫

t

s
D(u)du|a(s)|

(
∫ s+h(s)

s

(|a(u)| + |b(u)|)du

)

ds, t ≥ T1.

Using (2.4) we get I2 < ε for all t ≥ T1. In other words, we have I2 → 0 as t → ∞.

Similarly, we also have I3 → 0 as t → ∞. Hence, (Px)(t) → 0 as t → ∞.
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In summary, P is a contractive operator and P(S) ⊂ S. By the contraction mapping

principle, P has a unique fixed point x(t) in S, that is,

x(t) = (Px)(t) and lim
t→∞

x(t) = 0.

This means that equation (2.1) has a unique solution and this solution satisfies lim
t→∞

x(t) = 0.

The proof is complete. �

Let us now recall a fundamental concept (see, for instance, [3]) that will be used in the

next theorem.

Definition 2.4 The ordinary differential equation ẋ(t) + D(t)x(t) = 0, t ≥ t0 is called

exponentially stable, if there exist M0 > 0 and λ0 > 0 such that any solution of the equation,

ẋ(t) + D(t)x(t) = 0, t ≥ s, x(s) = x0

has the estimate

|x(t)| ≤ M0|x0|e
−λ0(t−s), ∀ t ≥ s ≥ t0,

where M0 and λ0 do not depend on s.

Theorem 2.5 Assume that a(t) and b(t) are bounded on [t0,∞), that the equation ẋ(t)+

[a(t) + b(t)]x(t) = 0 is exponentially stable, and that (2.4) holds. Then, any solution x(t) of

(1.1) exponentially converges to zero, that is, there exist constants M, λ > 0 such that

|x(t)| ≤ Me−λt, ∀ t ≥ t0.

Proof We consider the space C and the operator P as in Theorem 2.3. Let us define

another closed subspace of C as

M = {x ∈ C : there exist constants M, λ > 0 such that |x(t)| ≤ Me−λt ∀ t ≥ t0}.

We will show that P(M) ⊂ M. Let x ∈ M and use the terms I1, I2, I3 as in (2.7).

Because equation ẋ(t)+[a(t)+b(t)]x(t) = 0 is exponentially stable, it follows from Definition

2.4 that there exist constants M0, λ0 > 0 such that

e−
∫

t

s
D(u)du ≤ M0e

−λ0(t−s), ∀ t ≥ s ≥ t0,

where D(u) = a(u) + b(u). Without loss of generality, we may assume that λ0 6= λ for λ as in

the definition of M. We therefore have, for I1 in (2.7),

I1 ≤ M0|x0|e
λ0t0e−λ0t, t ≥ t0.

To estimate I2 in (2.7), we observe that h(t), r(t) ≥ 0, and hence,

∫ s+h(s)

s

|Ex(u)|du ≤ M

∫ s+h(s)

s

(

|a(u)|e−λ(u+h(u)) + |b(u)|e−λ(u+r(u))
)

du

≤ M(a + b)

∫ s+h(s)

s

e−λudu

=
M(a + b)

λ
e−λs(1 − e−λh(s))

≤
M(a + b)

λ
e−λs, s ≥ t0,
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where a = sup
t≥t0

|a(t)| and b = sup
t≥t0

|b(t)|. Consequently, we have

I2 ≤
MM0a(a + b)

λ

∫ t

t0

e−λ0(t−s)e−λsds

≤
(1 ∨ e−(λ−λ0)t0)MM0a(a + b)

λ(λ ∨ λ0 − λ ∧ λ0)
e−(λ∧λ0)t, t ≥ t0.

The second inequality in the above estimates holds because if λ < λ0, then,
∫ t

t0

e−λ0(t−s)e−λsds = e−λt

∫ t

t0

e−(λ0−λ)(t−s)ds ≤
e−λt

λ0 − λ

=
e−(λ∧λ0)t

λ ∨ λ0 − λ ∧ λ0
,

and if λ > λ0, then,
∫ t

t0

e−λ0(t−s)e−λsds = e−λ0t

∫ t

t0

e−(λ−λ0)sds ≤
e−(λ−λ0)t0e−λ0t

λ − λ0

=
e−(λ−λ0)t0e−(λ∧λ0)t

λ ∨ λ0 − λ ∧ λ0
.

In the same way, for I3 in (2.7), we also obtain

I3 ≤
(1 ∨ e−(λ−λ0)t0)MM0b(a + b)

λ(λ ∨ λ0 − λ ∧ λ0)
e−(λ∧λ0)t, t ≥ t0.

As |(Px)(t)| ≤ I1 + I2 + I3, we infer that there exist M∗, λ∗ > 0 such that

|(Px)(t)| ≤ M∗e−λ∗t ∀ t ≥ t0,

which points out that P(M) ⊂ M.

The remainder of the proof is similar to that of Theorem 2.3. So, we omit it here. �

Remark 2.6 In the context of stability problems for delay differential equations, it is

often required that the coefficients are non-negative (see [3]). It is interesting to emphasize that

Theorems 2.3 and 2.5 hold without requiring such conditions, that is, a(t) and b(t) may have

variable-signs.

The first two theorems provide sufficient conditions for (exponential) convergence of the

solution to zero. Let us now give a necessary condition for convergence of the solution to zero.

Theorem 2.7 Assume that (2.4) and the following condition hold

lim inf
t→∞

∫ t

t0

D(s)ds > −∞. (2.9)

If all the solutions of (1.1) converge to zero, then (2.3) holds.

Proof Suppose that (2.3) fails. As (2.9) holds, this implies that

K := sup
t≥t0

e
−

∫

t

t0
D(u)du

< ∞ (2.10)

and that there exists a sequence {tn} with tn → ∞ as n → ∞ such that the sequence

{
∫ tn

t0
D(s)ds}n≥1 converges to a finite constant. So, we can choose a positive constant H

satisfying

−H ≤

∫ tn

t0

D(s)ds ≤ H, ∀ n ≥ 1. (2.11)



616 ACTA MATHEMATICA SCIENTIA Vol.35 Ser.B

For the convenience of the statement, we put

g(s) := |a(s)|

∫ s+h(s)

s

(|a(u)| + |b(u)|)du + |b(s)|

∫ s+r(s)

s

(|a(u)| + |b(u)|)du.

Then, it follows from (2.4) that
∫ tn

t0

e
∫

s

t0
D(u)du

g(s)ds ≤ αe
∫

tn

t0
D(u)du

< eH , ∀ n ≥ 1.

The sequence An := {
∫ tn

t0
e

∫

s

t0
D(u)du

g(s)ds}n≥1 is bounded, so it has a convergent subsequence.

For brevity in notation, we can assume that lim
n→∞

An = l for some l. Consequently, for any

ε0 > 0, there exists n0 ≥ 1 such that
∫ tn

tn0

e
∫

s

t0
D(u)du

g(s)ds <
ε0

2K
, (2.12)

for K as in (2.10).

We replace x0 by ε0 and t0 by tn0
in equation (2.1) to get the following equation

x(t) = ε0e
−

∫

t

tn0

D(u)du
+

∫ t

tn0

e−
∫

t

s
D(u)dua(s)

(
∫ s+h(s)

s

Ex(u)du

)

ds

+

∫ t

tn0

e−
∫

t

s
D(u)dub(s)

(
∫ s+r(s)

s

Ex(u)du

)

ds, t ≥ tn0
. (2.13)

From Lemma 2.2, we known that the unique solution x(t) of (2.13) is also a solution of (1.1)

on [tn0
,∞). Using the relation

x(tn0
) − x(t) +

∫ tn0

t

a(s)x(s + h(s))ds +

∫ tn0

t

b(s)x(s + r(s))ds = 0,

we can construct a solution x(t) of (1.1) on [t0,∞) with x(t) = x(t), t ≥ tn0
. Because all

solutions of (1.1) converge to zero, we have

lim
t→∞

x(t) = 0. (2.14)

We now fixe an ε0 > 0 such that ε0 < 1−α
KeH . From equation (2.13), we can obtain

sup
t≥tn0

|x(t)| ≤ K|ε0|e
∫ tn0

t0
D(u)du + α sup

t≥tn0

|x(t)| ≤ K|ε0|e
H + α sup

t≥tn0

|x(t)|,

which yields

sup
t≥tn0

|x(t)| ≤
KeHε0

1 − α
< 1.

Hence, an application of the inequality a + b + c ≥ |a| − |b| − |c| to (2.13) gives us

x(tn) ≥ ε0e
−

∫

tn

tn0

D(u)du
−

∫ tn

tn0

e−
∫

tn

s
D(u)dug(s)ds, n ≥ n0.

This combine with (2.12) and (2.11) implies that

x(tn) ≥ e
−

∫

tn

tn0

D(u)du
(

ε0 − e−
∫ tn0

t0
D(u)du

∫ tn

tn0

e
∫

s

t0
D(u)du

g(s)ds

)

≥ e
−

∫

tn

tn0

D(u)du

(

ε0 − K

∫ tn

tn0

e
∫

s

t0
D(u)du

g(s)ds

)
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≥ e
−

∫

tn

tn0

D(u)du
(

ε0 − K
ε0

2K

)

≥
ε0e

−2H

2
,

which contradicts with (2.14).

The proof is completed. �

3 Generalization and an Example

We observe that the method used in Section 2 does not depend on the number of advanced

arguments. So, our results can be extended to the following general advanced differential

equations with several terms

ẋ(t) +
N

∑

k=1

ak(t)x(t + hk(t)), t ≥ t0. (3.1)

where ak(t) and hk(t) are continuous functions and hk(t) ≥ 0.

Indeed, as in Lemma 2.2, we can rewrite (3.1) as follows:

x(t) = x0e
−

∫

t

t0
D(u)du

+

∫ t

t0

e−
∫

t

s
D(u)du

N
∑

k=1

(

ak(s)

∫ s+hk(s)

s

Ex(u)du

)

ds, t ≥ t0,

where D(t) =
N
∑

k=1

ak(t) and Ex(t) =
N
∑

k=1

ak(t)x(t + hk(t)). Then, similar to Section 2, we can

get the following theorem without new difficulties.

Theorem 3.1 Suppose that the following condition holds,

sup
t≥t0

∫ t

t0

e−
∫

t

s
D(u)du

N
∑

k=1

(

|ak(s)|

∫ s+hk(s)

s

N
∑

i=1

|ai(u)|du

)

ds := α < 1.

I If

lim
t→∞

∫ t

t0

D(s)ds = ∞,

then any solution {x(t), t ≥ t0} of (3.1) converges to zero.

II If ak(t), k = 1, · · · , N are bounded and the equation ẋ(t) +
N
∑

k=1

ak(t)x(t) = 0 is expo-

nentially stable, then any solution {x(t), t ≥ t0} of (3.1) exponentially converges to zero.

Example Consider the equation

ẋ(t) + a sin(t)x(t + π) + b(1 + cos t)x(t + sin2 t) = 0, t ≥ 0, (3.2)

where a, b > 0.

It is clear that the equation ẋ(t) + [a sin(t) + b(1 + cos t)]x(t) = 0 is exponentially stable.

Moreover, we have the following estimates,
∫ s+π

s

(|a sin u| + b(1 + cosu)) ≤ aπ + 2 + b(π + 2),

∫ s+sin2 s

s

(|a sin u| + b(1 + cosu)) ≤ a + 2b.

Applying Theorem 2.5, we can affirm that the solution of (3.2) exponentially converges to zero

if

sup
t≥0

∫ t

0

e−
∫

t

s
[a sin u+b(1+cos u)]du

(

a[aπ + 2 + b(π + 2)]| sin s|+ b[a + 2b](1 + cos s)

)

ds < 1. (3.3)
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For example, the above inequality holds if

e2a+2b

b

(

a[aπ + 2 + b(π + 2)] + 2b[a + 2b]

)

< 1,

which is satisfied with a = 0.01, b = 0.1.
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