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ON THE LIMIT CLOSURE OF A SEQUENCE OF ELEMENTS

IN LOCAL RINGS

NGUYEN TU CUONG AND PHAM HUNG QUY

Abstract. We present a systematic study about the limit closure (x)lim of a sequence of
elements x (eg. a system of of parameters) in a local ring. Firstly, we answer the question
which elements are always contained in the limit closure of a system of parameters. Then we
apply this result to give a characterization of systems of parameters which is a generalization
of previous results of Dutta and Roberts in [12] and of Fouli and Huneke in [13]. We also
prove a topological characterization of unmixed local rings. In two dimensional case, we
compute explicitly the limit closure of a system of parameters. Some interesting examples
are given.
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1. Introduction

Parameter ideals and systems of parameters are basic concepts of local algebra. Let (R,m)
be a Noetherian local ring of dimension t and x = x1, . . . , xt a system of parameters. Under-
standing the relations of elements in a system of parameters is one of the most important
problems in commutative algebra. Indeed, Hochster asked about a ”simple” relation that
cannot be satisfied by a system of parameters (cf. [17]). This question is called the monomial
conjecture and stated as follows. For for all n ≥ 1 we have (x1 . . . xt)

n /∈ (xn+1
1 , . . . , xn+1

t ).

Key words and phrases. Limit closure, system of parameters, monomial conjecture, determinantal map,
local cohomology, unmixed ring.
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2 NGUYEN TU CUONG AND PHAM HUNG QUY

The monomial conjecture has affirmative answer when R contains a field or dimR ≤ 3, but
it is wild open in other cases (cf. [18, 16]). Moreover it is easy to see that

(x2
1, . . . , x

2
t ) : (x1 . . . xt) ⊆ (x3

1, . . . , x
3
t ) : (x1 . . . xt)

2 ⊆ · · · ⊆ (xn+1
1 , . . . , xn+1

t ) : (x1 . . . xt)
n ⊆ · · · .

Thus it is natural to consider the following

(x1, . . . , xt)
lim :=

⋃

n>0

(
(xn+1

1 , . . . , xn+1
t ) : (x1...xt)

n
)
.

The monomial conjecture is equivalent to the claim that 1 cannot be contained in (x1, . . . , xt)
lim

for any system of parameters x = x1, . . . , xt. We call (x1, . . . , xt)
lim (or (x)lim) the limit clo-

sure of the sequence x = x1, . . . , xt.
It is worth to note that if R is Cohen-Macaulay then (x1, . . . , xt)

lim = (x1, . . . , xt) and the
converse holds true (cf. [15, 8]). The motivation of our paper is a question which can be
thought of as the opposite of Hochster’s monomial conjecture: Determine elements which
are always contained in (x1, . . . , xt)

lim for all systems of parameters x = x1, . . . , xt? For
convenience we shall consider this problem for modules. Let (R,m) be a Noetherian local
ring, M a finitely generated R-modules of dimension d. Let x = x1, . . . , xr be a sequence of
r elements of R. Then the limit closure of the sequence x in M is a submodule of M defined
by

(x)limM =
⋃

n>0

(
(xn+1

1 , . . . , xn+1
r )M : (x1...xr)

n
)
.

The following problem is the starting point of this work.

Problem 1. Let (R,m) be a Noetherian local ring, M a finitely generated R-modules of

dimension d. What is ⋂

x

(x1, . . . , xd)
lim
M ,

where x = x1, . . . , xd runs over all systems of parameters of M?

We will show that the above intersection can be interpreted by the primary decomposition
of the zero submodule of M . Let (0) = ∩p∈AssMN(p) be a reduced primary decomposition
of the zero submodule of M . The unmixed component UM(0) of M is a submodule defined
by

UM(0) =
⋂

p∈AssM,dimR/p=d

N(p)

It should be noted that UM(0) is just the largest submodule of M of dimension less than
dimM = d. We settle Problem 1 as follows.

Theorem 1.1. Let (R,m) be a Noetherian local ring and M a finitely generated R-module

of dimension d. Let x = x1, ..., xd be a system of parameters of M . Then
⋂

n>0

(xn
1 , . . . , x

n
d)

lim
M = UM (0).

Along the way we also consider the intersection of limit closures of parts of systems of
parameters. We prove the following, for the definitions of dimension filtration and good

system of parameters see Section 4.
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Theorem 1.2. Let (R,m) be a Noetherian local ring and M a finitely generated R-module

of dimension d with the dimension filtration D : H0
m(M) = D0 ⊆ D1 · · · ⊆ Dt−1 ⊆ Dt = M ,

where dimDi = di for all i = 0, . . . t. Let x = x1, . . . , xd be a good system of parameters of

M . Then we have ⋂

n≥1

(xn
1 , . . . , x

n
j )

lim
M = Di.

for all 0 ≤ i ≤ t− 1 and di < j ≤ di+1.

These intersection formulas and their variations play an important role in this paper. We
found many applications of them for some deep problems. Firstly, we generalize the previous
works of Dutta and Roberts [12] and of Fouli and Huneke [13] about relation which can only

be satisfied by systems of parameters. Let x = x1, . . . , xt be a system of parameter of R
and y = y1, . . . , yt a sequence of elements such that (y) ⊆ (x). We have a matrix A = (aij),

aij ∈ R, 1 ≤ i, j ≤ r such that yi =
∑n

j=1 aijxj , it means y = Ax, where x (res. y) denotes

the column vector with entries x1, . . . , xr (res. y1, . . . , yr). We abbreviate it by writing

(y)
A

⊆ (x). It easily follows from Crammer’s rule that det(A).(x) ⊆ (y). Therefore, we obtain
a determinantal map

det(A) : R/(x) → R/(y), m+ (x) 7→ det(A)m+ (y).

When R is Cohen-Macaulay, Dutta and Roberts in [12] proved that y is a system of pa-
rameters if and only if the determinantal map det(A) is injective. In [13] Fouli and Huneke
extended this result for any local ring where they substituted (x) by (x)lim. By [30, 5.1.15]
we also have a homomorphism

det(A) : R/(x)lim → R/(y)lim,

which is independent of the choice of the matrix A. The following is a generalization (and a
correction) of Fouli and Huneke’s result.

Theorem 1.3. Let (R,m) be a catenary equidimensional local ring of dimension t. There

exists a positive integer ℓ, which depends only on R, with property: whenever x = x1, ..., xt

is a system of parameters of R with (x) ⊆ mℓ and y = y1, . . . , yt a sequence of elements such

that (y)
A
⊆ (x) the following statements are equivalent

(i) y forms a system of parameters of R.

(ii) The determinantal map R/(x)lim
detA
−→ R/(y)lim is injective.

As another application of intersection formulas we give a characterization of unmixed

local rings. In local algebra we often pass to the m-adic completion R̂ to inherit many good
properties of complete local rings. A local ring (R,m) is called unmixed (in the sense of

Nagata) if dim R̂/P = dim R̂ for all P ∈ Ass R̂. Almost local domains in commutative
algebra are unmixed. However Nagata in [25, Example 2, pp. 203–205] constructed an
local domain with UR̂(0) 6= 0 that is R is not unmixed. The following is a surprising
characterization of unmixed local rings in terms of the topology defined by limit closures.
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Theorem 1.4. Let (R,m) be a Noetherian local ring of dimension t. Then R is unmixed if

and only if the m-adic topology is equivalent to the topology defined by {(xn
1 , . . . , x

n
t )

lim}n≥1

for any system of parameters x = x1, . . . , xt of R.

It should be noted that the limit closure is very complicate to compute. In fact by
Heitmann’s work on monomial conjecture we (only) know (x)lim ⊆ m or ℓ(R/(x)lim) > 0 for
any system of parameters x when dimR is at most three. In the two last sections of this
paper we give some explicit computations for limit closures. By the intersection formulas we
always can reduce to the case R is unmixed. When dimR = 2 we prove the following result.

Theorem 1.5. Let (R,m) be an unmixed local ring of dimension d = 2 with the S2-ification

S. Let x, y be a system of parameters R. Then we have the following.

(i) (x, y)lim = (x, y)S ∩ R.
(ii) ℓ(R/(x, y)lim) = e(x, y;R)− ℓ(H1

m(R)/(x, y)H1
m(R)), where e(x, y;R) is the multiplicity

of (x, y).
(iii) ℓ((x, y)lim/(x, y)) = ℓ(H1(x, y;H1

m(R))).

We also compute the limit closure of a sequence of elements based on an example of Huneke
about the Lichtenbaum-Hartshorne vanishing theorem (cf. Proposition 8.6). The paper is
organized as follows.

In Section 2 we prove some basic and important properties of limit closure. The main
technique is understanding the limit closure via the canonical map from Koszul cohomology
to local cohomology. Then the vanishing theorems of local cohomology is very useful to
prove Theorem 1.1. For convenience, we will deal the limit closure of any sequence on a
finite generated R-module.

The Sections 3 and 4 are devoted for the intersection formulas of Theorems 1.1 and 1.2
and their variations.

We prove Theorem 1.3 in Section 5. We also provide an example to claim that the catenary
condition of the Theorem is essential.

Section 6 is devoted for Theorem 1.4.
In Section 7 we first consider the relation between of limit closures of a system of pa-

rameters in R and in its S2-ification. Then we apply the obtained result to prove Theorem
1.5.

In the last Section we compute an explicit example of certain limit closure.

Throughout this paper, R is a commutative Noetherian ring and M is a finitely generated
R-module. The set of associated primes ofM is denoted by AssM . We also denote AsshM =
{p ∈ AssM : dimR/p = dimM}. For a sequence of elements x = x1, . . . , xr and a positive
integer n we denote by x[n] the sequence xn

1 , . . . , x
n
r . About concepts of commutative algebra

we follow [2, 23]. For local cohomology we refer to [1]. We also want to note that some
results of this paper, including Theorems 1.1, 1.3 and 1.4, appeared in [Proceeding of the 6-
th Japan-Vietnam Joint Seminar on Commutative Algebra, Hayama, Japan 2010, 127–135].
The readers are encouraged to [26] for an application of the limit closure to F -singularities.
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2. Basic properties

Throughout this section, R is a Noetherian ring, and M is a finitely generated R-modules.
Let x = x1, . . . , xr be a sequence of r elements of R. For a positive integer n, we set
x[n] = xn

1 , . . . , x
n
r . The following is the main object of this paper.

Definition 2.1 ([20]). The limit closure of the sequence x in M is a submodule of M defined
by

(x)limM =
⋃

n>0

(
(x[n+1])M : (x1...xr)

n
)
,

when M = R we write (x)lim for short.

It is easy to see that

(x[2])M : (x1...xr) ⊆ (x[3])M : (x1...xr)
2 ⊆ · · · ⊆ (x[n+1])M : (x1...xr)

n ⊆ · · · .

Thus the notion of limit closure is well-defined. By the Noetherness, (x)limM = (x[s+1])M :
(x1...xr)

s for some s ≥ 1.

Remark 2.2. (i) When (R,m) is a local ring and x1, . . . , xr ∈ m, it is well-known that
(x)limM = (x)M if and only if x is an M-sequence.

(ii) The notion of limit closure appears naturally when we consider local cohomology as the
limit of Koszul cohomology. For a sequence x = x1, . . . , xr. We have a direct system
{M/(x[n])M}n≥1 given by the determinantal maps

(x1...xr)
m−n : M/(x[n])M−→M/(x[m])M

for 1 ≤ n ≤ m. Then the kernel of the canonical map

M/(x)M → lim
−→

M/(x[n])M ∼= Hr
(x)(M)

is (x)limM /(x)M , where H i
(x)(M) is the i-th local cohomology of M with support in (x).

We get that the induced direct system {M/(x[n])limM }n≥1 with injective maps and

lim
−→

M/(x[n])limM
∼= Hr

(x)(M).

Therefore we can consider M/(x[n])limM as a submodule of Hr
(x)(M). Hence

Ann(Hr
(x)(M)) = ∩n≥1Ann(M/(x[n])limM ).

In particular, Ann(Hr
(x)(R)) = ∩n≥1(x

[n])lim.

(iii) There is a special interest when (R,m) is a local ring and x is a system of parameters of
R. In this case, the Hochster monomial conjecture is equivalent to say that (x)lim  R
is a proper ideal of R for all systems of parameters x. It is well-known that (x)lim ⊆ m
(or ℓ(R/(x)lim) ≥ 1) for all systems of parameters x if either R contains a field or R
has dimension at most three (cf. [16, 18]). In fact, by Grothendieck’s non-vanishing
theorem we have H t

m(R) 6= 0, here t = dimR. According to (ii), for each system of
parameters x = x1, . . . , xt there exists a positive integer n0 (depends on x) such that
(x[n])lim ⊆ m for all n ≥ n0.
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Now, let y = y1, . . . , yr be another sequence of elements such that (y) ⊆ (x). Then there
exists a matrix A = (aij), aij ∈ R, 1 ≤ i, j ≤ r such that yi =

∑n
j=1 aijxj , it means

y = Ax, where x (res. y) denotes the column vector with entries x1, . . . , xr (res. y1, . . . , yr).

Following [13], we abbreviate it by writing (y)
A
⊆ (x). It easily follows from Crammer’s rule

that det(A).(x) ⊆ (y). Therefore, we obtain a canonical map

det(A) : M/(x)M → M/(y)M, m+ (x)M 7→ det(A)m+ (y)M.

By [30, 5.1.15] we also have that det(A).(x)limM ⊆ (y)limM . Hence we obtain a homomorphism

det(A) : M/(x)limM → M/(y)limM ,

which is independent of the choice of the matrix A. The map det(A) is called determinantal

maps.

Remark 2.3. Let (y)
A
⊆ (x) are sequences such that

√
(x) =

√
(y) i.e. (x[n])

B
⊆ (y) for some

B and n. Then the determinantal map det(A) : M/(x)limM → M/(y)limM is injective (cf. [8,

Lemma 3.1]). Therefore (x)limM = (y)limM :M det(A). Hence (y)limM ⊆ (x)limM .

The following is a slight generalization of [17, Proposition 2], and [8, Theorem 3.3].

Proposition 2.4. Let M be a finitely generated R-modules of dimension d. Then there

exists a positive integer n such that every system of parameters y = y1, . . . , yd contained in

mn satisfies the monomial property, i.e. (y)limM 6= M .

Proof. Without any loss of generality we may assume that AnnM = 0. Then by Remark 2.2
(iii) we can choose a system of parameters x = x1, . . . , xd satisfies the monomial property.
Therefore by Remark 2.3, the positive integer n such that mn ⊆ (x) satisfies the requirement
of the proposition. �

Lemma 2.5. Let M be a finitely generated R-modules of dimension d, and x = x1, . . . , xr a

sequence of elements in R. Then the following assertions hold true.

(i) (x)limM = M if Hr
(x)(M) = 0. In particular, if r > d then (x)limM = M .

(ii) If r = d then M/(x)limM has finite length.

Proof. Note first that M/(x)limM is a submodule of Hr
(x)(M) by Remark 2.2 (ii). So the

statement (i) is trivial.
(ii) If r = d, Hd

(x)(M) is an Artinian module (cf. [1, Excercise 7.1.7]), and hence M/(x)limM is

both Noetherian and Artinian. Thus ℓ(M/(x)limM ) < ∞. �

Corollary 2.6. Let x = x1, . . . , xr be a sequence of elements, and N a submodule of M such

that dimN < r. Then N ⊆ (x)limM .
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Proof. By Lemma 2.5 we have (x)limN = N . Hence

(x)limM =
⋃

n>0

(
(x[n+1])M :M xn

1 ...x
n
r

)

⊇
⋃

n>0

(
(x[n+1])N :N xn

1 ...x
n
r

)

= (x)limN = N.

�

The following is very useful in the sequel.

Proposition 2.7. Let x = x1, . . . , xr be a sequence of elements, and N a submodule of M
such that N ⊆ ∩n>0(x

[n])limM . Set M = M/N . Then we have (x)lim
M

= (x)limM /N .

Proof. It is sufficient to prove that

(x)limM =
⋃

m>0

(
((x[m+1])M +N) :M xm

1 ...x
m
r

)
.

In fact, the set on the left hand is clear contained in the set on the right hand. Conversely,
it is easy to check that

((x[m+1])M +N) :M xm
1 ...x

m
r ⊆ ((x[m′+1])M +N) :M xm′

1 ...xm′

r ,

for all m ≤ m′. Then there exists a positive integer s such that
⋃

m>0

(
((x[m+1])M +N) :M xm

1 ...x
m
r

)
= ((x[s+1])M +N) :M xs

1...x
s
r.

By the assumption N ⊆ (x[s+1])limM , there exists a positive integer k such that

N ⊆ (x
(k+1)(s+1)
1 , . . . , x(k+1)(s+1)

r )M :M x
k(s+1)
1 ...xk(s+1)

r .

Therefore

(xs+1
1 , . . . , xs+1

r )M +N ⊆ (x
(k+1)(s+1)
1 , . . . , x(k+1)(s+1)

r )M :M x
k(s+1)
1 ...xk(s+1)

r .

Thus

(x)limM ⊇ (x
(k+1)(s+1)
1 , . . . , x(k+1)(s+1)

r )M :M x
k(s+1)+s
1 ...xk(s+1)+s

r

=
(
(x

(k+1)(s+1)
1 , . . . , x(k+1)(s+1)

r )M :M x
k(s+1)
1 ...xk(s+1)

r

)
:M xs

1...x
s
r

⊇ ((x[s+1])M +N) :M xs
1...x

s
r

=
⋃

m>0

(
((x[m+1])M +N) :M xm

1 ...x
m
r

)
.

The proof is complete. �

Proposition 2.8. Let M be a finitely generated R-module of dimension d and x = x1, . . . , xd

a sequence of elements of R. Then the following conditions are equivalent

(i) Hd
(x)(M) = 0.

(ii) ∩n≥1(x
[n])limM = M .

(iii) dimR/AnnHd
(x)(M) < d.
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Proof. (i) ⇔ (ii) follows from Remark 2.2 (ii).
(i) ⇒ (iii) is trivial.
(iii) ⇒ (ii) Set M ′ = M/ ∩n≥1 (x

[n])limM . By Proposition 2.7 we have ∩n≥1(x
[n])limM ′ = 0. By

Remark 2.2 (ii) again we have

AnnHd
(x)(M) = ∩n≥1Ann

(
M/(x[n])limM

)
= AnnM ′.

Thus dimR/AnnHd
(x)(M) = dimM ′. So we have dimM ′ < t. It follows by Lemma 2.5 that

∩n≥1(x
′[n])limM ′ = M ′. Therefore M ′ = 0 and hence ∩n≥1(x

[n])limM = M . �

3. Intersection of limit closures

The aim of this section is to prove Theorem 1.1. Let (R,m) be a Noetherian local ring
and M a finitely generated R-module of dimension d. Recall that the unmixed component

UM(0) of M is a submodule defined by

UM(0) =
⋂

p∈AsshM

N(p),

where 0 = ∩p∈AssMN(p) is a reduced primary decomposition of the zero submodule of M
(see [11]). We need some auxiliary results from [4, 9] to prove Theorem 1.1. Let x = x1, ..., xd

be a system of parameters of M . Then we can consider the differences

IM,x(n) = ℓ(M/(x[n])M)− e(x[n];M), and

JM,x(n) = e(x[n];M)− ℓ(M/(x[n])limM )

as functions in n, where e(x;M) is the Serre multiplicity of M with respect to the sequence
x. In general, these functions are not polynomials in n (see [10]), but they are bounded
above by polynomials. Moreover, we have

Theorem 3.1 (see, [4, 9]). With the notations as above, the both functions IM,x(n) and

JM,x(n) are non-negative increasing, and the least degrees of polynomials in n bounding

above these functions are independent of the choice of x. Moreover, if we denote by p(M)
and pf(M) for these least degrees with respect to IM,x(n) and JM,x(n) respectively, then

p(M) ≤ d− 1 and pf(M) ≤ d− 2.

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. We set N = ∩n>0(x
[n])limM . By Corollary 2.6 we have UM(0) ⊆ N . Put

M = M/UM(0) and M ′ = M/N . By Proposition 2.7 we have

ℓ(M/(x[n])limM ) = ℓ(M ′/(x[n])limM ′) = ℓ(M/(x[n])lim
M

)

for all n ≥ 1. Then by Theorem 3.1, there are polynomials f(n) of degree at most d− 1 and
g(n) of degree at most d− 2 such that

ℓ(M/(x[n])limM ) = ℓ(M ′/(x[n])limM ′) ≤ ℓ(M ′/(x[n])M ′) ≤ nde(x;M ′) + f(n),

and

ℓ(M/(x[n])limM ) = ℓ(M/(x[n])lim
M

) ≥ nde(x;M)− g(n).
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Therefore
f(n) + g(n) ≥ nd(e(x,M)− e(x,M ′))

for all n > 0. It follows that e(x;N/UM(0)) = e(x;M) − e(x;M ′) = 0. Hence dim N < d,
and so N = UM(0), since UM(0) is the largest submodule of M with the dimension less than
d. The proof is complete. �

The following result is an immediate consequence of Theorem 1.1.

Corollary 3.2.
⋂

x(x)
lim
M = UM(0), where x runs through the set of all systems of parameters

of M .

Corollary 3.3. Let M be a finitely generated R-module of dimension d.

Ann (Hd
m(M)) = Ann (M/UM (0)) = {r ∈ R : dimM/(0 :M r) < d}.

In particular, Hd
m(M) 6= 0.

Proof. Let x = x1, . . . , xd be a system of parameter of M . By Remark 2.2, we may consider
M/(x[n])limM as a submodule of Hd

m(M) = Hd
(x)(M) for all n ≥ 1.

Ann (Hd
m(M)) = {r ∈ R : rM ⊆ M/(x[n])limM , ∀n ≥ 1}

= {r ∈ R : rM ⊆ UM (0)}

= Ann (M/UM (0))

= {r ∈ R : dim(rM) < d}

= {r ∈ R : dimM/(0 :M r) < d}.

The last assertion follows from the first. �

The following was proved by Grothendieck [14, Proposition 6.6 (7)].

Corollary 3.4. Let (R,m) be a complete local ring, and M a finitely generated R-module of

dimension d. Let T d(M) = HomR(H
d
m(M), E(R/m)), where E(R/m) is the injective envelope

of R/m. Then Ann (T d(M)) = UR/AnnM(0).

Proof. We may assume that AnnM = 0. Therefore AsshM = AsshR. By duality we have
AnnT d(M) = AnnHd

m(M). So by Corollary 3.3 we need only to show that Ann (M/UM(0)) =
UR(0) which is equivalent to

{r ∈ R : dim rM < d} = {r ∈ R : dim rR < d}.

Since M is a faithfully R-module then the following homomorphism

R → Mk, x 7→ (xm1, . . . , xmk)

is injective, where m1, . . . , mk are generators of M . We also have a natural projective ho-
momorphism Rk → M . Thus for all p ∈ Spec(R) and for all r ∈ R we have rMp = 0 iff
rRp = 0. Therefore

{r ∈ R : dim rM < d} = {r ∈ R : rMp = 0, ∀ p ∈ AsshM}

= {r ∈ R : rRp = 0, ∀ p ∈ AsshR}

= {r ∈ R : dim rR < d}.

The proof is complete. �
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Corollary 3.5. Let (R,m) be a complete local ring, and M a finitely generated R-module

of dimension d. Let x = x1, . . . , xd be a sequence of elements. Let ∩p∈AssMN(p) = 0 be a

reduced primary decomposition of (0) in M . Then
⋂

n≥1

(x[n])limM =
⋂

p∈J

N(p),

where J = {p ∈ AssM : x is a system of parameters ofR/p}.

Proof. Set N = ∩p∈JN(p). Then AssN = AssM \ J . By the Lichtenbaum-Hartshorne
vanishing Theorem we have Hd

(x)(N) = 0. Therefore ∩n≥1(x
[n])limM ⊇ ∩n≥1(x

[n])limN = N by

Proposition 2.8. Set M ′ = M/N , we have AssM ′ = J ⊆ AsshM . Then x is a system
of parameters of M ′ and UM ′(0) = 0. Hence ∩n≥1(x

[n])limM ′ = 0 by Theorem 1.1. Thus
∩n≥1(x

[n])limM = N by Proposition 2.7. �

We prove a non-vanishing result of local cohomology.

Corollary 3.6. Let M be a finitely generated R-module of dimension d and x1, . . . , xr be a

part of system of parameters. Then Hr
(x1,...,xr)

(M) 6= 0.

Proof. Extend x1, . . . , xr to a full system of parameters x = x1, . . . , xd. For all n ≥ 1 we
have (xn

1 , . . . , x
n
r )

lim
M ⊆ (x[n])limM . Therefore

⋂

n≥1

(xn
1 , . . . , x

n
r )

lim
M ⊆ UM(0)

by Theorem 1.1. By Remark 2.2 (ii) we have

AnnHr
(x1,...,xr)(M) = ∩n≥1 AnnM/(xn

1 , . . . , x
n
r )

lim
M ⊆ AnnM/UM(0).

Thus Hr
(x1,...,xr)

(M) 6= 0. The proof is complete. �

4. The dimension filtration

In this section we study the intersection of the limit closures of parts of systems of param-
eters. We first recall the notions of dimension filtration and good system of parameters (cf.
[6, 11, 29]).

Definition 4.1. Let M be a finitely generated R-module of dimension d.

(i) The dimension filtration of M is the filtration of submodules

D : H0
m(M) = D0 ⊆ D1 · · · ⊆ Dt−1 ⊆ Dt = M,

where Di−1 is the largest submodule of Di with dimDi−1 < dimDi for all i = 1, . . . , t.
(ii) A system of parameters x = x1, . . . , xd is said to be good if for all i = 0, . . . , t − 1 we

have
Di ∩ (xdi+1, . . . , xd)M = 0,

where di = dimDi, i = 0, . . . , t− 1.

The dimension filtration D of M exists uniquely and Dt−1 = UM (0). Moreover good
systems of parameters of M always exist by [6, Lemma 2.5]. Notice that 0 :M xj = Di for
all di + 1 ≤ j ≤ di+1 by [5, Lemma 2.4]. We prove Theorem 1.2.
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Proof of Theorem 1.2. By Corollary 2.6 we have ∩n≥1(x
n
1 , . . . , x

n
j )

lim
M ⊇ Di for all 0 ≤ i ≤ t−1

and di < j ≤ di+1. For every m,n ≥ 1 we consider the submodule defined as follows

(xn
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M :=

⋃

k≥1

(
(x

n(k+1)
1 , . . . , x

n(k+1)
j , xm

j+1, . . . , x
m
d )M : (x1...xj)

nk
)
.

We have
(xn

1 , . . . , x
n
j |x

m
j+1, . . . , x

m
d )

lim
M

(xm
j+1, . . . , x

m
d )M

= (xn
1 , . . . , x

n
j )

lim
M/(xm

j+1
,...,xm

d
)M .

Therefore by Theorem 1.1 we have

⋂

n≥1

(xn
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M

(xm
j+1, . . . , x

m
d )M

= UM/(xm
j+1

,...,xm
d
)M(0).

So ⋂

n≥1

(xn
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M =

⋂

p∈AsshM/(xm
j+1

,...,xm
d
)M

Nm(p), (⋆)

where Nm(p) is the p-primary component which appears in a reduced primary decomposition
of (xm

j+1, . . . , x
m
d )M .

Now suppose Di  ∩n≥1(x
n
1 , . . . , x

n
j )

lim
M . Thus there exists a ∈ ∩n≥1(x

n
1 , . . . , x

n
j )

lim
M and

dimRa = ds for some s > i. Hence a ∈ Ds and there exists q0 ∈ Assh(Ra), that is
dimR/q0 = ds. Since x is a good system of parameters we have

Ds ∩ (xm
ds+1, . . . , x

m
d )M = 0

for all m ≥ 1. So

Ds
∼=

Ds + (xm
ds+1, . . . , x

m
d )M

(xm
ds+1, . . . , x

m
d )M

,

and consider the right hand side as a submodule of M/(xm
ds+1, . . . , x

m
d )M . Therefore q0 ∈

AsshM/(xm
ds+1, . . . , x

m
d )M for all m ≥ 1. Because dimR/q0 = ds, x1, . . . , xs is a sys-

tem of parameters of R/q0. We have dimR/(q0 + (xj+1, . . . , xds)) = j. Choose a prime
ideal p0 ∈ AsshR/(q0 + (xj+1, . . . , xds)), so dimR/p0 = j. For each m ≥ 1, since q0 ∈
AsshM/(xm

ds+1, . . . , x
m
d )M we have Ann(M/(xm

ds+1, . . . , x
m
d )M) ⊆ q0. So

Ann(M/(xm
j+1, . . . , x

m
d )M) ⊆

√
q0 + (xj+1, . . . , xds) ⊆ p0.

Therefore p0 ∈ Supp(M/(xm
j+1, . . . , x

m
d )M)). However dimR/p0 = dimM/(xm

j+1, . . . , x
m
d )M) =

j. Thus we have

p0 ∈ AsshM/(xm
j+1, . . . , x

m
d )M

for all m ≥ 1. Since a ∈ ∩n≥1(x
n
1 , . . . , x

n
j )

lim
M we have

a ∈ ∩n≥1(x
n
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M

for all m ≥ 1. By (⋆) we have a ∈ ∩m≥1Nm(p0). Localization at p0 we have a
1
6= 0 ∈ Mp0

since q0 ∈ Ass(Ra) and q0 ⊆ p0. So ∩m≥1(Nm(p0))p0 6= 0. On the other hand, since
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p0 ∈ AsshM/(xm
j+1, . . . , x

m
d )M , it is a minimal associated prime of M/(xm

j+1, . . . , x
m
d )M .

Therefore

(Nm(p0))p0 = (xm
j+1, . . . , x

m
d )Mp0.

Hence ∩m≥1(Nm(p0))p0 = 0 by the Krull intersection theorem. This is a contradiction. The
proof is complete. �

The following is a generalization of Corollary 3.2.

Corollary 4.2. Let M be a finitely generated R-module of dimension d with the dimension

filtration D : H0
m(M) = D0 ⊆ D1 · · · ⊆ Dt−1 ⊆ Dt = M , where dimDi = di for all i = 0, . . . t.

For all 0 ≤ i ≤ t − 1 and di < j ≤ di+1 we have ∩x(x)
lim
M = Di, where x = x1, . . . , xj runs

through all part of systems of parameters of M .

Remark 4.3. The proof of Theorem 1.2 will be much more easy if we assume x = x1, . . . , xd

is a dd-sequence of M (for the definition of dd-sequences see [6]). It is known that if a system
of parameters is a dd-sequence, then it is a good system of parameters (cf. [5, Corollary 3.7]).
Furthermore, every finitely generated R-module admits a system of parameter which is a
dd-sequence if and only if the ring is an image of a Cohen-Macaulay local ring (cf. [7]). For
each m ≥ 1 we have x1, . . . , xj is a dd-sequence of M/(xm

j+1, . . . , x
m
d )M , so

UM/(xm
j+1

,...,xm
d
)M (0) =

(xm
j+1, . . . , x

m
d )M :M xj

(xm
j+1, . . . , x

m
d )M

for all m ≥ 1. Following the proof of Theorem 1.2, for all m ≥ 1 we have
⋂

n≥1

(xn
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M = (xm

j+1, . . . , x
m
d )M :M xj .

Therefore
⋂

n≥1

(xn
1 , . . . , x

n
j )

lim
M ⊆

⋂

n,m≥1

(xn
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M

=
⋂

m≥1

⋂

n≥1

(xn
1 , . . . , x

n
j |x

m
j+1, . . . , x

m
d )

lim
M

=
⋂

m≥1

((xm
j+1, . . . , x

m
d )M :M xj)

= 0 :M xj = Di

the last equation follows from [5, Lemma 2.4].

5. Systems of parameters

In this section, we prove a characterization of systems of parameters in terms of injectivity
of the determinatal maps. Our results improve known results of Dutta and Roberts in [12]
and of Fouli and Huneke in [13]. Let x = x1, . . . , xt be a system of parameters of R, and

y = y1, . . . , yt a sequence of elements such that (y)
A
⊆ (x). Dutta and Roberts proved in

[12] that if R is a Cohen-Macaulay ring, then y is a system of parameters if and only if
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the determinantal map detA : R/(x) → R/(y) is injective. The following result is a slight
generalization of Dutta-Roberts’s result.

Theorem 5.1. Let R be a local ring such that R/UR(0) is Cohen-Macaulay. Let x be a system

of parameters and y a sequence of elements in R such that (y)
A

⊆ (x). Then y is a system of

parameters of R/UR(0) if and only if the determinantal map detA : R/(x)lim → R/(y)lim is

injective.

Proof. By Corollary 2.6 we have that UR(0) ⊆ (x[s])lim for all s ≥ 1. Set R′ = R/UR(0). For
an element a ∈ R, we denote by a′ the image of a in R′. Set x′ = x′

1, . . . , x
′
t and y′ = y′1, . . . , y

′
t.

We also have (y′)
A
⊆ (x′), here we consider R′ as an R-module. By Proposition 2.7 we have

(x′)limR′ = (x)lim/UR(0); (y
′)limR′ = (y)lim/UR(0).

Therefore both deteminatal maps

detA : R/(x)lim → R/(y)lim

and
detA : R′/(x′)limR′ → R′/(y′)limR′

are the same. Notice that R′ is Cohen-Macaulay. Then the conclusion follows from the
module-version of mentioned above result of Dutta and Roberts. �

As a consequence of Theorem 5.1 we obtain a recently result of Fouli and Huneke [13,
Theorem 4.4] as follows.

Corollary 5.2. Let R be a 1-dimensional Noetherian local ring. Let x be a parameter, and

let y = ux. Then y is a parameter if and only if the map R/(x)lim
u

−→ R/(y)lim is injective.

Proof. Since dim R = 1 we have that UR(0) = H0
m(R) and R = R/UR(0) is Cohen-Macaulay.

Moreover, x is a parameter of R if and only if x is also a parameter of R. Hence the assertion
follows from Theorem 5.1. �

In higher dimension, we need the condition that R is equidimensional to claim that if a
sequence x = x1, ..., xt is a system of parameters ofR/UR(0), then it is a system of parameters
of R. We need the following in the sequel.

Lemma 5.3. Let (R,m) be a catenary equidimensional local ring of dimension t, x =
x1, ..., xt a sequence of elements of R. Then the following statements are equivalent

(i) x is a system of parameters of R.

(ii) x is a system of parameters of R̂/UR̂(0).

Proof. (i) ⇒ (ii) is clear.

(ii) ⇒ (i) It is easily seen that x is a system of parameters of R̂/UR̂(0) if and only if x is

a system of parameters of R̂/P for all P ∈ AsshR̂. And hence we shall prove by induction

on t that if x is a system of parameters of R̂/P for all P ∈ AsshR̂, then x is a system of
parameters of R. The case t = 1 is trivial. Suppose that t > 1. We choose an arbitrary

prime ideal p ∈ AsshR, then there exists P ∈ AsshR̂ such that P ∩ R = p. Since x is a
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system of parameters of R̂/P we have x1 /∈ P, and so x1 /∈ p. Thus R/(x1) is a catenary
equidimensional local ring of dimension t− 1. We shall show that x′ = x2, ..., xt is a system

of parameter of R̂/P′ for all P′ ∈ AsshR̂/(x1)R̂ . If P′ ∈ min(R̂), then P′ ∩R = p ∈ AsshR
since R is equdimensional. Therefore x1 /∈ P′, it is a contradiction. Thus there exists
P ∈ AsshR̂ such that P ( P′, note that dim R̂/P′ = d − 1. Because x = x1, . . . , xt is a

system of parameters of R̂/P we have x′ = x2, ..., xt is a system of parameter of R̂/P′. By
the inductive hypothesis x′ = x2, ..., xt is a system of parameters of R/(x1). Thus x is a
system of parameters of R as required. �

The following is the main result of this section.

Theorem 5.4. Let (R,m) be a catenary local ring of dimension t. There exists a positive

integer ℓ, which depends only on R, with property: whenever x = x1, ..., xt is a system of

parameters of R/UR(0) with (x) ⊆ mℓ and y = y1, . . . , yt a sequence of elements such that

(y)
A
⊆ (x) the following statements are equivalent

(i) y forms a system of parameters of R/UR(0).

(ii) The determinantal map R/(x)lim
detA
−→ R/(y)lim is injective.

Proof. (i) ⇒ (ii) follows from Remark 2.3 and the same argument as the proof of Theorem
5.1.
(ii) ⇒ (i). We first show that the assertion in the case R is complete. By Corollary 2.6 and
Proposition 2.7 we may assume henceforth that UR(0) = 0 and hence R is equidimensional.
Assume that AssR = AsshR = {p1, . . . , pn} and ∩pi∈AssRN(pi) = 0 is a reduced primary
decomposition of (0). For 1 ≤ i ≤ n we set

Li =
⋂

j 6=i,pj∈AssR

N(pj).

Let z = z1, ..., zt is a system of parameters of R. By Theorem 1.1 we have ∩n≥1(z
[n])lim = 0.

Then there is a positive integer ℓ1 such that Ni * (z[ℓ1])lim for all i = 1, . . . , n. Let ℓ be a

positive integer such that mℓ ⊆ (z[ℓ1]).
Suppose we have x = x1, ..., xt and y = y1, . . . , yt are sequences of elements contained

in mℓ such that (y)
A
⊆ (x) and x is a system of parameters of R and the determinantal

map R/(x)lim
detA
−→ R/(y)lim is injective. Assume y is not a system of parameter of R. By

relabeling (if necessarily) we can assume henceforth that y = y1, . . . , yt is not a system of

parameters of R/p1. By Corollary 3.5 we have 0 6= L1 ⊆ (y)lim. On the other hand, it follows

from Remark 2.3 that (x)lim ⊆ (z[ℓ1])lim. Hence Li * (x)lim for all i = 1, . . . , n. Thus there

is 0 6= u ∈ (y)lim \ (x)lim. Therefore the determinantal map R/(x)lim
detA
−→ R/(y)lim maps

u + (x)lim to 0. So it is not injective. This is a contradiction. Hence y = y1, . . . , yt is a
system of parameters of R.
The assertion in general case now follows from Lemma 5.3 since R/UR(0) is catenary and
equidimensional. The proof is complete. �
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Proof of Theorem 1.3. It immediately follows from Theorem 5.4 and the fact x is a system
of parameters of R if and only if x is a system of parameters of R/UR(0) provided R is
equidimensional. �

Theorem 1.3 was proved by Fouli and Huneke for any equidimensional local ring (cf. [13,
Corollary 5.4]). However, in fact, they proved this result with assumption that R is complete.
Thus our result is a generalization of their one. We will show that the catenary condition is
essential.

Example 5.5 (see, [25], Example 2, pp 203–205). Let K be a field, and K[[X ]] a formal
power series ring. Let Z =

∑
i≥1 aix

i be a algebraically independent element over K(X).

Set Zj = (Z−
∑

k<j akX
k)/Xj−1. Furthermore let Y be a algebraically independent element

over K[X,Z]. Let R1 = K[X,Z1, . . . , Zj, ...] and set R2 = R1[Y ]. Let n1 = (X, Y ), n2 =
(X − 1, Z, Y ) are maximal ideals of R2 with ht(n1) = 2 and ht(n2) = 3. Let S be the
intersection of complements of n1 and n2 in R2 and set R′ = (R2)S. Then R′ is Noetherian.
Let m be the Jacobson radical of R′ and set R = K +m. We have (R,m) is a local domain
of dimension 3. However R is non-catenary since 0 ⊂ q = XR′ ∩R ⊂ m is a maximal chain
of prime ideals in R. Since (R,m) is a local ring of dimension three, q is generated by three
element up to radical.

Proposition 5.6. Let R,m, q as in the previous Example, and let x = x1, x2, x3 be any

system of parameters of R. Then there exists y = y1, y2, y3 such that (y)
A
⊆ (x) and the

determinantal map R/(x)lim
detA
−→ R/(y)lim is injective but y is not a system of parameters.

Proof. As above, q =
√

(z1, z2, z3) for some z1, z2, z3. We may choose the sequence y =

y1, y2, y3 with yi = zki , 1 ≤ i ≤ 3, for large enough k such that (y)
A
⊆ (x). It is clear that y is

not a system of parameters of R. We now show that the determinantal map

R/(x)lim
detA
−→ R/(y)lim

is injective. It is equivalent to prove that the determinantal map

R̂/(x)lim
R̂

detA
−→ R̂/(y)lim

R̂

is injective By Theorem 5.4 it is sufficient to prove that y is a system of parameters of R̂/P

for any P ∈ AsshR̂, that is dim R̂/P = 3. Indeed, let qR̂ = Q1 ∩ · · · ∩ Qr, where Qi

is a Pi-primary, is a reduced primary decomposition of qR̂. Since dimR/q = 1 we have

dim R̂/Pi = 1 and ht(Pi/qR̂) = 0 for all i ≤ r. Thus by [23, Theorem 15.1] we have

ht(Pi) = ht(q) + ht(Pi/qR̂) = 1 for all i ≤ r. Moreover, R̂ is catenary, so P * Pi for all

i ≤ r. Therefore dim R̂/(qR̂ + P) = 0. Hence y is a system of parameters of R̂/P for all

P ∈ AsshR̂ since
√

(y) = q. The proof is complete. �

6. A characterization of unmixed local rings

Unmixed local rings were introduced first by Nagata [25] as follows.
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Definition 6.1. Let (R,m) be a Noetherian local ring of dimension t. Then R is unmixed

if UR̂(0) = 0 i.e. Assh R̂ = Ass R̂, where R̂ denotes the completion of R with respect to the
m-adic topology.

Almost of domains in Commutative Algebra are unmixed. However, in [25, Example 2, pp.
203–205] Nagata constructed a domain of dimension two which is not unmixed. Unmixed
local rings were investigated by several authors (cf. [27, 28, 31]). Let x = x1, . . . , xt be a
system of parameters of R. By Krull’s intersection theorem we have ∩n≥1(x

[n]) = 0. It means
that the topology defined by {(x[n])}n≥1 is always Hausdorff. However, the topology defined
by {(x[n])lim}n≥1 may be not Hausdorff. In fact, {(x[n])lim}n≥1 is a Hausdorff topology if and
only if UR(0) = 0 by Theorem 1.1. The aim of this section is to give a characterization of
unmixed local rings in terms of the topology defined by {(x[n])lim}n≥1.

Lemma 6.2. Let x = x1, . . . , xt and y = y1, . . . , yt be systems of parameters of R. Then the

topology defined by {(x[n])}n≥1 and {(y[n])}n≥1 are equivalent.

Proof. For each n ≥ 1 there is an integral v(n) such that (x[n]) ⊇ (y[v(n)]). By Remark 2.3

we have (x[n])lim ⊇ (y[v(n)])lim. Therefore the topology defined by {(y[n])lim}n≥1 is stronger or

equal to the topology defined by {(x[n])lim}n≥1. Symmetrically, we have the converse. The
proof is complete. �

By the previous Lemma we can define a topology of R as follows.

Definition 6.3. Let (R,m) be a local ring of dimension t. We define the limit closure topology

of R the topology defined by {(x[n])}n≥1 for some system of parameters x = x1, . . . , xt.

The following result, proved by Chevalley (cf. [3, Lemma 7]), plays the key role in our
proof the main result of this section.

Lemma 6.4 (Chevalley). Let (R,m) be a complete Noetherian local ring, and a1 ⊇ a2 ⊇ · · ·
a chain of ideals of R such that ∩n≥1an = 0. Then for each n there exists an integer v(n)
such that av(n) ⊆ mn. In other words, the linear topology defined by {an}n≥1 is stronger or

equal to the m-adic topology.

We now prove Theorem 1.4 proposed in the introduction.

Theorem 6.5. Let (R,m) be a Noetherian local ring of dimension t. Then R is unmixed if

and only if the m-adic and limit closure topologies are equivalent.

Proof. We note that the m-adic topology is always stronger or equal to the topology defined
by {(x[n])lim}n≥1 since (x[n])lim is m-primary for all n ≥ 1.
(⇒) We assume thatR is unmixed. Then by Theorem 1.1 the topology defined by {(x[n])lim

R̂
}n≥1

is Hausdorff. By Chevalley’s theorem, for each n there exists an integer v(n) such that
(x[v(n)])lim

R̂
⊆ m̂n. Thus (x[v(n)])lim ⊆ mn. Therefore the topology defined by {(x[n])lim}n≥1 is

stronger or equal to the m-adic topology. So they are equivalence.
(⇐) Suppose that R is not unmixed i.e. UR̂(0) 6= 0. By Krull’s intersection theorem,
there exists n0 such that UR̂(0) * m̂n0 . On the other hand, we get by Theorem 1.1 that

UR̂(0) ⊆ (x[n])lim
R̂

for all n ≥ 1. Therefore (x[n])lim
R̂
* m̂n0 for all n. Thus (x[n])lim * mn0 for all

n ≥ 1 so the topology defined by {(x[n])lim}n≥1 is not equivalent to the m-adic topology. �
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Corollary 6.6. Let (R,m) be a Noetherian local ring such that UR(0) = 0. Suppose that the

m-adic topology is minimal among all Hausdorff topologies of R. Then R is unmixed.

Example 6.7. By Nagata (cf. [25, Example 2, pp. 203–205]) we have there exists a local

domain (R,m) of dimension two such that R̂ ∼= k[[X, Y, Z]]/((X) ∩ (Y, Z)) = k[[x, y, z]],
where k be a field. Let a, b be a system of parameters of R. We have UR̂(0) = (x) /∈ m̂2.
Therefore, (an, bn)lim

R̂
" m̂k for every k ≥ 2. Thus {(an, bn)lim}n≥1 is a Hausdorff topology of

R by (an, bn)lim " mk for all n ≥ 1 and all k ≥ 2.

7. Limit closure in local rings of dimension two

It is easy to see that if dimR = 2 then the monomial conjecture holds true. So (x)lim ⊆ m.
In his breakthrough paper [16] Heitmann extended it for any local ring of dimension at most
three. The purpose of the section is to give some explicit descriptions for the limit closure in
local rings of dimension two. Let x = x1, . . . , xd be a system of parameter of the local ring

(R,m). Since (x)lim
R̂

= (x)limR̂, we shall assume that (R,m) is an image of a Cohen-Macaulay
local ring.

S2-ification.(cf. [19]) Suppose R is an unmixed local ring. We shall say that a ring S is
an S2-ification of R if it lies between R and its total quotient ring, is module-finite over R, is
S2 as an R-module, and has the property that for every element s ∈ S −R, the ideal D(s),
defined as {r ∈ R|rs ∈ R}, has height at least two.

Remark 7.1. (i) If (R,m) is complete, R has a S2-ification, and it is unique. Moreover,
if ω is a canonical module of R, then S ∼= Hom(ω, ω).

(ii) Let ai = AnnH i
m(R), i = 1, . . . , d, and a = a0...ad−1. If R is an image of a Cohen-

Macaulay local ring, we have dimR/ai ≤ i and so dimR/a ≤ d − 1 (cf. [2, Theorem
8.1.1], [7]). Moreover if R is unmixed we have dimR/a ≤ d−2. We have the S2-ification
of R is just the ideal transformation Da(R). Thus the S2-ification of an unmixed local
ring exists provided the ring is an image of a Cohen-Macaulay local ring.

The following is implicit in the proof of [24, Theorem 4.3]. For the sake of completeness
we give a detail proof.

Theorem 7.2. Let (R,m) be an unmixed local ring of dimension d and x = x1, . . . , xd a

system of parameters of R. Let S is the S2-ification of R. Then (x)lim = (x)limS ∩ R.

Proof. Consider the exact sequence

0 → R → S → S/R → 0,
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with dimS/R ≤ d − 2. Applying the functors local cohomology and Koszul’s cohomology
we have the following commutative diagram.

Hd−1(x;S/R) Hd−1
m (S/R) = 0

0 (x)lim/(x)R Hd(x;R) Hd
m(R)

0 (x)limS /(x)S Hd(x;S) Hd
m(S)

Hd(x;S/R) Hd
m(S/R) = 0.

✲

❄ ❄

✲ ✲

❄

✲

❄ ❄

✲ ✲✲ ✲

❄ ❄

✲

Both the second and third rows are exact by Remark 2.2. Thus we have the following
commutative diagram

R/(x)lim Hd
m(R)

S/(x)limS Hd
m(S)

✲
π

❄

α
❄

σ

✲
τ

with π and τ are injective and σ is bijective. The equation τ ◦ α = σ ◦ π implies that the
map

α : R/(x)lim → S/(x)limS
is injective. Therefore (x)lim = (x)limS ∩R. �

In the rest of this section we assume that dimR = 2 and x, y a system of parameters of
R. Let UR(0) is the unmixed component of R and R = R/UR(0). By Theorem 1.1 and
Proposition 2.7 we have

(x, y)lim =
⋃

n≥1

(
(xn+1, yn+1, UR(0)) :R (xy)n

)

and ℓ(R/(x, y)lim) = ℓ(R/(x, y)lim
R

). Hence we can reduce to the case R is unmixed (cf. [2,
Theorem 2.1.15]). In this is the case we have the S2-ification S of R is Cohen-Macaulay
(since d = 2). Moreover, H1

m(R) is finitely generated (see, [31]) and S/R ∼= H1
m(R). The

following is the main result of this section.

Proof of Theorem 1.5. (i) follows from Theorem 7.2 and the Cohen-Macaulayness of S.
(ii) By (i) the short exact sequence

0 → R → S → H1
m(R) → 0

induces the short exact sequence

0 → R/(x, y)lim → S/(x, y)S → H1
m(R)/(x, y)H1

m(R) → 0.
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Therefore ℓ(R/(x, y)lim) = ℓ(S/(x, y)S)−ℓ(H1
m(R)/(x, y)H1

m(R)). Since S is Cohen-Macaulay
we have ℓ(S/(x, y)S) = e(x, y;S) = e(x, y;R). Thus we get the assertion.
(iii) We first claim that ℓ(R/(x, y)) = e(x, y;R) + ℓ(0 :H1

m
(R) (x, y)). Indeed, let R

′ = R/(x).
From the short exact sequence

0 → R
x
→ R → R′ → 0

we have the exact sequence of local cohomology

0 → H0
m(R

′) → H1
m(R)

x
→ H1

m(R) → · · · .

So H0
m(R

′) ∼= 0 :H1
m(R) x. Since x is a regular element we have e(x, y;R) = e(y;R′). Notice

that dimR′ = 1, we can check that H0
m(R

′) ∩ (y)R′ = yH0
m(R

′). Thus we have the short
exact sequence

0 → H0
m(R

′)/yH0
m(R

′) → R′/(y)R′ → R/(y)R → 0,

where R = R′/H0
m(R

′). Since R is Cohen-Macaulay we have

ℓ(R/(y)R) = e(y;R) = e(y;R′) = e(x, y;R).

Therefore, following the above short exact sequence we have

ℓ(R/(x, y)) = ℓ(R′/(y)R′) = e(x, y;R) + ℓ(H0
m(R

′)/yH0
m(R

′)).

Consider the following exact sequence of finite length modules

0 → 0 :H0
m
(R′) y → H0

m(R
′)

y
→ H0

m(R
′) → H0

m(R
′)/yH0

m(R
′) → 0.

It follows that ℓ(H0
m(R

′)/yH0
m(R

′)) = ℓ(0 :H0
m
(R′) y). On the other hand, since H0

m(R
′) ∼=

0 :H1
m(R) x we have 0 :H0

m(R′) y ∼= 0 :H1
m(R) (x, y). Thus we have

ℓ(R/(x, y)) = e(x, y;R) + ℓ(0 :H1
m
(R) (x, y)).

Combining the above assertion with (ii) we have

ℓ((x, y)lim/(x, y)) = ℓ(0 :H1
m
(R) (x, y)) + ℓ(H1

m(R)/(x, y)H1
m(R)).

Notice that 0 :H1
m
(R) (x, y) ∼= H0(x, y;H1

m(R)) and H1
m(R)/(x, y)H1

m(R) ∼= H2(x, y;H1
m(R)).

We have the Euler charactiristic

χ(x, y;H1
m(R)) =

2∑

i=0

ℓ(H i(x, y;H1
m(R))) = 0

since dimH1
m(R) < 2 (cf. [2, Theorem 4.7.6]). Therefore

ℓ((x, y)lim/(x, y)) = ℓ(H1(x, y;H1
m(R))).

The proof is complete. �

Corollary 7.3. Let (R,m) be an equidimensional local ring of dimension two, which is an

image of a Cohen-Macaulay local ring. Let x, y be a system of parameters of R. Then

(x, y)lim ⊆ (x, y), the integral closure of (x, y).

Proof. It is easy to reduce to the case R is unmixed. Let S is the S2-ification of R we have
(x, y)lim = (x, y)S ∩ R. Since S is a finite extension of R, the assertion follows from [22,
Proposition 1.6.1]. �
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8. Some Examples

The main aim of this section is to compute a certain limit closure. The following example
is based on [21, Example 6.2].

Example 8.1. Let K be a field of characteristic 0 and let A = K[X, Y, U, V ]/(f) where
f = XY − UX2 − V Y 2. We denote by x, y, u, v the images of X, Y, U, V , respectively. Set
R = Am where m = (x, y, u, v) and p = (y, u, v). It is easy to prove that R is a Gorenstein
three-dimensional domain, and p is a height two prime ideal of R. After completion one can
prove that f factors into two formal series f = (x − vy + · · · )(y − ux + · · · ), where every
term in the element x − vy + · · · lies in (y, u, v) except for the first term x (we can prove
this fact by induction). We shall see these factors more detail in Proposition 8.5. There are

two minimal primes lying over (0) in R̂, and pR̂ + (x − vy + · · · ) = m̂. The Lichtenbaum-
Hartshore vanishing theorem implies that H3

p (R) 6= 0. R is a domain, by Proposition 2.8 we

have AnnH3
p (R) = 0, so ∩n≥1(y

n, un, vn)lim = 0. However the Hausdorff topology defined

by {(yn, un, vn)lim}n≥1 is not equivalent to the m-adic topology. Indeed, by Lemma 2.5,
(yn, un, vn)lim is m-primary for all n. Hence the m-adic topology is stronger or equal to the
{(yn, un, vn)lim}n≥1 topology. By Corollary 3.5 we have (x − vy + · · · ) ⊆ (yn, un, vn)lim

R̂
for

all n ≥ 1. Thus (yn, un, vn)lim
R̂
* m̂2 for all n ≥ 1. Hence (yn, un, vn)lim * m2 for all n ≥ 1.

This section is devoted to compute explicitly (yn, un, vn)lim, n ≥ 1.

Discussion 8.2. Keep all notations as in the previous Example. We have (yn, un, vn)lim " m2

for all n ≥ 1. By the definition of the limit closure for each n there exists t(n) such that

(ynt(n)+n, unt(n)+n, vnt(n)+n) :R (yuv)nt(n) " m2.

For all n = 1, . . . , 9, by using computer program we can compute that

(y2n, u2n, v2n) :R (yuv)n = (yn, un, vn, an),

where an as in the following table.

n an
1 x
2 x− yv
3 x− yv − yuv2

4 x− yv − yuv2 − 2yu2v3

5 x− yv − yuv2 − 2yu2v3 − 5yu3v4

6 x− yv − yuv2 − 2yu2v3 − 5yu3v4 − 14u4v5

7 x− yv − yuv2 − 2yu2v3 − 5yu3v4 − 14u4v5 − 42yu5v6

8 x− yv − yuv2 − 2yu2v3 − 5yu3v4 − 14u4v5 − 42yu5v6 − 132yu6v7

9 x− yv − yuv2 − 2yu2v3 − 5yu3v4 − 14u4v5 − 42yu5v6 − 132yu6v7 − 429yu7v8

From the above table, we consider the sequence 1, 1, 2, 5, 14, 42, 132, 429, .... This is
the first nine terms, from C0 to C8, of the Catalan sequence.
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Definition 8.3. The Catalan numbers, Ci (i ≥ 0), are numbers satisfy the recurrence
relation

C0 = 1 and Cn+1 =
n∑

i=0

CiCn−i for all n ≥ 0.

The following is well-known.

Lemma 8.4. Let C(t) =
∑∞

i=0Cit
i be the generating function for Catalan numbers. Then

C(t) = 1 + tC(t)2.

Proposition 8.5. With notations as in Example 8.1, and C(t) =
∑∞

i=0Cit
i is the generating

function for Catalan numbers. Then

(X − Y V C(UV )).(Y −XUC(UV )) = (XY − UX2 − V Y 2).C(UV ).

Therefore (x − yvC(uv)) ∩ (y − xuC(uv)) = (0) is a reduced primary decomposition of (0)

in R̂.

Proof. We have

(X − Y V C(UV )).(Y −XUC(UV )) = XY − (UX2 + V Y 2).C(UV ) +XY UV.C(UV )2

= XY.(1 + UV C(UV )2)− (UX2 + V Y 2).C(UV )

= (XY − UX2 − V Y 2).C(UV ) (Lemma 8.4).

Hence (x − yvC(uv)).(y − xuC(uv)) = 0 ∈ R̂. It is easy to check that (x − yvC(uv)), (y −
xuC(uv)) are prime ideals and (x− yvC(uv)) ∩ (y − xuC(uv)) = (0). �

The following is the main result of this section.

Proposition 8.6. Let K be a field of characteristic 0 and let A = K[X, Y, U, V ]/(f) where
f = XY − UX2 − V Y 2. We denote by x, y, u, v the images of X, Y, U, V , respectively. Set

R = Am where m = (x, y, u, v). Then for all n ≥ 1 we have

(yn, un, vn)lim = (yn, un, vn, x− yv

n−2∑

i=0

Ci(uv)
i),

where Ci is the i-th Catalan number.

Lemma 8.7. Keep all notations as in the previous Proposition. Then for all n ≥ 1 we have

(yn, un, vn, x− yv
n−2∑

i=0

Ci(uv)
i) ⊆ (y2n, u2n, v2n) :R (yuv)n.

Proof. It suffices to prove for all n ≥ 1 that

(x− yv
n−2∑

i=0

Ci(uv)
i)yn ∈ (un, vn).

By Proposition 8.5 we have (x− yvC(uv)).(y − xuC(uv)) = 0. Hence

(x− yv

n−2∑

i=0

Ci(uv)
i).(y − xu

n−2∑

i=0

Ci(uv)
i) ≡ 0 (mod (un, vn)).
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Therefore

(x− yv
n−2∑

i=0

Ci(uv)
i).y ≡ (x− yv

n−2∑

i=0

Ci(uv)
i).(xu

n−2∑

i=0

Ci(uv)
i) (mod (un, vn)).

So

(x− yv

n−2∑

i=0

Ci(uv)
i).yn ≡ (x− yv

n−2∑

i=0

Ci(uv)
i).(xu

n−2∑

i=0

Ci(uv)
i)n (mod (un, vn))

≡ 0 (mod (un, vn)).

The Lemma is proved. �

Proof of Proposition 8.6. By Lemma 8.7, for all n ≥ 1, we have

(yn, un, vn, x− yv

n−2∑

i=0

Ci(uv)
i) ⊆ (yn, un, vn)lim.

By Proposition 8.5 we have

(X−Y V

n−2∑

i=0

Ci(UV )i).(Y −XU

n−2∑

i=0

Ci(UV )i) ≡ (XY −UX2−V Y 2).C(UV ) (mod (Un, V n)).

So f ∈ (Y n, Un, V n, X − Y V
∑n−2

i=0 Ci(UV )i)). Hence

ℓ(R/(yn, un, vn, x− yv
n−2∑

i=0

Ci(uv)
i)) = ℓ(K[X, Y, U, V ])/(Y n, Un, V n, X − Y V

n−2∑

i=0

Ci(UV )i))

= n3.

On the other hand

ℓ(R/(yn, un, vn)lim) = ℓ(R̂/(yn, un, vn)lim
R̂

).

By Corollary 3.5 we have ∩n≥1(y
n, un, vn)lim

R̂
= (x − yvC(uv)). Set R′ = R̂/(x − yvC(uv)).

By Proposition 2.7 we have

ℓ(R̂/(yn, un, vn)lim
R̂

) = ℓ(R′/(yn, un, vn)limR′ )

= ℓ(K[[Y, U, V ]]/(Y n, Un, V n)) = n3.

Therefore

ℓ(R/(yn, un, vn, x− yv
n−2∑

i=0

Ci(uv)
i)) = ℓ(R/(yn, un, vn)lim).

Thus

(yn, un, vn)lim = (yn, un, vn, x− yv

n−2∑

i=0

Ci(uv)
i)

for all n ≥ 1. The proof is complete. �

The next example shows that the condition (R,m) is complete in Corollary 3.5 is necessary.
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Example 8.8. Let k be a field of characteristic 0 and let A = K[X, Y, U, V ]/((f)∩(X)) where
f = XY − UX2 − V Y 2. We denote by x, y, u, v the images of X, Y, U, V , respectively. Set
R = Am where m = (x, y, u, v). By Proposition 8.5

(x) ∩ (x− yvC(uv)) ∩ (y − xuC(uv)) = (0)

is a reduced primary decomposition of (0) in R̂. Corollary 3.5 implies that

∩n≥1(y
n, un, vn)lim

R̂
= (x) ∩ (x− yvC(uv)).

So ∩n≥1(y
n, un, vn)lim = (0). But

J = {p ∈ AssR : y, u, v is a system of parameters ofR/p} = {(x)}

and ∩p∩∈JN(p) = (x) 6= (0).
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