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Abstract 1. Let (R,m) be a Noetherian local ring and M a finitely generated R-module.
Following I. G. Macdonald [Mac], the set of all attached primes of the Artinian local co-
homology module H i

m(M) is denoted by AttR(H
i
m(M)). In [Sh, Theorem 3.7], R. Y. Sharp

proved that if R is a quotient of a Gorenstein local ring then the shifted localization principle
always holds true, i.e.

AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
=

{
qRp | q ∈ AttR H i

m(M), q ⊆ p
}

(1)

for any local cohomology modules H i
m(M) and any p ∈ Spec(R). In this paper, we improve

Sharp’s result as follows: the shifted localization principle always holds true if and only if R
is universally catenary and all its formal fibers are Cohen-Macaulay, if and only if

AttR̂(H
i
m(M)) =

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂) (2)

holds true for any finitely generated R-module M and any integer i ≥ 0. This also improves
the main result of the paper [CN].

1 Introduction

Throughout this paper, let (R,m) be a Noetherian local ring and M a finitely generated
R-module with dimM = d. It is well kwown that

AssRp(Mp) =
{
qRp | q ∈ AssR M, q ⊆ p

}

for every prime ideal p of R. For an Artinian R-module A, the set of all attached primes
AttR A defined by I. G. Macdonald [Mac] makes an important role similarly to the role of
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the set of associated primes AssR M of a finitely generated R-module M . It is well known
that the local cohomology module H i

m(M) is Artinian for all i ≥ 0. Therefore, it is natural
to ask whether the analogous relation

AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
=

{
qRp | q ∈ AttR(H

i
m(M)), q ⊆ p

}
(1)

between AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
and AttR(H

i
m(M)) holds true for every integer i and every

p ∈ Spec(R). If R is a quotient of a Gorenstein local ring, R. Y. Sharp [Sh, Theorem 3.7]
proved that (1) always holds true (see also [BS, 11.3.2]). However, this relation does not
hold true in general, cf. [BS, Example 11.3.14].

Another question is about the relation between the attached primes of H i
m(M) over R

and that of H i
m(M) over the m-adic completion R̂ of R. Denote by M̂ the m-adic completion

of M . Then we have following well known relations between AssR M and AssR̂ M̂

AssR M =
{
P ∩R | P ∈ AssR̂ M̂

}
and AssR̂ M̂ =

⋃

p∈AssM

AssR̂(R̂ / p R̂),

cf. [Mat, Theorem 23.2]. For an Artinian R-module A, we note that A has a natural

structure as an Artinian R̂-module. Moreover, AttR A = {P ∩ R | P ∈ AttR̂ A} (see [BS,
8.2.4, 8.2.5]), which is in some sense dual to the above first relation between AssR M and

AssR̂ M̂. However, the second analogous relation may not hold true even when A = H i
m(M),

i.e. the following relation

AttR̂(H
i
m(M)) =

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂). (2)

is not true in general, cf. [CN, Example 2.3].

In this paper, we study attached primes of H i
m(M) under localization and m-adic comple-

tion. We prove that (1) and (2) are both equivalent to the condition that the base ring R is
universally catenary and all formal fibers of R are Cohen-Macaulay. The following theorem
is the main result of this paper.

Theorem 1.1. The following statements are equivalent:

(i) R is universally catenary and all its formal fibers are Cohen-Macaulay;

(ii) AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
=

{
qRp | q ∈ AttR(H

i
m(M)), q ⊆ p

}
for every finitely gener-

ated R-module M , integer i ≥ 0 and prime ideal p of R;

(iii) AttR̂(H
i
m(M)) =

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂) for every finitely generated R-module M

and integer i ≥ 0.

It should be mentioned that the condition (i) in Theorem 1.1 is equivalent to the condition
that R is a quotient of a Cohen-Macaulay local ring, cf. [Kaw, Corollary 1.2]. Recently, N.
T. Cuong and D. T. Cuong [CC] proved that the condition (i) in Theorem 1.1 is equivalent
to the existence of a p-standard system of parameters of R.

In the next section, we give some preliminaries on attached primes of Artinian modules
that will be used in the sequel. We prove the main result of this paper (Theorem 1.1) in the
last section.
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2 Preliminaries

I. G. Macdonald [Mac] introduced the theory of secondary representation for Artinian mod-
ules, which is in some sense dual to the theory of primary decomposition for Noetherian mod-
ules. Let A 6= 0 be an Artinian R-module. We say that A is secondary if the multiplication
by x on A is surjective or nilpotent for every x ∈ R. In this case, the set p := Rad(AnnR A)
is a prime ideal of R and we say that A is p-secondary. Note that every Artinian R-module
A has a minimal secondary representation A = A1+ . . .+An, where Ai is pi-secondary, each
Ai is not redundant and pi 6= pj for all i 6= j. The set {p1, . . . , pn} is independent of the
choice of the minimal secondary representation of A. This set is called the set of attached
primes of A and denoted by AttR A.

For each ideal I of R, we denote by Var(I) the set of all prime ideals of R containing I.

Lemma 2.1. ([Mac]). The following statements are true.

(i) A 6= 0 if and only if AttR A 6= ∅.

(ii) minAttR A = minVar(AnnR A). In particular,

dim(R/AnnR A) = max{dim(R/ p) | p ∈ AttR A}.

(iii) If 0 → A′ → A → A′′ → 0 is an exact sequence of Artinian R-modules then

AttR A′′ ⊆ AttR A ⊆ AttR A′ ∪ AttR A′′.

Note that A has a natural structure as an R̂-module and with this structure, each subset

of A is an R-submodule if and only if it is an R̂-submodule. Therefore A is an Artinian

R̂-module. So, the set of attached primes AttR̂ A of A over R̂ is well defined.

Lemma 2.2. ([BS, 8.2.4, 8.2.5]). AttR A =
{
P ∩ R | P ∈ AttR̂ A

}
.

Lemma 2.3. Let A be an Artinian R-module. Let (S, n) be a Noetherian local ring and let

ϕ : R → S be a flat local homomorphism between local rings (R,m) and (S, n). Suppose that

dim(S/mS) = 0. Then A⊗R S is an Artinian S-module and

AttR A = {ϕ−1(P) | P ∈ AttS(A⊗ S)}.

Proof. Firstly we use Melkersson’s criterion [Mel, Theorem 1.3] to prove A⊗RS is an Artinian
S-module. Since S is flat over R andR/m is of finite representation, we get by [Mat, Theorem
7.11] that

HomS(S/mS;A⊗R S) ∼= HomS(R/m⊗RS;A⊗R S) ∼= HomR(R/m;A)⊗R S.

Because A is an Artinian R-module, HomR(R/m;A) is an R-module of finite length. Hence
HomR(R/m;A) is a finitely generated R-module. Therefore HomR(R/m;A)⊗RS is a finitely
generated S-module which is annihilated by mS. Because dim(S/mS) = 0, it follows that
HomR(R/m;A)⊗R S is an S-module of finite length. Since A is m-torsion, it is obvious to
see that A⊗R S is mS-torsion. Therefore A⊗R S is an Artinian S-module.

Let A = A1 + . . . + An be a minimal secondary representation of A, where Ai is pi-
secondary for i = 1, . . . , n. Then AttR A = {p1, . . . , pn}. As S is a faithfully flat R-algebra,
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R can be considered as a subring of S and Ai ⊗R S can be considered as a submodule of
A ⊗R S for all i = 1, . . . , n. Then we have A ⊗R S = (A1 ⊗R S) + . . . + (An ⊗ S). For each
i = 1, . . . , n, choose a minimal secondary representation Ai⊗RS = Bi1+. . .+Biki of S-module

Ai ⊗R S, where Bij is Pij-secondary. Then A ⊗R S =
n∑

i=1

(Bi1 + . . . + Biki) is a secondary

representation of A ⊗R S. By removing all redundant components and then remumbering
the components, we can assume that there exists an integer ti 6 ki for i = 1, . . . , n such that

A⊗RS =

n∑

i=1

(Bi1+ . . .+Biti) is a secondary representation of A⊗RS without any redundant

component. Since Ai is not redundant in the secondary representation A = A1+ . . .+At and
S is faithfully flat over R, we have ti ≥ 1 for all i = 1, . . . , n. Now let i ∈ {1, . . . , n} and let
x ∈ pi. Then xmAi = 0 for some m ∈ N. Hence xm(Ai ⊗R S) = 0 and hence xmBij = 0 for
all j = 1, . . . , ti. Therefore x ∈ Pij ∩R for all j = 1, . . . , ti. Let x ∈ R \ pi . Then xmAi = Ai

and hence xm(Ai ⊗R S) = Ai ⊗R S for all m ∈ N. If x ∈ Pij for some j ∈ {1, . . . , ti} then
xm0Bij = 0 for some m0 ∈ N and hence xm0(Ai ⊗R S) 6= Ai ⊗R S, this is a contradiction.
Therefore x /∈ Pij for all j = 1, . . . , ti. It follows that pi = Pij ∩R for all j = 1, . . . , ti. Hence

Pij ’s are pairwise different and hence A⊗R S =
n∑

i=1

(Bi1+ . . .+Biti) is a minimal secondary

representation of A⊗R S. Therefore AttS(A⊗R S) = {Pij | i = 1, . . . , n, j = 1, . . . , ti}. Thus

AttR A = {P ∩ R | P ∈ AttS(A⊗R S)}.

3 Main results

An important step to prove the main result of this paper is to find for each integer i < d
and each attached prime p ∈ AttR(H

i
m(M)) a suitable finitely generated R-module N such

that p ∈ AssR N (see Lemma 3.3). This step can be done by using a splitting property
for local cohomology modules proved by N. T. Cuong and P. H. Quy [CQ1, Corollary 3.5]
(see Lemma 3.1). It should be mentioned that this splitting property is an extension of the
original splitting result [CQ, Theorem 1.1].

From now on, for a subset T of Spec(R) and an integer i ≥ 0, we set

(T )i = {p ∈ T | dim(R/ p) = i}.

For a finitely generated R-module N of dimension t > 0, we set ai(N) = AnnR(H
i
m(N)) for

i = 0, . . . , t and a(N) = a0(N) . . . at−1(N). Note that

a(N) ⊆
⋂

x

t⋂

i=1

AnnR(0 :N/(x1,...,xi−1)N xi),

where x = (x1, . . . , xt) runs over the set of all systems of parameters of N , cf. [Sch, Satz
2.4.5]. Therefore, by [CQ1, Corollary 3.5] we have the following splitting result.
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Lemma 3.1. Set M = M/UM (0), where UM(0) is the largest submodule of M of dimension

less than d. Suppose that x ∈ a(M)3 is a parameter element of M . Then for all i < d − 1
we have

H i
m(M/xM) ∼= H i

m(M)⊕H i+1
m (M).

By using Lemma 3.1, we have the following property, which is needed in the induction
step of the proof of Lemma 3.3.

Lemma 3.2. Suppose that x ∈ a(M)3 is a parameter element of M . Then we have

d−1⋃

i=0

AttR(H
i
m(M)) ⊆

d−2⋃

i=0

AttR(H
i
m(M/xM)) ∪ (AssR M)d−1.

Proof. Denote by UM(0) the largest submodule of M of dimension less than d. Set M =
M/UM(0). Firstly we claim that

AttR(H
d−1
m (M)) = (AssR M)d−1 ∪AttR(H

d−1
m (M)).

In fact, from the exact sequence 0 → UM(0) → M → M → 0 we have the exact sequence

Hd−1
m (UM (0))

f
→ Hd−1

m (M) → Hd−1
m (M) → 0.

If dim(UM(0)) < d − 1 then AttR(H
d−1
m (UM(0))) = ∅ = (AssR M)d−1 by Lemma 2.1(i).

Otherwise, we have dim(UM (0)) = d− 1, and hence

AttR(H
d−1
m (UM(0))) = (AssR UM (0))d−1 = (AssR M)d−1

by [BS, 7.3.2]. Therefore, it follows by Lemma 2.1(iii) that

AttR(H
d−1
m (M)) ⊆ AttR

(
Hd−1

m (UM(0))/Ker f
)
∪AttR(H

d−1
m (M))

⊆ AttR(H
d−1
m (UM(0))) ∪AttR(H

d−1
m (M))

= (AssR M)d−1 ∪AttR(H
d−1
m (M)).

Since (AssR M)d−1 ⊆ AttR(H
d−1
m (M)) by [BS, 11.3.9] and AttR(H

d−1
m (M)) ⊆ AttR(H

d−1
m (M))

by the above exact sequence, it follows that

AttR(H
d−1
m (M)) = (AssR M)d−1 ∪AttR(H

d−1
m (M)).

So, the claim is proved.

Now, it follows by Lemma 3.1 that

d−2⋃

i=0

AttR(H
i
m(M/xM)) =

d−2⋃

i=0

(
AttR(H

i
m(M)) ∪AttR(H

i+1
m (M))

)
.
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Note that H0
m(M) = 0. Therefore we get by the above claim that

d−2⋃

i=0

AttR(H
i
m(M/xM)) ∪ (AssR M)d−1 =

=
d−2⋃

i=0

(
AttR(H

i
m(M)) ∪AttR(H

i
m(M))

)
∪
(
(AssR M)d−1 ∪ AttR(H

d−1
m (M))

)

=
d−1⋃

i=0

(
AttR(H

i
m(M)) ∪AttR(H

i
m(M))

)
.

From this, it is obvious to see that

d−1⋃

i=0

AttR(H
i
m(M)) ⊆

d−2⋃

i=0

AttR(H
i
m(M/xM)) ∪ (AssR M)d−1.

The following lemma can be considered as the key lemma for the proof of the main result
of this paper.

Lemma 3.3. Let (x1, . . . , xd) be a system of parameters of M such that for all i = 1, . . . , d
we have xi ∈ a(M/(x1, . . . , xi−1)M)3. Then we have

d−1⋃

i=0

AttR(H
i
m(M)) ⊆

d−1⋃

i=0

(
AssR(M/(x1, . . . , xi)M)

)
d−i−1

.

Proof. We prove the lemma by induction on d. Let d = 1. Then the left hand side is
AttR(H

0
m(M)) and the right hand side is (AssR M)0. So the result is clear. Let d > 1. Set

M1 = M/x1M. Then we have by Lemma 3.2 and by induction that

d−1⋃

i=0

AttR(H
i
m(M)) ⊆

d−2⋃

i=0

AttR(H
i
m(M1)) ∪ (AssR M)d−1

⊆
d−2⋃

i=0

(
AssR(M1/(x2, . . . , xi+1)M1)

)
d−i−2

∪ (AssR M)d−1

=

d−1⋃

i=1

(
AssR(M/(x1, . . . , xi)M)

)
d−i−1

∪ (AssR M)d−1

=

d−1⋃

i=0

(
AssR(M/(x1, . . . , xi)M)

)
d−i−1

.

It is known that AssR(Mp) = {qRp | q ∈ AssR M, q ⊆ p} for every prime ideal p

of R. However, such an analogous relation between the sets AttRp(H
i−dim(R/ p)
pRp

(Mp)) and

6



AttR(H
i
m(M)) is not true in general, cf. [BS, Example 11.3.14]. We have the following re-

sult which is called the shifted localization principle for local cohomology modules, cf. [BS,
11.3.2], [Sh, Theorem 3.7].

Lemma 3.4. Suppose that R is a quotient of a Gorenstein local ring. Then for any prime

ideal p of R and any integer i ≥ 0 we have

AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
= {qRp | q ∈ AttR(H

i
m(M)), q ⊆ p}.

In general, we have

AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
⊆ {qRp | q ∈ AttR(H

i
m(M)), q ⊆ p}

for any prime ideal p of R and any integer i ≥ 0. This later inclusion is called the weak

general shifted localization princile, cf. [BS, 11.3.8].

Now we present the main result of this paper.

Theorem 3.5. The following statements are equivalent:

(i) R is universally catenary and all its formal fibers are Cohen-Macaulay;

(ii) AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
=

{
qRp | q ∈ AttR(H

i
m(M)), q ⊆ p

}
for every finitely gener-

ated R-module M , integer i ≥ 0 and prime ideal p of R;

(iii) AttR̂(H
i
m(M)) =

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂) for every finitely generated R-module M

and integer i ≥ 0.

Proof. Let i ≥ 0 be an integer. Firstly we claim that if there exists a system of parameters
(x1, . . . , xd) of M such that xk ∈ a(M/(x1, . . . , xk−1)M)3 for all k = 1, . . . , d then

AttR̂(H
i
m(M)) ⊆

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂).

In fact, let P ∈ AttR̂(H
i
m(M)). If i = d then P ∈ (AssR̂ M̂)d by [BS, Theorem 7.3.2].

Therefore we get by [Mat, Theorem 23.2] that

P ∈
⋃

p∈(AssR M)d

Ass(R̂ / p R̂) =
⋃

p∈AttR(Hd
m(M))

Ass(R̂ / p R̂).

So, the result is true in this case. Suppose that i < d. It is clear that

a(M/(x1, . . . , xk−1)M) R̂ ⊆ a(M̂/(x1, . . . , xk−1)M̂)

for all k = 1, . . . , d. Set dim(R̂ /P) = t. Then P ∈
(
AttR̂(H

i
m(M))

)
t
. Since i < d, we

get by Lemma 3.3 that P ∈
(
AssR̂(M̂/(x1, . . . , xd−t−1)M̂)

)
t
. Set p0 = P ∩ R. Then we

have p0 ∈ AttR(H
i
m(M)) by Lemma 2.2 and p0 ∈ AssR(M/(x1, . . . , xd−t−1)M). Therefore, it

follows by [Mat, Theorem 23.2] that

P ∈ AssR̂(M̂/(x1, . . . , xd−t−1)M̂) =
⋃

p∈AssR(M/(x1,...,xd−t−1)M)

Ass(R̂ / p R̂).
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Hence P ∈ Ass(R̂ / p0 R̂). Thus, the claim is proved.

Now we prove (i) ⇒ (ii). Let i ≥ 0 be an integer and let p be a prime ideal of R. By the
weak general localization principle [BS, 11.3.8], it is enough to show that if q ∈ AttR(H

i
m(M))

such that q ⊆ p then qRp ∈ AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
. In fact, there exists by Lemma 2.2 a

prime ideal Q ∈ AttR̂(H
i
m(M)) such that Q∩R = q . Since R is universally catenary and all

its formal fibers are Cohen-Macaulay, we have dim(R/aj(M)) 6 i for all j = 0, . . . , d − 1,
cf. [CNN, Corollary 4.2(i)]. Hence dim(R/a(M)) < d. Therefore there exists an element
x1 ∈ a(M)3 which is a parameter element of M . By similar reasons, we can choose a system
of parameters (x1, . . . , xd) of M such that xk ∈ a(M/(x1, . . . , xk−1)M)3 for all k = 1, . . . , d.

So, we get by the above claim that Q ∈ AssR̂(R̂ / q R̂). Note that R/ q is unmixed by the

hypothesis (i), therefore dim(R̂ /Q) = dim(R/ q). Since Q ∈ AttR̂ H i
m(M) = AttR̂ H i

m R̂
(M̂),

we get by Lemma 3.4 that Q R̂Q ∈ AttR̂Q
H

i−dim(R̂ /Q)

Q R̂Q
(M̂Q). Note that the natural map

Rq → R̂Q is faithfully flat and dim(R̂Q / q R̂Q) = 0. Moreover, we get by Flat Base Change
Theorem [BS, 4.3.2] that

H
i−dim(R/ q)
qRq

(Mq)⊗ R̂Q
∼= H

i−dim(R̂ /Q)

Q R̂Q
(M̂Q).

Therefore qRq ∈ AttRq

(
H

i−dim(R/ q)
qRq

(Mq)
)
by Lemma 2.3. Because R is catenary by the

assumption (i), we have

i− dim(R/ q) = (i− dim(R/ p))− dim(Rp/ qRp).

Therefore, from the fact that (Rp)qRp
∼= Rq, we get qRp ∈ AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
by the

weak general shifted localization principle [BS, 11.3.8].

(ii) ⇒ (iii). Let p ∈ AttR(H
i
m(M)) and P ∈ Ass(R̂ / p R̂). Firstly we show that

dim(R̂ /P) = dim(R/ p). In fact, suppose that dim(R̂ /P) < dim(R/ p). Set k = dim(R̂ /P).

Then we have by [BS, 11.3.3] that P ∈ AttR̂(H
k
m R̂

(R̂ / p R̂)) = AttR̂(H
k
m(R/ p)). Because

P ∈ Ass(R̂ / p R̂), we have p = P ∩ R ∈ AttR(H
k
m(R/ p)) by Lemma 2.2. Therefore by the

hypothesis (ii) we have pRp ∈ AttRp

(
H

k−dim(R/ p)
pRp

(Rp/ pRp)
)
. However, as dim(R/ p) > k, we

have AttRp

(
H

k−dim(R/ p)
pRp

(Rp/ pRp)
)
= ∅, this is a contradiction. So, dim(R̂ /P) = dim(R/ p).

Next, we have dim(R̂P / p R̂P) = 0 by the above fact. As p ∈ AttR(H
i
m(M)), we get by the

hypothesis (ii) that pRp ∈ AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
. Note that the natural map Rp → R̂P is

faithfully flat and

H
i−dim(R/ p)
pRp

(Mp)⊗ R̂P
∼= H

i−dim(R̂ /P)

P R̂P
(M̂P).

Therefore P R̂P ∈ AttR̂P

(
H

i−dim(R̂ /P)

P R̂P
(M̂P)

)
by Lemma 2.3. Hence P ∈ AttR̂(H

i
m R̂

(M̂)) by

the weak general shifted localization principle, and hence P ∈ AttR̂(H
i
m(M)). Thus,

AttR̂(H
i
m(M)) ⊇

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂).

Now we prove the converse inclusion. For each i ∈ {0, . . . , d− 1} with H i
m(M) 6= 0, there

exists by Lemma 2.1 a prime ideal p ∈ AttR(H
i
m(M)) such that dim(R/ p) = dim(R/ai(M)).
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Then pRp ∈ AttRp

(
H

i−dim(R/ p)
pRp

(Mp)
)
by the assumption (ii). Hence H

i−dim(R/ p)
pRp

(Mp) 6= 0

by Lemma 2.1(i). So, we have i ≥ dim(R/ p). Hence dim(R/ai(M)) 6 i. It follows that
dim(R/a(M)) < d. Therefore there exists an element x1 ∈ a(M)3 which is a parameter
element of M . By similar reasons, there exists a system of parameters (x1, . . . , xd) of M
such that xk ∈ a(M/(x1, . . . , xk−1)M)3 for all k = 1, . . . , d. So, by the above claim we have

AttR̂(H
i
m(M)) ⊆

⋃

p∈AttR(Hi
m(M))

AssR̂(R̂ / p R̂).

(iii) ⇒ (i). Let p ∈ Spec(R). Set t = dim(R/ p) and ai(R/ p) = AnnR(H
i
m(R/ p)) for

i = 0, 1, . . . , t − 1. As usual we set a(R/ p) = a0(R/ p) . . . at−1(R/ p). Then there exists by
Lemma 2.1(ii) a prime ideal q ∈ AttR(H

i
m(R/ p)) such that dim(R/ q) = dim(R/ai(R/ p)).

Let Q ∈ Ass(R̂ / q R̂) such that dim(R̂ /Q) = dim(R/ q). Then we have by the hypothesis

(iii) that Q ∈ AttR̂(H
i
m(R/ p)). Hence Q ∈ AttR̂(H

i
m R̂

(R̂ / p R̂)). Therefore we get by [Sh,

Proposition 3.8] that dim(R̂ /Q) 6 i, see also [Sch]. So, dim(R/ai(R/ p)) 6 i for every
integer i = 0, . . . , t − 1. Hence dim(R/a(R/ p)) < t and hence a(R/ p) 6⊆ p . So, there
exists x ∈ a(R/ p) \ p . Hence x is a parameter element of R/ p and xH i

m(R/ p) = 0 for all
i < t. It means that R/ p has a uniform local cohomological annihilator, cf. [HH]. Thus,
we have by [DJ, Corollary 4.3] that R is universally catenary and all formal fibers of R are
Cohen-Macaulay.
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