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Abstract

This note is the main part of my report at the 33rd symposium on Commutative Algebra
in Japan. The rest of my report can be seen in [14]. Let a be an ideal of a commutative
Noetherian ring R and M a finitely generated R-module. The finiteness dimension of M
relative to a is defined by

fa(M) = inf{i ∈ N0 : Hi
a(M) is not finitely generated},

where Hi
a(M) is the i-th local cohomology with respect to a. The aim of this paper is to show

that if x1, ..., xt is an a-filter regular sequence of M with t ≤ fa(M), then the set⋃
n1,...,nt∈N

AssM/(xn1
1 , ..., xnt

t )M

is finite.

1 Introduction

Throughout this paper, let a be an ideal of a commutative Noetherian ring R and M a finitely
generated R-module. For basic facts about local cohomology refer to [2]. We use N0 (resp. N) to
denote the set of non-negative (resp. positive) integers.
Local cohomology was introduced by A. Grothendieck. In general, the i-th local cohomology of M
with respect to a, Hi

a(M), may not be finitely generated. An important problem in Commutative
Algebra is to find certain finiteness properties of local cohomology. In [4], C. Huneke raised the fol-
lowing conjecture: Is the number of associated prime ideals of a local cohomology module Hi

a(M)
always finite? This question has received much attention in the case when M = R is a regular
ring (cf. [5], [10], [16]). Although A.K. Singh in [15] gave the first counterexample to Huneke’s
conjecture, it has positive answer in many cases. For a given positive integer t, AssHt

a(M) is finite
if either Hi

a(M) is finitely generated for all i < t (cf. [1], [8]) or SuppHi
a(M) is finite for all i < t

(cf. [8]). Combining these results, the author in [14] showed that AssHt
a(M) is finite if for each

i < t either Hi
a(M) is finitely generated or SuppHi

a(M) is a finite set.
As mentioned above, if t is the least integer such that Ht

a(M) is not finitely generated, then
AssHt

a(M) is finite. Such integer is called the finiteness dimension, denoted by fa(M), of M
relative to a (see, [2, Chapter 9]). The purpose of this paper is to show that the finiteness dimen-
sion provides a stronger result about the finiteness of certain sets of associated primes. Namely,
let x1, ..., xt be an a-filter regular sequence of M with t ≤ fa(M), i.e. Supp ((x1, ..., xi−1)M :
xi)/(x1, ..., xi−1)M ⊆ V (a) for all i = 1, ..., t, where V (a) denotes the set of prime ideals contain-
ing a. Then the set ⋃

n1,...,nt∈N
AssM/(xn1

1 , ..., xnt
t )M

is finite.
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2 The main result

Let a be an ideal of a commutative Noetherian ring R, and M a finitely generated R-module. We
begin by recalling some facts about the finiteness dimension of M relative to a.

Definition 2.1. (i) The finiteness dimension of M relative to a is defined by

fa(M) = inf{i ∈ N0 : Hi
a(M) is not finitely generated},

with the usual convention that the infimum of the empty set of integers is ∞.

(ii) The a-minimum a-adjusted depth of M is defined by

λa(M) = inf{depthMp + ht(a + p)/p : p ∈ Supp(M) \ V (a)},

with the convention that ht(a + p)/p =∞ if a + p = R.

Remark 2.2. (i) fa(M) ∈ N0 provided aM 6= M and M is not a-torsion.

(ii) fa(M) = inf{i ∈ N : anHi
a(M) 6= 0 for alln ∈ N}. Therefore there exists a positive integer

n0 such that an0Hi
a(M) = 0 for all i < fa(M).

(iii) fa(M) ≤ λa(M) and the equality holds when R is universally catenary and all the formal
fibres of all its localizations are Cohen-Macaulay rings (see, [2, 9.6.7]).

We next recall the notion of a-filter regular sequence ofM and its relation with local cohomology.

Definition 2.3. We say a sequence x1, ..., xt of elements contained in a is an a-filter regular
sequence of M if

Supp ((x1, ..., xi−1)M : xi)/(x1, ..., xi−1)M ⊆ V (a)

for all i = 1, ..., t, where V (a) denotes the set of prime ideals containing a.

Remark 2.4. Let x1, ..., xt be an a-filter regular sequence of M . Then

(i) For all p ∈ Spec(R) \ V (a), x1

1 , · · · ,
xt

1 is a poor Mp-sequence i.e. for each i = 2, ..., t, the
element xi is a non-zerodivisor on M/(x1, ..., xt−1)M (cf. [12, Proposition 2.2]).

(ii) xn1
1 , ..., xnt

t is an a-filter regular sequence of M for all n1, ..., nt ∈ N, moreover

Ass(M/(xn1
1 , ..., xnt

t )M) \ V (a) = Ass(M/(x1, ..., xt)M) \ V (a).

(iii) By [12, Proposition 3.4] we have Ht
a(M) ∼= H0

a(Ht
(x1,...,xt)

(M)). Combining with the well-

known fact that Ht
(x1,...,xt)

(M) ∼= lim→M/(xn1
1 , ..., xnt

t )M , it follows that

AssHt
a(M) ⊆

⋃
n1,...,nt∈N

AssM/(xn1
1 , ..., xnt

t )M.

Proof of (ii). By [12, Proposition 2.2] we have xn1
1 , ..., xnt

t is an a-filter regular sequence of M
for all n1, ..., nt ∈ N. Let p ∈ Ass(M/(x1, ..., xt)M) \ V (a). By localization at p we have
pRpAss(Mp/(

x1

1 , · · · ,
xt

1 )Mp) and x1

1 , · · · ,
xt

1 is an Mp-sequence. The assertion now follows from
the fact that

Ass(M/(xn1
1 , ..., xnt

t )M) = Ass(M/(x1, ..., xt)M)

for all n1, ..., nt ∈ N provided x1, ..., xt is an M -sequence.



Recently, N.T. Cuong and the author proved the following splitting theorem (cf. [3]) whose
consequence plays a key role in this paper.

Theorem 2.5 ([3], Theorem 1.1). Let M be a finitely generated module over a Noetherian ring R
and a an ideal of R. Let t and n0 be positive integers such that an0Hi

a(M) = 0 for all i < t. Then,
for all a-filter regular element x ∈ a2n0 of M , it holds that

Hi
a(M/xM) ∼= Hi

a(M)⊕Hi+1
a (M),

for all i < t− 1, and
0 :Ht−1

a (M/xM) a
n0 ∼= Ht−1

a (M)⊕ 0 :Ht
a(M) a

n0 .

Corollary 2.6 ([3], Corollary 4.4). Let M be a finitely generated R-module and a an ideal of R.
Let t and n0 be positive integers such that an0Hi

a(M) = 0 for all i < t. Then for every a-filter
regular sequence x1, ..., xt of M contained in a2n0 , we have

j⋃
i=0

AssHi
a(M) = Ass (M/(x1, ..., xj)M)

⋂
V (a),

for all j = 1, . . . , t. In particular, Ht
a(M) has only finitely many associated primes.

Corollary 2.6 implies that ∪n∈NAssM/(xn1 , ..., x
n
t )M is finite for every a-filter regular sequence

x1, ..., xt of M with t ≤ fa(M). In order to prove the main result we need some preliminary
lemmas. The author is grateful to K. Khashyarmanesh for information that the following is a
sharp of [7, Lemma 2.1].

Lemma 2.7. Let M be a finitely generated R-module and a an ideal of R. Let t and n0 be positive
integers such that an0Hi

a(M) = 0 for all i < t. Then for every a-filter regular sequence x1, ..., xt of

M , we have a2
jn0Hi

a(M/(x1, ..., xj)M) = 0 for all 0 ≤ j ≤ t− 1 and i < t− j.

Proof. The case j = 0 is trivial and by induction it is sufficient to show the assertion in the case
j = 1 < t. The short exact sequence

0 −→M/(0 :M x1)
x1−→M −→M/x1M −→ 0

induces the exact sequence

· · · −→ Hi
a(M) −→ Hi

a(M/x1M) −→ Hi+1
a (M/(0 :M x1)) −→ · · · .

Notice that 0 :M x1 is a-torsion, hence Hi+1
a (M/(0 :M x1)) ∼= Hi+1

a (M) for all i ≥ 0. Thus
an0Hi+1

a (M/(0 :M x1)) = 0 for all i < t− 1. The assertion is now clear.

Proposition 2.8. Let M be a finitely generated R-module and a an ideal of R. Let t and n0
be positive integers such that an0Hi

a(M) = 0 for all i < t. Let x1, ..., xt be an a-filter regular
sequence of M and j < t a non-negative integer. For all n1, ..., nt ∈ N such that ni ≥ 2tn0 for all
j + 1 ≤ i ≤ t, we have

AssM/(xn1
1 , ..., xnt

t )M = AssM/(xn1
1 , ..., x

nj

j , x2
tn0

j+1 , ..., x
2tn0
t )M.

Proof. By Remark 2.4 (ii) we have

Ass(M/(xn1
1 , ..., xnt

t )M) \ V (a) = Ass(M/(xn1
1 , ..., x

nj

j , x2
tn0

j+1 , ..., x
2tn0
t )M) \ V (a).



On the other hand a2
jn0Hi

a(M/(xn1
1 , ..., x

nj

j )M) = 0 for all i < t − j by Lemma 2.7, and
Corollary 2.6 implies that

Ass(M/(xn1
1 , ..., xnt

t )M)
⋂
V (a) =

t−j⋃
i=0

AssHi
a(M/(xn1

1 , ..., x
nj

j )M)

= Ass(M/(xn1
1 , ..., x

nj

j , x2
tn0

j+1 , ..., x
2tn0
t )M)

⋂
V (a).

The proof is complete.

Lemma 2.9. Let (R,m) be a local ring. Let x1, ..., xt be an a-filter regular sequence of M such that
t ≤ λa(M), the a-minimum a-adjusted depth of M . Then x1, ..., xt is an a-filter regular sequence
of M in any order.

Proof. It is sufficient to show the assertion in the case t = 2 ≤ λa(M). Moreover we only need to
prove that x2 is an a-filter regular element ofM (see [6, Theorem 117]). Indeed, let p ∈ AssM\V (a).
Then ht(a + p)/p ≥ 2 by the definition of λa(M). Thus there exists q ∈ Spec(R) \ V (a) such that
q is a minimal prime ideal of (x1) + p. By localization at q we have x1

1 is a Mq-regular element.
Hence qRq ∈ Ass(M/x1M)q since ht(qRq/pRq) = 1 and pRq ∈ AssMq. Thus q ∈ AssM/x1M .
Hence x2 /∈ q because x2 is an a-filter regular element of M/x1M . Therefore x2 /∈ p and so x2 is
an a-filter regular element of M .

We now give the main result of this paper.

Theorem 2.10. Let M be a finitely generated R-module, and a an ideal of R. Let t be a positive
integer such that t ≤ fa(M), the finiteness dimension of M relative to a, and x1, ..., xt an a-filter
regular sequence of M . Then the set⋃

n1,...,nt∈N
AssM/(xn1

1 , ..., xnt
t )M

is finite.

Proof. Let n0 be a positive integer such that an0Hi
a(M) = 0 for all i < fa(M). For each

(n1, ..., nt) ∈ Nt we consider a t-tuple of positive integers (m1, ...,mt) ∈ Nt such that mi = ni
if ni < 2tn0, and mi = 2tn0 if ni ≥ 2tn0. We have that p ∈ AssM/(xn1

1 , ..., xnt
t )M iff pRp ∈

AssMp/(x
n1
1 , ..., xnt

t )Mp. By Lemma 2.9 and a change of the order of the xi, if necessary, we can
assume that ni < 2tn0 for all i ≤ j, and ni ≥ 2tn0 for all j + 1 ≤ i ≤ t, for some j ≤ t. Now,
Proposition 2.8 implies that pRp ∈ AssMp/(x

n1
1 , ..., xnt

t )Mp iff pRp ∈ AssMp/(x
m1
1 , ..., xmt

t )Mp.
Therefore

AssM/(xn1
1 , ..., xnt

t )M = AssM/(xm1
1 , ..., xmt

t )M.

Hence ⋃
n1,...,nt∈N

AssM/(xn1
1 , ..., xnt

t )M =
⋃

1≤m1,...,mt≤2tn0

AssM/(xm1
1 , ..., xmt

t )M

is a finite set.

It should be noted that L.T. Nhan in [13, Theorem 3.1] proved a similar result for generalized
regular sequences of M . We recall that in a local ring (R,m) a sequence x1, ..., xt of elements is
said to be a generalized regular sequence of M if x1 /∈ p for all p ∈ AssM/(x1, ..., xi−1)M satisfying
dimR/p > 1, for all i = 1, ..., t.



Question 2.11. Notice that Hi
a(M) = lim→ ExtiR(R/an,M), by virtue of Theorem 2.10 it raises

the following natural questions.

(i) Is ∪nAss ExtiR(R/an,M) finite for all i ≤ fa(M)?

(ii) Is ⋃
n1,...,nt∈N

Ass ExtiR(R/(xn1
1 , ..., xnt

t ),M)

finite for all a-filter regular sequence x1, ..., xt of M and i ≤ t ≤ fa(M)?

If M is an a-torsion module, then fa(M) = ∞. The following is a special case of Question
2.11(i).

Question 2.12. Is ∪nAss ExtiR(R/an,M) finite for all i provided M is a-torsion?

In [11], L. Melkersson and Schenzel asked whether the sets Ass ExtiR(R/an,M) become stable
for sufficiently large n. This question is not true in general since ∪nAss ExtiR(R/an,M) may be
infinite. However, Khashyarmanesh and Salarian have proved that Ass Ext1R(R/an,M) become
stable for sufficiently large n (cf. [9, Corollary 2.3]). Thus, Melkersson-Schenzel’s question and
Question 2.11 (i) has an affirmative answer in the cases fa(M) ≤ 1. We may modify Melkersson-
Schenzel’s question as follows.

Question 2.13. whether the sets Ass ExtiR(R/an,M) become stable for sufficiently large n and for
all i ≤ fa(M)?
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