
An Efficient Context Adaptive Variable Length

Coding Architecture for H.264/AVC Video Encoders

Ngoc-Mai Nguyen, Xuan-Tu Tran

VLSI Systems Design Group, SIS Laboratory

VNU University of Engineering and Technology

144 Xuan Thuy road, Hanoi, Vietnam

{mainn, tutx}@vnu.edu.vn

Pascal Vivet, Suzanne Lesecq

CEA-LETI, MINATEC

17 rue des Martyrs

Grenoble, France

{pascal.vivet, suzanne.lesecq}@cea.fr

Abstract — In this paper, we present an efficient hardware

implementation of a Context Adaptive Variable Length Coding

(CAVLC) module for an H.264/AVC video encoder. To improve

timing performance, a three-stage pipeline architecture is

proposed including: input data statistical analysis, encoding and

packing. The context information and coding tables are stored in

memory elements. To minimize the hardware implementation

overhead and increase the system performance, in some sub-

encoders, the codewords are calculated on-the-fly instead of

being stored in look-up tables. The proposed architecture has

finally been implemented using a low power CMOS 65nm

technology from STMicroelectronics. The design is able to

operate up to 715MHz. At 550MHz, the design complexity is

33Kgates for a power consumption of 20mW. The design is

initially targeted to CIF video format; however, it is obviously

suitable for real-time HD 1080p video format.

Keywords- Video encoding, H.264/AVC, CAVLC, entropy coding,

pipeline architecture, VLSI architecture for H.264 codec.

I. INTRODUCTION

The H.264/AVC video coding standard proposed by the
Joint Video Team (JVT) has introduced significant compres-
sion performance. To save approximately 50% bit-rate for
equivalent perceptual quality compared with the performance
of previous standards, many advanced techniques have been
introduced with a large computational complexity [1]. There-
fore, H.264/AVC codecs are often implemented in full hard-
ware or hardware/software co-design.

In video compression, after being transformed and quan-
tized [2], video data enters the entropy encoding process to
remove statistical redundancy. One main idea of entropy
encoding in video compression is Variable Length Coding
(VLC) using shorter codewords for more frequent symbols and
longer codewords for less frequent symbols. The new tech-
niques used in H.264 are context adaptive entropy encoding.
One of them is Context Adaptive Variable Length Coding
(CAVLC) which is applied in the baseline and main profiles of
the H.264/AVC standard. In CAVLC, many variable length
coding tables are used and the table selection depends on the
context of the input data.

Several previous works have presented the implementation
of CAVLC encoder. Most of them tried to implement a high
throughput CAVLC encoder, using pipelining techniques [3] or
parallel symbols encoding [4][5]. Two-stage pipeline architec-

ture can halve the time to process a block in average, but
requires double buffer size to store all the statistic information
of one block before the data is encoded. Therefore, Chien [5]
and Tsai [6] introduced a mechanism that scans the coefficients
in inversed zigzag order and proposed a special buffer structure
to maintain the buffer size at the size of one block.

Parallel symbols encoding is an efficient method in terms
of performance, however, it obviously double the area cost of
symbol encoders. This method also needs to handle the data
dependency, that is, with two symbols encoded in parallel, the
encoding of the later symbol depends on the previous one.
Thus, the statistical information of both symbols is pre-
calculated before encoding process [5]. In [4], the later symbol
is encoded in two parallel encoders, then, the results are
selected based on the output of the previous symbol encoder.
This solution triples the hardware cost of the symbol encoder.
Ramos et al. [7] presented an efficient method to overcome the
bottleneck at the scan phase by scanning coefficients in
parallel. This method halves the required time of the scan
phase. Parallel coding of level and run-before is also applied.

Some other authors aimed at designing low cost CAVLC
encoders by calculating the coding level variables on-the-fly
[8][9] or by reducing the size of look-up tables [5][10]. In [10],
instead of storing 16-bit word for each symbol in coeff_token
encoding, Kim has modified the VLC tables into tables of 9-bit
words. Finally, Tsai [6] has implemented a low power CAVLC
encoder which can reduce up to 69% the power consumption
but the total gate count is somewhat high (about 27Kgates
without the implementation of coefficient token VLC table
selector).

In this paper, we propose an efficient hardware implemen-
tation of the CAVLC encoder for H.264/AVC video coding. In
order to achieve high performance encoding, we propose a
three-stage pipeline architecture using various techniques to
reduce the number of codewords to be packed into the bit-
stream in the last stage. Zero-skipping technique is intently
used at 8×8 block level to skip encoding the all zero blocks.
This technique reduces the encoding time for low-bit rate video
data where lots of coefficients are zero. The VLC table selector
for encoding coeff_token, including the reference memory, is
integrated in our design to minimize the load of the
H.264/AVC global processor. Finally, in order to reduce the
cost of the table selector and its associated memory area, two
main techniques are applied: to re-encode the VLC tables and

The 2012 International Conference on Advanced Technologies for Communications (ATC 2012)

978-1-4673-4352-7/12/$31.00 ©2012 IEEE

to calculate the codewords arithmetically. For example, the
codewords are calculated on-the-fly instead of being stored in
look-up tables at the level encoding and run_before infor-
mation encoding. The proposed CAVLC architecture has been
fully implemented in RTL and synthesized using a low power
CMOS 65nm technology from STMicroelectronics.

The rest of the paper is organized as follows. In Section II,
the basic principles of CAVLC coding is briefly reviewed.
Section III presents in detail the proposed CAVLC encoder
pipeline architecture. In Section IV, we discuss the achieved
performance in comparison to related works. Finally, conclu-
sion will be given in Section V.

II. CAVLC ENCODING PRINCIPLES

A. Main principles of CAVLC

CAVLC is entropy encoding used to encode residual data
in 4×4 or 2×2-coefficient blocks. The coding techniques are
applied according to statistical characteristic of the block:

The blocks of quantized transform coefficients contain
mostly zero coefficients. Thus, run-length coding is applied to
encode the zero strings. In the zigzag order, non-zero coeffi-
cients are gradually lower. The last non-zero coefficients of the

blocks are normally +1 or −1. The last consecutive coefficients
with magnitude 1 are called trailing ones. The maximum
number of trailing ones is three. These coefficients are encoded
in a special way. The other non-zero coefficients are called
“level”. Levels are encoded in inversed zigzag order because in
this inversed order, the magnitude of the previous level is used
to predict the value of the next level. This prediction is then
used to select the appropriate coding table. Because the
numbers of non-zero coefficients in neighboring blocks are
correlated, these numbers in upper and left blocks are used to
predict the current block [11].

The ITU-T recommendation [12] has introduced the five
syntax elements to be encoded in the CAVLC. They are
coefficient token (coeff_token), trailing ones’ signs, level, total
zero, and run before.

B. Coefficient Token encoding

Coefficient token (coeff_token) is a syntax element present-
ing a pair of numbers: the number of non-zero coefficients and
the number of trailing ones in a block. The VLC table selection
depends on the number of non-zero coefficients in the upper
and the left blocks. If the number of non-zero coefficients in
the upper block is nU and the number of non-zero coefficients
in the left block is nL, then, the parameter nC used to decide
which VLC table will be selected is calculated as follows:

�� = �������(�
 + ��2)
The coeff_token of a 4×4 luma block is encoded using the

table VLC0 if nC is less than 2. The table VLC1 is selected if
nC is greater than 1 and less than 4. If nC is greater than 3 and
less than 8, the VLC2 is selected. If nC is greater than 7, the
Fixed Length Coding (FLC) table is used. We also have a
special table for encoding the coeff_token of 2×2 chroma DC
blocks.

C. TrailingOnes Sign flag encoding

Each TrailingOne is encoded in one bit presenting its sign.

If the coefficient is 1, the sign bit is zero (‘0’). If it is −1, the
sign bit is one (‘1’). The TrailingOne signs are encoded in the
bitstream in inversed zigzag order.

D. Level encoding

Levels are encoded in inversed zigzag order. In the level
encoding, seven VLC tables are used. The next VLC table is
selected according to the current VLC table and current
magnitude of level. The first level is encoded using VLC0.
Then the VLC number is increased if the magnitude of the
current level is larger than the correlate threshold of the current
VLC. TABLE I shows the thresholds of VLC tables.

One exception is that if there are more than 10 nonzero co-
efficients and less than three trailing ones, the first level will be
coded using table VLC1. Other exception is that if there are
less than three trailing ones, the first level coded with the
magnitude is decreased by 1 as mentioned in [12].

TABLE I. THE THRESHOLDS TO INCREASE THE VLC NUMBER

Current VLC table Threshold

Level_VLC0 0

Level_VLC1 2

Level_VLC2 3

Level_VLC3 12

Level_VLC4 24

Level_VLC5 48

Level_VLC6 -

The ITU-T recommendation [12] introduces the level en-
coding using three variables: suffix length, level prefix and
level suffix. The coding tables can be found in the JVT docu-
ment JVT-C028 [13]. From this presentation of VLC tables, we
can figure out the formats of the codeword in three cases: one
general case and two escape code cases. Signed level is
converted into unsigned code-number.

- In general case, a codeword contains prefix and suffix
parts. The prefix is a string of zero bits followed by one
‘1’. Suffix length is equal to the VLC number. The suffix
value is equal to code-number minus the number of zero in
the prefix. The maximum prefix is 13 in VLC0. In the
baseline and main profile, maximum prefix is 14 in the
other VLC tables [1].

- If the VLC number is VLC0 and the code-number is
greater than 13 and smaller than 31, the codeword is in the
first escape format: prefix is equal to 14, suffix length is 4.

- If in VLC0, the code-number is greater than 30, or in the
other VLC tables, the code-number is greater than maxi-
mum prefix plus maximum suffix, the second escape for-
mat is applied: the prefix is 15; the suffix length is 12 in
baseline and main profile.

E. TotalZero encoding

TotalZero is the number of zero coefficients standing be-
fore the last non-zero coefficient in the zigzag order. Total zero
is encoded using 15 VLC tables selected by the number of non-

zero coefficients in the luma blocks. Three other tables are used
for encoding chroma DC blocks.

F. Run_Before encoding

Run_before is a sequence of numbers of zero coefficients
standing before levels in zigzag order. However, run_befores
are encoded in inversed zigzag order. The VLC table selection
is done based on “zero left” information, that is, the number of
zero left after each run_before is encoded. Next zero left is
equal to current zero left minus current run_before. There are 7
VLC tables used for run_before encoding.

Finally, the syntax structure of output bitstream for one
block data is in the following order: coeff_token, TrailingOne
signs, Levels, TotalZero, and run_before. A conventional
CAVLC encoder is composed of five encoders to generate five
syntax elements of the current block. Each encoder contains
several look-up tables to store VLC tables. Table selection is
done by the previous coded syntax elements with some excep-
tional cases. There are totally up to 41 VLC tables in the
CAVLC encoder.

III. THE PROPOSED CAVLC ARCHITECTURE

In this section, the proposed architecture of the CAVLC
encoder will be presented. Pipelining and other techniques are
used to achieve high performance. In order to reduce the
hardware implementation cost, Level and run_before are
encoded using dedicated combinational logic circuits while
coeff_token and TotalZero are encoded by using look-up tables
containing re-encoded VLC tables.

A. CAVLC pipelined architecture overview

Figure 1. The proposed three-stage pipeline architecture of CAVLC encoder.

Figure 1 illustrates the three-stage pipeline architecture of
our proposed CAVLC encoder design. The pre-process stage
scans the sixteen (or four) coefficients, and then analyzes the
statistical characteristic of the input blocks. In this stage, the
coeff_token table selector is also integrated. This sub-module
stores the reference information of the neighboring blocks and
calculates the parameter nC to select the coding table for
coeff_token encoding. In the encoding stage, various encoders
operate in parallel to encode syntax elements of the current
block at the same time. The three encoders (coe_tok_t1, level
and zero info encoders) generate codewords in 32-bit bus and
code length in 5-bit bus. The encoding controller synchronizes

these three encoders, controls output data flow according to the
syntax structure of the output bitstream. Finally, the packing
stage concatenates the codewords and aligns them into 32-bit
words. These words are written into an outer memory block.

The pipeline between pre-process and encoding stages is
performed at block level. Due to data dependency, encoders
start to encode a block after the scanning process is complete.
Two buffers are implemented between two first stages. By
doing this way, two blocks can be processed in parallel, one is
being scanned, while the previous one is being encoded, thus
increasing the throughput of CAVLC module.

The pipeline between two last stages is realized at code-
word level. Each codeword generated by the encoder is pushed
into the FIFO. Whenever there is a codeword in the FIFO, the
packing stage pops it and concatenates with the previous codes.
Therefore, the codewords can be processed in parallel; one is
being encoded while the previous one is being packed.

The packing stage will stop packing and write out the re-
maining data of a macroblock into the outer memory when the
mb_end flag is set. Hence, the architecture of the packing stage
is simple.

B. Reduce number of codewords entering the packing stage

The preprocessing stage scans the input coefficients and
stores the statistic information in the first buffer. After the
scanning is complete, all the information such as number of
non-zero coefficients, number of trailing ones, levels, run
before…, is copied into the second buffer. During this copy
process, the signs of three first levels are extracted and written
into the second buffer (see Figure 2). Using the number of
trailing ones, the encoding stage can construct the syntax
element trailing one sign flag in just one clock cycle.

Figure 2. T1 signs extraction during buffer copy.

In the encoding stage, the coeff_token and TrailingOne
signs are 19 bits long at maximum. In one clock cycle, the two
syntax elements are merged into only one codeword pushed
into the FIFO to reduce the task of packing stage, thus increas-
es the throughput of the module. Figure 3 presents the encoding
of coeff_token and the combining of two syntax elements into
one.

In a block, the number of non-zero coefficients and the
number of run_befores are equivalent. Although run_befores
and levels are encoded simultaneously, the time for the encod-
ing stage to encode and push all the syntax elements into the
FIFO is still twice time greater than the time for encoding
levels.

Figure 3. Coeff_token and T1 signs encoding into one codeword.

Besides, the total number of bits of TotalZero and
run_befores after being encoded is less than 32 bits. Thus, we
can solve the timing process problem by packing all the zero
information of a block into a 32-bit codeword while the
run_befores are being encoded. By this solution, we reduce the
number of zero information codewords entering the packing
stage into only one codeword. Figure 4 describes the position
and architecture of the zero information packer (small packer)
in the zero information encoder.

Figure 4. Position and architecture of the zero information packer.

C. Zero-skipping at block level

Another method to enhance the performance of the
CAVLC encoder is zero-skipping where all residual zeros are
flagged in order to skip the complete encoding process. Chen
[3] and Chien [5] adopt zero skipping at 8×8-block level, using
Coded Block Pattern. Then, in the following work [6], Chen
has applied zero skipping at coefficient level to achieve high
throughput and low power for CAVLC encoding.

In our design, zero skipping is also used at 8×8 block level.
Before being scanned in pre-process stage, an 8×8 zero block is
detected in zigzag scan phase. If the flag of 8×8 zero block is
set, the encoder needs only two clock cycles to store the
information into the reference memory, all the other encoding
processes are then omitted. At 4×4 block level, zero blocks are

also detected and flagged by zigzag scanner to reduce tasks of
the CAVLC encoder. When a 4×4 block is flagged as zero
block, the pre-processing does not have to re-scan it and
coeff_token encoder is the only encoder operating in the
encoding stage.

D. VLC table selector for coeff_token encoding

As mentioned above, the coeff_token VLC table selector
including the reference memory is implemented in the pre-
process stage. Without this integration, the global processor of
the H.264 encoder would have to access the global memory
three times per block to read the nL, nU and write back the
number of non-zero coefficients of the current block. There-
fore, with the VLC selector integrated in the CAVLC, the
global performance of the H.264 encoder is increased.

However, the hardware cost of this table selector is very
high. The work presented in [14] is known as the only design
including the nC generator in the CAVLC encoder. The nC
generator is reported to occupy more than 50% of the total
hardware overhead of CAVLC encoder.

The significant cost of this sub-module leads us to optimize
the hardware cost of the design. For blocks whose lower
neighbors are in the same macroblock, reference memory is
reused after each macroblock to be encoded. For the other
blocks, the reference memory is reused line-by-line. The data
stored in the reference memory is the number of non-zero
coefficient in blocks which is in range 0 to 16. According to the
CAVLC principle mentioned above, nL (or nU) equal to 16 or
15 yield different nC parameters, however, the VLC table
decisions are the same. Indeed, the ceiling of ((15 + n)/2) ≥ 8
and the ceiling of ((16 + n)/2) ≥ 8, the FLC table is selected in
both cases. To reduce the number of bit stored in reference
memory from five to four bits, we store all data equal to 16 as
15 with no influence on the table selection. In other parts of the
CAVLC encoder, the two main techniques are codeword
calculation and VLC table re-encoding.

E. Codeword arithmetic calculation

Every logic/arithmetical relation between the input data and
the output codeword is utilized. In the coeff_token encoding,
the fixed length coding (FLC) table can be constructed by
forming the codeword as: 4 bits presenting the number of non-
zero coefficients minus 1 followed by 2 bits indicating the
number of trailing ones. Hence, we remove the FLC look-up
table. To reduce the area of address generator, the calculated
FLC codeword is used as the address to access the VLC tables.

Figure 5. Architecture of level encoder.

In level encoding, the arithmetical relation between code-
number and codeword is also exploited. The architecture of
level encoder is presented in Figure 5. The lev_para_cal
calculates two parameters: VLC number and code-number for
each level. The lev_cod_gen generates the codeword and code
length in one of three formats presented above. All the compu-
tations are arithmetic and logical. We even optimized some of
the mathematical equations to have a circuit with minimum
resource.

For example, the circuit in Figure 6 calculates the parame-
ter code-number. The original relation between code-number
and level is:

Cod_num =
��
� |level| � 2 � 2	if	level " 0	and	no	exception

|level| � 2 � 1	if	level * 0	and	no	exception
	|level| � 1� � 2 � 2	if	level " 0	and	exception
	|level| � 1� � 2 � 1	if	level * 0	and	exception

The relation is simplified as follows.

• If level > 0 and no exception, cod_num � 	level � 1�
concatenates with ‘0’.

• If level < 0 and no exception, then cod_num �
	�level� � 2 � 1 � 	inverse	level� � 1� � 2 � 2 � 1 �
-inverse	level�. � 2 � 1 . It means that cod_num �
inverse	level� concatenates with ‘1’.

Figure 6. Code-number arithmetic expression optimization.

In run_before encoding, the codewords are also calculated
to remove the look-up table for VLC in the design.

F. Re-encoding the VLC tables

The rest syntax elements are encoded using loop-up table.
However, conventional look-up tables require large memory
size to store the whole codewords and code length. We pro-
posed a simple method to re-encode the coeff_token codeword
into a format of length and value information as shown in
TABLE II. Because the coeff_token codewords have length in
range 1 to 16 and the values are in range of 0 to 15, a 8-bit
word is enough to store the information of one coeff_token.
The TotalZero coding table is re-encoded in the same method.

TABLE II. AN EXAMPLE OF A 8-BIT WORD IN VLC TABLES

Original codeword Proposed codeword

 Length - 1 Value

0000000000000010 1111 0010

16 bits 4 bits 4 bits

G. CAVLC controller

Figure 7. The main controller of the proposed CAVLC encoder.

The main controller of the proposed CAVLC encoder is
illustrated in Figure 7. As the data transfer protocol between
stages is defined in Figure 1, the major task of this controller is
to generate input conditions for the pre-process stage and
synchronize the three stages at macroblock level.

Whenever an input macroblock is available, the controller
switches from “idle” state to “start encoding” (start_enc) state
to start encoding a block. In “start_enc” state, based on the
current block number and the input macroblock type, the
controller decides the current block type and switches into a
correlate state. The controller stays at “Zero block” (Zero_blk)
and “I_PCM” (one mode of encoding in H.264 standard) states
for only one clock cycle to write the number of non-zero
coefficients into the reference memory.

After the last block of the current macroblock is processed
in the first two stages, the controller stays at “Pause” state until
the last information of the current macroblock is written into
the outer memory. Then, the next macroblock can be encoded.

IV. PERFORMANCE ANALYSIS AND COMPARISON

A. Implementation and verification

The proposed architecture has been modeled in VHDL at
RTL level and implemented using low power CMOS 65nm
technology from STMicroelectronics. Verification is then done
by using a testbench modeled in VHDL. The test cases of a
macroblock are defined in the testbench. The input-output
block data templates are the block examples presented in [11].
The reference output data is generated manually to make the
comparison with the simulation results of the CAVLC encoder.
In terms of CAD tools, the simulation is done using ModelSim
from Mentor Graphics, and the synthesis is done using DC
Compiler Topographical from Synopsys. Synthesis includes
automatic clock gating for low power purpose and scanable
flip-flops for testability purpose.

Two types of scenario are used. The first one represents the
high-quality video with 33% non-zero coefficient of the total
coefficients. The other represents the low-bit rate quality video
where the coefficients are mostly zeros. As an example, the
waveform in Figure 8 shows the simulation waveforms at the
end of a macroblock coding process. After the last block is
encoded, the last information of the macroblock (the output bits

-2

-1

&’1’
Level

Cod_num

Level’s sign

Exception

&’0’

left after data is aligned into 32-bit codes and data size infor-
mation) is also written into the memory. The two first stages in
the pipeline have to wait until the packing stage complete its
task to start the next macroblock.

Figure 8. Simulation waveforms at the end of the macroblock encoding.

B. Performance analysis

Regarding performance results, Figure 9 presents the rela-
tionship between power consumption (in mW), area cost (in
µm

2
) versus the (synthesized) operating frequency of the

design. The design is able to achieve a maximum frequency of
about 715MHz in worst case corner (worst-case process, 1.1V,
105C). At 715MHz, more than 100 violating paths (with less
than a few ps) are observed.

Figure 9. Power consumption and area at targeted frequencies.

At 550MHz, the CAVLC encoder consumes approximately
20.7mW including 2.4mW of clock tree and occupies approxi-
mately 32.6Kgates. Hardware implementation cost and power
consumption of individual modules is reported in TABLE III
containing the coeff-token table selector, the pre-process stage
occupies the largest amount of area (51.3%) and consumes
most energy (62.1%). FIFO is the second largest module, in
terms of both area (19.1%) and power consumption (15.1%). In
the current design, the size of FIFO is 19 elements, which is the
maximum number of codewords per block.

TABLE III. AREA COST AND POWER CONSUMPTION
PER SUB-MODULE (@ 550MHZ)

Item
Pre-process

stage

Encoding

stage
FIFO

Packing

stage
Total

Area cost

(gate count)
16734 3611 6248 5747 32636

Area ratio (%) 51.3 11.1 19.1 17.6 100

Power (mW) 12.8 1.1 3.1 0.8 20.7

Power ratio(%) 62.1 5.4 15.1 3.8 100

However, the simulation indicates that, even in high-quality
video data, a few elements of FIFO are used. Because the FIFO
is generic, it should be resized into a more adequate size to
achieve better synthesis results. Due to the data dependency,
the processing time per macroblock exhibits a large variability.
For a high quality test case, in average, it takes around 450
clock cycles to encode a macroblock.

In the case that all coefficients are non-zero, it takes at max
540 cycles. In the low-bit rate test case, number of clock cycles
required is about 100 cycles. The minimum operating time to
process all zero macroblocks is 52 cycles.

The proposed CAVLC encoder initially targets the CIF vid-
eo format (resolution: 352×288; frame rate: 30fps; colour
encoded using YCbCr 4:2:0) which is widely used for video
teleconferencing. However, at the operating frequency of
550MHz, the proposed CAVLC design can process at least
1019000 macroblocks (~2573 CIF frames, ~126 HD1080p
video frames) per second. Thus, the design is obviously
suitable for real-time application with HD1080p HD video
format.

C. State of the art comparison

To compare with other CAVLC designs, we use our pro-
posed CAVLC design, running at a frequency of 550MHz,
which is a good area/power tradeoff.

In the previous designs, different techniques and architec-
tures are used. Some modules/phases are not integrated in the
CAVLC encoder. Hence, it is not fair enough if only the total
gate counts are compared. In the TABLE IV, hardware cost is
counted in individual items to be able to give a fair compari-
son.

TABLE IV. HARDWARE COST COMPARISON

 Implementation cost (gates)

Design
Pre-

proc
Enc Fifo Pkg Total Tech. Target

Prop. at

550MHz
16734 3611 6248 5747 32636 65nm

CIF@30fps

YCBCr 4:2:0

[3]

12283
(scan

buffer)

5352 N/A 4796 22611 180nm
720p30

YCbCr 4:2:0

[5]

5325
(scan

buffer)

2614 N/A N/A 9724 180nm HD1080p

[10]

5279
(scan

buffer)

N/A N/A N/A 12276 180nm N/A

[14]

17656

(scan +
table

select)

4472 N/A 9265 31393 FPGA HD1080p

[9] N/A N/A N/A - 6850 FPGA CIF

[16] - 7389 - - - 65nm HD1080p

N/A: the item is implemented, but there is no number in detail.

‘-’: the item is not implemented in the design or not counted in the total cost.

Only the CAVLC encoder of D. Kim [14] integrates the
coeff-token table selector inside the pre-processing phase, as
presented in [15]. In the table, the total cost of scanning and
nC_gen [14] and the proposed pre-proc are mostly equal, while
the others report only the cost of statistic buffer. Re-encode
LUTs and codeword calculation are applied in the proposed

58000

60000

62000

64000

66000

68000

70000

72000

74000

76000

0

5

10

15

20

25

30

400 450 500 550 590 625 660 715

a
re

a
 (

µ
m

2
)

p
o

w
e

r
(m

W
)

freq. (MHz)

Power consumption and area cost of the design

power (mW)

area (µm2)

encoding stage. Thus, this module has a fairly low cost, 3611
gate count compared to 7389 gate count of [16] with the same
technology 65nm.

Packing stage is omitted in some CAVLC designs. In the
table, our packing stage has an equivalent area cost. The
packing stage in [14] seems to be costly compared to the
proposed and [3]. However, in [3] and the proposed design, the
codewords enter the packing stage in syntax elements order
while in [14], the packing module has to classify and order the
codewords.

TABLE V presents other synthesis results from many
CAVLC encoders. Zero skipping at block level can reduce the
number of cycles per MB only in low-bit rate video. To
actually reduce the processing time, zero skipping at coefficient
level [6] and parallel scanning [7] actually break the bottleneck
at the scanning phase, hence achieve outstanding throughput.
The power consumption of [6] is also very promising. Howev-
er, the frequency is low which reduces the performance of the
design. The reason is that in enhancing throughput, their design
uses fewer buffers than the others but this causes longer critical
path. [6] also adds non-zero &abs-one flags and SLA modules
which cost totally 14717 gate counts. The two modules im-
prove the performance however increase the total gate counts
to 26598 gates (without table selector and residual SRAM).

TABLE V. CAVLC RESULTS COMPARISON

Design Cycles/MB
Average

(MBs/sec)

Freq.

(MHz)
Techno

Power

(mW)

Proposed 540-52 5798×103 550 65nm 20.7

[8] N/A N/A 66 TSMC

0.35

21.8

[3] 500-200 350×103 100 180nm 12.0

[6] 350-100 174×103 27 180nm 3.7

[5] 413-166
~300

417×103 125 180nm N/A

[14] 432 231×103 100 FPGA N/A

[7] 244 738×103 180 FPGA N/A

As shown in TABLE IV and TABLE V, the proposed de-
sign has better performances in comparison to other designs
while the area cost is slightly higher (with table selector).

V. CONCLUSIONS

Thanks to many advanced coding techniques equipped, the
H.264/AVC has recently become as the most efficient video
compression standard with high video quality at a low bit-rate.
However, it is very difficult to implement the hardware
architecture in order to get high performance while keeping
low the overhead due to the computational complexity.

We have presented in this paper an efficient hardware im-
plementation of CAVLC encoder being used in H.264/AVC
video codec. Pipelining, zero-skipping, table selector integra-
tion and many other techniques are applied to improve the total
performance of the design while re-encoded LUT and code-
word calculating techniques are used to reduce the area cost.
The proposed architecture has been fully modeled, verified,
and synthesized using low power CMOS 65nm technology
from STMicroelectronics. The synthesis results show that at the
operating frequency of 550MHz, the design occupies about
32.6Kgates and consumes 20mW. However, the maximum

operating frequency can reach to 715MHz. The target of the
design was initially targeted to CIF video format; but it is also
suitable for real-time HD 1080p video format.

VI. ACKNOWLEDGEMENT

This work is supported by Vietnam National University,
Hanoi (VNU) through research project No. QGĐA.10.02
(VENGME).

REFERENCES

[1] T. Wiegand, G.J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of
the H.264/AVC Video Coding Standard. In IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 13, No. 7, July 2003,
pp. 560 – 576.

[2] Xuan-Tu Tran, Van-Huan Tran. An Efficient Architecture of Forward
Transforms and Quantization for H.264/AVC Codecs. In REV Journal
on Electronics and Communications (JEC), Vol. 1, No. 2, pp. 122-129,
April – August, 2011, ISSN: 1859 – 387X.

[3] Tung-Chien Chen, Yu-Wen Huang, Chuan-Yung Tsai, Bing-Yu Hsieh
and Liang-Gee Chen. Architecture Design of Context-Based Adaptive
Variable-Length Coding for H.264/AVC. In IEEE Transactions on
Circuits and Systems – II: Express Briefs, Vol. 53, No. 9, September
2006, pp. 832-836.

[4] Yongseok Yi and Byung Cheol Song. High-Speed CAVLC Encoder for
1080p 60-Hz H.264 Codec. In IEEE Signal Processing Letters, Vol. 15,
2008, pp. 891-894.

[5] Chih-Da Chien, Keng-Po Lu, Yi-Hung Shih, and Jiun-In Guo. A High
Performance CAVLC Encoder Design for MPEG-4 AVC/H.264 Video
Coding Applications. In Proceedings of ISCAS 2006, pp. 3838-3841.

[6] Chuan-Yung Tsai, Tung-Chien Chen and Liang-Gee Chen. Low Power
Entropy Coding Hardware Design For H.264/AVC Baseline Profile
Encoder. In Proceedings of IEEE International Conference on
Multimedia and Expo, 2006, pp. 1941-1944.

[7] F.L.L. Ramos, B. Zatt, T.L. Silva , A. Susin, and S. Bampi. A High
Throughput CAVLC Hardware Architecture with Parallel Coefficients
Processing for HDTV H.264/ AVC Enconding. In Proceedings of the
17th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), 2010, Dec 2010, pages 587 – 590.

[8] Yeong-Kang Lai, Chih-Chung Chou, and Yu-Chieh Chung. A Simple
and Cost Effective Video Encoder with Memory-Reducing CAVLC. In
Proc. IEEE Int. Symp. Circuits and System, 2005, vol.1, pp. 432–435.

[9] Choudhury A. Rahman and Wael Basawy. CAVLC Encoder Design for
Real-Time Mobile Video Applications. In IEEE Transactions on Circuits
and Systems II, Vol. 54, No. 10, Oct. 2007, pp. 873-877.

[10] Yong-Jun Kim, Kyu-Yeul Wang, Sang-Seol Lee, Byung-Soo Kim, Bo-
Keun Choi, and Duck-Jin Chung. Implementation of High Efficient
CAVLC Encoder for H.264/AVC. In proceedings of the 1st International
Conference on Pervasive Computing, Signal Processing and
Applications, 2010, pp. 912-915.

[11] Iain E. Richardson. The H.264 Advanced Video Compression Standard,
2nd edition. John Wiley & Son, 2010.

[12] ITU-T, H.264 Advanced Video Coding for Generic Audiovisual Service,
March 2005.

[13] G. Bjontegaard and K. Lillevold. Context-adaptive VLC (CVLC)
Coding of Coefficients. JVT Document JVT-C028. Fairfax, VA, 2002.

[14] Daeok Kim, Eungu Jung, Hyunho Park, Hosoon Shin, and Dongsoo Har.
Implementation of High Performance CAVLC for H.264/AVC Video
Codec. In Proceedings of the 6th International Workshop on SoC for
Real-Time Applications, 2006, pp.20-23.

[15] X.H. Tian, T.M. Le, X. Jiang anf Y. Lian. Implementation Strategies for
Statistical Codec Designs in H.264/AVC Standard. In Proceedings of the
19th IEEE/IFIP International Symposium on Rapid System Prototyping,
2008, pp. 151-157.

[16] C.S. Han, J.H. Lee. Area Efficient and Throughput CAVLC Encoder for
1920 1080@30p H.264/AVC. In Digest of Technical Papers
International Conference on Consumer Electronics, Jan 2009.

