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ON THE INDEX OF REDUCIBILITY OF POWERS

OF A STANDARD PARAMETER IDEAL

NGUYEN TU CUONG, PHAM HUNG QUY, AND HOANG LE TRUONG

Abstract. In this paper we study the index of reducibility of powers of a standard param-
eter ideal. An explicit formula is proved for the extremely case. We apply the main result
to compute Hilbert polynomials of socle ideals of standard parameter ideals.

1. Introduction

Throughout this paper, let (R,m) be a Noetherian local ring with the infinite residue
field k = R/m, and M a finitely generalized R-module of dimension d. A submodule N
of M is called an irreducible submodule if N can not be written as an intersection of two
properly larger submodules of M . The number of irreducible components of an irredundant
irreducible decomposition of N , which is independent of the choice of the decomposition
by E. Noether [9], is called the index of reducibility of N , and denoted by irM(N). For a
parameter ideal q of M , the index of reducibility of q on M is the index of reducibility of
qM and denoted by irM(q). We have irM(q) = dimk Soc(M/qM). In the case M is Cohen-
Macaulay, D.G. Northcott proved that irM(q) is an invariant of the module (cf. [10]) and it is
called the Cohen-Macaulay type of M . More precisely, we have irM(q) = dimk Soc(H

d
m(M))

for all parameter ideals q, where H i
m(M) is the i-th local cohomology module of M with

respect to the maximal ideal m. After that several authors tried to extend Northcott’s result
for other classes of modules, such as S. Goto, N. Suzuki and H. Sakurai for Buchsbaum
modules in [7, 8]; and the authors for generalized Cohen-Macaulay modules in [1, 4] (see also
[6, 11, 12, 15, 18, 19] for other extensions). If M is a generalized Cohen-Macaulay module
and q is a standard parameter ideal of M , then Goto and Suzuki in [8, Theorem 2.1] showed
that

irM(q) ≤

d
∑

i=0

(

d

i

)

dimk Soc(H
i
m(M)). (⋆)

In [1, Corollary 4.3] and [4, Theorem 1.1] the authors proved that if the parameter ideal q
is contained in a large enough power of m we have

irM(q) =

d
∑

i=0

(

d

i

)

dimk Soc(H
i
m(M)). (⋆⋆)

Key words and phrases. Index of reducibility, generalized Cohen-Macaulay, standard ideal, Local
cohomology.
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On the other hand, for each ideal I the authors in [2] proved that the function irM(In+1M)
becomes a polynomial for large enough n. In particular, suppose that M is Cohen-Macaulay
and q is a parameter ideal, then we have (cf. [2, Theorem 5.2])

irM(qn+1M) =

(

n + d− 1

d− 1

)

dimk Soc(H
d
m(M))

for all n ≥ 0. The aim of this paper is to extend this result for the case M is generalized
Cohen-Macaulay and q is standard. Firstly, similar to the inquality (⋆) we have the following
result.

Theorem 1.1. Let M be a generalized Cohen-Macaulay module of dimension d > 0 and

q = (x1, ..., xd) a standard parameter ideal. Set si(M) = dimk Soc(H
i
m(M)) for all i = 0, ..., d.

Then

irM(qn+1M) ≤

d
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≥ 0.

Then, when the standard parameter ideal q satisfies the extremely condition (⋆⋆) we have

Theorem 1.2. Let M be a generalized Cohen-Macaulay module of dimension d > 0 and

q = (x1, ..., xd) be a standard parameter ideal of M . Suppose that irM(q) =
∑d

i=0

(

d
i

)

si(M),
where si(M) = dimk Soc(H

i
m(M)) for all i = 0, ..., d. Then

irM(qn+1M) =
d

∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≥ 0.

It should be noted here that the technical arguments that used in this paper are mainly
based on technical properties of standard system of parameters and colon ideals. For exam-
ple, the key ingredient of the proof of Theorem 1.2 is proving that the equality qn+1M :R
m = qn(qM :R m) + (0 :M m) holds true for all n ≥ 0 (Lemma 4.5).

This paper is organized as follows. In the next section we recall the notions of generalized
Cohen-Macaulay, standard parameter ideal and the index of reducibility. Theorem 1.1 is
proved in Section 3. Section 4 is devolved to prove Theorem 1.2. In the last section, we
apply Theorem 1.2 to give an explicit description for the Hilbert polynomials of socle ideals
(cf. Theorem 5.2).

2. Preliminary

We start this section with the notions of generalized Cohen-Macaulay and standard pa-
rameter ideals in terms of local cohomology (cf. [3, 14]).

Definition 2.1. (i) An R-module M is called a generalized Cohen-Macaulay module if
H i

m(M) has finite length for all i < d.
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(ii) A parameter ideal q = (x1, ..., xd) is called standard if

qH i
m(M/(x1, ..., xj)M) = 0

for all non-negative integers i, j with i+ j < d.
(iii) An R-module M is called Buchsbaum if every parameter ideal is standard.

Notice that a standard system of parameters forms a d-sequence. The following result is
useful in this paper (see [14, Corollary 2.6]).

Lemma 2.2. Let q = (x1, ..., xd) be a standard parameter ideal of M . Set qi = (x1, ..., xi)
for all i = 0, ..., d− 1. Then we have

(i) (qn+1, qi−1)M : xi = qnM + (qi−1M : xi) for all n > 0, i = 1, .., d.
(ii) (qi−1M : xi) ∩ qM = qi−1M for all i = 1, .., d.

We now present the main object of this paper.

Definition 2.3. A submodule N of M is called an irreducible submodule if N can not be
written as an intersection of two properly larger submodules ofM . The number of irreducible
components of an irredundant irreducible decomposition of N , which is independent of the
choice of the decomposition, is called the index of reducibility of N , and denoted by irM(N).
For a parameter ideal q of M , we define the index of reducibility of q on M is the index of
reducibility of qM , and denoted it by irM(q).

Remark 2.4. We denoted by Soc(M) the sum of all simple submodules of M . Soc(M) is
called the socle of M . If R is a local ring with the unique maximal ideal m and k = R/m
its residue field, then it is well-known that Soc(M) = 0 :M m is a k-vector space of finite
dimension. Let N be a submodule of M with ℓR(M/N) < ∞. Then it is easy to check that
irM(N) = ℓR((N : m)/N) = dimk Soc(M/N).

Notation 2.5. In this paper, for each i = 0, ..., d, we set si(M) = dimk Soc(H
i
m(M)).

Remark 2.6. (i) If M is Cohen-Macaulay, a well-known result of Northcott said that
the index of reducibility of q on M is an invariant of the module, More precisely,
irM(q) = sd(M) for all parameter ideals q.

(ii) This Northcott’s result was considered by many authors in larger classes of modules
(see, [1, 4, 7, 8, 11, 12, 15]). Recently, it is extended for any finite generated R-module
in [6]. In the case M is generalized Cohen-Macaulay, Goto and Suzuki in [8, Theorem
2.1] showed that

irM(q) ≤
d

∑

i=0

si(M)

(

d

i

)

for every standard parameter ideal q of M . In [1, Corollary 4.3] and [4, Theorem 1.1]
the authors proved that the equality occurs when q contained in a lager enough power
of m.

For each ideal I, it is natural to ask about the behavior of the function irM(In+1M) in
terms of n. In [2, Theorems 4.1] the authors proved the following theorem (see also [16, 17]).
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Theorem 2.7. Let (R,m) be a Notherian local ring and M a finitely generated R-module

of dimension d. For each ideal I the function irM(In+1M) becomes a polynomial for large

enough n. Furthermore, if I is an ideal such that ℓ(M/IM) < ∞, then the polynomial has

degree d− 1 and written as follows

irM(In+1M) =

d−1
∑

i=0

(−1)ifi(I;M)

(

n + d− i− 1

d− i− 1

)

for large enough n and fi(I;M) ∈ Z for all i = 0, . . . , d− 1.

In the case of parameter ideals, we have the following (cf. [2, Theorem 5.2])

Theorem 2.8. Let M be a Cohen-Macaulay R-module of dimension d and q a parameter

ideal of M . Then we have

irM(qn+1M) = sd(M)

(

n+ d− 1

d− 1

)

for all n ≥ 0.

The readers may find in [16, 17, 19] for more characterizations of the Cohen-Macaulayness
of M in terms of the coefficient f0(q,M). In this paper we study the function irM(qn+1M)
when M is generalized Cohen-Macaulay and q is a standard parameter ideal of M .

3. An upper bound formula

In this section we estimate the index of reducibility of powers of standard parameter ideals.
By the next result we show that the problem can be reduced to the case depth(M) > 0.

Lemma 3.1. Let M be a generalized Cohen-Macaulay module of dimension d and M =
M/H0

m(M). Let q = (x1, ..., xd) be a standard parameter ideal of M . Then

irM(qn+1M) = irM(qn+1M) + s0(R)

for all n ≥ 1.

Proof. Since q is standard and Lemma 2.2 we have

(qn+1 +H0
m(M)) :M m ⊆ (qn+1M +H0

m(M)) :M x1 = qnM +H0
m(M).

Let x ∈ (qn+1M +H0
m(M)) :R m, we have x = y + z with y ∈ qnM and z ∈ H0

m(M). Hence
my ⊆ qnM ∩ (qn+1M +H0

m(M)) = qn+1M . So y ∈ qn+1M :M m. Therefore

(qn+1M +H0
m(M)) :M m = (qn+1M :M m) +H0

m(M)

for all n ≥ 1. From the above equation we have that the short exact sequence

0 → H0
m(M) → M/qn+1M → M/qn+1M → 0

derives the short exact sequence

0 → (0) :H0
m
(M) m → (qn+1M :M m)/qn+1M → (qn+1M :M m)/qn+1M → 0

for all n ≥ 1. The proof is complete. �
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When depth(M) > 0 we have s0(M) = 0. So the following lemma is obvious, hence we
omit its proof.

Lemma 3.2. Let M be a generalized Cohen-Macaulay module of dimension d > 0 and

depth(M) > 0. Then every parameter element x is a regular element of M and s1(M) =
ℓ((xM : m)/xM).

For inductive arguments that used in this paper we need the following result.

Lemma 3.3. Let M be a generalized Cohen-Macaulay module of dimension d > 1 and

depth(M) > 0. Let q = (x1, ..., xd) be a standard parameter ideal of M and set M ′ = M/x1M
and q′ = (x2, ..., xd). Then

irM(qn+1M)− irM(qnM) ≤ irM ′((q′)n+1M ′)− s1(M)

for all n ≥ 1.

Proof. By Lemma 2.2 we have qn+1M : x1 = qnM , so we have the short exact sequence

0 → M/qnM → M/qn+1M → M ′/(q′)n+1M ′ → 0

for all n ≥ 1. By applying the functor HomR(R/m, •) we obtain the following exact sequence

0 → (qnM :M m)/qnM → (qn+1M :M m)/qn+1M
ϕn

→ [(q′)n+1M ′ :M ′ m]/(q′)n+1M ′.

Therefore

irM(qn+1M)− irM(qnM) = irM ′((q′)n+1M ′)− ℓ(coker(ϕn))

for all n ≥ 1. On the other hand we have im(ϕn) = [(qn+1M :M m)+x1M ]/(qn+1M +x1M),
hence

coker(ϕn) =
(qn+1M + x1M) :M m

(qn+1M :M m) + x1M
.

Thus for all n ≥ 1 we have

ℓ(coker(ϕn)) ≥ ℓ
((qn+1M :M m) + (x1M :M m)

(qn+1M :M m) + x1M

)

= ℓ
( x1M :M m

(x1M :M m) ∩ [(qn+1M :M m) + x1M ]

)

= ℓ
( x1M :M m

[(x1M :M m) ∩ (qn+1M :M m)] + x1M

)

= ℓ
(x1M :M m

x1M

)

= s1(M).

For the third equation we note that

(x1M :M m) ∩ (qn+1M :M m) ⊆ (x1M :M x2) ∩ qnM ⊆ x1M

by Lemma 2.2, and the last equation follows from Lemma 3.2. The proof is complete. �

We are now ready to prove the main result of this section.
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Proof of Theorem 1.1. We prove by induction of d. If d = 1 we have q = (x) and qn+1 =
(xn+1). The assertion follows from the Goto-Suzuki result (see, Remark 2.6 (ii)). Suppose
that d > 1 and the assertion is proved for d− 1. If n = 0, thanks to Goto-Suzuki’s result we
have

irM(q) ≤

d
∑

i=0

(

d

i

)

si(M) =

d
∑

i=1

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M).

For n ≥ 1, by Lemma 3.1 we have irM(qn+1M) = irM(qn+1M) + s0(M) where M =
M/H0

m(M). Since s0(M) = 0 and si(M) = si(M) for all i > 0, we can assume hence-
forth that depth(M) > 0. We need to prove that

irM(qn+1M) ≤

d
∑

i=1

(

n + d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

.

Set M ′ = M/(x1)M , we have q′ = (x2, ..., xd) is a standard parameter ideal of M ′. The short
exact sequence

0 → M
x1

→ M → M ′ → 0

derives that H0
m(M

′) ∼= H1
m(M) and the exact sequence

0 → H i
m(M) → H i

m(M
′) → H i+1

m (M)

for all i = 1, ..., d − 1. Therefore s0(M
′) = s1(M) and si(M

′) ≤ si(M) + si+1(M) for all
i = 1, ..., d− 1. By Lemma 3.3 we have

irM(qn+1M)− irM(qM) ≤
n

∑

k=1

[irM ′((q′)k+1M)− s1(M)].
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By inductive hypothesis we have

irM(qn+1M) − irM(q)

≤

n
∑

k=1

[ d−1
∑

i=1

(

k + d− i− 1

d− i− 1

)( d−i
∑

j=1

(

d− i− 1

j − 1

)

sj(M
′)

)

+ s0(M
′)− s1(M)

]

≤

n
∑

k=1

d−1
∑

i=1

(

k + d− i− 1

d− i− 1

)( d−i
∑

j=1

(

d− i− 1

j − 1

)

(

sj(M) + sj+1(M)
)

)

=
n

∑

k=1

d−1
∑

i=1

(

k + d− i− 1

d− i− 1

)( d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)

)

=

d−1
∑

i=1

n
∑

k=1

(

k + d− i− 1

d− i− 1

)( d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)

)

=

d−1
∑

i=1

((

n+ d− i

d− i

)

− 1

)( d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)

)

=

[ d−1
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

]

−

d−1
∑

i=1

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)

=

[ d
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

]

−

d
∑

i=1

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)

≤

d
∑

i=1

(

n+ d− 1

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

− irM(q).

Thus

irM(qn+1M) ≤

d
∑

i=1

(

n + d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

.

This completes the proof. �

Remark 3.4. It should be noted that the inequality in Theorem 1.1 becomes an quality

irM(qn+1M) =

d
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for some n ≥ 1 if

irM(q) =

d
∑

i=1

(

d

i

)

si(M),

where M = M/H0
m(M). In the next section we will show that the converse conclusion is also

true.
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Let q be a parameter ideal of M . By Theorem 2.7 we write for large enough n

irM(qn+1M) =

d−1
∑

i=0

(−1)ifi(q;M)

(

n + d− i− 1

d− i− 1

)

with fi(q;M) ∈ Z for all i = 0, . . . , d− 1. The following immediate consequence of Theorem
1.1 is a generalization of [16, Proposition 3.4].

Corollary 3.5. Let M be a generalized Cohen-Macaulay module of dimension d ≥ 2 and q

a standard parameter ideal. Then

f0(q;M) ≤

d
∑

j=1

(

d− 1

j − 1

)

sj(M).

In the next section we can see that the inequality in Corollary 3.5 is an equality for all
parameter ideals contained in a large enough power of m.

4. The extremely case

In this section we compute the index of reducibility of powers of standard parameter ideals
q that satisfy the extremely condition, it means that

irM(q) =

d
∑

i=0

(

d

i

)

si(M).

Lemma 4.1. Let M be a generalized Cohen-Macaulay modules of dimension d and q =
(x1, ..., xd) a parameter ideal of M . Let M ′ = M/x1M and q′ = (x2, ..., xd). Then

(i) If q is standard and irM(q) =
∑d

i=0

(

d
i

)

si(M), then si(M
′) = si(M) + si+1(M) for all

i = 0, ..., d− 1 and irM ′(q′) =
∑d−1

i=0

(

d−1
i

)

si(M
′).

(ii) Let n0 be a positive integer such that mn0H i
m(M) = 0 for all i = 0, ..., d − 1. Then for

all parameter ideal q ⊆ m2n0 we have q is standard and

irM(q) =
d

∑

i=0

(

d

i

)

si(M).

Proof. (i) is trivial, and (ii) follows from [1, Corollary 4.3]. �

Lemma 4.2. Let M be a generalized Cohen-Macaulay module of dimension d and M =
M/H0

m(M). Let q = (x1, ..., xd) be a standard parameter ideal of M satisfying that irM(q) =
∑d

i=0

(

d
i

)

si(M). Then

irM(qn+1M) = irM(qn+1M) + s0(R)

for all n ≥ 0.

Proof. The case n > 0 was proved in Lemma 3.1. The case n = 0, we have irM(q) ≤

irM(q) + s0(M) and

irM(q) ≤

d
∑

i=0

(

d

i

)

si(M) =

d
∑

i=1

(

d

i

)

si(M).
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Thus irM(q) =
∑d

i=1

(

d
i

)

si(M) and irM(q) = irM(q) + s0(M). �

Similarly Lemma 3.3 we have the following result.

Lemma 4.3. Let M be a generalized Cohen-Macaulay module of dimension d > 1 and

q = (x1, ..., xd) a standard parameter ideal of M satisfying that irM(q) =
∑d

i=0

(

d
i

)

si(M). Set
M ′ = M/x1M and q′ = (x2, ..., xd). Then

irM(qn+1M)− irM(qnM) ≤ irM ′((q′)n+1M ′)− (s0(M) + s1(M))

for all n ≥ 1.

Proof. By Lemma 2.2 we have qn+1M : x1 = qnM + H0
m(M), so we have the short exact

sequence
0 → M/qnM → M/qn+1M → M ′/(q′)n+1M ′ → 0

for all n ≥ 1, where M = M/H0
m(M). By applying the functor HomR(R/m, •) we obtain

0 → (qnM :M m)/qnM → (qn+1M :M m)/qn+1M
ϕn

→ [(q′)n+1M ′ :M ′ m]/(q′)n+1M ′.

Therefore
irM(qn+1M)− irM(qnM) = irM ′((q′)n+1M ′)− ℓ(coker(ϕn))

for all n ≥ 1. On the other hand we have im(ϕn) = [(qn+1M :M m)+x1M ]/(qn+1M +x1M),
hence

coker(ϕn) =
(qn+1M + x1M) :M m

(qn+1M :M m) + x1M
.

Thus for all n ≥ 1 we have

ℓ(coker(ϕn)) ≥ ℓ
((qn+1M :M m) + (x1M :M m)

(qn+1M :M m) + x1M

)

= ℓ
( x1M :M m

(x1M :M m) ∩ [(qn+1M :M m) + x1M ]

)

= ℓ
( x1M :M m

[(x1M :M m) ∩ (qn+1M :M m)] + x1M

)

.

Claim. (x1M :M m) ∩ (qn+1M :M m) ⊆ x1M + (0 :M m).
Indeed, let x ∈ (x1M :M m) ∩ (qn+1M :M m). Since qn+1M :M m ⊆ qn+1M :M x1 =
qnM +H0

m(M) we have x ∈ (x1M :M m) ∩ (qM +H0
m(M)). Therefore x = y + z for some

y ∈ qM and z ∈ H0
m(M). Since mx andmy are subsets of qM we have mz ⊆ H0

m(M)∩qM = 0
by Lemma 2.2 (ii). Hence z ∈ 0 :M m. Therefore

(x1M :M m) ∩ (qn+1M :M m) ⊆ (x1M :M m) ∩ [qM + (0 :M m)]

= (0 :M m) + [(x1M :M m) ∩ qM ] = x1M + (0 :M m).

The claim is proved.
It is clear that 0 :M m ⊆ (x1M :M m) ∩ (qn+1M :M m). By the claim we have

(x1M :M m) ∩ (qn+1M :M m) + x1M = x1M + (0 :M m).

Thus

ℓ(coker(ϕn)) ≥ ℓ
( x1M :M m

x1M + (0 :M m)

)

= s0(M
′)− s0(M) = s1(M).
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By Lemma 4.2 we have irM(qnM) = irM(qnM)− s0(M). Therefore

irM(qn+1M)− (irM(qnM)− s0(M)) ≤ irM ′((q′)n+1M ′)− s1(M)

for all n ≥ 1. The proof is complete. �

Remark 4.4. According to the proof of Lemma 4.3 we can see that the inequality of Lemma
4.3 becomes an equality if and only if

(qn+1M + x1M) :M m = (qn+1M :M m) + (x1M :M m)

for all n ≥ 1.

In order to prove Theorem 1.2 need the following key lemma.

Lemma 4.5. Let M be a generalized Cohen-Macaulay module of dimension d > 0 and

q = (x1, ..., xd) a standard parameter ideal of M . Suppose that

irM(qn+1M) =
d

∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≥ 0. Then

qn+1M :M m = qn(qM :M m) + (0 :M m)

for all n ≥ 0.

Proof. We will proceed by induction on d. If d = 1 and q = (x). We only need to prove
that xn+1M :M m ⊆ xn(xM :M m) + 0 :M m for all n ≥ 0. The case n = 0 is trivial so
we can assume that n ≥ 1. Let a ∈ xn+1M :M m. Since xn+1M :M m ⊆ xn+1M :M x =
xnM +H0

m(M), we have a = xnb + c for some b ∈ M and c ∈ H0
m(M). Since ma ⊆ xn+1M

and mxnb ⊆ xnM we have mc ⊆ xM ∩ H0
m(M) = 0. Thus c ∈ 0 :M m. Therefore xnmb =

ma ⊆ xn+1M . Hence mb ⊆ xM + H0
m(M). On the other hand by Lemma 4.2 we have

irM(x) = irM/H0
m
(M)(x) + s0(M). So the map

Soc(M/xM) → Soc(M/(xM +H0
m(M))

is surjective.Therefore b ∈ (xM +H0
m(M)) :M m = (xM :M m) +H0

m(M)). Thus b = d + e
with some d ∈ xM :M m and e ∈ H0

m(M). Conclusion, we have

a = xn(d+ e) + c = xnd+ c ∈ xn(xM :M m) + 0 :M m.

Hence xn+1M :M m ⊆ xn(xM :M m) + 0 :M m as desired.
Suppose d > 1 and the assertion is proved for d− 1. Let M ′ = M/x1M and q′ = (x2, ..., xd).

By Lemma 4.1 we have irM ′(q′) =
∑d−1

i=0

(

d−1
i

)

si(M
′). By Lemma 4.3, for all n ≥ 1, we have

irM(qn+1M)− irM(qnM) ≤ irM ′((q′)n+1M ′)− (s0(M) + s1(M)) = irM ′((q′)n+1M ′)− s0(M
′).

By our assumption that

irM(qn+1M) =

d
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)
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for all n ≥ 0 we have

irM ′((q′)n+1M ′) ≥
d−1
∑

i=1

(

n + d− 1− i

d− 1− i

)

(

d−i
∑

j=1

(

d− 1− i

j − 1

)

sj(M
′)
)

+ s0(M
′)

for all n ≥ 0. Combining with Theorem 1.1 we have

irM ′((q′)n+1M ′) =
d−1
∑

i=1

(

n+ d− 1− i

d− 1− i

)

(

d−i
∑

j=1

(

d− 1− i

j − 1

)

sj(M
′)
)

+ s0(M
′)

for all n ≥ 0, and

irM(qn+1M)− irM(qnM) = irM ′((q′)n+1M ′)− (s0(M) + s1(M)).

Now by the inductive hypothesis we have

(x1M + qn+1M) :M m = qn(qM :M m) + (x1M :M m)

for all n ≥ 0. On the other hand by Remark 4.4 we have

(x1M + qn+1M) :M m = (qn+1M :M m) + (x1M :M m)

for all n ≥ 0. Therefore

(qn+1M :M m) + (x1M :M m) = qn(qM :M m) + (x1M :M m)

for all n ≥ 0. Hence

(qn+1M :M m) = qn(qM :M m) + [(x1M :M m) ∩ (qn+1M :M m)]

By the Claim of the proof of Lemma 4.3 we have

(qn+1M :M m) ⊆ qn(qM :M m) + (0 :M m) + x1M.

We are now ready to prove qn+1M :M m = qn(qM :M m) + (0 :M m) for all n ≥ 0 by
induction on n. The case n = 0 is trivial. For n ≥ 1 we have

qn+1M :M m = qn(qM :M m) + (0 :M m) + [(qn+1M :M m) ∩ x1M ]

= qn(qM :M m) + (0 :M m) + x1(q
n+1M :M (x1m))

= qn(qM :M m) + (0 :M m) + x1[(q
nM +H0

m(M)) :M m)] by Lemma 2.2

= qn(qM :M m) + (0 :M m) + x1[(q
nM :M m) +H0

m(M)] by Lemma 4.2

= qn(qM :M m) + (0 :M m) + x1(q
nM :M m) by inductive hypothesis

= qn(qM :M m) + (0 :M m) + x1[q
n−1(qM :M m) + (0 :M m)]

= qn(qM :M m) + (0 :M m).

The proof is complete. �

We prove the main result of this section.

Proof of Theorem 1.2. The case n = 0 is trivial since

d
∑

i=0

(

d

i

)

si(M) =

d
∑

i=1

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M).
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Assume that n > 0, we prove by induction of d. If d = 1 the assertion is clear. Suppose
d > 1 and we have proved the assertion for d − 1. Let M ′ = M/x1M and q′ = (x2, ..., xd).

By Lemma 4.1 we have irM ′(q′) =
∑d−1

i=0

(

d−1
i

)

si(M
′). So by induction we have

irM ′((q′)n+1M ′) =

d−1
∑

i=1

(

n+ d− 1− i

d− 1− i

)

(

d−i
∑

j=1

(

d− 1− i

j − 1

)

sj(M
′)
)

+ s0(M
′)

for all n ≥ 0. By Lemma 4.5 we have

(x1M + qn+1M) :M m = qn(qM :M m) + (x1M :M m) ⊆ (qn+1M :M m) + (x1M :M m).

Therefore (x1M + qn+1M) :M m = (qn+1M :M m) + (x1M :M m) for all n ≥ 0. Now Remark
4.4 implies that

irM(qn+1M)− irM(qnM) = irM ′((q′)n+1M ′)− (s0(M) + s1(M))

for all n ≥ 0. Thus for all n > 0 we have

irM(qn+1M)− irM(q) =

n
∑

k=1

[irM ′((q′)k+1M ′)− (s0(M) + s1(M))].

By the same combinatorial transformations used in the proof of Theorem 1.1 we have

irM(qn+1M) =
d

∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≥ 0. The proof is complete. �

Corollary 4.6. Let M be a generalized Cohen-Macaulay module of dimension d. Let q be a

standard parameter ideal such that irM(q) =
∑d

i=0

(

d
i

)

si(M). Then

qn+1M :R m = qn(qM :R m) + (0 :M m)

for all n ≥ 0.

Proof. It follows from Lemma 4.5 and Theorem 1.2. �

Corollary 4.7. Let M be a generalized Cohen-Macaulay module of dimension d. Let n0 be

a positive integer such that mn0H i
m(M) = 0 for all i = 0, ..., d − 1. Then for all parameter

ideals q ⊆ m2n0 we have

irM(qn+1M) =

d
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≥ 0.

Proof. It follows from Lemma 4.1 (ii) and Theorem 1.2. �
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Corollary 4.8. Let M be a generalized Cohen-Macaulay module of dimension d and q a

standard parameter ideal of M . Put M = M/H0
m(M). Suppose that irM(q) =

∑d
i=1

(

d
i

)

si(M).
Then we have

irM(qn+1M) =

d
∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≥ 1.

Proof. If q is a standard parameter ideal of M , then it is also a standard parameter ideal of
M . By Lemma 3.1 we have irM(qn+1M) = irM(qn+1M)+ s0(M) for all n ≥ 1. The assertion
follows from Theorem 1.2. �

Corollary 4.9. Let M be a generalized Cohen-Macaulay module of dimension d and q a

parameter ideal of M . Suppose that q is a standard parameter ideal of M = M/H0
m(M) and

irM(q) =
∑d

i=1

(

d
i

)

si(M). Then

irM(qn+1M) =
d

∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(M)
)

+ s0(M)

for all n ≫ 0.

Proof. By [4, Lemma 2.4] we have (qnM + H0
m(M)) :M m = (qnM :M m) + H0

m(M) for all
n ≫ 0. Then similar to Lemma 3.1 we have irM(qn+1M) = irM(qn+1M) + s0(M) for all
n ≫ 0. Now the assertion follows from Theorem 1.2. �

Example 4.10. Let S = K[[X, Y, Z,W ]] be the formal power series ring over a field K. We
look at the following typical Buchsbaum ring

R = K[[X, Y, Z,W ]]/(X, Y ) ∩ (Z,W ).

Let x, y, z, and w denote image of X , Y , Z, and W in R, respectively. It is easy to see
that R is a Buchsbaum ring with dimR = 2 and depthR = 1. More precisely, by the exact
sequence

0 → R = S/(X, Y ) ∩ (Z,W ) → S/(X, Y )⊕ S/(Z,W ) → S/(X, Y, Z,W ) = K → 0

one can check that s0(R) = 0, s1(R) = 1, s2(R) = 2. Since R is Buchsbaum, every parameter
ideal q of R is standard. By Theorems 1.1, 1.2 and Remark 3.4 we have

irR(q
n+1) =

2
∑

i=1

(

n + 2− i

2− i

)

(

2−i+1
∑

j=1

(

2− i

j − 1

)

sj(R)
)

+ s0(R)

= (s1(R) + s2(R))(n + 1) + (s0(R) + s1(R)).

= 3(n+ 1) + 1.

if and only if

irR(q) =

2
∑

i=0

(

2

i

)

si(R) = 4.
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By Lemma 4.1 (ii) this is the case if q ⊆ m2, where m = (x, y, z, w). We product an example
with irR(q

n+1) < 3(n + 1) + 1 for all n ≥ 0. Let a = x− z, b = y − w, and q0 = (a, b). It is
easy to see that

R/q0 ∼= k[[X, Y ]]/(X, Y )2.

Therefore q0 : m = m and irR(q0) = 2 < 4. Thus

irR(q
n+1
0 ) < 3(n + 1) + 1

for all n ≥ 0.

5. Hilbert polynomials of socle ideals.

In this section we assume that (R,m) is a generalized Cohen-Macaulay local ring of di-
mension d. Let I be an m-primary ideal. It is well known that

ℓ(R/In+1) = e0(I)

(

n+ d

d

)

− e1(I)

(

n + d− 1

d− 1

)

+ · · ·+ (−1)ded(I)

for all n ≫ 0. These integers ei(I) are called the Hilbert coefficients of I. We will compute
explicitly all ei(I) in the case I = q :R m, where q is a standard parameter ideal of R

satisfying irR(q) =
∑d

i=0

(

d
i

)

si(R).

Lemma 5.1. Let (R,m) is a generalized Cohen-Macaulay local ring of dimension d such

that R is not regular. Assume that q is a standard parameter ideal of R satisfying irR(q) =
∑d

i=0

(

d
i

)

si(R). Put I = q :R m. Then for all n ≥ 1 we have

ℓ(In+1/qn+1) =
d

∑

i=1

(

n+ d− i

d− i

)

(

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(R)
)

.

Proof. By [4, Theorem 1.2] we have I2 = qI. Thus In+1 = qn(q :R m). By Corollary 4.6 we
have ℓ((qn+1 :R m)/In+1) = s0 for all n ≥ 1. So

ℓ(In+1/qn+1) = irR(q
n+1)− s0(R)

for all n ≥ 1. The assertion follows from Theorem 1.2. �

Theorem 5.2. Let (R,m) is a generalized Cohen-Macaulay local ring of dimension d > 0
such that R is not regular. Let q be a standard parameter ideal of R satisfying irR(q) =
∑d

i=0

(

d
i

)

si(R). Put I = q :R m, and hj(R) = ℓ(Hj
m(R)) for all j = 0, ..., d−1. Then we have

e0(I) = e0(q) and

ei(I) = (−1)i
(

d−i
∑

j=1

(

d− i− 1

j − 1

)

hj(R)−
d−i+1
∑

j=1

(

d− i

j − 1

)

sj(R)
)

for all i = 1, ..., d− 1, and ed(I) = (−1)d(h0 − s1).

Proof. We have

ℓ(R/In+1) = ℓ(R/qn+1)− ℓ(In+1/qn+1).
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By [13, Korollar 3.2] (see also [14, Theorem 4.2]) we have

ℓ(R/qn+1) =

(

n + d

d

)

e0(q) +
d

∑

i=1

(

n+ d− i

d− i

) d−i
∑

j=0

(

d− i− 1

j − 1

)

hj(R)

for all n ≥ 0, where
(

d−i−1
−1

)

= 0 if i 6= d, and
(

−1
−1

)

= 1. Combining with Lemma 5.1 we have

ℓ(R/In+1) =

(

n + d

d

)

e0(q)+

d
∑

i=1

(

n+ d− i

d− i

)[ d−i
∑

j=0

(

d− i− 1

j − 1

)

hj(R)−

d−i+1
∑

j=1

(

d− i

j − 1

)

sj(R)

]

for all n ≥ 1.
Now, the assertion is just comparing coefficients of two polynomials. �

Notice that si(R) = hi(R) for all i = 0, ..., d − 1, provided R is Buchsbaum. By some
combinatorial transformations we have the following. The readers are encouraged to compare
this result with [5, Theorem 1.1].

Corollary 5.3. Let (R,m) is a Buchsbaum local ring of dimension d > 1 such that R is not

regular. Suppose that q be a parameter ideal of R satisfying that irR(q) =
∑d

i=0

(

d
i

)

si(R). Set
I = q :R m. Then we have e0(I) = e0(q),

e1(I) =

d−1
∑

j=1

(

d− 2

j − 2

)

hj(R) + sd(R)

and

ei(I) = (−1)i+1
d−i+1
∑

j=1

(

d− i− 1

j − 2

)

hj(R)

for all i = 2, ..., d− 1, and

ed(I) = (−1)d(h0(R)− h1(R)).

Corollary 5.4. Let (R,m) is a Cohen-Macaulay local ring of dimension d > 0 such that R
is not regular. Let q be a parameter ideal of R, and I = q :R m the socle ideal. Then we have

e0(I) = e0(q) and e1(I) = sd.

References

[1] N.T. Cuong and P.H. Quy, A splitting theorem for local cohomology and its applications, J. Algebra
331 (2011), 512–522.

[2] N.T. Cuong, P.H. Quy and H.L. Truong, On the index of reducibility in Noetherian modules, J. Pure
and Appl. Algebra 219 (2015), 4510–4520.

[3] N.T. Cuong, P. Schenzel and N.V. Trung, Verallgeminerte Cohen-Macaulay moduln, Math-Nachr. 85
(1978), 156–177.

[4] N.T. Cuong and H.L. Truong, Asymptotic behavior of parameter ideals in generalized Cohen-Macaulay
module, J. Algebra 320 (2008), 158–168.

[5] S. Goto, J. Horiuchi and H. Sakurai, Quasi–socle ideals in Buchsbaum rings, Nagoya Math. J. 200
(2010), 93–106

[6] S. Goto and P.H. Quy, On the index of reducibility of parameter ideals: the stable and limit values,
preprint (2016).



16 N.T. CUONG, P.H. QUY, AND H.L. TRUONG

[7] S. Goto and H. Sakurai, The equality I2 = QI in Buchsbaum rings, Rend. Sem. Mat. Univ. Padova
110 (2003), 25–56.

[8] S. Goto and N. Suzuki, Index of reducibility of parameter ideals in a local ring, J. Algebra 87 (1984),
53–88.

[9] E. Noether, Idealtheorie in Ringbereichen, Math. Ann. 83 (1921), 24–66.
[10] D.G. Northcott, On irreducible ideals in local rings, J. London Math. Soc. 32 (1957), 82–88.
[11] P.H. Quy, Asymptotic behaviour of good systems of parameters of sequentially generalized Cohen-

Macaulay modules, Kodai Math. J. 35 (2012), 576–588.
[12] P.H. Quy, On the uniform bound of the index of reducible of parameter ideals of a module whose

polynomial type is at most one, Arch. Math. (Basel) 101 (2013), 469–578 .
[13] P. Schenzel, Multiplizitaten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr. 88 (1979),

295–306.
[14] N.V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986),

1–49.
[15] H.L. Truong, Index of reducibility of distinguished parameter ideals and sequentially Cohen-Macaulay

modules, Proc. Amer. Math. Soc. 141 (2013), 1971–1978.
[16] H.L. Truong, Index of reducibility of parameter ideals and Cohen-Macaulay rings, J. Algebra 415 (2014),

35–49.
[17] H.L. Truong, Chern coefficients and Cohen-Macaulay rings, arXiv:1504.06037.
[18] H.L. Truong, Eventually the index of reducibility in Sequentially Cohen-Macaulay modules, preprint.
[19] H.L. Truong and H.N. Yen, Hilbert functions of socle ideals, preprint.

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Viet Nam

E-mail address : ntcuong@math.ac.vn

Department of Mathematics, FPT University, Hoa Lac Hi-Tech Park, Ha Noi, Viet Nam

E-mail address : quyph@fpt.edu.vn

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Viet Nam

E-mail address : hltruong@math.ac.vn

http://arxiv.org/abs/1504.06037

	1. Introduction
	2. Preliminary
	3. An upper bound formula
	4. The extremely case
	5. Hilbert polynomials of socle ideals.
	References

