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Abstract—In this paper, we propose a design methodology
for the inter-prediction in H.264/AVC codecs by addressing
the relationship between its main processes. The target of this
methodology is to optimize the design in order to get better
performance while keeping a reasonable design cost. An efficient
hardware architecture for the inter-prediction in H.264/AVC
codecs is then proposed with three key techniques: a modified full
search algorithm with bandwidth efficiency, pipelining technique,
and data reuse strategy. With this approach, the inter-prediction
has been successfully designed and implemented with a CMOS
180nm technology which provides low cost in terms of latency,
hardware overhead and memory bandwidth. The design is
initially targeted to CIF video format; however, it is obviously
suitable for real-time HD 1080p video format.

I. INTRODUCTION

The H.264/AVC (Advanced Video Coding) is known as
one of the latest and most efficient video coding standards
which provides better video quality at a lower bit-rate than
previous standards [1]. Even the new video coding standard,
named HEVC, has been recently introduced in 2013, the
efficient hardware implementation of the H.264/AVC still
plays an important role in current multimedia devices to
get real-time, efficient video coding/decoding applications.
The H.264/AVC standard is jointly developed by the ITU-T
Video Coding Experts Group and the ISO/IEC Moving Picture
Experts Group. Compared with the previous standards such as
MPEG-4, H.263, and MPEG-2, the H.264/AVC can achieve
respectively 39%, 49%, and 64% of bit-rate reduction [2]
thanks to many advances in coding technology equipped with
the standard. These prominent techniques are Context Adaptive
Variable Length Coding (CAVLC), variable block size motion
detection, in-loop deblocking filter which are applied to re-
move efficiently spatial and temporal redundancies. However,
because many coding tools have been adopted it makes the
encoding system much more complex, especially the inter-
prediction part of the system.

Many VLSI implementations of the inter-prediction of
H.264/AVC encoding systems have been recently proposed
to get high-throughput design for real-time high-definition
(HD) video applications such as in [3]–[6]. A conventional
implementation is normally composed of Motion Estimation
(including Integer Motion Estimation (IME) and Fractional
Motion Estimation (FME)) and Motion Compensation (MC).
Most of existing implementations do not explore efficiently
the relationship between these components. In our work, we
first investigate in exploring the relationship between these
three main components of the inter-prediction. Then, we define
a set of solutions such as a modified full search algorithm
for better bandwidth efficiency, pipelining technique, and data
reuse strategy to propose an efficient hardware architecture for
the inter-prediction. The architecture has been implemented

with CMOS 180nm technology from ams AG and can encode
CIF resolution video at an operating frequency of 24MHz with
an area cost of 330KGates (it is also able to encode HDTV
video at the operating frequency of 215MHz).

The remaining part of the paper is organized as follows.
Section II will address the main principles of the inter-
prediction and the state of the art on its hardware implementa-
tions. In Section III, we will describe our proposed approach
and methodology to develop an efficient inter-prediction hard-
ware architecture. Key proposed techniques will be addressed
and discussed in this section. Section IV presents the VLSI
hardware architecture for the inter-prediction and addresses the
implementation results as well as some comparisons with the
previous works. Finally, conclusions and remarks will be given
in Section V.

II. REVIEW OF INTER-PREDICTION IN H.264/AVC
ENCODERS

A. Inter-Prediction in H.264/AVC

A conventional Inter-Prediction in H.264/AVC is composed
of three main components: IME, FME, and MC. The variable
block-size IME predicts current macroblock (MB) from search
windows to finds 41 motion vectors (MVs) of 41 sub-blocks.
The FME refines 41 MVs with fractional components by
interpolation and then chooses the best mode of MB base on
MVs and distortion values. The MC block calculates predicted
and residual MBs by using the selected mode and MVs
after motion estimation step. Moreover, the Inter-Prediction
also communicates with reference and current frames for
getting prediction data and also encapsulates the information
in encoding process.

In H.264/AVC, the IME processes seven kinds of block
size. A MB can be predicted with one of four MB modes:
16× 16 to 8× 8. When mode 8× 8 is selected, each partition
8×8 can be predicted with a sub-macroblock mode from 8×8
to 4×4. Therefore, there are totally 41 MVs corresponding to
41 block-types. The FME interpolates half and quarter pixels
from reference frames, then predicts fractional components.
The MVs and their distortions are used to select mode for each
MB. The MB’s mode, reference indexes, MVs are sent to MC
and followed units for encapsulating the encoding information.
The MC receives the information related to the selected mode,
reference indexes and MVs from motion estimation modules
to re-build the predicted MB. Base on this information, MC
obtains the prediction of current MB base on values on
reference frames. In addition, the residual values are also
calculated for next encoding process.

The information of prediction is then encapsulated in struc-
ture which defined in H.264/AVC standard. The encapsulated
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data usually consists of MVs’ difference, MB’s type, sub-
macroblock’s type, and reference indexes.

B. State of the Art

In order to get high encoding performance, various hard-
ware implementation approaches for inter-prediction have been
recently reported in literature. The designs presented in [3],
[7]–[9] use full search as block-matching algorithm which
is easy to be implemented in hardware and it has the best
accuracy. However, the full search algorithm is not suitable
for larger search ranges and very expensive in hardware imple-
mentation and computation power. Other designs used Three
Step Search (3SS) algorithm [10] or diamond-based search
algorithm [11], [12] but they do not support variable block-
sizes. Another method is multi-resolution search [13]–[15]
which provides low latency for prediction. Although multi-
resolution obtains best performance of coding, the motion
vector may lack of accuracy and this algorithm is only suitable
for high-definition video which has high similarity between
neighboring MBs. In our case, the CIF resolution is intently
focused for mobile devices. Therefore, the full search algo-
rithm is applied with some proposed techniques for decreasing
hardware implementation cost, memory bandwidth and latency,
while keeping the accuracy of the algorithm.

In the other hand, almost previous designs implement
motion estimation without exploiting the relationship between
motion estimation and motion compensation. In our proposal,
the design integrates motion compensation for luma compo-
nents inside FME to reduce latency and area.

III. PROPOSED APPROACH FOR INTER-PREDICTION
IMPLEMENTATION

A. Methodology

Our approach consists of three parts: motion estimation
which includes integer and fractional steps, motion compensa-
tion, and data-reuse strategy. The design methodology intently
focuses on best-accuracy video encoding while reducing area-
cost and memory bandwidth. In addition, the proposed ap-
proach also exploits the relationship between motion estima-
tion and motion compensation in order to optimize the whole
encoding process.

In our encoder, video specification of encoder is YUV
4:2:0. With 4:2:0, chroma components is half down-sampled.
Therefore, chroma components are insufficient for motion
estimation. We only perform motion estimation for luma
components. The chroma components are only compensated.

The IME adopts the full-search algorithm. Although this
algorithm costs expensive in computation, it has best accuracy
for motion estimation. In the other hand, the full-search
algorithm also supports parallel variable block-size motion
estimation for all modes in the H.264/AVC standard. By
centering search windows with current MB, the overlapping
rule of two neighboring search windows saves at least 66%
data bandwidth for reading data from external RAM with
search range 48 × 48. In addition, the on-chip bandwidth is
intently optimized to obtain the best pipelining computation
speed. We also applied mode decision in IME which avoids
memory requirement for motion vector or predicted pixels and
allows low-cost integrated chroma MC in FME.

With mode decision integrated in IME, the FME only
has to refine the motion vector with fractional components.
The interpolated pixels are stored to be reused as predicted
values. Therefore, we integrate the MC of luma component
in after finish FME process. Thus, we reduce the latency of
re-generating sub-pixels and optimize the memory capacity.

Because the luma compensation is predicted inside FME,
the chroma motion compensation only rebuilds the chroma
components from search windows. The motion vector differ-
ence, Macroblock Mode is also packed as the standard and
then is transferred to Entropy Coding block.

The data-reuse strategy is defined to optimize on-chip and
off-chip data bandwidth. Both optimizations exploit the simi-
larity between two regions to avoid re-reading data. Therefore,
this technique maximizes the calculating speed of motion
estimation and motion compensation.

With all the above considerations, the Inter-Prediction can
be efficiently implemented with low cost in terms of latency,
hardware area and memory bandwidth. This is suitable for
mobile applications.

B. Full Search Variable Block-size Integer Motion Estimation

As mentioned above, in our approach, the IME executes
exhaustive search in windows which are mapped from current
MB to reference frames. The IME is also designed to support
parallel variable block-size motion estimation and mode de-
cision. Fig. 1 presents the proposed design using full-search
algorithm with scanning movement.

C
a

n
d

id
a

te
 #

1
C

a
n

d
id

a
te

 #
0

Candidate #n

Candidate #n-1

Difference Data = 
1×16 pixels

Fig. 1. Full Search Algorithm: fast switching between two neighboring
candidates in full search algorithm by read a row/column 1× 16 pixels.

The moving strategy includes three kinds of candidate
shifting: down, right, and up. By scanning column-by-column,
this algorithm covers all possible positions of the candi-
date with theirs Sum of Absolute Differences (SAD) values.
Moreover, this strategy is also suitable for on-chip memory
optimization with overlapped region.

With each candidate of searching, IME calculates the SAD
value for each 4 × 4 block-size. The further block-sizes’
SAD values are obtained by accumulating of various blocks
4× 4. Therefore, we obtain all SAD values of all block-sizes.
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With SAD values, IME decides best MVs of block-sizes by
indicating the smallest SAD candidate.

After finishing this search, all SAD values and MVs are
used for mode decision. Because the full search algorithm has
best accuracy, we decide put mode decision on IME. The best
mode and its MVs are sent to FME to be refined.

C. Fractional Motion Estimation with Integrated Luma Motion
Compensation

Because the IME already decided the mode of MB, in our
proposal, the FME only refines integer MVs with fractional
elements.

The FME interpolates sub-pixel and refines in two steps
using FIR models as defined in the standard [1]. The first
iteration generates 8 half-pixels and compares their SAD
values to select the smallest SAD position. After half-pixel
stage, the next iteration continues generating 8 around quarter-
pixels and choosing position by reusing the previous sub-
pixels. The best matched position also has smallest SAD value.
In addition, the sub-pixels got from the second step is stored
in RAM and can be reuse as predicted value. Therefore, we
integrate motion compensation for luma components inside
FME.

In the other hand, if we place mode decision after FME,
the integrated motion compensation requires all block-size sub-
pixels values. Because H.264/AVC supports 7 block-sizes, we
can save 7 times of RAM capacity for motion compensation.
The motion compensation also requires the same function
of interpolating which costs similar latency with only-refined
FME and more memory than our design.

D. Data-reuse strategy

To optimize memory space and minimize the data exchange
between the memories and Inter-Prediction unit, we proposed a
data-reused strategy. In fact, the Inter-Prediction unit commu-
nicates with off-chip memories for getting data from reference
frames before starting a new encoding process. Then, this
data is stored in on-chip memories for further process during
encoding. To optimize off-chip memory exchange, an analysis
of JM reference software [16] in [3] points out that the Inter-
Prediction costs more than 90% of data-bandwidth from RAM
for encoding process and leads to bottle-neck affect inside the
encoding system. In our proposal, we define search windows
by a centralized mapping method from current MB to reference
frames. Thus, the search windows of two neighboring MBs
have an overlapped area which is intently exploited to decrease
the off-chip bandwidth.

The Fig. 2 shows the overlapped area between two neigh-
boring search windows (SW#1 and SW#2). In general, the
search window is defined as SRH × SRW pixels with SRH

is height of search range and SRW is width of search range. As
shown in Fig. 2, the SW#2 can be obtained by reusing region
of SRH × (SRW − 16) pixels from SW#1 and reading new
SRH×16 pixels. In comparison, Table I shows the advantages
of the overlapping technique. For example, with the proposed
search range of 48× 48, we can save at least 66% of off-chip
data bandwidth while only extend 33% memory capacity.

CMB #1

S
R

H  pixels

16 pixelsSRW pixels

CMB #2

Search Window #1

Search Window #2

Fig. 2. Overlapped region between two neighboring search windows.

TABLE I. COMPARISON OF BANDWIDTH OF READING SW

Memory type Amount (pixels) Bandwidth (pixels/MB)
Direct Design SRH × SRW SRH × SRW

Proposed Method SRH × (SRW + 16) SRH × 16

Changing +SRH × 16 - SRH × (SRW − 16)

To optimize the on-chip bandwidth, the search engine em-
ploys a caching technique between two searching candidates as
illustrated in Fig. 1. To obtain the overlapped region between
two candidates, we use a scanning method with only one
different pixel. With this scanning technique, we can switch
from the previous candidate to the current candidate by reading
only one row or one column 1×16 pixels. Therefore, IME can
achieve the maximum searching speed if the reading process
for the additional data can be done in one cycle.

IV. VLSI ARCHITECTURE AND IMPLEMENTATION

From the proposed approach, the block diagram of our
Inter-Prediction unit is depicted in Fig. 3. The design is
composed of IME (Integer Motion Estimation), FME (Frac-
tional Motion Estimation), CMC (Chroma Motion Compensa-
tion), EEI (Encapsulating Encoding Information), and several
memory buffers: CMB RAM (Current MB RAM), SW RAM
(Search Window RAM), MV MEM (Motion Vectors Memory),
and RES/PRED MEM (Residual/Predicted Memory).
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Fig. 3. Block Diagram of Inter-Prediction.

In order to interfaces Inter-Prediction with another modules
inside the H.264/AVC encoder, the EEI (Encapsulating En-



coding Information) module communicates inside encoder and
also transmits information to followed block in coding flow.
This module defines the prediction type of MB, the position
of MB from information of system’s register and encapsulates
the residual/predicted value and prediction information. The
MVs and residual/predicted are stored in memory to support
pipelining technique in encoder system.

The proposed design has been implemented by VHDL
and synthesized by the 180nm CMOS technology from ams
AG. Maximum computing capability is real-time encode Main
Profile CIF video at 24MHz and HD video at frequency
215MHz. Table II shows the total hardware cost of our design
and comparison with Cheng et al.’s [3] and Lin et al.’s [15]
design. Our design implementation consists of both motion
estimation steps, motion compensation, memory of design and
interfacing modules while the implementation result of both
existing designs only include motion estimation. Moreover, our
design can provide Main Profile encoder with bi-predictive,
which requires double RAMs for Inter-Prediction and also
cost double time for searching. In comparison, the proposed
design cost medium area which is equivalent to a half of
Cheng et al’s design and approximate to Lin et al.’s design
while we integrated additional functions inside. With off-chip
memory optimization and fast mode decision, the proposed
design cost only 16.7Kbytes for full search while Cheng et
al.’s required 27Kbytes. The design presented by Lin et al.
requires 7.78/8.54Kbytes with multi-resolution search and 2-
candidates on FME but it lacks motion compensation and
residual/predicted memory. Moreover, the algorithm of Lin et
al.’s design lack of accuracy in comparison with full-search
algorithm. In summary, the proposed Inter-Prediction design
can archive low area cost and high accuracy. In addition, this
design supports for Main Profile, which can be easily extended
for other profiles, and is suitable for mobile applications.

TABLE II. COMPARISON OF INTER-PREDICTION DESIGNS.

Specification [3] [15] Proposed
Technology 180nm 130nm 180nm

Freq. (MHz) 81/108 28.5/128.8 24/215

Area (KGates 700 208.6/282.6 330

RAM (Kbytes) 27 7.78/8.54 16.7

IME Algorithm Full Search Multi-Resolution Full Search

FME Algorithm
17 candidates 6 candidates 17 candidates

2-iteration 1-iteration 2-iteration
interpolation interpolation interpolation

Resolution SDTV/HDTV 720p/1080p CIF/HDTV

Profile
Baseline Baseline Main Profile

(4/1 ref.(s)) (1 ref.) (2 lists × 1 ref.)

V. CONCLUSIONS

We have presented in this paper an efficient hardware
design and implementation for inter-prediction in H.264/AVC
encoders. The modified full-search algorithm with bandwidth
efficiency technique, pipelining technique, and data reuse
strategy are applied to improve the encoding performance
and reduce the implementation costs in terms of latency,
hardware overhead, memory bandwidth. In addition, the fast
mode decision makes better performance and leads to the inte-
gration of motion compensation block inside estimation block.
The proposed architecture has been fully modeled, verified,

and synthesized using CMOS 180nm technology from ams
AG. The design occupies 330KGates and 16.7Kbytes RAM
capacity. With the search range of 48 and bi-predictive support,
the proposed architecture is able to encode CIF resolution
video at an operating frequency of 24MHz (as the target of the
project); however, it is also able to encode HD1080p video at
an operating frequency of 215MHz).
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