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Abstract
Because an ecological community consists of diverse species that vary nonlinearly with environmental variability, its 

dynamics are complex and difficult to analyze. To investigate temporal variations of benthic macroinvertebrate com-

munity, we used the community data that were collected at the sampling site in Baenae Stream near Busan, Korea, which 

is a clean stream with minimum pollution, from July 2006 to July 2013. First, we used a self-organizing map (SOM) to 

heuristically derive the states that characterizes the biotic condition of the benthic macroinvertebrate communities in 

forms of time series data. Next, we applied the hidden Markov model (HMM) to fine-tune the states objectively and to 

obtain the transition probabilities between the states and the emission probabilities that show the connection of the 

states with observable events such as the number of species, the diversity measured by Shannon entropy, and the bio-

logical water quality index (BMWP). While the number of species apparently addressed the state of the community, the 

diversity reflected the state changes after the HMM training along with seasonal variations in cyclic manners. The BMWP 

showed clear characterization of events that correspond to the different states based on the emission probabilities. The 

environmental factors such as temperature and precipitation also indicated the seasonal and cyclic changes according 

to the HMM. Though the usage of the HMM alone can guarantee the convergence of the training or the precision of the 

derived states based on field data in this study, the derivation of the states by the SOM that followed the fine-tuning by 

the HMM well elucidated the states of the community and could serve as an alternative reference system to reveal the 

ecological structures in stream communities.

Key words: ecological assessment, emission probability matrix, event sequence, Markov processes, temporal dynam-

ics, transition probability matrix

INTRODUCTION

Ecological processes are not easily observable due to 

the complexity in responding to numerous environmen-

tal conditions. In many cases of ecological research, ob-

served patterns are considered as the result of underlying 

ecological states embedded in complex ecological pro-

cesses with different governing rules than simple conse-

quences of the observations. The data are also highly vari-

able due to noise, and redundancy, internal relations and 

outliers are often observed (Gauch 1982, Jongman et al. 

1995). Conventional indices such as Bray-Curtis similar-

ity have been proposed to reveal the temporal dynamics 

of stream community (Scarsbrook 2002, Collier 2008). In 
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2002).

Prior to applying the HMM, the candidates for states 

were obtained heuristically by applying a self-organizing 

map (SOM) to the field data in this study. Based on SOM 

clustering, transition probabilities were estimated be-

tween states according to varying time series data. The 

SOM is an unsupervised neural network and has been 

implemented in various ecological studies (Adriaens-

sens et al. 2007, Chon 2011). The SOM has been a feasible 

means to address changes in temporal patterns (Voegtlin 

and Dominey 2001, Simon et al. 2007) including benthic 

macroinvertebrates (Chon et al. 2000) and fishes (Hyun 

et al. 2005).

The current study is aimed to finely define the states 

in temporal dynamics of benthic macroinvertebrate com-

munities with minimum pollution by the HMM based 

on the initial data heuristically obtained from the SOM. 

Based on taxonomic diversities, sedentariness in survival 

range, and long life cycles, benthic macroinvertebrates 

characteristically respond to the changes of environment 

from watershed areas (Resh and Rosenberg 1984, Park 

et al. 2007, Tang et al. 2010). Although the community of 

benthic macroinvertebrates presents ecological integrity 

fairly well, community data are highly complex and dif-

ficult to analyze because communities consist of numer-

ous species varying in a complex and stochastic manner 

in response to environmental factors (e.g., high precipita-

tion) in monsoon areas in East Asia (Chon et al. 2001). 

In this study, we hypothesized that the temporal 

changes of the community could be stably expressed in 

the natural stream environment of monsoon areas. Par-

tial information on community states based on field data 

was obtained by the SOM to provide an initial transition 

probability matrix (TPMs) and emission probability ma-

trix (EPMs) for the HMM. Subsequently, the HMM was 

conducted according to the observable event sequences 

including biological (e.g., number of species and diver-

sity) and environmental (temperature and precipitation) 

parameters. Community states preserved in benthic mac-

roinvertebrates in streams were addressed accordingly 

by responding to natural variability to present structure 

property residing in community changes more objec-

tively.

MATERIALS AND METHODS

Field sampling

The Nakdong River is the longest river flowing through 

addition multivariate analyses also have been applied to 

extraction of high dimensional temporal data to obtain 

ecological integrity in reduced dimension (Legendre and 

Legendre 1998, Scarsbrook 2002, Beche and Resh 2007). 

For the former method, however, the parameters are con-

strained in a sense that community dynamics is only ex-

pressed by a single term, whereas the latter method could 

reveal statistical or overall patterns in complex data, be-

ing insufficient in addressing ecological processes objec-

tively. 

Markov processes were suitable in addressing complex 

time series changes depending on time, location, and lo-

cal or global state frequency (e.g., characterizing clean or 

pollution states) (Tucker and Anand 2003) in plant (Horn 

1975, Yemshanov and Perera 2002) and animal (Usher 

1981, Hill et al. 2004) ecology. Markov models that imple-

ment Markov processes have been developed in two dif-

ferent manners: a stationary Markov model (SMM) and 

a hidden Markov model (HMM). Since 1960 (Baum and 

Petrie 1966, Baum 1972), the HMMs have arisen for over-

coming the limitation of the SMM (monotonic increases 

or decreases), because they are more adaptable to com-

plex situations (Rabiner 1989, Visser et al. 2002). The 

HMMs are described as “hidden” because the sequence 

of observation events (e.g., sequences of ecological data) 

is the result of a stochastic process operating on top of a 

sequence of hidden states generated by a Markov process 

(Rabiner 1989). Based on stochastic processes applied to 

observable events and states concurrently, the discrete 

states are more clearly addressed in the HMM than in the 

SMM. 

The HMM could be suitably applied to ecological 

processes and allows the description of the complexity 

including interacting hierarchical systems and hidden 

processes underlying the observed ecological dynamics 

(Tucker and Anand 2004). HMMs are also flexible and 

relatively easy to implement because efficient algorithms 

have been developed to estimate the model parameters 

(Ghahramani and Jordan 1997). The HMM has been fea-

sible for analyzing animal behaviors (MacDonald and 

Raubenheimer 1995, Liu et al. 2011), and the wide bio-

logical disciplines including DNA and protein sequencing 

analysis (Krogh et al. 1994, Karplus et al. 1997). Although 

HMMs have been widely applied to ecology, there have 

only been a few attempts to analyze community dynam-

ics, especially for benthic macroinvertebrates in streams. 

The HMM was utilized to address vegetation commu-

nity dynamics in remote sensing (Viovy and Saint 1994), 

change-points in grassland vegetation (Ver Hoef and 

Cressie 1997), and coastal wetland processes (Dale et al. 
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Self-organizing map 

In the SOM network, the output layer consisted of 

computation nodes (j) in low dimensions (conveniently 

2) for presenting the multi-dimensional input data in 

a comprehensive manner (Park et al. 2003). The vector 

xi is considered to be an input layer to the SOM. In the 

network, each computation node, j, is connected to each 

node, i, of the input layer. The connectivity is represented 

as the weights, wij(t), adaptively changing in each iteration 

of calculation, t. Each neuron of the network computes 

the summed distance between the weights and the dis-

tance dj(t) at output node j, and the network is calculated 

as shown below.
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In this study the data matrix for the SOM consisted of 

77 sample units (monthly collection from July 2006 to July 

2013) and 69 variables (total number of species collected 

during the survey period). In order to reduce the great dif-

ference of numerical values in densities for SOM training, 

the input data, i.e., densities (individual/m2) plus one in-

dividual, were transformed by common logarithm.

After training, the Ward’s linkage method (Ward 1963) 

was applied to the weights of the SOM to cluster the pat-

terned nodes. The initialization and training processes 

followed suggestions by the SOM Toolbox to allow opti-

mization in algorithm (Vesanto et al. 2000). To evaluate 

the map quality, the quantization error for the resolution 

and the topographical error for the topology preservation 

were used to indicate the accuracy of mapping (Céréghi-

no and Park 2008, Kohonen 2001, Park et al. 2003). More 

details in training and clustering were performed accord-

ing to Park et al. (2003) under the MATLAB 6.1 environ-

ment (The Mathworks, Inc., Natick, MA, USA).

the Busan-Daegu Metropolitan areas in the southern 

part of the Korean peninsula. A sampling site, BCN (co-

ordinates, 35°31′07.72″ N, 128°01′01.97″ E; altitude, 398 

m), located in the Baenae Stream, a tributary of the Na-

kdong River, in the mountainous area near Busan (Tang 

et al. 2010) was selected for the study. BCN is considered 

as a reference stream with the minimal environmental 

impact (BOD, 1.1 mg/L; conductivity, 24.6 μS/cm) for the 

national Long-Term Ecological Research (LTER) project in 

Korea. Since 2005, BCN has been a sample site for LTER 

supported by the Korea’s Ministry of Environment. 

Sampling was conducted monthly by the Surber sam-

pler (30 × 30 cm, 100 μm mesh) in 5 replications at a sam-

pling site from July 2006 to July 2013. The environmental 

factors such as temperature and conductivity at sam-

pling site were additionally measured (Table 1) by YSI 30 

conductivity-salinity meter (Yellow Springs Instruments, 

Yellow Springs, OH, USA). The specimens were mostly 

identified to species or to the lowest possible taxonomical 

level by following the procedure described by Merritt and 

Cummins (1996), Brigham et al. (1982), Pennak (1978) 

and Yoon (1995) for general taxa, Brigham et al. (1982) and 

Brinkhurst (1986) for Oligochaeta, and Wiggins (1996) for 

Trichoptera. Chironomidae, however, was not identified 

at the species level due to the difficulty of classification. 

After classification of the specimens, species diversity 

was determined according to the Shannon index (Shan-

non and Weaver 1949). Biological indices, the number of 

species in EPT (Ephemeroptera, Plecoptera, and Trichop-

tera) taxa, biological monitoring working party (BMWP) 

and average score per taxon (ASPT) (Hawkes 1998), were 

also obtained to assess the water quality. The average and 

standard error of parameters in different seasons were 

presented in Table 1.

Table 1. Biological indices and environmental parameters, represented as mean (±SE), at BCN in different seasons 

 Season n No. of 
species

Shannon 
Diversity

Dominance EPT% BMWP ASPT Conductivity 
(μs/cm)

Precipitation
(mm/month)

Temperature 
(°C)

Spring 18 26.8 
(±1.3)

2.5 
(±0.2)ab

65 
(±3.3)ab

76.4 
(±1.3)

112.5
(±4.3, 88.4-143.6)

7.7
(±0.1, 7.1-8.3)

24.4 
(±1.3)

87.5 
(±11)a

12.9 
(±1.2)b

Summer 23 25.7 
(±1.5)

2.2 
(±0.1)a

72.3 
(±2.6)a

69.8 
(±1.5)

110.1
(±4.9, 66.8-147.6)

7.6
(±0.1, 6.7-8.4)

24.1 
(±0.9)

217.9 
(±30.3)b

24.8 
(±0.5)a

Fall 19 23.2 
(±2)

2.6 
(±0.1)ab

64.5 
(±2.7)ab

73.1 
(±2.4)

99.5
(±6.7, 42.3-142.7)

7.6
(±0.2, 6.0-8.5)

24.5 
(±1.3)

70.7 
(±19.5)a

16.1 
(±1.3)b

Winter 17 26.1 
(±1.5)

2.8 
(±0.2)b

56.7 
(±4)b

74.6 
(±1.7)

114
(±4.2, 42.3-142.7)

7.6
(±0.1, 7.0-8.0)

25.7 
(±1.7)

18.3 
(±4.1)c

1.3 
(±0.5)c

The different alphabets indicate significant differences among different seasons according to the Tukey test (P < 0.05).
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xt = i)} for 1 ≤ i ≤ N and 1 ≤ k ≤ K, 

where in (5), P(ot = k | xt = i) indicates the probability of 

observation ot at time t to be the event k on the condi-

tion that the state variable xt at time t is equal to i. With 

the HMM formulation, transitions between the states can 

be estimated from the transition probability matrix (i.e., 

TPM) and the emission probability matrix (B) (i.e., EPM).

The transition probability matrix according to the SOM 

was used as initial TPM for HMM (Fig. 1). Transition prob-

abilities across different states based on the SOM were ac-

cumulated and average transition probabilities between 

different community states were obtained. Subsequently 

we selected the biological indices (number of species, di-

versity and BMWP) and environmental factors (tempera-

ture and precipitation) as the observation events, because 

these parameters could represent the states of commu-

nity with simple measurements (Fig. 1). Each parameter 

was divided into three levels based on the difference in 

SOM clustering analysis. Then three levels were consid-

ered as different categories defining each event (Table 2). 

Temporal dynamics of each event in the monthly scale 

were considered as event sequences. The initial EPM for 

HMM was further obtained by calculating probabilities of 

events corresponding to states given by the SOM in time 

series data.

Initial TPMs, EPMs and event sequences were also giv-

en to HMM as input data for training. Subsequently TPM 

and EPM were estimated according to the Baum-Welch 

algorithm for each event parameter (Juang and Rabiner 

1991, Rabiner 1989, Durbin et al. 1998) (Fig. 1). The algo-

rithm halted when the matrices in two successive itera-

tions were within a tolerance value (0.1) for the discrete 

HMM (Taheri et al. 2005). If the algorithm failed to reach 

this tolerance within a maximum number of iterations, 

the default value for termination was 100 iterations. Based 

on the solutions presented in Rabiner (1989), the process 

was conducted with the programs provided in the HMM 

toolbox in MATLAB 2009 (The Mathworks, Inc.).

Hidden Markov model

Markov chain calculates the transition probabilities be-

tween community states from one time step to the next 

(Wootton 2001b, Tuker and Anand 2004). When the sys-

tem has a finite set of discrete states (the number of states 

was estimated by SOM), these transition probabilities can 

be presented in a transition probability matrix where aij 

represents the transition probability from state i at time 

t to state j at time t+1 (Winston 1994). We computed the 

transition probability matrix using community states ini-

tially defined by the SOM (Fig. 1).
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An HMM can be characterized by five elements (Rabin-

er 1989): 

(1) A number of states N, x ∈ {1, . . ., N};

(2) A number of events K, k ∈ {1,. . ., K};

(3) Initial state probabilities, π = { πi} = {P(x1 = i)} for  

1 ≤ i ≤ N;

(4) State-transition probabilities, A = {aij} = {P(xt = j |  

xt−1 = i)} for 1 ≤ i, j ≤ N;

(5) Discrete output probabilities, B = {bi(k)} = {P(ot = k |  

SOMCommunity
data 

Initial TPM

Estimated
TPM and EPM  

Community state
evaluation

Community
clustering 

HMM
Initial EPM

Parameter
selection 

Event sequence

Fig. 1. Flowchart for estimating benthic macroinvertebrate community 
states in streams based on the self-organizing map (SOM) and hidden 
Markov model (HMM).

Table 2. Category of biological and environmental parameters in three levels 

                Parameters Abbreviation
Category

1 2 3

Number of species ES 0≤…<21.0 21.0≤…<30.0 30.0≤

Shannon Diversity ED 0≤…<2.3 2.3≤…<2.8 2.8≤

BMWP EB 0≤…<100.0 100.0≤…<120.0 120.0≤

Temperature (°C) ET 0≤…<9.0   9.0≤…<22.0 22.0≤

Precipitation (mm/month) EP 0≤…<35.0    35.0≤…<100.0 100.0≤
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RESULTS

Environmental conditions

While sampling the community data, we also recorded 

monthly changes in precipitation and temperature as 

presented in Fig. 2. Those environmental factors varied 

at the sampling site according to the seasonal monsoon 

climate in Korea: high temperature (24.8°C) and precipi-

tation (217.9 mm/month) in summer, and low tempera-

ture (1.3°C) and rainfall (18.3 mm/month) in winter (Fig. 

2 and Table 1). The environmental factors showed distinct 

and unique features in summer and winter, while those 

in spring and fall were somewhat similar. Diversity was 

substantially low with high dominance in the summer. 

Biological water quality indices, however, EPT% (the per-

cent EPT species in community), BMWP and ASPT, were 

relatively constant in seasonal changes (Table 1).

Patterning by the self-organizing map 

To reveal patterns underlying the community data, we 

initially analyzed the monthly data of community abun-

dance by training the SOM (Fig. 3a). In Fig. 3b, the clusters 

were divided into two distinct groups on the SOM based 

on the Ward’s linkage method: two clusters of 1 and 2 in 

the upper part and other two clusters of 3 and 4 in the 

bottom part of the map. Cluster 1 contained the majority 

samples in summer and fall samples (Fig. 3a). In cluster 2, 

winter samples dominated. Spring and some other win-

ter samples were spread over all parts of the SOM, with a 

weak bias toward the bottom part of the SOM (clusters 3 

and 4). 

Fig. 2. Monthly changes in precipitation (mm/month; solid line) and temperature (°C; dotted line) at the sampling site, BCN, Gyungsang Province, Korea 
from July 2006 to 2013. The grey bars indicate rainy season. The first two digits on x-axis stand for the year of sampling after 2000, and the second two 
digits represent months for collection (e.g., 0607, July in 2006).
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low dominance were affected by mid precipitation and 

temperatures.

Initial transition probability matrix

We hypothesized that patterns of the community data 

clustered by SOM (i.e., extraction from field data) could 

be useful to provide initial information for estimating the 

states of the community. These patterns could be provid-

ed to HMM as initial state transition probabilities, assum-

ing that the clusters derived by the SOM training could 

represent the states of community in the field condition 

accordingly (Fig. 1). After SOM recognition, the probabili-

Fig. 4 shows the average values of biological indices 

and environmental parameters for each cluster. The 

number of species was significantly high in clusters 3 and 

4 in the lower area of the SOM along the vertical gradient 

(Fig. 4a) (ANOVA, P < 0.05). Low diversity and high domi-

nance were associated with cluster 1 and vice versa in 

cluster 3 (Fig. 4c and 4d). BMWP values were significantly 

high in cluster 4, which presented the spring season, but 

they were low in cluster 1, which matched summer and 

fall seasons (Fig. 4e). EPT% and ASPT, however, were not 

differentiated between clusters (Fig. 4b and 4f). 

In particular, the environmental factors could charac-

terize each area in the SOM. Temperature and precipita-

tion were significantly high in cluster 1 consisting of the 

community data in summer and fall on the upper group 

of the SOM (Fig. 4h and 4i). Communities in cluster 2 pre-

sented low precipitation and temperature that character-

ized winter samples although statistical significance was 

not shown here. Conductivities were invariably low across 

clusters (Fig. 4g). Overall, communities in cluster 1 that 

were characterized with low diversity were influenced by 

high precipitation and temperatures, whereas communi-

ties in cluster 3 that were featured with high diversity and 

Fig. 4. Biological and environmental parameters matching different clusters on the self- organizing map (SOM) (as Fig. 3a). (a) Number of species, 
(b) EPT%, (c) Shannon diversity, (d) dominance, (e) the biological water quality index (BMWP), (f ) average score per taxon (ASPT), (g) conductivity, (h) 
precipitation, and (i) temperature. Vertical bars and lines indicate average and standard error, respectively. Different alphabets present significance among 
different clusters according to the Tukey test (P < 0.05).
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Table 3. Initial transition probability matrix (TPM) between different 
states (S) at time t and t+1 according to the self-organizing map (SOM)

t+1

S1 S2 S3 S4

t

S1 0.667 0.148 0.037 0.148

S2 0.222 0.611 0.000 0.167

S3 0.071 0.071 0.857 0.000

S4 0.176 0.118 0.118 0.588
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and the water quality (BMWP) were also obtained from 

the community data as observable events for HMM (see 

the “Hidden Markov model” section in Materials and 

Methods) (Table 2). The time series data were used as 

input event sequence to train the HMM. We also catego-

rized each event depending on its value (i.e., low, medi-

um, and high) (Table 2). The emission probability matrix 

(EPM) was determined by calculating the probabilities of 

all the events assigned to each state in time series data 

(Fig. 1). The initial EPM is shown in Table 4 for the se-

lected parameters, the number of species, the diversity, 

and the BMWP. The TPMs and the EPMs were accordingly 

estimated through the HMM (Fig. 1) for different event 

variables (Rabiner 1989) (Table 4). The sum of probabili-

ties for each matrix was normalized to unity; the sum of 

the probabilities in each row was set to 1.0 in total. Ini-

tial and estimated TPMs for three events were statistically 

not different (Table 4) based on the Kolmogorov-Smirnov 

tests (Quach et al. 2013) (P > 0.05). According to the paired 

t-test, the initial and estimated matrices were also in a 

similar range in Tables 3 and 4 (TPM: P = 0.999, 0.999, and 

ties to transit from one state (cluster) to the other state 

(cluster) were computed from the time series data. The 

obtained initial TPM is shown in Table 3. High remaining 

probabilities in the same states were observed for all the 

states (diagonal elements in Table 3) and it confirmed the 

robustness of probabilities. State 3 (S3) showed the high-

est remaining probability (0.857) whereas relatively low 

remaining probability was observed in state 4 (S4), show-

ing 0.588. The probabilities transiting between different 

states have low values that ranged from 0.1 to 0.2. It was 

noteworthy that the S3 showed exceptionally low transi-

tion probabilities less than 0.1 except transition from S3 

to S3 (S4→S3). Asymmetric transition probabilities were 

observed in relation to S3, for instance S3→S2 (0.072) and 

S4→S3 (0.118) (Table 3). 

Estimated transition probability matrices and 
emission probability matrices

The biological parameters presenting the structure of 

the community (the number of species and the diversity) 

Table 4. Estimated TPMs and initial and estimated EPMs for biological and environmental parameters
 

No. of species
Estimated TPM Initial EPM

t+1 event event

S1 S2 S3 S4 ES1 ES2 ES3 ES1 ES2 ES3

   t

S1 0.945 0.055 0 0

state

Sˊ1 0.519 0.222 0.259

state

S1 0.616 0.348 0.036

S2 0 0.946 0 0.054 　 Sˊ2 0.444 0.500 0.056 S2 0.423 0.424 0.153

S3 0 0 1 0 　 Sˊ3 0 0.333 0.667 S3 0 0.348 0.652

S4 0 0 0.045 0.955 　 Sˊ4 0.176 0.471 0.353 S4 0.292 0.339 0.369

Diversity
Estimated TPM Initial EPM

t+1 event event

S1 S2 S3 S4 ED1 ED2 ED3 ED1 ED2 ED3

   t

S1 0.729 0 0 0.271

state

Sˊ1 0.444 0.333 0.222

state

S1 0.802 0.095 0.103

S2 0.537 0.463 0 0 　 Sˊ2 0.278 0.333 0.389 S2 0.168 0.521 0.311

S3 0 0.414 0.586 0 　 Sˊ3 0.200 0.133 0.667 S3 0 0 1

S4 0 0 0.585 0.415 　 Sˊ4 0.353 0.176 0.471 S4 0 0.698 0.302

BMWP
Estimated TPM Initial EPM

t+1 event event

S1 S2 S3 S4 EB1 EB2 EB3 EB1 EB2 EB3

   t

S1 0.365 0 0 0.635

state

Sˊ1 0.519 0.222 0.259

state

S1 1 0 0

S2 0.125 0.875 0 0 　 Sˊ2 0.167 0.611 0.222 S2 0 1 0

S3 0 0 1 0 Sˊ3 0.200 0.333 0.467 S3 0.296 0.288 0.416

S4 0 0.231 0.231 0.538 Sˊ4 0.235 0.235 0.529 S4 0.769 0 0.231

“S” on column indicates the state at time t and “S” on row indicates the state at time t+1; S with apostrophe ( ′ ) indicates the initial state.
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ues of the TPMs (left panel) and the EPMs (right panel) are 

further shown in Fig. 5a-5c. Training with the number of 

species substantially increased the probabilities to remain 

in the same states (i.e., the thick black rings in Fig. 5a). The 

diversity, however, resulted in the substantial reduction 

in the probabilities to remain in the same states (i.e., the 

white rings in Fig. 5b). For the transition probabilities to 

other states (the off-diagonal elements in the TPMs), only 

the diversity showed distinct changes with cyclic pattern. 

0.999 with the number of species, the diversity, and the 

BMWP, respectively, and EPM: P = 0.999, 0.999, and 0.999 

with the number of species, the diversity, and the BMWP, 

respectively).

The estimated TPMs for the number of species had a 

strong tendency to show high probabilities to remain in 

the same state (Table 4). All probabilities in the diagonal 

elements were close to unity, ranging from 0.945 to 1.000. 

The estimated probability to remain in S4 remarkably 

increased to 0.955 from the initial transition probability 

of 0.588 (Table 3 and 4). The estimated EPM also charac-

terized well the states of the community that were deter-

mined by the SOM (Table 4). In state 1, the frequency of 

low species number increased, ES1 (0.616). This indicated 

that state 1 comparatively depicted the stressful condi-

tions of communities with low species number. State 3 

showed the highest frequency with high species number, 

ES3 (0.652). Other states of 2 and 4 were characterized by 

mixed categories showing evenly high probability with 

low and/or intermediate species number for state 2, and 

evenly high probability with intermediate and/or high 

species number for state 4 (Table 4). The event character-

ization according to estimated EPMs for different states 

was also in accordance with the results from the SOM and 

field experience (Fig. 4).

The estimated transition probability for the diver-

sity appeared lower diagonal elements than that for the 

number of species (Table 4). The probabilities for S2→S1 

(0.537) and S4→S3 (0.585) were higher than those to re-

main in the same states S2 (0.463) and S4 (0.415), re-

spectively. The estimated EPM could also characterize 

the community states (Table 4). In general, the emission 

probabilities seemed similar to the number of species. 

However, event categories were more strongly correlated 

with the states. State 1 corresponded to low diversity, ED1 

(0.802), with high emission probability. The highest emis-

sion probability of 1.0 was associated with high diversity, 

ED3, at state 3. The emission probabilities correspond-

ing to the diversity were differentiated more clearly (i.e., 

larger distance between maximum and minimum prob-

abilities) than the number of species (Table 4). The esti-

mated TPMs based on the BMWP showed the states were 

reluctant to remain in the same states except S3 (1.0) and 

had tendency of transition to other states more, especially 

S1→S4 (0.635) (Table 4). The estimated emission prob-

abilities, however, were well separated, including 1.0 for 

the case of S1:EB1 and S2:EB2. Comparing with the esti-

mated EPM, state 3 presented higher tendency to the high 

BMWP (EB3) than state 4.

Differences between the initial and the estimated val-

Fig. 5. Comparison of the initial and the estimated values of the TPMs 
(left panel) and the EPMs (right panel) based on the HMM. In TPM, “S” on 
column indicates the state at time t and “S” on row indicates the state 
at time t+1. The sizes of circles mark the probabilities. The white circle 
indicates the initial probability whereas black circle stands for estimated 
probability. If white ring surrounds the black circle, the estimated prob-
abilities are lower than initial probabilities, whereas the black ring sur-
rounds the white circle in case the estimated probabilities are higher. Grey 
circles present the same level of probability criteria between initial and 
estimated values. (a) estimated values of TPMs (left panel) and EPMs (right 
panel) of No. of species, (b) Shannon diversity, (c) the biological water 
quality index (BMWP), and (d) probability criteria.
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DISCUSSION

To diagnose the integrity and the healthy condition 

of the communities from the field data, we developed a 

novel method to indicate the temporal states of commu-

nities by combining two computational methods of the 

SOM and HMM. By using the heuristic SOM as input data, 

stochastic processes residing in community development 

processes were accordingly elucidated to demonstrate a 

structure property of community. In most studies, the ini-

tial transition probabilities were given as either uniform 

or random distribution to train the HMM by assuming 

that the states were totally unknown. However, this ap-

proach does not guarantee to achieve the convergence 

to obtain the estimated TPMs in this study. It was mainly 

originated by the short and partial sequences of the field 

data (77 sequences for monthly sampling in this study). 

This study demonstrated how to combine the short infor-

mation obtained from field data by applying the SOM and 

the HMM consecutively to address ecological processes 

observed in benthic macroinvertebrate in field condition 

in depth. First, by clustering the SOM, we could combine 

many pieces of information that describe the different as-

pects of the community and derive the state of the com-

munity. Second, by applying the HMM, we could find the 

impact of the different pieces of information on each state 

objectively and the strong consistency among different 

parameters as well (Fig. 1). We also showed that the in-

ferred time series data of the states could depict the sea-

sonal dynamics of the community in detail (Figs. 4 and 5).

This paper showed that the different aspects of the 

community states could be concurrently measured and 

analyzed with respect to different observable events such 

as the number of species, the diversity, and the BMWP. 

While the number of species was distinctively specialized 

in defining states (discreteness in community states from 

the high diagonal elements in TPM), the diversity showed 

the cyclic development of communities (Fig. 5 and Table 

4). Remarkably, the estimated TPM derived by the di-

versity could efficiently address the seasonal changes of 

states. According to the temperature for each state shown 

in Figure 4h based on the SOM, we could find that state 1 

and 2 represent the summer and winter seasons, respec-

tively. The development of community with cyclic pattern 

were presented, S1 (the low diversity in summer)→S4 (the 

variable diversity in transition)→S3 (the highest diversity 

in transition)→S2 (the variable diversity in winter)→S1 

(Fig. 5b and Table 4). Two states of S2 and S4 associated 

with intermediate diversity were presented as a connec-

tion between high diversity and low diversity. The former 

Consequently it can be conjectured that the probabilities 

of state changes were more strongly expressed with diver-

sity whereas discreteness in self-transition probabilities 

were more clearly addressed in the case of the number of 

species (Fig. 5). The EPMs also accordingly characterized 

the states as shown in Figure 5. Regarding the number of 

species, state 3 matched high number of species (ES3) 

whereas state 1 corresponded to low number of species 

(ES1). States 2 and 4 showed a mixed abundance of low-

intermediate (ES1, ES2) and intermediate-high (ES2, ES3) 

levels of the number of species, respectively. For the diver-

sity, the estimated probabilities substantially increased 

for S1:ED1, S3:ED3, and especially S4:ED2 (Fig. 5b). It 

means that the states of 1, 4 and 3 were likely to have the 

low (ED1), the middle (ED2) and the high diversity (ED3), 

respectively. State 2 was evenly associated with interme-

diate and high diversity (Fig. 5b), and was considered as a 

connection between two states S1 (low diversity) and S3 

(high diversity). 

We further checked if the water quality data that was 

empirically measured (i.e., BMWP) could preserve the 

transition probabilities based on the HMM training (Fig. 

5c). A substantial change was observed regarding S1 in 

the estimated TPM. Probability for S1→S4 was markedly 

increased, and transition probabilities regarding S4→S3, 

S4→S2 and S2→S1, were also observed although the val-

ues were relatively low in TPM for BMWP. State 4 tended 

to be both state 2 (the middle value of BMWP) and state 

3 (the high value of BMWP), and it indicated that state 4 

was a link between the states of the low and high BMWP. 

The estimated EPM based on BMWP showed a similar 

trend to the case of the diversity. The maximum emission 

probabilities clearly appeared in all states, which showed 

the distinct association between the water quality and 

the states of the community (Fig. 5c). For instance, state 

1 showed higher emission probability to the low BMWP 

than to the low diversity. However, state 2 was exception-

ally characterized by the middle value of BMWP at EB2 

whereas middle value of the diversity was shown at state 

4 with ED2 (Fig. 5). Consequently, the EPM elaborated by 

training with the BMWP was more clearly characterized 

with high frequency of EB1, EB2 and EB3 for S1, S2 and S3, 

respectively. S4 was split in matching two event catego-

ries, EB1 followed by EB3. This demonstrated that the em-

pirically determined BMWP could complement changes 

of community state that were partially observed in fields. 

The overall results suggested that the diverse aspects in 

states could be revealed according to different biological 

parameters. 
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We further tested if the parameters in HMM could be 

still obtained when the environmental factors such as 

temperature and precipitation were used as events. Fig. 

6 showed the TPMs and the EPMs when the HMMs were 

trained with environmental factors. Although the state 

was determined initially according to ecological com-

munity data by the SOM, the TPMs were still estimated 

accordingly based on environmental factors and compa-

rable with those obtained according to biological param-

eters. The initial and the estimated values of TPMs and 

EPMs by the environmental events also fell into a simi-

lar range according to the Kolmogorov-Smirnov tests (P 

> 0.05) and paired t-test (Tables 3 and 4) (TPM: P = 0.999 

and P = 0.999 with temperature and precipitation, respec-

tively, and EPM: P = 0.999 and P = 1.000 with temperature 

and precipitation). 

The transition probabilities in the diagonal were high 

and the corresponding EPMs were accordingly charac-

terized. However, the difference was also observed when 

compared with the biological parameters. Regarding tem-

perature, the probability to remain in state 3 was not as 

high in the estimated TPM as in the initial TPM (Fig. 6). 

However, the transition probability of S3 to S2 increased 

correspondingly and it suggested that state 3 tend to 

be state 2 with strong tendency. The EPM was also dif-

ferent according to each state. State 1 was presented by 

high temperature and precipitation (large black circle at 

S1:ET3 and S1:EP3), matching summer (Fig. 4). The fre-

quency of low temperatures was the most dominant at S2 

one indicated “before” high diversity while the latter one 

showed “after” high diversity condition. In other words, 

the increasing and decreasing trends of diversity in tem-

poral dynamics of communities were efficiently revealed 

based on HMM. 

The observable events (i.e., the number of species and 

the diversity) could further present different aspects of 

community states consequently. The reason why the 

number of species is efficient in defining state discrete-

ness while diversity is more addressable in presenting 

state transition is currently unknown. One factor for con-

sideration would be the data type. The number of species 

mainly delivers the presence or absence information of 

species and similar values tended to be observed in the 

same seasons. Consequently, the difference between the 

numbers of species could be more clearly associated 

with defining discreteness in states. Diversity, however, 

presented entropy of communities and more continu-

ous values were obtained compared with the number of 

species. According to the definition of Shannon diversity 

index, abundance of all species contributed to determin-

ing diversity values, resulting in more continuous values 

in community samples. This continuity and variability 

observed in diversity may be more feasible in addressing 

transition to different states. However, the detailed mech-

anism is unknown currently and more tests are required 

with additional field data in the future. 

BMWP also delivered meaningful information through 

TPM and EPM in characterizing community states (Fig. 

5c). The empirically determined water quality indi-

ces were indeed capable of characterizing community 

states by showing enhanced values of EPM (i.e., higher 

maximum values) and lower minimum values (Fig. 5c). 

BMWP is effective in revealing states of benthic macroin-

vertebrates in streams with minimum pollution and can 

be used as a reference system for evaluating biological 

indices in response to environmental variability. In this 

study, BMWP was checked for defining community states 

instead of ASPT. BMWP appeared to be better at differ-

entiating polluted states in the weakly polluted condition 

because it contained more precise information regarding 

the richness of pollution-sensitive species in the fam-

ily level, whereas ASPT (average of BMWP) tended to be 

more representative of the overall tolerance in pollution 

impact. Testing of more water quality indices is required 

under different impacts of anthropogenic disturbance for 

biomonitoring in the future. To the best of authors’ knowl-

edge, state definition of communities based on by SOM 

and HMM has not been reported regarding biological pa-

rameters.

Fig. 6. Comparison of initial and estimated TPMs and EPMs according to 
(a) temperature and (b) precipitation. Details of the graphs are explained 
in Fig. 5.
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cyclic community development. The environmental fac-

tors such as temperature and precipitation could also 

reveal the seasonal cyclic changes of the communities. 

Overall, the biological and environmental parameters 

were also well characterized by EPMs. The SOMs and 

HMMs were efficiently combined to address community 

state changes in temporal scale, and the combined model 

could be a reference system to reveal ecological processes 

in stream communities.
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