

 MINISTRY OF EDUCATION AND TRAINING

FPT UNIVERSITY

CAPSTONE PROJECT DOCUMENT

Building A Vulnerability Management Solution For Enterprise

IAT491_G2

Group

Member

Nguyễn Anh Việt SE62219

Trần Anh Đức SE04515

Lê Đình Mạnh SE04601

Nguyễn Khắc Hùng SE04644

Nguyễn Đức Anh SE04607

Supervisor Hà Bách Nam

Capstone

Project code

- Hanoi, August/2019 -

1

TABLE OF CONTENTS

Table of Contents

TABLE OF CONTENTS .. 1

LIST OF FIGURES ... 4

ACKNOWLEDGMENT ... 5

ABSTRACTION ... 6

I. INTRODUCTION ... 7
I.1 Project Information .. 7

I.2. People: ... 7

I.2.1. Team Name: ... 7

I.2.2. Supervisors: ... 7

I.2.3. Team Members: ... 7

I.3. Background Of Our Project: .. 8

I.4. The Initial Idea Of Our Group: .. 8

I.5. A Brief Overview Of Current Vulnerabilities Assessment Tools On The World: 9

I.5.1. What Are Vulnerabilities Assessment Tools? ... 9

I.5.2. Overview Of Some Popular Tools. ...10

I.5.3. Disadvantages Of Those Tools. ..16

I.6. The Proposed Idea Of Our Group: ...17

II. IA PROJECT MANAGEMENT PLAN ..19

II.1. Problem Setting ..19

II.1.1. Name Of The Capstone Project: ...19

II.1.2. Problem Abstraction. ...19

II.1.3. Project Overview. ...20

II.2. Project Organization...24

II.2.1. Agile Process Model. ...24

II.2.2. Role And Responsibilities. ...26

II.2.3. Tools And Techniques Used. ...29

II.3. Project Management Plan ...33

II.3.1. Tasks: ..33

II.3.2. Tasks Schedule Sheet: Assignments and Timetable ...35

II.3.3. All Meeting Minutes. ...39

III. RISK ASSESSMENT ...42

III.1. The Need Of Risk Assessment ..42

III.2. Identify Critical Information Assets ..42

III.2.1. Information Asset Classification ...42

III.2.2. System Characterization ...45

III.3. Risk Identification ...47

III.3.1. Threat Identification...47

2

III.3.2. Vulnerability Identification ...48

III.4. Risk Analysis ..50

III.4.1. Likelihood Assessment ..50

III.4.2. Impact Assessment..51

III.4.3. Risk Determination (Rating) ...51

III.5. Control Identification and Assessment ..52

III.5.1. Risk Monitoring and Controlling ...52

III.5.2. Preventive Measures ..53

IV. RISK MANAGEMENT PLAN ..54

IV.1. Objectives of RMP ...54

IV.1.1. Lists of Threats & Vulnerabilities ..54

IV.1.2. Costs associated with risks ..54

IV.1.3. List of Recommendations to Reduce the Risks ...55

IV.1.4. Costs Associated with Recommendations ...56

IV.1.5. CBA (Cost-Benefit Analysis) ..56

IV.2. Assigning Responsibilities ..57

IV.3. Describing Procedures and Schedules for Accomplishment ...57

IV.4. Reporting Requirements ...57

IV.4.1. Present Recommendations ..57

IV.4.2. Document Management Response to Recommendations ..59

IV.4.3. Document and Track Implementation of Accepted Recommendations60

V. Specifications, Development and Implementation Plan ...61

V.1. Logical Model Of Our System. ..61

V.1.1. Kafka Message Queue. ...62

V.1.2. ELK Module (Elasticsearch Database). ...64

V.1.3. Scan Management (Scan Scheduler). ..69

V.1.4. Agent Callers (Deployed On Master Server). ...70

V.1.5. Vulnerability Database Crawl From Trusted Sources (CVE-Search).76

V.1.6. Agent Services (Deployed On Agent Servers). ..78

V.1.7. Web Portal. ...95

V.2. Master Service, How We Assign Jobs For Agents And How Do Master And Agent Can

Exchange Data? ... 114

V.2.1. How we used Kafka Message Queue to know which tools to be used next?............... 114

V.2.2. What Is Xinetd? And Why And Where We Used Xinetd To Communicate Between

Master And Agent? .. 115

V.2.3. What Is Web REST API? And Why And Where We Used Web RESTful API To

Communicate Between Master And Agent? .. 117

V.3. How Does A Target Being Scanned When A User Create New Scan. 118

V.4. Configuration Files. .. 119

V.5. How Logging Have Been Saved And Managed? .. 122

VI. Project Validation ... 124
VI.1. Project Idea. ... 124

VI.2. Result. .. 124

VI.3. Future... 124

DEFINITION AND ACRONYMS ... 125

3

Appendix A – References .. 127

A.1. Books, Newspaper, and Magazines... 127

A.2. Websites and Internet Resources ... 127

Appendix B – Scan Result. .. 129

B.1. Scan at FIS (FPT Information System) ... 129

B.2. Scan Enterprise Public Range... 136

Appendix C - Scan performance ... 141
C.1. Internal result (LAN range) ... 141

C.2. Internet Result (Public Range) ... 142

4

LIST OF FIGURES

Figure I.5.2.5.a. Nessus detail plugins scan result

Figure I.5.3.a. Vulnerability Assessment Functions.

Figure I.6.a. How tools are used by hacker/pentester in real world

Figure II.1.2.a. Steps taken by hacker/pentester

Figure II.3.1.a. Sample nmap output when scanning a target.

Figure II.1.3.1.b. Sample Acunetix summary result

Figure II.1.3.1.c. Sample Nessus summary result

Figure III.1.3.2.a. A logical model of the project

Figure III.2.2.1. A logical model of the project

Figure III.3.a. Risk = Threats * Vulnerabilities

Figure V.1.a. Logical Model Of Our System.

Figure V.1.2.2.a. Kibana dev tools interface

Figure V.1.2.2.b. Postman interface

Figure V.1.2.2.c. Using Kibana search for vulnerabilities

Figure V.1.2.2.d. Visualize data in kibana

Figure V.1.2.2.e. Dashboard in Kibana

Figure V.1.5. Logical Model Of CVE Search.

Figure V.1.7.2.a. Interface Of Create New Scan Form

Figure V.1.7.2.b. Invalid date in create new scan form

Figure V.1.7.2.c. Target and Scan interval tooltip

Figure V.1.7.2.d. Interface When Scan Have Been Created Successfully

Figure V.1.7.3.a.1. Scan tools

Figure V.1.7.3.a.9. Acunetix vulnerability detail

Figure V.1.7.e. Button Vulnerabilities on left menu

Figure V.1.7.f. Interface of Vulnerabilities Web

Figure V.1.7.g. Button Scans on left menu

Figure V.1.7.h. The interface of Scans Web

Figure V.1.7.i. The interface of Scan Detail Web

Figure V.1.7.j. First deploy create account

Figure V.1.7.k. Two-Factor Authentication Setup

Figure V.1.7.l. Verify OTP Token

Figure V.1.7.m. Manage user page

Figure V.2.1.a. Diagram Of Kafka Topic Flow

Figure V.3.a. Diagram Scan Life Cycle.

5

ACKNOWLEDGMENT

Our capstone project would have taken far longer to complete without the

encouragement from many supporters. It is a delight to acknowledge those people

who have supported us over four months.

We are particularly thankful for the help and advice of our instructor, Mr. Ha

Bach Nam throughout the semester. The constructive recommendations given by

him has been a great help in developing our project. Without his support and

guidance, our accomplishment would not have been possible.

Furthermore, we would like to thank all of the CSD (Cyber Security Department)

members from FPT Information System for helping our team to create a testing

environment.

We would like to thank Dr. Phan Truong Lam for the orientation time. We

would also like to express my very great appreciation to Dr. Nguyen Khac Viet

for his arrangement about the room for our team.

Our special thanks are extended to the staff of FPT University for their support

and guideline throughout our study during the last four years. Shall you find as a

reflection of the knowledge and experiences you have brought to us.

6

ABSTRACTION

From the beginning of the Internet, there is no organization or IT environment

concern about security vulnerabilities until there is a disclosure of sensitive

information. But nowadays many organizations worldwide are really

considering this is an important issue that needs attention.

“Prevention is better than cure” is always true. We need to know our weakness,

our threat, and our vulnerabilities in order to detection/prevention or minimize

the impact.

Vulnerability management is widely described as the practice of identifying,

classifying, remediating, and mitigating weaknesses in an IT environment. It is

also described as the discovery, reporting, prioritization, and response to

vulnerabilities in your network.

Given the countless examples of the devastating consequences that result when

threat actors are able to exploit weaknesses, having a vulnerability management

program is no longer optional for organizations. In fact, it is becoming required

by multiple compliance, audit, and risk management frameworks.

You can’t stop what you can’t see. Organizations need to know what is on their

network in order to monitor and protect it, which is why a vulnerability

management program should be a foundation of your security infrastructure. A

good vulnerability management program can help you proactively understand

the risks to every asset in order to keep it safe.

Our capstone project develops a Vulnerabilities Management Solution for

Enterprise – A solution that integrated many free, open-source tool for

vulnerability detection, combine them to create a vulnerability management

solution which can help organizations easily manage their vulnerabilities,

without the need of building then implementing for their own complicated

infrastructure.

7

I. INTRODUCTION

I.1 Project Information

● Project name: Building a vulnerability management solution for

enterprises.

● Project name in Vietnamese: Xây dựng giải pháp quản lý lỗ hổng cho

doanh nghiệp.

● Timeline: from April 22nd, 2019 to August 31st, 2019

I.2. People:

I.2.1. Team Name:

FPT SpaceBoy Neva Sleep

I.2.2. Supervisors:

Full Name E-mail Title

Hà Bách Nam NamHB4@fe.edu.vn Lecturer

I.2.3. Team Members:

No Full Name Student ID E-mail Role

1 Nguyễn Anh Việt SE062219 VietNASE62219@fpt.edu.vn Leader

2 Trần Anh Đức SE04515 DucTASE04515@fpt.edu.vn Member

3 Lê Đình Mạnh SE04601 ManhLDSE04601@fpt.edu.vn Member

4 Nguyễn Khắc Hùng SE04644 HungNKSE04644@fpt.edu.vn Member

5 Nguyễn Đức Anh SE04607 AnhNDSE04607@fpt.edu.vn Member

mailto:NamHB4@fe.edu.vn

8

I.3. Background Of Our Project:

In today’s world, there are many organizations and companies which do

not have a security department to search for system’s vulnerabilities and have the

ability the migrate bugs. They often have to hire vulnerability assessment services

to detect threat/vulnerability in their system. And then they hire another service

to migrate those threats frequently, usually twice a year. Some specific

organizations like the Department of Defense or in government, they perform

more often than twice a year. The cost for this service is expensive and consume

a lot of time and personnel of both parties.

Sometimes, when the migrating team comes, they don’t know the history

of vulnerabilities of that system, makes the migration much harder. If the system

administrator knows their vulnerability in fingertips, it makes the work of fixing

easier, also the administrator can do some workaround in order to avoid the

impact of the vulnerability before the attacker exploit the vulnerability.

Hire outsource services make the organization dependence on these

services while the organization can fully take the initiative vulnerabilities

assessment if they have an automatic tool with a reasonable price and a trained

team. They will know the vulnerabilities in their system and manage it easily and

proactively in fixing the vulnerability.

For those reasons, our project was created to solve these problems in the

most thorough way. We will create a tool that allows automating the work of

vulnerability scans, give a detailed report of the level of vulnerability, the effect

of the vulnerability found, track the vulnerability if it hasn't been fixed. Perform

periodic and automatic vulnerability scans, give alerts to administrators if there

is anything changed about their system.

I.4. The Initial Idea Of Our Group:

Doing all the vulnerabilities assessment by hand is not a great idea because

it takes a lot of time and the accuracy is not really high. So don’t we take all the

steps automatically?

 Because we know that the pentester or the hacker will first use some

information gathering and vulnerabilities assessment tools such as: Nmap,

Wappalyzer, Nikto, Acunetix, Nessus,... to have a closer look at your IT system.

But what if your IT system has thousands of computers, routers, firewalls, and

mobile devices? It is a kind of no one can manage that much of devices. So we

9

decide to build a vulnerability management solution to have not just pentester but

also IT administrators to always know the current vulnerability state of their

system. So they can manage their system no matter how much devices their

system has.

 So, how can we make it work? We will learn all the steps which pentester

or hackers do when they want to assess the vulnerability of a system. Then we

will make all of that step automatically. Then, all the remaining steps they need

to do is a simple click.

I.5. A Brief Overview Of Current Vulnerabilities Assessment Tools On

The World:

I.5.1. What Are Vulnerabilities Assessment Tools?

The vulnerability assessment process is intended to identify threats and the

risks they pose typically involves the use of automated testing tools, such as

network security scanners, and the result is listed in a vulnerability assessment

report.

The vulnerability assessment tools do these the process of identifying,

quantifying, and prioritizing (or ranking) the vulnerabilities in a system

automatically. Examples of systems for which vulnerability assessments are

performed include, but are not limited to, information technology systems, energy

supply systems, water supply systems, transportation systems, and

communication systems. Such assessments may be conducted on behalf of a

range of different organizations, from small businesses up to large regional

infrastructures.

 Vulnerability assessment has many things in common with risk

assessment. Assessments are typically performed according to the following

steps: [2.7]

1. Cataloging assets and capabilities (resources) in a system.

2. Assigning quantifiable value (or at least rank order) and importance

to those resources.

3. Identifying the vulnerabilities or potential threats to each resource.

4. Mitigating or eliminating the most serious vulnerabilities for the

most valuable resources.

10

I.5.2. Overview Of Some Popular Tools.

 Nowadays, there are many automated tools help with information

gathering and vulnerability assessment like Nmap, NSE, Wappalyzers, Acunetix,

Nikto, Nessus, … Those are popular tools, each tool has different advantages and

disadvantages, combining tools together will get the most effective result.

Because those tools can cover each other disadvantages.

Below is the flow of work (active stream) about some popular tools. What

is it used for and how it works.

I.5.2.1 Nmap & NSE [2.2]

 Nmap ("Network Mapper") is a free and open-source (license) utility for

network discovery and security auditing. Many systems and network

administrators also find it useful for tasks such as network inventory, managing

service upgrade schedules, and monitoring host or service uptime.

 It is a network scanning and host detection tool that is very useful during

several steps of penetration testing. Nmap is not limited to merely gathering

information and enumeration, but it is also a powerful utility that can be used as

a vulnerability detector or a security scanner. So Nmap is a multipurpose tool,

and it can be run on many different operating systems including Windows, Linux,

BSD, and Mac. Nmap is a very powerful utility that can be used to:

● Detect the live host on the network (host discovery)

● Detect the open ports on the host (port discovery or enumeration)

● Detect the software and the version to the respective port (service

discovery)

● Detect the operating system, hardware address, and the software version

● Detect the vulnerability and security holes (Nmap scripts)

11

Figure I.5.2.1.a. Nmap demo scan result

NSE - Nmap can find vulnerabilities in the network through the Nmap

Script Engine (NSE) - a flexible feature activated with the -sC option that allows

users to write scripts for task automation. NSE comes with a rich collection of

scripts that can help in the network discovery process, with vulnerability

exploitation, and backdoor detection.

12

Figure I.5.2.1.b. Nmap NSE script demo scan result

I.5.2.2 Wappalyzers [2.3]

 Wappalyzer is an open-source, platform-independent utility capable of

identifying 1,238 different web technologies. It was created by Elbert Alias in

2009, has received contributions from hundreds of developers worldwide and

enjoys an active user base of a million people.

Wappalyzer fingerprints software using unique patterns found in website

source code, response headers, script variables, and several other methods.

Wappalyzer is written in JavaScript and can be used on any operating system

natively using Node.js. It can be run as a stand-alone application or included as a

module in a larger application. Wappalyzer collects data anonymously and

organically through the browser extensions. This information is processed and

made available through APIs and datasets, providing valuable insights into the

software industry.

13

Figure I.5.2.2.a. Wappalyzers chrome extension result

I.5.2.3 Acunetix [2.4]

 Acunetix is a software product for web application security testing which

helps you quickly and easily identify known vulnerabilities, as well as

vulnerabilities in any website or web application, including sites built with hard-

to-scan HTML5 and JavaScript Single Page Applications (SPAs). With Acunetix

you can:

● Discover in excess of more than 4,500 security vulnerabilities

● Detect SQL Injection and Cross-site Scripting and all of their variants

● Automatically scan all website files with custom form authentication or

other custom access controls and session management

14

Figure I.5.2.3.a. Acunetix scan result

Additionally, Acunetix can find security issues beyond the typical black-

box scanning approach thanks to its AcuSensor gray-box scanning technology.

With AcuSensor, Acunetix can automatically examine Java, ASP.NET and PHP

server-side code that is being executed. This allows Acunetix to pinpoint the exact

line of code where vulnerabilities lie, as well as dramatically reduce an already

low false-positive rate.

I.5.2.4 Nikto [2.5]

 Nikto is a web server assessment tool. It is designed to find various default

and insecure files, configurations, and programs on any type of web server.

Examine a web server to find potential problems and security vulnerabilities,

including:

● Server and software misconfigurations

● Default files and programs

● Insecure files and programs

● Outdated servers and programs

Figure I.5.2.4.a. Nikto scanning host result

Nikto is built on LibWhisker2 (by RFP) and can run on any platform which

has a Perl environment. It supports SSL, proxies, host authentication, attack

encoding and more. Because many servers do not properly adhere to RFC

15

standards and return a 200 "OK" response for requests which are not found or

forbidden, this can lead to many false-positives.

I.5.2.5 Nessus [2.6]

 Nessus was built from the ground-up with a deep understanding of how

security practitioners work. Every feature in Nessus is designed to make

vulnerability assessment simple, easy and intuitive. The result: less time and

effort to assess, prioritize, and remediate issues. Nessus main features are as

follow:

● Up-to-date security vulnerability database: By using the command Nessus-

update-plugins, The Nessus security checks database (which is updated on

a daily basis) can be retrieved.

● Plug-ins: Each security test is materialized as an external plug-in, written

in NASL, which means that updating Nessus does not involve

downloading potentially threatening binaries from the internet.

● Scalable: Nessus will quickly exploit the systems strengths, so it can

increase its scanning efficiency. The more power you give to it, the faster

it will scan a network.

● NASL: Nessus includes NASL, (Nessus Attack Scripting Language) a

language designed to rapidly write security test.

● Smart service recognition: It isn’t in Nessus beliefs that the target hosts

will respect the IANA assigned port numbers. Thus it will identify a FTP

server running on a non-standard port, or a web server running on port

8080.

● Multiple services: Nessus will test all of the services that are run twice or

more by a host run.

● Full SSL support: Nessus has the capability to test SSLized services such

as https, smtps, imaps, and can even be supplied with a certificate so that

it can be integrated into a PKI type environment.

● Non-destructive or thorough: Nessus gives you the option to either perform

a regular non-destructive security audit on a daily basis, or to throw

everything you can at a remote host to test its mettle, and see how it will

withstand attacks from intruders.

● The biggest user base: Nessus has approximately at least 50.000 users

worldwide and there could potentially be even more, if the daily downloads

of it are taken into account.

16

● Proven maturity: The first public release of Nessus was in 1998. The

technology behind it has been extensively tested and perfected, on huge

networks over time.

Figure I.5.2.5.a. Nessus detail plugins scan result

I.5.3. Disadvantages Of Those Tools.

 In a vulnerability assessment, an automated tool scans the IT infrastructure

and reports the results. The tool’s job is to identify all systems and the associated

applications and services they are running. Based on this information, the tool

attempts to identify issues such as missing patches, default passwords, and known

exploits.

All the problems the tool has identified are then presented in a vulnerability

assessment report. Note that a typical vulnerability assessment doesn’t include

confirmation or validation of the identified issues, so the tool’s accuracy is often

not verified. Rather than being removed, false-positive findings are usually left

for IT administrators to determine whether they are truly issues.

A vulnerability assessment does not explore a purported issue’s impact

outside of rudimentary factors that are often based on tool output. For example, a

vulnerability scanning tool would identify a weak password in a database and

rank it as a high-risk vulnerability. However, the tool would fail to take into

account the fact that the database might not contain sensitive information and that

17

the default password allows no unauthorized user to access the underlying

operating system or escalate the user’s privileges.

Figure I.5.3.a. Vulnerability Assessment Functions.

Vulnerability assessments tools do not comprehensively quantify the

potential impact of findings or identify the remediation issues that should be the

organization’s real priorities.

I.6. The Proposed Idea Of Our Group:

After researching about the above tools and the way how a hacker or

pentester use them in a real case when they penetrate a target, we come with a

conclusion that the steps they take usually look like Figure I.6.a.

18

Figure I.6.a. How tools are used by hacker/pentester in real world

 The first step is to test if the target is alive or not, they usually use the ping

technique. If the ping response, they can conclude that this target is alive.

Otherwise, they can use some other technique to determine if this target is really

down at the moment or they have blocked ping requests.

After they know the host is alive, they come to the second step: port

scanning. In this step, they scan the target to know which ports are open and

which services are currently running on these ports, including their version as

well.

Then, when they have the information about the currently running service

on a specific target. For each service, they will use the appropriate tools to scan

that target. For example, if there is a web service, they can use Nikto or Acunetix,

if the target has an FTP or SSH service, they can use NSE or Nessus. And they

also usually use Nessus to scan all the services of the target.

As we mentioned above, the output information of a tool is the input of the

next one. So they all can’t be running at the same time and take a really long time

to run all the above step with a large number of targets and it is really hard to

manage all the information of that much targets.

So, they will need a solution which can do above step automatically for

them. And that solution must have a feature to manage all information scanned

by those tools. That is what our group wants to build.

19

II. IA PROJECT MANAGEMENT PLAN

II.1. Problem Setting

II.1.1. Name Of The Capstone Project:

 Building A Vulnerability Management Solution For Enterprise

II.1.2. Problem Abstraction.

In fact, the process by which a hacker or pentester enters the system, they

usually take the following steps:

Figure II.1.2.a. Steps taken by hacker/pentester

The first step - Discovery: host discovery, port scanning, host

fingerprinting, ... They must use common tools from free to paid such as Nmap,

Wappalyzer, Dirsearch,... to collect information about "targets". Of course, they

have to manually work on each of the above tools and on each target, then they

come to the next step.

Next step - Assessment, This is the process of identifying, quantifying, and

prioritizing vulnerabilities in a system after they know some information about

the system. They will have to use another kind of tool such as Nikto, Acunetix,

20

Nessus… Each of them will scan each field. For example, Nikto and Acunetix

will scan web service, Nessus will scan all the services which are running on the

target machine.

When some vulnerabilities are scanned, they come to the next step,

Exploitation. This step is about how they can use those vulnerabilities to attack

the device. There are some cases that vulnerabilities that exist but the attacker can

not exploit because the developer had fixed that bug, but the vulnerability

assessment tool they used do not know about that. But if some vulnerabilities can

be exploited, it would be a nightmare to your system and you will never like this

to happen.

Don't stop there, what if your IT system has thousands of computers,

routers, firewalls, and mobile devices? In addition to concrete problems

involving management and time optimization is put on top.

 So we decide to build a vulnerability management solution to have not just

pentester but also IT administrators to always know the current vulnerability state

of their system. With our solution, simple click - all the steps they need to do

before will automatically do.

In the end, it's easy to manage and running time is what we want to

emphasize here.

II.1.3. Project Overview.

II.1.3.1. Current Situation

 Just imagine, What will happen if a pentester want to do a vulnerability

assessment on some target?

 Surely that first thing he will do is get some information about that target

with nmap. Then he will get some information about which ports are open on

that target, and which service is currently running and also if he is lucky, he can

also get the version of that service or even the CPE (Common Platform

Enumeration) of that service.

21

Figure II.3.1.a. Sample nmap output when scanning a target.

 And after he has some information about the target, what he will do next?

It depends on what the results show him. We will show some cases here:

● If there is a service which he has full information, it means he got the CPE

of that service, he will do a google search to know that if that CPE has any

vulnerability or not. If that service has some exploitable vulnerability he

will exploit that service.

● If SSH, FTP or some well-known service is running, he will use NSE

(Nmap Scripting Engine) to test if that ssh service has some vulnerability or not.

● If there is a web-server running on that target. He will use some website

vulnerability assessment tools like Nikto, SkipFish or Acunetix to test if that

webserver has any exploitable vulnerabilities or not.

22

Figure II.1.3.1.b. Sample Acunetix summary result

● If he has some powerful tool like Nessus, he can use Nessus on the target and

select which plugin he wants to run and then wait for the result to know that if

there is any service have any vulnerabilities or not?

Figure II.1.3.1.c. Sample Nessus summary result

 We can see a problem here that he has to spend some time to make a

decision about which tools he will use next and in which situation. This can lead

to some mistakes when he forgets some steps. And a more serious problem will

arise when he deal with 100 or more targets. How can he know which result in

this tool is sync with the other results in other tools? And it also really easy for a

human to make mistakes when dealing with this large number of target.

23

III.1.3.2. The Proposed Solution

 The goal of our group is to create a solution to deal with the above situation.

Our solution will do all the above steps automatically, then all the results from

tools will be merged to only one result. The administrator now can view every

result in just one place. This solution must be fast and safe. It also has to ease to

use and can be extendable to speed up more easily.

 We also have to use a database which is easy to use and help the

administrator in searching and analyzing data. So we will use ElasticSearch and

Kibana because it is familiar with a lot of administrators.

 Our project also needs a message queue to transfer the message from the

output of this tool to input of another tool. So we decided to use Kafka because it

is easy to use and it’s an active community.

 To give the project power of extendable for the ease of speeding up. We

decided to have a model have a master server to assign tasks to other agents

server, so we can have any number of agents, the more the better, the more the

faster.

 For the ease of use for users, we provide a web portal to visualize

everything on the web interface. So the administrator now can manage everything

and show all the result in just one place.

 So our model will look like Figure III.1.3.2.a below. For more details, we

will describe in section V. Specifications, Development and Implementation Plan

24

Figure III.1.3.2.a. A logical model of the project

II.2. Project Organization.

II.2.1. Agile Process Model.

In earlier days the Iterative Waterfall model was very popular to complete

a project. But nowadays developers face various problems while using it to

develop software. The main difficulties included handling change requests from

customers during project development and the high cost and time required to

incorporate these changes. To overcome these drawbacks of Waterfall model, in

the mid-1990s the Agile Software Development model was proposed.

The Agile model was primarily designed to help a project to adapt to

change requests quickly. So, the main aim of the Agile model is to facilitate quick

25

project completion. To accomplish this task, agility is required. Agility is

achieved by fitting the process to the project, removing activities that may not be

essential for a specific project. Also, anything that is wastage of time and effort

is avoided.

So our team decided to use the Agile Process Model as our solution process

model.

Figure II.2.1.a. Process of Agile Process Model

In the Agile model, the requirements are decomposed into many small parts

that can be incrementally developed. The Agile model adopts Iterative

development. Each incremental part is developed over an iteration. Each iteration

is intended to be small and easily manageable and that can be completed within a

couple of weeks. At a time one iteration is planned, developed and deployed to

the customers. Long-term plans are not made.

● Requirement Gathering Phase: Like most development projects, the first

step is to go through the initial planning stage to outline the requirements,

objectives and initial setup of the project.

● Planning & Designing Phase: After planning is complete, an analysis is

made to give the appropriate business logic, database models. The design

phase also occurs here, setting up any technical requirements (language,

data layer, service, etc.).

● Development Phase: After the planning and analysis has been completed,

actual implementation and coding can begin.

● Testing Phase: when the software has been coded and implemented, the

next step is to go testing to identify and locate any potential bugs or issues.

26

● Evaluation Phase: When the previous stages are completed, it is time for

everyone to evaluate what the project has done and what needs to be

changed.

Advantages of Agile Process Model:

● Working through Pair programming produce well written compact

programs which have fewer errors as compared to programmers working

alone.

● It reduces the total development time of the whole project.

● Customer representative gets the idea of updated software products after

each iteration. So, it is easy for him to change any requirements if needed.

Disadvantages of Agile Process Model:

● Due to the lack of formal documents, it creates confusion and important

decisions taken during different phases can be misinterpreted at any time

by different team members.

● Due to the absence of proper documentation, when the project completes

and the developers are assigned to another project, maintenance of the

developed project can become a problem.

II.2.2. Role And Responsibilities.

Phases Name Roles Responsibilities

Requirement

Gathering

Nguyễn

Anh
Việt

Team

leader

- Gather team members and supervisors.

- Identify goals and objectives of project.
- Identify the rules for team members.

- Research about solution process model.

- Collect and research information to find out

an appropriate project.

Trần
Anh

Đức

Team
member

- Determine and research about technologies
will be used in the project.

Nguyễn

Khắc

Hùng

Team

member

- Research and planning timeline.

- Identify goals and objectives of project.

27

Lê

Đình
Mạnh

Team

member

- Identify goals and objectives of project.

- Collect and research information to find out
an appropriate project.

Nguyễn

Đức

Anh

Team

member

- Collect and research information to find out

an appropriate project.

- Identify goals and objectives of project.

Planning &

Designing

Nguyễn

Anh

Việt

Team

leader

- Research about appropriate technologies and

determine which one will be used.

- Design database for elasticsearch database

- Research and design the logical model of

project.

Trần
Anh

Đức

Team
member

- Research about how to merge all the
scanning tools, and which one will be used in

the project.

- Research about some similar projects.

Nguyễn

Khắc
Hùng

Team

member

- Design front-end mockup.

- List threats, risks affecting the system.

Lê

Đình

Mạnh

Team

member

- Research about front-end technologies

(Flask)

- List threats, risks affecting the system.

Nguyễn

Đức

Anh

Team

member

- Research about how acunetix and nessus

works.

- List threats, risks affecting the system.

Development

and

Deployment

Nguyễn

Anh
Việt

Team

Leader

- Develop and operate service module.

- Develop and operate some agents module.
- Develop and operate webportal.

- Develop and operate elasticsearch database.

- Operate kafka message queue.

- Assigned task for members.

Trần

Anh

Đức

Leader

Agents/

Member

- Develop and operate all agents module.

- Leader of agent module.

- Develop and operate elasticsearch database.

- Operate kafka message queue.

- Assigned task for members.

Nguyễn

Khắc

Hùng

Leader

Web/

Member

- Develop and operate webportal.

- Leader of webportal

- Develop and operate elasticsearch database.

- Assigned task for members.

28

Lê

Đình
Mạnh

Team

member

- Develop and operate webportal.

- Develop and operate some agents module.

Testing Nguyễn

Anh

Việt

Team

leader

- Testing, debug and operate service module.

- Testing, debug and operate some agents

module.

- Testing, debug and operate webportal.
- Testing, debug and operate elasticsearch

database.

- Testing, debug and operate kafka message

queue.

Trần
Anh

Đức

Team
member

- Testing, debug and operate all agents
module.

- Testing, debug and operate elasticsearch

database.

- Testing, debug and operate kafka message

queue.

Nguyễn

Khắc

Hùng

Team

member

- Testing, debug and operate webportal.

- Testing, debug and operate elasticsearch

database.

Lê
Đình

Mạnh

Team
member

- Testing, debug and operate webportal.
- Testing, debug and operate some agents

module.

Evaluation

and report

Nguyễn

Anh

Việt

Team

leader

- Collect information and summarize the

document.

- Writing outline, assigned task for members.

Trần

Anh

Đức

Team

member

- Collect information and summarize the

document.

- Gather data, information for the document

Nguyễn
Khắc

Hùng

Team
member

- Collect information and summarize the
document.

- Capture image of front-end feature.

Lê

Đình

Mạnh

Team

member

- Collect information and summarize the

document.

Nguyễn

Đức

Anh

Team

member

- Collect information and summarize the

document.

29

II.2.3. Tools And Techniques Used.

Tools and techniques

Development
Visual Studio Code

IDE for Python 3, html, css, js, jQuery

Github

Source code version control

Sublime Text

Sublime Text is a sophisticated text editor for code,

markup and prose

Ubuntu 16.04

Operating System for development and coding

Docker

Docker is a set of coupled software-as-a-service

and platform-as-a-service products that use

operating-system-level virtualization to develop

and deliver software in packages called containers

ElasticSearch

Elasticsearch is a search engine based on the

Lucene library. It provides a distributed,

multitenant-capable full-text search engine with an

HTTP web interface and schema-free JSON

documents.

30

Kafka

Used for building real-time data pipelines and

streaming apps

Trello

Keep tracking of work

Chrome

Web browser, testing environment

Xinetd

xinetd performs the same function as inetd: it starts

programs that provide Internet services. Instead of

having such servers started at system initialization

time, and be dormant until a connection request

arrives

Programming

Languages

Python 3

Python is an interpreted, high-level, general-

purpose programming language.

HTML

HTML is the standard markup language for

creating Web pages.

HTML stands for Hyper Text Markup.

CSS

CSS is a language that describes the style of an

HTML document.

CSS describes how HTML elements should be

displayed.

JavaScript

JavaScript, often abbreviated as JS, is a high-level,

interpreted programming language that conforms

to the ECMAScript specification. JavaScript has

curly-bracket syntax, dynamic typing, prototype-

based object-orientation, and first-class functions

31

jQuery

jQuery is a fast, small, and feature-rich JavaScript

library. It makes things like HTML document

traversal and manipulation, event

handling, animation, and Ajax much simpler with

an easy-to-use API that works across a multitude of

browsers. With a combination of

versatility and extensibility, jQuery has changed

the way that millions of people write JavaScript.

Communication Skype

Group video calls, chat, file sharing. Contact with

supervisor.

Facebook

messenger

Group video calls, chat, file sharing

Mobile phone

Instant call

Gmail

Share link resources and link between only team

members.

Document,

Take note

Word

Writing document and report for the project.

PowerPoint

Create and design a slideshow for presenting a

capstone project.

Draw.io

Create and design diagramming and vector graphic

for the document

32

Python library Flask

Flask is a lightweight WSGI (Web Server Gateway

Interface) web application framework. It is

designed to make getting started quick and easy,

with the ability to scale up to complex applications.

Json

JSON is a syntax for storing and exchanging data.

JSON is text, written with JavaScript object

notation.

Scanning Tools Nmap

Nmap ("Network Mapper") is a free and open

source (license) utility for network discovery and

security auditing. Many systems and network

administrators also find it useful for tasks such as

network inventory, managing service upgrade

schedules, and monitoring host or service uptime.

NSE

Nmap Scripting Engine (NSE) is one of Nmap's

most powerful and flexible features. It allows users

to write (and share) simple scripts to automate a

wide variety of networking tasks. Those scripts are

then executed in parallel with the speed and

efficiency you expect from Nmap. Users can rely

on the growing and diverse set of scripts distributed

with Nmap, or write their own to meet custom

needs.

Wappalyzer

Wappalyzer is a cross-platform utility that

uncovers the technologies used on websites. It

detects content management systems, ecommerce

platforms, web frameworks, server software,

analytics tools, ...

CVE Search

cve-search is a tool to import CVE (Common

Vulnerabilities and Exposures) and CPE (Common

Platform Enumeration) into a MongoDB to

facilitate search and processing of CVEs. The main

objective of the software is to avoid doing direct

and public lookups into the public CVE databases.

Acunetix

Acunetix is an end-to-end web security scanner.

33

Nikto

Nikto is a free software command-line

vulnerability scanner that scans web-servers for

dangerous files/CGIs, outdated server software and

other problems. It performs generic and server type

specific checks.

Nessus

Vulnerabilities assessment tool. Was introduced is

#1 payment tools.

II.3. Project Management Plan

II.3.1. Tasks:

II.3.1.1 Project initialization, planning.

● Description: Initialization idea of project, identify long term goal of

our project is to create a solution (including a web portal to interact

with user more easily) to help enterprises management

vulnerabilities. We need to develop a more helpful solution which

can solve other vulnerability assessment tools disadvantages.

● Deliverables: After planning and research, we decided to create a

solution to provide enterprises a way to manage vulnerabilities.

● Resources: Internet, man-power.

● Risk: Power-off, lost internet.

II.3.1.2 Technical studies.

● Description: Find and research existing technologies which suitable

for the project, choose a suitable programming language and

process model.

● Deliverables: Understand the fundamentals of the technology they

use, how to use them, the advantages and disadvantages of each

technology.

● Resources: Internet, book online, docs online, man-power.

● Risk: Power-off, lost internet, lack of knowledge.

34

II.3.1.3 Design and analysis project

● Description: Design mockup of web portal, database model, project

logical model, how each feature works and how to interact with

users.

● Deliverables: Database model, mockup of web portal, database

model, project logical model.

● Resources: draw.io, kibana, elastic-search, chrome, man-power.

● Risk: lack of knowledge, time to research from the beginning.

II.3.1.4 Implementation

● Description: Design and implementation provide a tools with web

GUI for vulnerabilities management in enterprise.

● Resources: VS code, SublimeText, git, internet, chrome, man-

power, ….

● Risk: an unexpected error occurs, unsaved-code, push wrong

repositories on GitHub, team work, lack of knowledge.

II.3.1.5 Testing and Fix Bug

● Description: Testing every function of solution, does it work

properly or wrongly, search for as many as possible bugs and fix it

or minimize impact of that bugs if it hard or impossible to fix.

● Deliverables: Test all functions, fix as many as possible bugs.

● Resources: VS code, SublimeText, Git, Internet, Chrome.

● Risk: unsaved-code, push wrong repositories on GitHub, some bugs

can not fix.

II.3.1.6 Deployment

● Description: Deploy projects on 2 companies X and Y. Detect

problems arising when implementing in real enterprises, difficulties

and problems. feasibility of implementation, difficult level of

deployment.

● Deliverables: Knowing what is needed to be able to deploy in the

enterprise.

● Resources: Hardware, github, internet.

● Risk: Hardware requirement does not enough, external and internal

networks in the enterprise, speeds of the Internet.

35

II.3.1.7 Document development

● Description: Detailed presentation of what the project has done.

● Deliverables: a complete docs with no spelling errors.

● Resources: Word, google docs, translator, spell-check extension.

● Risk: unsaved Word.

II.3.2. Tasks Schedule Sheet: Assignments and Timetable

Task SubTask Details Assignment Time

Start Project : 15/04/2019

Project

initialization

Idea

brainstorming

16/04 –

30/04/2019

Idea outline

Planning:

VietNA, AnhND,

HungNK, ManhLD,

DucTA

Schedule of weekly meeting

Preparation schedule, study.

Schedule of project development

Document implementation schedule

Technical

studies

Existing solution

study

Wappalyzer DucTA

16/04 –

30/04/2019

Nessus AnhND

Watchdog DucTA

NSE AnhND

Nmap ManhLD

Shodan, NetCraft,.. HungNK

Accunetix AnhND

Techniques

Elastic search Stack: LogStash, Elastic

Search, Kibana VietNA

16/04 -

10/05/2019 Exploit DataBase HungNK

Write API and APIdocs in Flask ManhLD

36

Web Framework: Django vs Flask VietNA

Realtime, notification in python web

framework... (notification) ManhLD

Design and

analysis

project

Design Activity

Diagram

Logical Flow Diagram VietNA

16/04-

15/05/2019

WebApp Flow Diagram VietNA

Design DataBase Design DataBase schema

VietNA, AnhND, HungNK,

ManhLD, DucTA

UI Design Design mockup for frontend HungNK

Implementat

ion
Module

Module Nmap Agent -Caller ManhLD

16/05 -

30/6/2019

Crawl Data from exploitDB HungNK

Building ELK DucTA

Module ScanningPortCaller -

ScanningPortAgent VietNA

Nessus Module Agent DucTA

Get data from kafka nmapOutput and

push them to ElasticSearchDB VietNA

Get data from output of nmap and

compare with CVESearch VietNA

ReParse Json from XML (nmap output) DucTA

Get data from CVESearch and push them

to ElasticSearchDB VietNA

Add Try Excecpt to every where can have a

excetion and logging the temporary

message VietNA

Create a logger mechanism to know how

service is running VietNA

All Kafka Producer use the same

Producer() to work with thread safe VietNA

Nmap NSE agent Module VietNA

37

Writing deploy script nse for agent VietNA

Create custom Nessus Profile Scanner DucTA

Wapllyzer Agent DucTA, VietNA

Acunetix module VietNA

Nikto module in master server VietNA

Code a wrapper to create a scan and get

result from Acunetix DucTA

Webportal

Mockup demo data from Elasticsearch to

Web portal HungNK, ManhLD

15/06 -

30/07/2019

Web portal, searching HungNK

Web portal Sort Data ManhLD

Display NSE Data ManhLD

Display Acunetix Data HungNk

Display Wappalyzer Data ManhLD

Display CVE search Data ManhLD

Paging in Elasticsearch VietNa

Building Page To Funtion "New Scan" HungNK

Design front-end navigate, header,

foooter ManhLD

Display Vulnerabilities -Detail Data HungNK, ManhLD

Drawing PieChart for [Total vulnerabilities] VietNA

Clean & Beautiful Web Interface Design HungNK

Testing and

Fix Bug

Adopt New

DataBase

Adopt new CVE_Search Database ManhLD

16/05-

30/07/2019

Adopt new Wappalyzer Database ManhLD

Adopt Nessus Module VietNA

Adopt new NSE Database HungNK

Adopt new Nmap Database HungNK

38

Adopt new Acunetix Database HungNK

FixBug

Bug Logic VietNK, DucTA
20/07-

05/08/2019

Bug Font-end HungNK

Deployment

A Company [Name

Hided]

VietNA, AnhND, HungNK,

ManhLD, DucTA
27/06 ,

17/07/19

A Company [Name

Hided] AnhND

Document

development

I.

INTRODUCTION

I. 1 - I.4 :The Initial Idea Of Our Group VietNA

15/07-

10/08/2019

I.5. A Brief Overview Of Current

Vulnerabilities Assessment Tools On The

World AnhND

I.6 The Proposed Idea Of Our Group AnhND

II. IA PROJECT

MANAGEMENT

PLAN

II.1. Problem Setting ManhLD

II.2. Project Organization. VietNA

II.3. Project Management Plan AnhND, ManhLD

III. RISK

ASSESSMENT

III.1 The Need Of Assessment AnhND

III.2 Identify Critical Information Assets HungNK

III.3 -III.4 Risk Identification,Risk

Analysis, Control Identification and

Assessment

DucTA

IV. RISK

MANAGEMENT

PLAN

IV.1 - IV.3 : Objectives of RMP, Assigning

Responsibilities, Describing Procedures

and Schedules for Accomplishment

ManhLD

IV.4 Reporting Requirements HungNK

V .

SPECIFICATIONS,

DEVELOPMENT

AND

IMPLEMENTATIO

N PLAN

V.3. How Does A Target Being Scanned

When A User Create New Scan.

V.1. Logical Model Of Our System.

V.5. Config Files.

V.6How Logging Have Been Saved And

VietNA

39

Managed?

V.2. Master Service, How We Assign Jobs

For Agents And How Do Master And

Agent Can Exchange Data?

VI. PROJECT

VALIDATION

VI.1 - VI.3 Project Idea ,Result , Future AnhND

Project finished: 26/08/2019

II.3.3. All Meeting Minutes.

Subject Gather members and supervisor

Date 15/04/2019

Time 15h - 17h

Location 21st floor of the KeangNam building

Supervisor NamHB

Attendees VietNA, HungNK, DucTA, ManhLD, AnhND

Key points discussed

No. Topic

1 Introduction to membership.

2 Working in group and discuss project topic, project name.

3 Research and assigning the work.

Subject Weekly meeting

Date 15/04 - 06/05/2019

Time 15h - 17h

Location Azzan Coffee, Hoa Lac Campus

Supervisor NamHB

40

Attendees VietNA, HungNK, DucTA, ManhLD, AnhND

Key points discussed

No. Topic

1 Review assigned tasks, assign new tasks

2 Demo works done from previous weeks

3 Find difficulties and find solutions for it

Subject Weekly meeting

Date 06/05 - 12/06/2019

Time 10h- 12h

Location P204, Beta Building ,Hoa Lac Campus

Supervisor NamHB

Attendees VietNA, HungNK, DucTA, ManhLD, AnhND

Key points discussed

No. Topic

1 Review assigned tasks, assign new tasks

2 Discuss about model of the project

3 Demo works done from previous weeks

4 Find difficulties and find solutions for it

Subject Weekly meeting

Date 13/06 - 15/07/2019

41

Time 10h- 12h

Location R2006, Sky City Tower

Supervisor NamHB

Attendees VietNA, HungNK, DucTA, ManhLD, AnhND

Key points discussed

No. Topic

1 Review assigned tasks, assign new tasks

2 Discuss about webportal, master service and agent service

3 Find difficulties and find solutions for it

4 Demo works done from previous weeks

Subject Weekly meeting

Date 15/07 - 31/08/2019

Time 13h- 15h

Location HB205R, Alpha Building ,Hoa Lac Campus

Supervisor NamHB

Attendees VietNA, HungNK, DucTA, ManhLD, AnhND

Key points discussed

No. Topic

1 Review assigned tasks, assign new tasks

2 Review documentation and code of master service and agent

services

3 Demo get result data from some enterprise.

42

III. RISK ASSESSMENT

III.1. The Need Of Risk Assessment

Risk assessment is a long process requires carefully review the workplace

to identify vulnerabilities, threats, situations, etc. that may cause harm to the

project, the people, company, or organization in order to evaluate and control it.

Thus they form an integral part with the goal to answer the following questions:

● What can happen, in which situation?

We will identify risks and risks factor in this process.

● What are the consequences?

In this process, the estimated risk is compared against the given risk criteria

to determine the significance of it.

● How often the consequences occur?

Monitor the likelihood to occur of the risk to determine how to control it.

● Is risk-controlled effectively? Can it be handled more effective?

In this final step, we review all the steps from the very start to prepare for

the next time.

III.2. Identify Critical Information Assets

III.2.1. Information Asset Classification

The goal of Information Security is to protect the confidentiality,

integrity and availability of Information Systems. Identify Critical

Information Assets is the identification of information based on its sensitivity

and impact on the organization. Identify Critical Information Assets to

determine which security methodology is appropriate to protect that

information. Critical Information should be classified into four categories:

• Public Information

• Internal Information

• Restricted Information

• Confidential Information

Information

Classes

Description Assets Level of

confidentiality

Confidential This is the critical level, - Vulnerabilities Critical

43

it contains important

information and

database we saved about

vulnerabilities, how

tools work.

database

- Source code

- Log event services

- Model of system

Restricted If it is exploited, your

organization may break

down.

- Login information

- Database credential

High

Internal It contains information

about project, system of

our team have. If it is

exploited, our system

used to run code and

demo will be break

down

- Information about

hardware, software

- Contract with

customers

Medium

Public It is the lowest level,

contain information

about using our tool,

information about

project, contract of your

organization. If it is

exploited, organizations

can suffer serious

damage.

- Information about

how to use services

- FAQ

- Help for customer

Low

 III.2.1.1. Master Service Components

● The Probability of a threat exploiting a vulnerability in an asset

The probability of threats coming from master service components is low.

Some service if not update to the latest version can be exploited by hackers or

even 0-day vulnerability attack. And the entry-point to the master server is small

because it just receive data from database and agents.

● The Impact of a threat exploiting a vulnerability in an asset

If one service been exploited, the function of web portal might work not

correct. If the hacker got root by privilege escalation attack, all systems are

controlled in hacker’s hand.

III.2.1.2. Agent Service Components

● The Probability of a threat exploiting a vulnerability in an asset

 The probability of threats to the agent service components is medium.

Threat can come from nature: natural disasters cause power outages, physical

damage to hardware, etc,... System services are also likely to be DOS attacks.

44

● The Impact of a threat exploiting a vulnerability in an asset

 Although the threats are average but when it affected, the scanning and

tracking vulnerabilities in real-time will stop working, which make the client

unable to login or views anything on the customer’s system.

III.2.1.3 Web portal Components

● The Probability of a threat exploiting a vulnerability in an asset

 The web application are not have many entry points to exploit or attacks

but the probability of a threat exploiting are high, because it is the main interface

to interact with users.

● The Impact of a threat exploiting a vulnerability in an asset

 Hacker can use all that vulnerabilities to exploit on system server. Stolen

sensitive data or use our server as a botnet or mining coin. Also the hacker can

privilege escalation attack for further harming action.

III.2.1.4 ElasticSearch Database Components

● The Probability of a threat exploiting a vulnerability in an asset

 The probability of threat coming from the ElasticSearch Database

Components are usually high because it is an open-source project. In history

development process of ElasticSearch there have been exist RCE vulnerability.

We also have been careful with 0-day vulnerabilities.

● The Impact of a threat exploiting a vulnerability in an asset

 If the database were leak, the whole information about systems,

vulnerabilities, entry point to exploit are explored. The attacker can use that to

attack any specific point in the system with that knowledge.

45

III.2.2. System Characterization

III.2.2.1. Logical Architecture

Figure III.2.2.1. A logical model of the project

III.2.2.2. System Components

System Components Name

Team member PC, Laptop

Agent 1 Nmap, NSE

Agent 2 Wappalyer, Nessus

Agent 3 Acunetix, Nikto

46

Master Database, log events, source code

tools

III.2.2.3. Users of the System

We have two types of user on the system:

● Docker account used to configuration agent machines.

● Administrator account of web application.

III.2.2.4. Security and Compliance Requirements

 To ensure system security, docker account and administrator account need

to comply with the following security requirements:

● Regularly update or check web application server system.

● Do not use unidentified software in the master and agent machine.

● Do not let password of account admin leak outside.

● For member of team, protect source code, model component of

system and data localhost.

III.2.2.5. Information Protection Priorities

 Information Protection Priorities follow by table. We calculated

according to point 3 (1- Highest, 2 – Medium, 3 - Lowest).

Number Information Assets Priority

1 Log event services 1

2 Model of system 1

3 Login information 1

4 Contract with customers 3

5 Information about hardware,

software
2

6 Information about how to

use services

- FAQ

- Help for customer

3

47

III.3. Risk Identification

The following formula is often used when pairing threats with vulnerabilities:

Risk = Threat * Vulnerability [7]

Figure III.3.a. Risk = Threats * Vulnerabilities

However, this isn’t a true mathematical formula. Threat and vulnerability don’t

always have numerical values. Instead, the formula shows the relationship

between the two.

If we can identify the value of the asset, the formula is slightly modified to:

Total Risk = Threat * Vulnerability * Asset Value [7]

III.3.1. Threat Identification

In Figure 3.3, threats can be categorized into two types: Human or Natural.

Human threats can also be internal (angry employees, dishonest employees…) or

external (hackers, competitors …).

Some natural threats such as power outages, natural disasters can cause the

server system to stop working.

48

 Reason

Threat & Impact

Portal website Master service Agent services

Internal Employees who are

not satisfied with the

company or

organization. They

can collect the data

of the company or

organization.

Collect and delete

records on the

portal and the

administrator

doesn’t know the

vulnerability to

fix.

Reveal the secret

information or

sell them to other

companies.

Change the

configuration or

shutdown

service to make

all the

application stop

working

Shutdown or

misconfigured

an agent service

will make entire

scan result

wrong

External The hacker who

want to attack for

gathering

information or

privilege escalation

If they can control

the portal, they

will know which

machine on the

company has

vulnerabilities to

attack

Denial of

service attacks

makes this

service out of

service.

Control the

agent service

will cause the

hacker to have

access to all the

IP in the

company if the

agents have the

serious

vulnerabilities

and a hacker

can do the RCE

on this machine.

Natural The unusual reason

such as weather,

electric problem...

Natural factors can cause power outages, making the

entire service stop working.

III.3.2. Vulnerability Identification

Vulnerability is a weakness which can be exploited, this project has these

type of services which may have vulnerability:

● Portal website

● Master service

● Agent services

49

 The table below shows the vulnerabilities that may be encountered in the

services:

Service Vulnerability Details

Portal website

IDOR (INSECURE

DIRECT OBJECT

REFERENCE)

Insecure Direct Object

References allow attackers

to bypass authorization and

access resources directly by

modifying the value of a

parameter used to directly

point to an object. It usually

appears on a web

application.

CSRF Attack

Cross-Site Request Forgery

(CSRF) is an attack

technique that uses the

user's authentication

authority for a website. A

CSRF is a hacking

technique where the hacker

can perform actions that

require authentication like a

login form.

RCE (Remote code

execution)

Remote code execution is

the ability an attacker has to

access someone else's

computing device and make

changes, no matter where

the device is geographically

located.

Master service and Agent

services

DDoS Attack

Hacker can use DDoS attack

to make all other services

out of service

Unauthorized access to

service

Service can send requests to

this service to run and

receive the result

50

III.4. Risk Analysis

There are many different ways to risk analysis. In this case, we use OWASP:

Risk Rating Methodology [8]

Risk = Likelihood * Impact

We have 3 most likely risks to analyze:

• Scenario 1: Internal employees destroy the data or install malicious

software into the system

• Scenario 2: Hacker attacks the services system, customer

• Scenario 3: One of the services of the system stops working

III.4.1. Likelihood Assessment

When identifying potential risk, the first is to estimate "likelihood". The

following is a preliminary measure of the vulnerability that a specific

vulnerability exploits with an attacker. There are three levels of ability, low,

medium or high.

Threat Agent Factors

Risk 1 2 3

Skill level 6 8 9

Motive 1 1 4

Opportunity 4 8 1

Size 4 5 3

Mark 3.75 5.5 4.25

Vulnerability Factors

Risk 1 2 3

Ease of discovery 6 5 2

Ease of exploit 4 3 3

Awareness 6 4 3

51

Intrusion detection 2 8 8

Mark 4.5 5 4

III.4.2. Impact Assessment

The technical impact can be broken down into factors such as

confidentiality, integrity, usability, and accountability. The purpose is to

estimate the impact on the system when a vulnerability is exploited.

Technical Impact Factors

Risk 1 2 3

Loss of confidentiality 9 6 5

Loss of integrity 9 6 7

Loss of availability 9 7 6

Loss of accountability 2 7 7

Mark 7.75 6.5 6.25

III.4.3. Risk Determination (Rating)

In this section, estimates of likelihood and impact are put together to

calculate the severity. The severity score scale is shown below

Likelihood and Impact Level

0 to <3 Low

3 to <6 Medium

6 to 9 High

52

The rank of severity when combined:

Overall Risk Severity

Impact

High Medium High Critical

Medium Low Medium High

Low Note Low Medium

 Low Medium High

 Likelihood

 Below are Determining Severity table:

Determining Severity

Risk 1 2 3

Impact High High High

Likelihood Medium Medium High

Risk Severity High High Critical

III.5. Control Identification and Assessment

III.5.1. Risk Monitoring and Controlling

We need to monitor and control risk to:

● Ensure the implementation of risk management plans and assess the

effectiveness of those plans.

● Monitoring of identified risks

● Monitor residual risks and identify new risks arising during project

execution.

53

III.5.1.1. Inputs to Risk Monitoring and Control

Risk Monitoring and Control requires the following:

● Risk management plans

● The results of risk identification include identified risks & owners, risk

responses, triggers, and warning signs

III.5.1.2. Outputs from Risk Monitoring and Control

● Updates on risks, causes and results of actual responses

● Corrective action includes the implementation of contingency plans or

solutions Recommended Preventive Actions used to direct the project to

comply with the project management plans

● Organizational Process Assets Updates include: Information gained

through the risk management, processes are collected and kept for use by

future, templates for the risk management plan, learned

● Project Management Plan Updates to the project management plans as a

result of the approval of requested changes.

III.5.2. Preventive Measures

For technical measures to protect the system, major risk factors come from

people, here are some safeguards for the risks that come from internal and

external people.

Human Threat Object Control Methods

Internal Angry employees… Permission to use on

service systems,

Authentication,

Authorization, Access

control

External Hacker, competitor Using DDoS attack

defense hardware or

early attack detection

systems

For threats from the system, we use regular backups, using the tool to

check for live services. Logging faulty events in the system and fix as soon as

possible.

54

IV. RISK MANAGEMENT PLAN

IV.1. Objectives of RMP

IV.1.1. Lists of Threats & Vulnerabilities

No. Type Threats & Vulnerabilities

1 Portal website CSRF Attack

IDOR

RCE

2 Master service and

Agent services
DDoS Attack

Unauthorized access to service

IV.1.2. Costs associated with risks

● Confidentiality:

Rate Description Point

Low No affect or effect a little. 1

Medium The system can accept the risk. 2

High Seriously affect to the system. 3

● Integrity:

Rate Description Point

Low No affect. 1

Medium The system can accept the risk. 2

High Seriously affect to the system, it can’t

continue work.

3

55

● Availability:

Rate Description Point

Low No affect or effect a little. 1

Medium The system can accept the risk. 2

High Seriously affect to the system. 3

● We have 4 levels for Rating Threat/Vulnerabilities with costs:

Rate Point Cost

Low P < 4. ~5.000$

Medium 4<= P < 6 ~10.000$

High 6<= P < 8 ~50.000$

Critical 8<= P ~100.000$ or more

 Note: P = point

Below is the Threat and Vulnerabilities Rate table:

 No Type Threats &

Vulnerabilities

Confidentiality Integrity Availability Total Rate

1 Portal

website

CSRF Attack 3 2 1 6 High

2 IDOR 3 3 1 7 High

3 RCE 3 3 3 9 Critical

4 Master

service

and

Agent

services

DDoS Attack 1 1 2 4 Medium

5 Unauthorized

access to service

3 3 2 8 Critical

IV.1.3. List of Recommendations to Reduce the Risks

56

 Threats & Vulnerabilities Recommendation

Portal website CSRF Attack Pentest

IDOR Pentest

RCE Pentest

Master service

and Agent

services

DDoS Attack Using clouding servers or a

server which a strong enough

Unauthorized access to service Update Authentication Policy

IV.1.4. Costs Associated with Recommendations

 Threats & Vulnerabilities Recommendation Cost

Portal website CSRF Attack Pentest 1.500$

IDOR Pentest 2.000$

RCE Pentest 5.000$

Master service

and Agent

services

DDoS Attack Using clouding servers 3.000$

Unauthorized access to service Update Authentication Policy 0(Manpower)

IV.1.5. CBA (Cost-Benefit Analysis)

 Risk Recommend

ations

Loss

before

control

Loss

after

control

Cost of

control

Benefit

Portal

website

CSRF

Attack

Pentest 10.000$ 1.000$ 1.500$ 7.500$

IDOR Pentest 10.000$ 500$ 2.000$ 7.500$

RCE Pentest 15.000$ 2.000$ 5.000$ 8.000$

Master

service

and Agent

services

DDoS

Attack

Using

clouding

servers

6.000$ 700$ 3.000$ 2.300$

Unauthori

zed access

Update

Authentication

100.000$ 15.000$ 0(Manpow

er)

85.000$

57

to service Policy

IV.2. Assigning Responsibilities

Full Name Role Description

Nguyễn Anh Việt
Leader Assign tasks for members.

Research and collect information about risk.

Fix vulnerabilities.

Trần Anh Đức
Member Pentest master and agent services.

Research and collect information about risk.

Fix vulnerabilities.

Lê Đình Mạnh
Member Research and collect information about risk.

Writing risk management report.

Nguyễn Khắc Hùng
Member Pentest web portal.

Research and collect information about risk.

Fix vulnerabilities.

Nguyễn Đức Anh
Member Research and collect information about risk.

Update system.

IV.3. Describing Procedures and Schedules for Accomplishment

• Create a backup for server and database.

• Check update operating system and software.

• Update firewall, policies.

• Create a business continuity plan, recovery plan.

IV.4. Reporting Requirements

IV.4.1. Present Recommendations

Type Risks Cause Criteria Affect

Master

Service

Linux kernel

exploit

The kernel has

vulnerabilities and

The out of date

kernel

The system can’t

work.

58

and

Agents

Services

the hacker found

it

Lost control of

the system.

Hacker can RCE

this machine.

Misconfiguration

The lack of

responsibility of

the administrator

Don’t have the

configuration

checklist standard.

The lack of the

policy.

The service can’t

work correctly.

 Attacker easy to

attack the

system.

The system can

be destroyed.

DDOS attack

The hardware of

the server is still

weak.

The attacker

always tries to

launch a dos

attack.

The hardware of

the system still

weak.

Don’t use a load

balancing system

Performance of

service is slow

down.

Everything is,

can’t continue

running the hold

system,

company.

OS out of date

The attacker

always to attack

the system.

The lack of

responsibility of

the administrator

The system can

be exploited.

Natural disasters

Tsunami,

earthquake

suddenly

appeared

Don’t make the

business continuity

plan.

Don’t make the

recovery plan.

Everything is

shut down, can’t

continue running

the hold system,

company.

One of service

stops working

The lack of

responsibility of

the administrator.

The attacker

always try to

attack the service

Don’t use the

backup service.

Don’t have a plan

to deal with this.

The system can’t

work correctly.

Directly affect

the system and

the user.

Web

portal

XSS/ CSS

injection

The attacker

always try to XSS

Missing validation

on front-end

Missing expired

time session

The data would

be stolen.

The front-end

could be change

59

Missing encrypt

URL

CSRF

The attacker tries

to inject the

CSRF

Don’t use the

correct Get and

Post method.

Don’t use captcha.

The account

could be stolen.

The lost of data

IDOR

(INSECURE

DIRECT

OBJECT

REFERENCE)

Allow attackers to

bypass

authorization and

access resources

directly by

modifying the

value of a

parameter

The developer

does not aware of

this bug.

The secret

information of

service can be

revealed by a

hacker.

IV.4.2. Document Management Response to Recommendations

Type Risks
Recommendatio

n
Accept Transfer Mitigate

Master

Service

and

Agents

Services

Linux kernel

exploit

Update and upgrade

Linux kernel
 √

Misconfiguration
Configuration

checklist standard
 √

DDOS attack Using a cloud server √

OS out of date Update OS √

Natural disasters

Backup electricity

supply Store data on

a cloud

√ √

One of service

stops working

Implement a bot to

check live services
√

Web

portal

XSS/ CSS

injection
Pentest √

 CSRF Pentest √

60

IDOR

(INSECURE

DIRECT

OBJECT

REFERENCE)

Pentest √

IV.4.3. Document and Track Implementation of Accepted

Recommendations

Type Risks Recommendation Response Description

Master

Service

and

Agents

Services

Linux kernel

exploit

Update and upgrade

Linux kernel
Mitigate

Keep Linux kernel up

to date.

Misconfiguration
Configuration

checklist standard
Mitigate

Created configuration

checklist standard as

soon as possible.

Validate checklist

configuration each

time configuration

DDOS attack Using a cloud server Transfer
Apply solution

immediately

OS out of date Update OS Mitigate Keep OS up to date.

Natural disasters

Backup electricity

supply Store data on

the cloud

Accept &

Transfer

Electricity supply is

to be purchased as

soon as possible.

One of service

stops working

Implement a bot to

check live services
Accept

Implement as soon as

possible.

Web

portal

XSS/ CSS

injection
Pentest Mitigate

Don’t need to hire the

Pentest team we using

our manpower.

CSRF Pentest Mitigate

IDOR

(INSECURE

DIRECT

OBJECT

REFERENCE)

Pentest Mitigate

61

V. Specifications, Development and Implementation Plan

V.1. Logical Model Of Our System.

 As we mentioned before, our logical model looks like in Figure V.1.a. This

is a kind of microservice architecture follow the principles of service-oriented

architecture (SOA) design. We separate each component to a microservice and

connect them together.

Figure V.1.a. Logical Model Of Our System.

● Pros of this model:

By using the above model, we have so many pros, especially is about speed

and expandable because it has all the pros of microservices.

○ Deploy each microservice on a different platform, using different

programming languages and developer tools.

62

○ Microservices use APIs and communication protocols to interact

with each other, but they don’t rely on each other otherwise.

○ Our team can develop, maintain, and deploy each microservice

independently.

○ Single-responsibility leads to other benefits as well. Each member

has their own responsibility for their service.

○ Scale better, as you can scale them separately, whenever it’s

necessary.

○ Isolated services have a better failure tolerance. It’s easier to

maintain and debug a lightweight microservice than a complex

application.

○ Speed up the scan speed, if we want the scan to be faster, we can use

more scan server.

○ Faster development cycles (easier deployment and debugging).

● Cons of this model:

○ Communication can be hard without using automation and advanced

methodologies such as Agile.

○ The simplicity of single-responsibility microservices, lose on the

complexity of the network.

○ Communication between microservices can mean poorer

performance, as sending messages back and forth comes with a

certain overhead. Poorer performance, as microservices need to

communicate (network latency, message processing, etc.)

○ We need to manage the whole lifecycle of the microservice, from

start to end.

○ Harder to test and monitor because of the complexity of the

architecture.

○ Security issues (harder to maintain transaction safety, distributed

communication goes wrong more likely, etc.).

○ If a microservice does not respond, we have to detect that issue and

fix the microservice as soon as possible.

V.1.1. Kafka Message Queue.

● Why we need a message queue?

Because our system will have multiple states, each state will process a

different kind of data and they need to communicate with each other. So

we need a thing for them to do the above works and message queue is the

63

best option for us. It does not depend on which programming language we

choose because it is a separate system.

● Why do we choose Kafka?

Actually on the world right now, there is a lot of mesythonqueue like

RabbitMQ, Kafka, ActiveMQ, … And after our research, we consider

between RabbitMQ and Kafka. This table below, we compare between

RabbitMQ and Kafka.

Kafka RabbitMQ

Data Pipeline Message Base

Do not save the state of

consumers, so there is no

guarantee that consumers would

receive messages that they

subscribed.

Save the state of consumers to

ensure that all consumers will

receive messages that they

subscribed.

After all consumer receive, the

message is deleted

The message is not deleted until a

specific time.

A consumer can choose which

message to get.

A consumer will only receive a

new message.

 Then we decide to use Kafka as our message queue because of it more

suitable for our system than RabbitMQ, and it also has a great community use

Python with Kafka.

● How do we use Kafka Message Queue to exchange data between

components?

 First, we will create the following topics and then create Consumer and

Producer for each of them.

Topic Description

nmapScan
This is the first topic a target will come. This target will be

scanned with Nmap.

nmapOutput

After a target being scanned with Nmap done. Its

information will come to this topic. Prepare for the next

stage.

nseScan This topic store information for targets that will be scanned

64

with NSE

nseOutput
This topic store information for targets which were scanned

with NSE. And these targets will come to the next stage.

CVESearchScan
This topic store information for targets that will be scanned

with CVESearch

CVESearchOutput

This topic store information for targets which were scanned

with CVESearch. And these targets will come to the next

stage.

wappalyzerScan
This topic store information for targets that will be scanned

with CVESearch

wappalyzerOutput
This topic store information for targets which were scanned

with NSE. And these targets will come to the next stage.

nessusScan
This topic store information for targets that will be scanned

with CVESearch

nessusOutput
This topic store information for targets which were scanned

with Nessus. And these targets will come to the next stage.

acunetixScan
This topic store information for targets that will be scanned

with CVESearch

acunetixOutput

This topic store information for targets which were scanned

with Acunetix. And these targets will come to the next

stage.

niktoScan
This topic store information for targets that will be scanned

with CVESearch

niktoOutput
This topic store information for targets which were scanned

with Nikto. And these targets will come to the next stage.

elasticSend
Target’s information in this topic will be sent and stored in

Elasticsearch Database.

V.1.2. ELK Module (Elasticsearch Database).

V.1.2.1. Elastic Search

● Why do we choose ElasticSearch instead of Relation Database or other

NoSQL Database?

There is a lot of database type, from the relational database, NoSQL

database to in-memory database, each of them have their own pros and

65

cons. In our project, our data will always be in the form of JSON, so the

NoSQL will be more relevant. And then we consider between Elasticsearch

and MongoDB. But to interact with ElasticSearch is much easier then

MongoDB because they provide a REST API so we can interact with them

through our browser or CURL. And ElasticSearch give us a wonderful

search mechanism, it is very handy when dealing with analyzing data.

Beside these pros, they have an ELK stack we can use Logtash to collect

data and Kibana to visualize our data. It is just exactly what we need.

● How we save data in ElasticSearch?

To save data in ElasticSearch, especially using python 3 as in our project,

first we need to install the elasticsearch, a Python client for ElasticSearch

package through pip:

pip3 install elasticsearch

Secondly, we create an ElasticSearch object to connect with the

ElasticSearch database through a connect_elasticsearch() method:

from elasticsearch import Elasticsearch

from config.config import ElasticConfig

def connect_elasticsearch():

 # Connect to cluster over SSL using auth for best security:

 es_header = [{

 'host': ElasticConfig.HOSTNAME,

 'port': ElasticConfig.PORT,

 'use_ssl': ElasticConfig.USESSL,

 'http_auth': (ElasticConfig.USERNAME, ElasticConfig.PASSWORD)

 }]

 es = Elasticsearch(es_header)

 return es

As you can see, the header used to connect to the ElasticSearch database

in our project is a JSON data type with 4 key, value pairs. The keys are:

● Host: The host of the ElasticSearch database

● Port: Port we will use to connect

● Use_ssl: Use Secure Socket Layer or not (True or False)

● Http_auth: The username and password to the Host above

 And all above values are saved in the config file:

class ElasticConfig:

66

 HOSTNAME = 'vulnerabilitymanabem-1160079090.us-west-2.bonsaisearch.net'

 USERNAME = 'rugowuyofm'

 PASSWORD = 'nfsnbt15y2'

 USESSL = True

 PORT = 443

After the connection is created successfully, we use the index() method

from the connection to save data to the ElasticSearch database. Two arguments

are passed:

● Index: The index (or table) on the ElasticSearch database we want to save

to

● Body: The data we want to save, in JSON type

 Below is an example of this method when we create a new scan:

Import to Elastic

 es = db_connect.connect_elasticsearch()

 body = {

 'name' : name,

 'description' : description,

 'target' : target_raw,

 'next_run_at' : scan_time_epoch,

 'run_interval' : scan_interval,

 'created_date' : created_time_epoch,

 'scanned_time' : 0,

 'scan_type' : scan_type

 }

 es.index(index=ElasticConfig.SCAN_INDEX, body=body)

V.1.2.2. Kibana

To visualize ElasticSearch’s data, Kibana helped us a lot. First of all, it’s

the Dev tools. From the very first day of developing the Web Portal, we used

Postman to test the API(s), getting data from the databases. But it’s only

convenient in some simple API, examples:

● nmap/_search?size=50 (get first 50 records of the nmap index)

● nmap/_doc/rWjYBWwBrt6MOkH1EeH3_1564983083_127.0.0.1 (get

only record in nmap index with the specific id)

When you started to need to test the more complicated request, things got more

complicated as well, for instance, what if we want to sort the 50 results in the first

request above in scan time from latest?

We have to add this in the Body of the request in JSON type:

{

 "sort" : [{"scanstat.startTime" : "desc"}]

}

67

And there’re even more when we want to handle multiple request at the same

time. It’s the time when we were suggested to use the Kibana Dev tools by the

leader. Here’s the interface of the Dev tools:

Figure V.1.2.2.a. Kibana dev tools interface

As you can see, i’m having about 14~15 written requests to test at the same

monitor to test and extremely easy to modify and handle, here are 4 requests in

Postman:

68

Figure V.1.2.2.b. Postman interface

 We can also use kibana to manage our solution instead of the web interface,

because kibana can interact with the database. But it requires more technical

skills. We can also search for what we want in kibana

Figure V.1.2.2.c. Using Kibana search for vulnerabilities

 We can also visualize the data in Kibana with some simple step like so:

Figure V.1.2.2.d. Visualize data in kibana

 We can also create a dashboard by import some chart to monitor the

system like this:

69

Figure V.1.2.2.e. Dashboard in Kibana

V.1.3. Scan Management (Scan Scheduler).

 Implementing the scan scheduler function for our system is quite different

from the usual way because our solution is a distributed system, we use micro-

service and connect those services. And in our solution, the user creates a new

scan on the web portal component, but the scan is implemented in the master

component, and usually, they are run on two different machines. So we come up

with another solution.

 The JSON below is our database model for Scan in ElasticSearch.

{

 "name" : "new scan",

 "description" : "this scan is a testing scan",

 "target" : "192.168.1.0/24 kenh14.vn",

 "next_run_at" : 2563949690,

 "run_interval" : 1000000000,

 "created_date" : 1563900617,

 "scanned_time" : 1,

 "scan_type" : "non-commercial"

}

Notice the ̀ next_run_at` and ̀ run_interval` field. Because using these two

fields we can make a scan scheduler.

● Next_run_at means the timestamp of this scan next run.

● Run_interval means the second between two consecutive runs

of this scan.

70

 First, we will have a cron service on our master server to repeatedly query

to Elasticsearch database and get all the scan which have the Next_run_at field

smaller or equal to the current timestamp.

 Secondly, the master server will run this scan and update the

Next_run_at = current_timestamp + Run_interval.

 The two above steps helps us implement our scan scheduler. If a scan just

needs to run only once, we will set the Run_interval field to infinity or one

billion seconds.

V.1.4. Agent Callers (Deployed On Master Server).

 To transfer data from the master server to agent servers, we have to use a

socket to make a communication channel between them. And for each type of

tool, we need to transfer a different type of data. Beside that, we have to manage

some cases of the network, for example, what if the connection is failed? what if

agents return unexpected value? How to extract the information we need from the

output of agents? Now, we will talk more specific for each tool.

V.1.4.1. Nmap Caller.

 The code below shows how Nmap on master service makes the

connection to Nmap agent service.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((self.HOST, self.PORT))

 jData = json.dumps(self.data) + '\n'

 s.sendall(jData.encode('utf-8'))

 jOutputData = b''

 while True:

 _data = s.recv(1024)

 if not _data:

 break

 jOutputData += _data

And if there is some error when scanning, we will retry by resending the

target data back to Kafka queue by the code below:

def resendDataToNmapScanQueue(self):

 self.data['retryTimes'] = self.data['retryTimes'] + 1

 nmapScanProducer = NmapScanProducers()

 nmapScanProducer.sendDataToQueue(self.data)

And this is how we parse the output data of Nmap agent.

71

try: # Nmap agents can send invalid data

 outputData = json.loads(jOutputData.decode('utf-8'))

 scan_stat = dict()

 scan_stat["startTime"] = _startTime

 scan_stat["endTime"] = int(time.time())

 scan_stat["duration"] = (scan_stat["endTime"] - scan_stat["startTime"])

 outputData["scanstat"] = scan_stat

 status = outputData.get('status')

 if status == None:

 raise ValueError("Error with json")

 elif status == 'error':

 error = outputData.get('detail', "Error do not have detail")

 self.logger.error("nmap Agents Error = {} .. Resend {} to nmapScan

queue".format(error, self.data))

 self.resendDataToNmapScanQueue()

 elif status == 'hostUp' or status == 'hostDown':

 outputData['root_scan_id'] = self.data.get('root_scan_id')

 outputData['scan_type'] = self.data.get('scan_type')

 outputData['scan_id'] = self.data.get('scan_id')

 outputData['scan_name'] = self.data.get('scan_name')

 nmapOutputProducer = NmapOutputProducers()

 nmapOutputProducer.sendDataToQueue(outputData)

except:

 self.logger.exception("There are something wrong with return data from nmap Agent for

target= {}: Recived data = {} ... Resend {} to nmapScan queue".format(self.data,

jOutputData, self.data))

 self.resendDataToNmapScanQueue()

V.1.4.2. Wappalyzer Caller.

 The code below shows how Wappalyzer on master service makes the

connection to Wappalyzer agent service. It is the same way with Nmap.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((self.HOST, self.PORT))

 jData = json.dumps(self.data) + '\n'

 s.sendall(jData.encode('utf-8'))

 jOutputData = b''

 while True:

 _data = s.recv(1024)

 if not _data:

 break

 jOutputData += _data

 And this is how we parse the output data of Wappalyzer agent.

try: # To handle agents can send invalid data

 outputData = json.loads(jOutputData.decode('utf-8'))

 outputData["hostname"] = self.data.get("hostname")

72

 scan_stat = dict()

 scan_stat["startTime"] = _startTime

 scan_stat["endTime"] = int(time.time())

 scan_stat["duration"] = (scan_stat["endTime"] - scan_stat["startTime"])

 outputData["scanstat"] = scan_stat

 outputData['root_scan_id'] = self.data.get('root_scan_id')

 outputData['scan_type'] = self.data.get('scan_type')

 outputData['scan_id'] = self.data.get('scan_id')

 outputData['scan_name'] = self.data.get('scan_name')

 wappalyzerOutputProducer = WappalyzerOutputProducers()

 wappalyzerOutputProducer.sendDataToQueue(outputData)

except:

 self.logger.exception("There are something wrong with return data from nmap

Wappalyzer for target= {}: Recived data = {}".format(self.data, jOutputData))

 self.resendDataToWapplyzerScanQueue()

V.1.4.3. CVE-Search Caller.

 This module we will talk more in the “V.1.5” because we used both

socket and web API to communicate between master and agents.

V.1.4.4. NSE Caller.

 The code below shows how NSE on master service makes the connection

to NSE agent service. It is the same way with Nmap.

def resendDataToNseScanQueue(self):

 self.data['retryTimes'] = self.data['retryTimes'] + 1

 nseScanProducers = NseScanProducers()

 nseScanProducers.sendDataToQueue(self.data)

And if there is some error when scanning, we will retry by resending the

target data back to Kafka queue by the code below:

def resendDataToNseScanQueue(self):

 self.data['retryTimes'] = self.data['retryTimes'] + 1

 nseScanProducers = NseScanProducers()

 nseScanProducers.sendDataToQueue(self.data)

 And this is how we parse the output data of NSE agent.

try: # NSE agents can send invalid data

 outputData = json.loads(jOutputData.decode('utf-8'))

 scan_stat = dict()

 scan_stat["startTime"] = _startTime

 scan_stat["endTime"] = int(time.time())

73

 scan_stat["duration"] = (scan_stat["endTime"] - scan_stat["startTime"])

 outputData["scanstat"] = scan_stat

 status = outputData.get('status')

 if status == None:

 raise ValueError("Error with json")

 elif status == 'error':

 error = outputData.get('detail', "Error do not have detail")

 self.logger.error("NSE Agents Error = {} .. Resend {} to NSEScan

queue".format(error, self.data))

 self.resendDataToNseScanQueue()

 elif status == 'hostUp' or status == 'hostDown':

 outputData['root_scan_id'] = self.data.get('root_scan_id')

 outputData['scan_type'] = self.data.get('scan_type')

 outputData['scan_id'] = self.data.get('scan_id')

 outputData['scan_name'] = self.data.get('scan_name')

 nseOutputProducers = NseOutputProducers()

 nseOutputProducers.sendDataToQueue(outputData)

except:

 self.logger.exception("There are something wrong with return data from NSE Agent for

target= {}: Recived data = {} ... Resend {} to NSEScan queue".format(self.data,

jOutputData, self.data))

 self.resendDataToNseScanQueue()

V.1.4.5. Nikto Caller.

 The code below shows how Nikto on master service makes the connection

to Nikto agent service. It is the same way with Nmap.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((self.HOST, self.PORT))

 jData = json.dumps(self.data) + '\n'

 s.sendall(jData.encode('utf-8'))

 jOutputData = b''

 while True:

 _data = s.recv(1024)

 if not _data:

 break

 jOutputData += _data

 And this is how we parse the output data of Nikto agent.

try: # Nikto agents can send invalid data

 outputData = json.loads(jOutputData.decode('utf-8'))

 if 'msg' in outputData:

 self.logger.info(outputData.get('msg'))

 return

 scan_stat = dict()

 scan_stat["startTime"] = _startTime

74

 scan_stat["endTime"] = int(time.time())

 scan_stat["duration"] = (scan_stat["endTime"] - scan_stat["startTime"])

 outputData["scanstat"] = scan_stat

 if "port" in outputData:

 del outputData["port"]

 if "host" in outputData:

 del outputData["host"]

 if "ip" in outputData:

 del outputData["ip"]

 outputData["target"] = self.data.get("target")

 outputData["hostname"] = self.data.get("hostname")

 outputData["portScanned"] = self.data.get("portScanned")

 outputData['root_scan_id'] = self.data.get('root_scan_id')

 outputData['scan_type'] = self.data.get('scan_type')

 outputData['scan_id'] = self.data.get('scan_id')

 outputData['scan_name'] = self.data.get('scan_name')

 niktoOutputProducer = NiktoOutputProducers()

 niktoOutputProducer.sendDataToQueue(outputData)

except:

 self.logger.exception("There are something wrong with return data for target= {}:

Recived data = {}".format(self.data, jOutputData))

V.1.4.6. Acunetix Caller.

 The code below shows how Acunetix on master service makes the

connection to Acunetix agent service. It is the same way with Nmap.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((self.HOST, self.PORT))

 jData = json.dumps(self.data) + '\n'

 s.sendall(jData.encode('utf-8'))

 jOutputData = b''

 while True:

 _data = s.recv(1024)

 if not _data:

 break

 jOutputData += _data

 And this is how we parse the output data of Acunetix agent.

try: # Acunetix agents can send invalid data

 outputData = json.loads(jOutputData.decode('utf-8'))

 scan_stat = dict()

 scan_stat["startTime"] = _startTime

 scan_stat["endTime"] = int(time.time())

75

 scan_stat["duration"] = (scan_stat["endTime"] - scan_stat["startTime"])

 outputData["scanstat"] = scan_stat

 outputData["vuln_stats"] = outputData.get("scan_stat").get("vuln_stats")

 if "scan_stat" in outputData:

 del outputData["scan_stat"]

 outputData["hostname"] = self.data.get("hostname")

 outputData['target'] = self.data.get('target')

 outputData["portScanned"] = self.data.get("portScanned")

 outputData['root_scan_id'] = self.data.get('root_scan_id')

 outputData['scan_type'] = self.data.get('scan_type')

 outputData['scan_id'] = self.data.get('scan_id')

 outputData['scan_name'] = self.data.get('scan_name')

 acunetixOutputProducers = AcunetixOutputProducers()

 acunetixOutputProducers.sendDataToQueue(outputData)

except:

 self.logger.exception("There are something wrong with return data for target= {}:

Recived data = {}".format(self.data, jOutputData))

V.1.4.7. Nessus Caller.

 The code below shows how Nessus on master service makes the connection

to Nessus agent service. It is the same way with Nmap.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((self.HOST, self.PORT))

 jData = json.dumps(self.data) + '\n'

 s.sendall(jData.encode('utf-8'))

 jOutputData = b''

 while True:

 _data = s.recv(1024)

 if not _data:

 break

 jOutputData += _data

 And this is how we parse the output data of Nessus agent.

try: # Nessus agents can send invalid data

 nessusOutputData = json.loads(jOutputData.decode('utf-8'))

 outputData = dict()

 outputData['scan_details'] = self.processNessusOutputData(nessusOutputData)

 outputData['vuln_stats'] = {

 "informational" : 0,

 "low" : 0,

 "medium" : 0,

 "high" : 0

 }

76

 for scan_detail in outputData['scan_details']:

 if scan_detail['cvss'] < 4:

 outputData['vuln_stats']['low'] += 1

 elif scan_detail['cvss'] < 7:

 outputData['vuln_stats']['medium'] += 1

 else:

 outputData['vuln_stats']['high'] += 1

 scan_stat = dict()

 scan_stat["startTime"] = _startTime

 scan_stat["endTime"] = int(time.time())

 scan_stat["duration"] = (scan_stat["endTime"] - scan_stat["startTime"])

 outputData["scanstat"] = scan_stat

 outputData["hostname"] = self.data.get("hostname")

 outputData['target'] = self.data.get('target')

 outputData["ports"] = self.data.get("ports")

 outputData['root_scan_id'] = self.data.get('root_scan_id')

 outputData['scan_type'] = self.data.get('scan_type')

 outputData['scan_id'] = self.data.get('scan_id')

 outputData['scan_name'] = self.data.get('scan_name')

 nessusOutputProducers = NessusOutputProducers()

 nessusOutputProducers.sendDataToQueue(outputData)

except:

 self.logger.exception("There are something wrong with return data for target= {}:

Recived data = {}".format(self.data, jOutputData))

V.1.5. Vulnerability Database Crawl From Trusted Sources (CVE-

Search).

CVE search is a tool to import CVE (Common Vulnerabilities and

Exposures) and CPE (Common Platform Enumeration) to facilitate the search and

processing of CVEs. The main objective of the software is to avoid doing direct

and public lookups into the public CVE databases.

77

Figure V.1.5. Logical Model Of CVE Search.

With this solution, CVE Search is responsible for receiving data after

scanning Nmap or Wappalyzer. From there, we get information about the CPE

list and continue processing data. There are 2 cases here:

if self.data.get("source") == "nmapOutput":

 weakness = self.scanWithAsyncIO(cpes)

● As a result, from nmapOutput, we use asynchronous processing to

process data faster and more.

def scanWithAsyncIO(self, cpes):

 loop = asyncio.new_event_loop()

 asyncio.set_event_loop(loop)

 result_cpes = loop.run_until_complete(self.request_all_vuls(cpes))

 loop.close()

 return result_cpes

async def request_all_vuls(self, cpes):

 async with aiohttp.ClientSession() as session:

 tasks = []

 for cpe in cpes:

 tasks.append(self.sendRequest(session, cpe))

 return await asyncio.gather(*tasks, return_exceptions=True)

78

For each flow of CPE processing, we use the API CVE Search to get the

result from http://cve.circl.lu/api/ and then return a result JSON.

Finally, we extract that result to get CVE, CWE, CVSS to save to scan

results.

● The result is from Wapplayer, then call the agent's function:

 elif self.data.get("source") == "wappalyzerOutput":

 result["weakness"] = self.scanWithSocket(cpes)

When the request is sent through the agent, each element in the CPEs list

is retrieved from the transmitted data processed:

for cpe in cpes:

 cmd = ['python3', '/opt/cve/bin/search.py', '-p', cpe, '-o', 'json']

 process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

 jobs.append((cpe, process))

For each CPE, the agent calls a CVE Search service returns the same result

as the call API CVEsearch. It also returns a JSON result and we dissect that result

to get CVE, CWE, CVSS.

Taken together, we combine the results from two cases to create a record

of that scan.

V.1.6. Agent Services (Deployed On Agent Servers).

 All Agent Services runs on xinetd. We made a bash script on all Agent

Services to make it easy to install on Agent Servers. Agent Services receives data

from Master Services as a JSON type then it will start the action on the data just

received. As soon as the action is done, it will transfer all the data of the action to

Master Service also as a JSON type. The following sections describe how each

Agent Service work.

V.1.6.1. Nmap Agent Service.

 Nmap is the first service to run on over the project. On this agent, it has 3

actions to work. Firstly, it receives JSON data from Master Service and starts to

run other function through the code below:

def main():

 rawData = input()

 jData = json.loads(rawData)

 scan = Scan(jData)

 scan.run()

http://cve.circl.lu/api/

79

Secondly, it will run Nmap and export scan data to XML file by option -

oX of Nmap. All the actions is by the following code:

def gen_cmd(self, target):

 opt = ['nmap', '-sV', '-oX', self.fileName, '--top-ports 1000', '-p 1-10000', '--

open', '-T4', target, '> /dev/null 2>&1']

 cmd = ' '.join(opt)

 return cmd

def gen_fileName(self, target):

 times = time.ctime()

 self.fileName = time.strftime('/var/log/nmap/' + target + '_%Y%m%d-%H%M%S.xml')

def runCmds(self, target):

 cmd = self.gen_cmd(target)

 os.system(cmd)

In the end, it will parse data from XML file was exported by nmap to JSON

type and print out to Master Service receive it. On this action, we made a library

for this. It uses ElementTree from python library to get data from XML type. The

code below is a part of code describe how this library works:

 openports = []

 dports = dom.findall('host/ports/port')

 for i in dports:

 portid = i.get('portid')

 dservice = i.find('service')

 if dservice != None:

 product = dservice.get('product')

 version = dservice.get('version')

 extrainfo = dservice.get('extrainfo')

 ostype = dservice.get('ostype')

 method = dservice.get('method')

 conf = dservice.get('conf')

 dcpe = dservice.findall('cpe')

 cpes = []

 for j in dcpe:

 cpes.append(j.text)

 else:

 product = None

 version = None

 extrainfo = None

 ostype = None

 method = None

 conf = None

 dcpe = None

 cpes = []

 openports.append({

 'port': portid,

 'product': product,

80

 'version': version,

 'extrainfo': extrainfo,

 'ostype': ostype,

 'method': method,

 'conf': conf,

 'cpe': cpes

 })

 scan_result['openports'] = openports

 return scan_result

V.1.6.2. Wappalyzer Agent Service.

 This Agent Service has the same way to receive data from Master Service

as Nmap Agent Service.

def main():

 targetJson = input()

 targetObject = json.loads(targetJson)

 openports = targetObject.get('openports')

 openports.append('')

 resultObject = dict()

 resultObject['result'] = []

 resultObject['target'] = targetObject.get('target')

Next, it will run the wappalyzer application on Server by subprocess. We

use subprocess because it supports run multiple processes to speed up the scan.

jobs = []

 prefix = ['http://']

 commonPaths = ['', 'admin', 'login', 'admin.php', 'login.php']

 for openport in openports:

 for pre in prefix:

 for commonPath in commonPaths:

 finalTarget = pre + targetObject.get('target') + ':' + openport + '/' +

commonPath

 # finalTarget = targetObject.get('target')

 cmd = ['wappalyzer', finalTarget]

 result = subprocess.Popen(cmd, stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

 jobs.append(result)

 time.sleep(1) # Wait for wappalyzer to send request, if we dont wait, the

result can be incorrect

 solvePort = []

 for job in jobs:

 try:

 output = job.communicate()[0]

 _result = output.decode('utf-8')

 __result = json.loads(_result)

81

 finalTarget = list(__result.get('urls').keys())[0]

 if 'error' not in __result.get('urls').get(finalTarget):

 normalizedData = normalizeOutputData(__result)

 port = str(normalizedData.get('port'))

 path = normalizedData.get('path')

 if port+path not in solvePort:

 solvePort.append(port+path)

 resultObject['result'].append(normalizedData)

 except:

 pass

 print (json.dumps(resultObject))

Before printing out the result, we normalize the data to make it match the

data type of Elasticsearch database

def normalizeOutputData(outputData):

 # reconstruct application to array

 applications = outputData.get('applications')

 finalApplications = []

 for application in applications:

 categories = application.get('categories')

 finalCategories = []

 for category in categories:

 for categoryName in category.values():

 finalCategories.append(categoryName)

 application['categories'] = finalCategories

 application['confidence'] = int(application.get('confidence'))

 finalApplications.append(application)

 outputData['applications'] = finalApplications

 # del "meta" key

 if 'meta' in outputData:

 del outputData['meta']

 # reconstruct "urls"

 urls = outputData.get('urls')

 port = None

 path = '/'

 for url in urls:

 url = url.split('/')

 if len(url[2].split(':')) == 2:

 port = url[2].split(':')[1]

 path = '/'.join(url[3:])

 if 'urls' in outputData:

 del outputData['urls']

 outputData['port'] = port

 outputData['path'] = path

 return outputData

82

V.1.6.3. CVE-Search Agent Service.

 The following code shows how CVE-Search Agent Service receives data

from Master Service, the same way to Nmap Agent Service.

def main():

 jData = input()

 data = json.loads(jData)

 cpes = data.get('cpes', [])

After that, it will run CVE-Search application on server as multiple

process.

jobs = []

 for cpe in cpes:

 cmd = ['python3', '/opt/cve/bin/search.py', '-p', cpe, '-o', 'json']

 process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

 jobs.append((cpe, process))

Finally, it extracts data from each job and appends to return a result then

print it out.

for job in jobs:

 try:

 process = job[1]

 jOutputs = process.communicate()[0].decode('utf-8').split('\n')

 cpe = job[0]

 for jOutput in jOutputs:

 try:

 output = json.loads(jOutput)

 res = dict()

 res['cve'] = output.get("id")

 res['cvss'] = output.get("cvss")

 res['cwe'] = output.get("cwe")

 res['cpe'] = cpe

 outputResult.append(res)

 except Exception as e:

 pass

 except Exception as e:

 print("Exception =", e)

 traceback.print_exc()

 print(json.dumps(outputResult))

83

V.1.6.4. NSE Agent Service.

 This agent almost has the same way to run like Nmap Agent Service. The

first step is receiving data from Master Service.

def main():

 rawData = input()

 jData = json.loads(rawData)

 scan = Scan(jData)

 scan.run()

Next step, generate command and run it. Nmap will export an XML file

by option -oX of it.

 def gen_cmd(self, target, port):

 opt = ['nmap', '-oX', self.fileName, '-p', port, '--script=vuln,exploit', target,

'> /dev/null 2>&1']

 cmd = ' '.join(opt)

 return cmd

 def gen_fileName(self, target, port):

 times = time.ctime()

 self.fileName = time.strftime('/var/log/nse/' + target + '_' + port + '_%Y%m%d-

%H%M%S.xml')

 #self.fileName = 'testScript.xml'

 def runCmds(self, target, port):

 cmd = self.gen_cmd(target, port)

 os.system(cmd)

End of it also has a library to convert an XML file to JSON data. Same

with Nmap Agent Service, it uses ElementTree to read data from XML type. A

part of code following shows how it works:

84

 dhosts = dom.find("runstats/hosts")

 if dhosts != None:

 up = dhosts.get('up')

 down = dhosts.get('down')

 else:

 return returnError('Could\'t find up and down status')

 if up == '0' and down == '0':

 return returnError('Nmap error, 0 up 0 down')

 elif down == '1':

 scan_result['status'] = 'hostDown'

 return scan_result

 dhost = dom.find("host")

 if dhost != None:

 if dhost.find("address") != None:

 scan_result['target'] = dhost.find("address").get('addr')

 else:

 return returnError('Nmap error, not found IP in XML file')

 if dhost.find("hostnames/hostname") != None:

 scan_result['hostname'] = dhost.find("hostnames/hostname").get('name')

 else:

 scan_result['hostname'] = None

 else:

 return returnError('Nmap error, nmap did not finished')

 nseOutputs = []

 dports = dom.findall('host/ports/port')

 for i in dports:

 portid = i.get('portid')

 dscript = i.findall('script')

 if dscript != None:

 for j in dscript:

 resultz = dict()

 script = j.get('id')

 output = j.get('output')

 resultz['script'] = script

 resultz['output'] = output

 resultz['port'] = portid

 nseOutputs.append(resultz)

 scan_result['nseOutputs'] = nseOutputs

 return scan_result

85

V.1.6.5. Nikto Agent Service.

 Nikto Agent Service has the same way to get data from Master Service as

another Agent Service before.

def main():

 rawData = input()

 jData = json.loads(rawData)

 scan = Scan(jData)

 scan.run()

Next step, it generates command and executes it like the code below.

 def gen_cmd(self, target):

 path = sys.argv[0].replace("niktoAgent.py", "")

 opt = ['perl', path + 'nikto/program/nikto.pl', '-host', target, '-o',

self.fileName, '> /dev/null 2>&1']

 cmd = ' '.join(opt)

 return cmd

 def gen_fileName(self, target):

 times = time.ctime()

 self.fileName = time.strftime('/var/log/nikto/' + '_%Y%m%d-%H%M%S.json')

 def runCmds(self, target):

 cmd = self.gen_cmd(target)

 os.system(cmd)

Because the JSON data of Nikto output was not the correct format of

JSON, so we have to fix it by code

 def fixJson(self, target):

 try:

 with open(self.fileName, 'r') as js:

 result = js.read()

 result = result.replace(',]', ']').replace(',}', '').replace('\n', '')

 except Exception as e:

 return json.dumps({'error': e})

 return result

After all, it will print out the final result.

V.1.6.6. Acunetix Agent Service.

We write a library to communicate with Acunetix web application.

Firstly, it should initiate some attribute

86

 def __init__(self, username=None, password=None, domain=None, ssl_verify=True, *args,

**kwargs):

 if any([not username, not password, not domain]):

 raise ValueError("username, password and domain are required")

requests.packages.urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 super(Acunetix, self).__init__()

 url = ["https://", domain]

 self.verify = ssl_verify

 self.timeout = 2

 self.headers = {

 "Accept": "application / json, text / plain, * / *",

 "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36",

 "Content-Type": "application/json;charset=UTF-8",

 "Accept-Encoding": "gzip, deflate, br",

 "Accept-Language": "en-US,en;q=0.9",

 }

 self.authenticated = False

 self.max_redirects = 0

 self.username = username

 self.password = hashlib.sha256(password.encode("utf-8")).hexdigest()

 self.url = "".join(url)

 self.check_connectivity()

The following is code of some functions used in this Service:

● Login

 def login(self):

 try:

 url = self.url + "/api/v1/me/login"

 data = {"email": self.username, "password": self.password, "remember_me":

True}

 resp = self.post(url, json=data)

 if resp.status_code == 204 and "X-Auth" in resp.headers:

 self.authenticated = True

 self.headers.update({"X-Auth": resp.headers['X-Auth']})

 return self.me

 else:

 raise Exception("Failed to authenticate")

 except Exception as e:

 raise e

● Create a target, it will return a JSON data that contain target ID

 def create_target(self, address, description):

 try:

 url = self.url + "/api/v1/targets"

 data = {"address": str(address), "description": str(description)}

 resp = self.post(url, json=data)

87

 if resp.status_code == 201:

 return resp.json()

 return {'error': 'Failed to create target'}

 except Exception as e:

 raise e

● Delete a target by target ID

 def delete_target(self, target_id):

 try:

 url = self.url + "/api/v1/targets/{}".format(target_id)

 if self.delete(url).status_code == 204:

 return True

 return {'error': 'Failed to delete target'}

 except Exception as e:

 raise e

● Run scan of a target by target ID, it will return scan ID.

 def create_scan(self, target_id, scan_type, report_templated_id=None):

 try:

 url = self.url + "/api/v1/scans"

 data = {

 "target_id": target_id,

 "profile_id": scan_type,

 "schedule": {

 "disable": False,

 "start_date": None,

 "time_sensitive": False

 }

 }

 if report_templated_id:

 data.update({"report_template_id": report_templated_id})

 resp = self.post(url, json=data)

 scan_id = resp.headers['Location'].split('/')[-1]

 return scan_id

 except Exception as e:

 raise e

● Get scan status by scan ID, it will return a JSON data.

 def scan_status(self, scan_id, extra_stats=False):

 try:

 url = self.url + "/api/v1/scans/{}".format(str(scan_id))

 resp = self.get(url).json()

 if 'code' in resp and resp['code'] == 404: # if scan doesn't exists on server

 return None

88

 progress = resp['current_session']['progress']

 status = resp['current_session']['status']

 vuln_stats = None

 if status != "scheduled":

 vuln_stats = resp['current_session']['severity_counts']

 vuln_stats["informational"] = vuln_stats.pop("info")

 data = {'progress': progress, 'status': status, 'vuln_stats': vuln_stats,

 'session_id': resp['current_session']['scan_session_id']}

 if extra_stats:

 url = url +

'/results/{}/statistics'.format(resp['current_session']['scan_session_id'])

 resp = self.get(url).json()

 aborted = resp['scanning_app']['wvs']['abort_requested']

 start_date = resp['scanning_app']['wvs']['start_date']

 end_data = resp['scanning_app']['wvs']['end_date']

 data.update({'aborted': aborted, 'start_date': start_date, 'end_date':

end_data})

 return data

 except Exception as e:

 raise e

● Get list vulnerabilities of a scan by scan ID, it will return a JSON data.

 def get_scan_vulnerabilities(self, scan_id):

 try:

 url = self.url + "/api/v1/scans/{}".format(str(scan_id))

 resp = self.get(url).json()

 url = url +

'/results/{}/vulnerabilities'.format(resp['current_session']['scan_session_id'])

 resp = self.get(url).json()['vulnerabilities']

 return resp

 except Exception as e:

 raise e

● Get vulnerability by id

 def get_vulnerability_by_id(self, scan_id, vulnerability_id, scan_session_id=None):

 try:

 if not scan_session_id:

 scan_session_id = self.scan_status(scan_id)['session_id']

 url = self.url +

"/api/v1/scans/{}/results/{}/vulnerabilities/{}".format(scan_id, scan_session_id,

vulnerability_id)

 resp = self.get(url).json()

 return resp

 except Exception as e:

89

 raise e

Because Acunetix only allow 1 user login at a time, so if Master Service

send 2 scans at a time, the second scan will can’t run because it will fail on login.

Then we have to write a function to save the entire Acunetix library object to a

file and reuse it after.

def save_object(obj):

 try:

 with open('./obj_acu.pkl', 'wb') as obj_file:

 pickle.dump(obj, obj_file)

 except:

 return None

def load_object():

 try:

 with open('./obj_acu.pkl', 'rb') as obj_file:

 obj = pickle.load(obj_file)

 return (obj)

 except:

 return None

Now is the main function of this Agent Service. It still has the same way

to receive data from Master Service as other Agent Service before.

def main():

 rawData = input()

 jData = json.loads(rawData)

 scan_type = jData.get('acunetix_scan_type')

 address = jData.get('target_url')

Nextly, it will load some data from config file to create an object of

Acunetix library. Then it also loads the object from the file if it is not the first run

on this server. After this, it will check if the object loaded from file is still can

communicate with Acunetix website. If not it will do function login and save the

object to file.

def run(address, scan_type):

 cf = config.Config()

 acunetix = Acunetix(username = cf.username, password = cf.password, domain =

cf.domain, ssl_verify = cf.ssl_verify)

 try:

 _acunetix = load_object()

 if _acunetix != None:

 _acunetix.url = 'https://' + cf.domain

90

 if _acunetix.check_logging() == False:

 acunetix.login()

 save_object(acunetix)

 else:

 acunetix = _acunetix

 else:

 acunetix.login()

 save_object(acunetix)

Next step is create target and run the scan:

 target = acunetix.create_target(address=address, description='Creating scan for '

+ address)

 target_id = target.get('target_id')

 scan_id = acunetix.create_scan(target_id=target_id, scan_type=scan_type)

After run scan, it will check every 10 seconds if the scan is done:

 while True:

 time.sleep(10)

 scan_stat = acunetix.scan_status(scan_id=scan_id, extra_stats=False)

 if scan_stat.get('status') == 'completed':

 break

Finally, when the scan is done, it will get all vulnerabilities of this scan and

print it out. Before return the result to Master Service, it will remove the target

from Acunetix web application.

 scan_stat = acunetix.scan_status(scan_id=scan_id, extra_stats=True)

 objects['scan_stat'] = scan_stat

 scan_vuls = acunetix.get_scan_vulnerabilities(scan_id=scan_id)

 for scan_vul in scan_vuls:

 vul_id = scan_vul.get('vuln_id')

 vuls_details = acunetix.get_vulnerability_by_id(scan_id=scan_id,

vulnerability_id=vul_id)

 objects['scan_details'].append(vuls_details)

 acunetix.delete_target(target_id)

 objects['target'] = address

 print (json.dumps(objects))

91

V.1.6.7. Nessus Agent Service.

The same to Acunetix Agent Service, we also write a library to

communicate with Nessus web application.

Here is function that initiate the Nessus library object:

 def __init__(self, username=None, password=None, accessKey=None, secretKey=None,

domain=None, ssl_verify=True, X_API_Token=None, *args, **kwargs):

 if not domain:

 raise ValueError("domain are required")

 if not ((username and password) or (accessKey and secretKey)):

 raise ValueError("username, password or APIKeys are required")

requests.packages.urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 super(Nessus, self).__init__()

 url = ["https://", domain]

 self.verify = ssl_verify

 self.timeout = 5

 self.headers = {

 "Accept": "application / json, text / plain, * / *",

 "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36",

 "Content-Type": "application/json;charset=UTF-8",

 "Accept-Encoding": "gzip, deflate, br",

 "Accept-Language": "en-US,en;q=0.9",

 }

 self.authenticated = False

 self.max_redirects = 0

 self.headers.update({"X-API-Token": X_API_Token})

 self.url = "".join(url)

 if username and password:

 self.username = username

 self.password = password

 elif accessKey and secretKey:

 self.accessKey = accessKey

 self.secretKey = secretKey

 apiKeys = ["accessKey=" + accessKey, "secretKey=" + secretKey]

 self.headers.update({"X-ApiKeys": ';'.join(apiKeys)})

 if not self.check_logging():

 raise Exception('X-ApiKeys is not working')

 self.check_connectivity()

There are some functions used in this Agent Service:

● Login

 def login(self):

 while True:

 try:

92

 url = self.url + "/session"

 data = {"username": self.username, "password": self.password}

 resp = self.post(url, json=data)

 if resp.status_code == 200:

 token = resp.json()['token']

 self.authenticated = True

 self.headers.update({"X-Cookie": "token=" + token})

 return True

 else:

 raise Exception('Failed to authenticate')

 except requests.exceptions.ConnectionError:

 time.sleep(3)

 pass

 except Exception as e:

 raise e

● Logout

 def logout(self):

 while True:

 try:

 url = self.url + "/session"

 resp = self.delete(url)

 if resp.status_code == 200:

 return True

 else:

 raise Exception('Failed to logout')

 except requests.exceptions.ConnectionError:

 time.sleep(3)

 pass

 except Exception as e:

 raise e

● Create a scan, it will return a JSON data that contain scan ID

 def create_scan(self, target, uuid, ports):

 while True:

 try:

 url = self.url + "/scans"

 setting = {

 "name": target,

 "text_targets": target,

 "launch_now": True,

 "portscan_range": ports,

 "ping_the_remote_host": "no"

 }

 data = {"uuid":uuid, "settings": setting}

 resp = self.post(url, json=data)

 if resp.status_code == 200:

 return resp.json()

 raise Exception('Failed to create scan')

93

 except requests.exceptions.ConnectionError:

 time.sleep(3)

 pass

 except Exception as e:

 raise e

● Delete scan by scan ID

 def delete_scan(self, scan_id):

 while True:

 try:

 url = self.url + "/scans/" + str(scan_id)

 resp = self.delete(url)

 if resp.status_code == 200:

 return

 raise Exception('Failed to delete scan')

 except requests.exceptions.ConnectionError:

 time.sleep(3)

 pass

 except Exception as e:

 raise e

● Get scan details by scan ID, it will return a JSON data that contain plugin

name

 def details_scan(self, scan_id):

 while True:

 try:

 url = self.url + "/scans/" + str(scan_id)

 resp = self.get(url)

 if resp.status_code == 200:

 return resp.json()

 raise Exception('Failed to get scan details')

 except requests.exceptions.ConnectionError:

 time.sleep(3)

 pass

 except Exception as e:

 raise e

● Get a list of plugin details by scan ID and plugin name, it will return a

JSON data

 def plugins_details(self, scan_id, plugin):

 while True:

 try:

 url = self.url + "/scans/" + str(scan_id) + "/plugins/" + str(plugin)

 resp = self.get(url)

 if resp.status_code == 200:

94

 return resp.json()

 raise Exception('Failed to get plugin details')

 except requests.exceptions.ConnectionError:

 time.sleep(3)

 pass

 except Exception as e:

 raise e

The main function of Nessus Agent Service also has a function to receive

data from Master Service as another.

def main():

 rawData = input()

 jData = json.loads(rawData)

 scan_type = jData.get('nessus_scan_type')

 address = jData.get('target')

 ports = jData.get('ports')

 _ports = ','.join(ports)

It will load some config from file config to initiate an object of Nessus

library. It has 2 ways to authorize, by username and password of Nessus user or

by Access key and Secret key.

def run(target, scan_type, ports):

 cf = config.Config()

 try:

 if cf.username and cf.password:

 ns = Nessus(username = cf.username, password = cf.password, domain =

cf.domain, ssl_verify = cf.ssl_verify, X_API_Token=cf.X_API_Token)

 ns.login()

 elif cf.accessKey and cf.secretKey:

 ns = Nessus(accessKey = cf.accessKey, secretKey = cf.secretKey, domain =

cf.domain, ssl_verify = cf.ssl_verify, X_API_Token=cf.X_API_Token)

Nextly, it will create a scan and get scan ID:

 scan = ns.create_scan(target=target, uuid=scan_type, ports=ports)

 scan_id = scan['scan']['id']

After created scan, it will wait until the scan is done:

 while True:

 details_scan = ns.details_scan(scan_id)

 if len(details_scan['info']) > 0 and details_scan['info']['status'] ==

'completed':

95

 break

 time.sleep(5)

In the end, it will list all plugin appear on that scan and append it to a dict

object. After that, it will remove the scan and print out the final result.

 objects = dict()

 objects['scan_details'] = list()

 objects['target'] = target

 for scan_vul in details_scan['vulnerabilities']:

 vuls_details = ns.plugins_details(scan_id, scan_vul['plugin_id'])

 objects['scan_details'].append(vuls_details)

 break

 ns.delete_scan(scan_id)

 print (json.dumps(objects))

V.1.7. Web Portal.

Figure V.1.7.2.a. Interface Of Create New Scan Form

 Dashboard is the overview of the vulnerabilities and all the scanned

targets in Vulnerability Management. It brings the IT manager a statistical view

including doughnut chart of critical vulnerabilities from low to high

(percentage), amount of vulnerabilities through time (time range selected by

user), top critical vulnerabilities and top recent vulnerabilities discovered.

About targets, it brings up with Targets with most Vulnerabilities (amount) and

Targets with critical Vulnerabilities (critical). Additionally, the IT manager can

set it to refresh periodically to update it automatically, the time to choose is

between, 1, 5, 10 and 30 minutes.

96

Figure V.1.7.1. Dashboard of Vulnerabilities Management

V.1.7.2. Create New Scan.

As a function of the Web portal, we support users to create new scan

through a form. Besides the other field has its own default value, the Scan Name

and the Target field are required to input manually. The form we support can be

referred as below.

97

Figure V.1.7.2.a. Interface Of Create New Scan Form

The Scan Name and Scan Description fields help us define and describe

our scan to be created. Scan Type field currently allows selecting between non-

commercial scan tools or full scan tools including paid ones (Acunetix and Nessus

at the moment).

Two current options in the Scan time is Instant and Select time. If we select

Instant, the valid scan we create will be pushed into the queue and will be active

as soon as the previous scans are done. Otherwise, an input field with the type of

“datetime-local” will show up and allow us to pick the date and time for the scan

to start. Date from the past is not allowed.

98

Figure V.1.7.2.b. Invalid date in create new scan form

With the Target field, there are 3 types of target allowed: IP address, IP

range and Domain (ex: 35.240.138.138, 35.240.138.0/24, google.com).

Figure V.1.7.2.c. Target and Scan interval tooltip

User can input multiple targets at the same time separated by an empty

space “ ”, the string target then will be split into substrings by space and test one

by one by generated RegEx, if one of the substring failed to match all 3 RegEx(s)

then the whole target will considered invalid. The code of this process is shown

below:

const REGEX_IP = /^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-

9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$/g;

const REGEX_IP_RANGE = /^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-

9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(3[0-2]|[1-2][0-9]|[0-9]))$/g;

const REGEX_DOMAIN = /^(?!:\/\/)([a-zA-Z0-9-_]+\.)*[a-zA-Z0-9][a-zA-Z0-9-_]+\.[a-zA-

Z]{2,11}?$/igm;

for (let i = 0; i < targets.length; i++) {

 if (targets[i].match(REGEX_IP) !== null ||

 targets[i].match(REGEX_IP_RANGE) !== null ||

 targets[i].match(REGEX_DOMAIN) !== null) continue;

else {

 $('#noti').text("Please enter valid IP, IP range or domain separated by space!");

 $('#noti').show();

 return false;

99

 }

}

return true;

The last field is Scan Interval, determine how many seconds until the next

scan from the last time scan in second (see Figure V.1.7.c.), default value is

1000000000s (~ 31.7 years).

After a valid form is submitted, all the data will be sent to the backend to

the address /newscan/create with HTTP method POST. In here the target will be

tested with the RegEx(s) once again and add to the ElasticSearch database with

the index() method.

body = {

 'name' : name,

 'description' : description,

 'target' : target_raw,

 'next_run_at' : scan_time_epoch,

 'run_interval' : scan_interval,

 'created_date' : created_time_epoch,

 'scanned_time' : 0,

 'scan_type' : scan_type

}

es.index(index=ElasticConfig.SCAN_INDEX, body=body)

create_result = 1

Finally, create result will be sent back to the browser to notify the user.

Figure V.1.7.2.d. Interface When Scan Have Been Created Successfully

V.1.7.3. Show Scan Informations.

V.1.7.3.a. Tools scan result

 Throughout the document, there are a variety of tools were mentioned that

used in our scan progress to determine vulnerabilities on the system. And before

combining all of them to bring the user an overview, we support viewing the

specific result of those tools as well. In the Web Portal, they are split into 2

sections Non-commercial and Commercial as below.

100

Figure V.1.7.3.a.1. Scan tools

The tools in the Non-commercial section are:

● Nmap (Port information)

● Wappalyzer (Website technology)

● CVE-Search (Common Vulnerabilities and Exposures)

● Nikto (Web server)

● NSE (Nmap Scripting Engine)

 And the tools in the Commercial section:

● Acunetix (Advance Web server scan)

● Nessus (Service scan)

 Before going deep into specific information of all the tools above, we will

start with the common information fields first. These fields are:

1. Target: The IP address of the viewing target

2. Hostname: The hostname corresponding to the target above

3. Scan ID: The ID of the scan the target was found

4. Scan Name: Name of the scan above

5. Init Time: Time the target was found, in the UTC-7 time zone

6. Scan Time: The scan duration of the scan mentioning, in second

101

 Figure V.1.7.3.a.2. Scan tools common fields

 Next is the specific fields of each tool:

● Nmap

○ Status: Determine that the host is UP or DOWN

○ Port: The port number on that host

○ OS_Product_Version: The combination string of the OS, Product

and Version found on the mentioned port (if any), separated by the

underscore character.

○ Method: The method Nmap used to found the target

○ CPE: Common Platform Enumeration found on the port (if any)

○ Extrainfo: Extra information that notable (if any)

 Figure V.1.7.3.a.3. Nmap ports information

● Wappalyzer

○ Port: Number of the viewing port

○ Technology: Technology using on that port

○ Web: The website with corresponding technology

○ Version: Version of the technology using

102

Figure V.1.7.3.a.4. Wappalyzer ports technology info

● CVE-Search

○ CPE: The viewing CPE (Common Platform Enumeration)

○ CVE: The CVE(s) found on the viewing CPE

○ CWE: Common Weakness Enumeration found

○ CVSS: The severity of the CVE (from 0-10)

Figure V.1.7.3.a.5. CVE-Search CVE info

● Nikto

103

○ Port Scanned: Number of the port

○ OSVDB: ID of the Vulnerability on the Open Source Vulnerability

Database

○ Method: HTTP Method having the Vulnerability

○ URL: URL having the Vulnerability

○ Msg: Message from Nikto

Figure V.1.7.3.a.6. Nikto vulnerabilities info

● NSE

○ Port: Number of the viewing port

○ NSE Script: The NSE script executed on the viewing port

○ Output: Output of the script

Figure V.1.7.3.a.7. NSE port script info

● Acunetix

○ Vulnerability: Name of the vulnerability

○ URL: URL of the vulnerability was found

○ Parameter: The parameter can be exploited

104

○ Severity: the degree of vulnerability impact and the difficulty

involved in exploiting it.

○ CVSS Score: CVSS Score of the Vulnerability

 Figure V.1.7.3.a.8. Acunetix vulnerabilities scan info

All the vulnerabilities in this list have more detailed page as below.

Figure V.1.7.3.a.9. Acunetix vulnerability detail

● Nessus

○ Plugin name: Name of the plugin Nessus used to scan on the target

105

○ Plugin Output: Output of the plugin (threat, port number, etc)

○ Description: Description of the vulnerability found

○ Solution: Suggestion for covering the vulnerability

○ CVSS Score: CVSS Score of the Vulnerability

Figure V.1.7.3.a.10. Nessus scan detail

V.1.7.3.b. Target result (combined from tools)

 After the scanning process is done, all the data from the tools are collected,

we group it with the key is the IP target and get an overview of all the information

of the target. From hostname, what ports are opening, vulnerabilities on those

ports... to the vulnerabilities on the webserver of a single target.

106

Figure V.1.7.3.b. Target scan detail

V.1.7.3.c. Vulnerabilities result (combined from tools)

As an important function of the Web portal, we support users to manage

and statistics Vulnerabilities. Our function can be introduced as follows:

● Screen Transition: from the left menu, click the button Vulnerabilities

Figure V.1.7.e. Button Vulnerabilities on left menu

● Screen:

107

Figure V.1.7.f. Interface of Vulnerabilities Web

● Item :

○ Show [10] Entries per page: A Selected Attribute that allows users

to adjust the number of items displayed on the page.

○ Sort by [Init Time Desc]: A Selected Attribute that allows the user

to select the displayed page sorted by Time Scan ascending or

descending

○ Table displays item list:

■ #: Numerical order

■ Name: Name of Vulnerability (based on the scanned tool)

■ Target: The IP address of the target having that Vulnerability

■ Time Scan: Time the Vulnerability was found

■ Scan Name: The name that the user places when scanning

■ Scan Type: Commercial and Non-commercial

■ Scan Tool: Tool used has scanned out Vulnerability

■ Critical Level: Displays the severity of Vulnerability

● Backend:

To display the Vulnerability page we have incorporated all the data that the

user has scanned. That is the connection of many databases such as Nessus,

Nikto, Accunetix, CVE Search to create an object of Scan overview and

detail:

def generate_info_based_on_index(vul, index, source):

 vuls = []

 if index == "nessus":

 vul['index'] = "Nessus"

 for vul_record in source.get('scan_details'):

108

 vul['name'] = vul_record.get('pluginname')

 vul['level'] = vul_record.get('cvss')

 vul['link'] = "/nessus/detail/" + vul['id']

 elif index == "nikto":

 vul['index'] = "Nikto"

 for vul_record in source.get('vulnerabilities'):

 vul['name'] = vul_record.get("OSVDB") if vul_record.get("OSVDB") != "0" else "None"

 vul['level'] = "NaN"

 vul['link'] = "/nikto/detail?id=" + vul['id']

 elif index == "acunetix_summary":

 vul['index'] = "Acunetix"

 for vul_record in source.get('scan_details'):

 vul['name'] = vul_record.get('vt_name')

 vul['level'] = vul_record.get('cvss_score')

 vul['link'] = "/acunetix/detail/" + vul['id'] + "/" + vul_record.get('vuln_id')

 elif index == "cvesearch":

 vul['index'] = "CVE-Search"

 for vul_record in source.get('weakness'):

 vul['name'] = vul_record.get('cve')

 vul['level'] = vul_record.get('cvss')

 vul['link'] = "/cve/detail?id=" + vul['id']

 vul['cvss_color'] = generate_cvss_color(vul['level'])

 vuls.append(vul)

 return vuls

 V.1.7.3.d. Scan result (combined from tools)

As an important function of the Web portal, we support users to manage

and statistics Vulnerabilities. Our function can be introduced as follows:

● Screen Transition: from the left menu, click the button Scans

109

Figure V.1.7.g. Button Scans on left menu

● Screen:

110

Figure V.1.7.h. The interface of Scans Web

● Item :

○ Show [10] Entries per page: A Selected Attribute that allows users

to adjust the number of items displayed on the page.

○ Sort by [Init Time Desc]: A Selected Attribute that allows the user

to select the displayed page sorted by Time Scan ascending or

descending

○ Table displays item list:

■ #: Numerical order.

■ Scan Name: The name that the user places when scanning.

■ Scan Description: Detailed description of the scan.

■ Target: The IP address /IP range that user Scanned.

■ Created Date: Time to create "New Scan".

■ Next Run At :It is the last time scanned with the IP address /

IP range.

■ Run Interval:

■ Scan Type: Commercial and Non-commercial.

■ Scanned: The number of scans repeated on the IP address or

IP range.

■ Summary Result: Displays the number of vulnerabilities in

different levels from Informational to High.

● Backend:

To display the Scan page we have incorporated all the data that the user

has scanned. That is the connection of many databases such as Nessus,

Accunetix, CVE Search to create an object of Scan overview and

Scan Detail :

● Screen Transition: click the Target in table Scans

111

● Screen :

Figure V.1.7.i. The interface of Scan Detail Web

○ Common data: Display information about target

■ Item :

● Target: The IP address /IP range that user Scanned.

● Created Date: Time to create "New Scan".

● Scan Time: The number of scans repeated on the IP

address or IP range.

● Scan Type: Commercial (full_scan) and Non-

commercial.

● Next run: It is the last time scanned with the IP address

/ IP range.

● Total Records: Total number of scanned targets.

○ Targets in this scan info : Specific information about scanned targets

■ Item:

● #: Numerical order.

● Target: The IP address /IP range that user Scanned.

● Hostname: Name of the website, host

● Opened Ports: Ports detected open on IP address

● Scan ID:

● Init time: Scan time of that IP address

● Status: Status of the Scan : Doing

112

● Summary Result: Displays the number of

vulnerabilities in different levels from Informational to

High.

V.1.7.4. Analysis Scan Informations.

V.1.7.5. Authentication.

 The most important part in Web Portal is authentication because this

contains a lot of sensitive data. If a hacker or an unauthorized user can access

Web Portal it will make a critical risk on all over the system of organization

who is using our project. Because of this, we decided to apply some protection

on this part.

First deploy:

When the first deploy the Web Portal, system admin have to create an admin

account. After create account this endpoint will can’t access anymore.

Figure V.1.7.j. First deploy create account

Login:

A user has to login before using any function on this Web Portal.

After login will have 2 cases: First login user or User has been logged before.

If in case First login user, it will require user to use a Time-based One-time

Password (TOTP) application such as Google Authenticator or any application

like that on mobile phone to create Two-factor Authentication by scanning QR

code. This QR code just show only one time.

113

Figure V.1.7.k. Two-Factor Authentication Setup

In another case, User has been logged before, user has to provide valid Token

display in Authenticator application on mobile phone to access to Web Portal.

Figure V.1.7.l. Verify OTP Token

Role of user on system:

There are 2 roles on Web Portal: Administrator and Normal User

Normal User can use some functions such as: view information of scan or

create scan, change password by themselves...

Administrator can control or created other Administrator and Normal User

and can use all the functions like Normal User

Manage user on system (Administrator Function):

Only Administrator can access Manage user page. As I said before,

Administrator can control other User on system like: Create a new account,

lock or unlock account, Re-create OPT...

Figure V.1.7.m. Manage user page

114

V.2. Master Service, How We Assign Jobs For Agents And How Do

Master And Agent Can Exchange Data?

V.2.1. How we used Kafka Message Queue to know which tools to be

used next?

 As we mentioned before at V.1.1. Kafka Message Queue that we have

multiple topics for each tool. And the flow of a target when it comes to our

solution will be presented more details at V.4. How Does A Target Being Scanned

When A User Create New Scan. In this section, we will present how Kafka

Message Queue helps us to know which tools to be used next.

 At each tool, we created their topic in Kafka, and each tool we also have

their two consumers, one for input to the topic and the other solve the output data

of the tool. The below diagram shows how it works.

Figure V.2.1.a. Diagram Of Kafka Topic Flow

❏ The white box is the tool.

❏ The gray box is the Kafka topic consumer.

 At first, we pass the target to nmap_scan and it will be scanned with

Nmap, then the output of Nmap will pass to nmap_output. At here, we process

data and decide where it will go next based on their information.

● Ports + service will go to nse_scan, nessus_scan.

● Web ports will go to wappalyzer_scan, nikto_scan,

acunetix_scan.

115

● Cpes (the result of Nmap) and technologies (the result of

wappalyzer) will go to cvesearch_scan.

 After each tool above finish their scan, they will send the output data to

ElasticSearch database.

V.2.2. What Is Xinetd? And Why And Where We Used Xinetd To

Communicate Between Master And Agent?

 To use microservice architecture, we have to have a way to communicate

between services through the network. Usually, if we have a client-server model,

they will use RESTful API to communicate between them. But we want to create

a socket channel for client and server can have a persistent channel to

communicate. So we decided to use a socket.

 But to manage socket, we have to code a lot of handles a lot of cases,

optimize to connection and secure them. So we found out a much more

convenient way to use socket is use Xinetd.

Figure V.2.2.a Xinetd Flow Diagram

 Xinetd is an open-source super-server daemon, runs on many Unix-like

systems and manages Internet-based connectivity. We just need to code a normal

python file read from stdin and print output to stdout… Xinetd will help us to

make this application to a network service. What we need is a deploy file like

below:

#!/bin/bash

apt-get update

apt-get install python3 xinetd -y

python3 deploy.py

116

#!/usr/bin/python3

#coding=utf8

import os

from os import system

import sys

cwd = os.getcwd()

cveSearchAgent = '''service cveSearchAgent

{

 socket_type = stream

 protocol = tcp

 user = root

 wait = no

 server = /usr/bin/python3

 server_args = %s/cveSearchAgent.py -u

 port = 25799

}

''' % cwd

cveSearchService = 'cveSearchAgent 25799/tcp #

cveSearchAgent\n'

open('/etc/xinetd.d/cveSearchAgent','w').write(cveSearchAgent)

print('[OK] Added to xinetd.d')

open('/etc/services','a').write(cveSearchService)

print('[OK] Added new service to /etc/services')

system('/etc/init.d/xinetd restart')

create Log Path

path = "/var/log/cveSearch"

os.mkdir(path)

print ("Log Path is created")

print('''

============================

|| [+] Deploy finish :) ||

============================

''')

 Now, in the Agent server already have a service running. In the master

server, we can use a socket to connect to it as normal.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((self.HOST, self.PORT))

 jData = json.dumps(self.data) + '\n'

 s.sendall(jData.encode('utf-8'))

117

 jOutputData = b''

 while True:

 _data = s.recv(1024)

 if not _data:

 break

 jOutputData += _data

V.2.3. What Is Web REST API? And Why And Where We Used Web

RESTful API To Communicate Between Master And Agent?

 Beside connect through the socket and use the help of Xinetd, we also can

use Web RESTful API to communicate between master and agent in model client-

server. We use it in CVE-Search module because they already provided us the

Web API to search for CVE.

 By using the Web RESTful API, it helps us to reduce the burden of coding

and managing socket so we can save a lot of time. And the pros of this method is

we can use async to speed up instead of using multi-thread like in xinetd. The

code of async is below:

def scanWithAsyncIO(self, cpes):

 loop = asyncio.new_event_loop()

 asyncio.set_event_loop(loop)

 result_cpes = loop.run_until_complete(self.request_all_vuls(cpes))

 loop.close()

 return result_cpes

async def sendRequest(self, session, cpe):

 try:

 url = CVESearchConfig.URL + CVESearchConfig.API_CVEFOR + cpe

 async with session.get(url) as response:

 response = await response.json()

 result = []

 for res in response:

 cve = {}

 cve["cvss"] = float(res.get("cvss"))

 cve["cwe"] = res.get("cwe")

 cve["cve"] = res.get("id")

 cve["cpe"] = cpe

 result.append(cve)

 return result

 except:

 self.logger.exception()

 return []

118

V.3. How Does A Target Being Scanned When A User Create New

Scan.

In this section, we will show you which step a target will go through when

it be passed to our system. The below diagram shows all the steps, it looks like

Figure V.2.1.a but have some different components.

Figure V.3.a. Diagram Scan Life Cycle.

First, the user will create a new scan at the web portal, in the create new

scan section, user can choose if this scan is a scheduled scan or not and set the

type of scan. We have two different types of scan, that is non-commercial and

commercial. The non-commercial will not contain acunetix and nessus. Then all

the information which user have just inputted be sent to our Elasticsearch

database.

We have a module in master service that is called “scan_management”

which is a cron task will always check for a new scan on the Elasticsearch

database. We get all the scan which have the “next_run_at” field which is lower or

equal to the current time . below is the query of our “scan_management”.

body = {

 "query": {

 "range": {

 "next_run_at": {

 "lte": time.time()

119

 }

 }

 }

}

Then we get the scan information, we will split all the targets in that scan

and put it to the same process as we have presented at the “V.2.1. How we used

Kafka Message Queue to know which tools to be used next?” section.

At each tool, the master will look for the agent which run that tool and have

a remaining slot for this target to be scanned, if we found out that agent, we assign

job for that agent to scan this target. The way to assign a job for an agent has been

presented at the “V.2.2” and “V.2.3” sections. Then the master will create a new

thread to wait for the agent to finish the job, that process is presented in the

“V.1.4” section.

V.4. Configuration Files.

● Why do we choose Python as a config file but not others type of

config file?

If a developer needs to use a config file, they usually choose JSON, XML

or INI. But we decided to use a python file as a configuration file.

Following table is a comparison between these formats.

Python JSON XML INI (Linux)

Can write

comment

Can NOT write

comment

Can write

comment

Can write

comment

Easy for humans

to read

Easy for humans

to read

Not Easy for

humans to read

Not Easy for

humans to read

Do not need to use

any library
Need to use library Need to use library Need to use library

Just support

Python

Support many

programing

languages

Support many

programing

languages

Support many

programing

languages

Can include code

at the

configuration files

Can NOT include

code

Can NOT include

code

Can NOT include

code

Do not need to

learn new format

Need to know

about JSON

Need to know

about XML

Need to know

about INI

120

 After comparing all these type, we decided to use Python because it is the

most suitable type of configuration files for our project.

● What do the configuration files contains?

 The following code is the configuration file of master server. It includes

every configuration the master server need to be runnable. Each class represent

for config of a module in master server.

class KafkaConfig:

 BOOTSTRAPSERVER = 'localhost:9092'

class KafkaTopicNames:

 NMAPSCAN = 'nmapScan'

 NMAPOUTPUT = 'nmapOutput'

 CVESEARCHSCAN = 'CVESearchScan'

 CVESERACHOUTPUT = 'CVESearchOutput'

 NSESCAN = 'nseScan'

 NSEOUTPUT = 'nseOutput'

 ELASTICSEND = 'elasticSend'

 WAPPALYZERSCAN = 'wappalyzerScan'

 WAPPALYZEROUTPUT = 'wappalyzerOutput'

 NESSUSSCAN = 'nessusScan'

 NESSUSOUTPUT = 'nessusOutput'

 ACUNETIXSCAN = 'acunetixScan'

 ACUNETIXOUTPUT = 'acunetixOutput'

 NIKTOSCAN = 'niktoScan'

 NIKTOOUTPUT = 'niktoOutput'

class KafkaGroupIds:

 NMAPSCAN = 'nmapScan'

 NMAPOUTPUT = 'nmapOutput'

 CVESEARCHSCAN = 'CVESearchScan'

 CVESERACHOUTPUT = 'CVESearchOutput'

 NSESCAN = 'nseScan'

 NSEOUTPUT = 'nseOutput'

 ELASTICSEND = 'elasticSend'

 WAPPALYZERSCAN = 'wappalyzerScan'

 WAPPALYZEROUTPUT = 'wappalyzerOutput'

 NESSUSSCAN = 'nessusScan'

 NESSUSOUTPUT = 'nessusOutput'

 ACUNETIXSCAN = 'acunetixScan'

 ACUNETIXOUTPUT = 'acunetixOutput'

 NIKTOSCAN = 'niktoScan'

 NIKTOOUTPUT = 'niktoOutput'

class ElasticConfig:

 HOSTNAME = 'vulnerabilitymanabem-1160079090.us-west-2.bonsaisearch.net'

 USERNAME = 'rugowuyofm'

 PASSWORD = 'nfsnbt15y2'

 USESSL = True

 PORT = 443

 NMAPINDEX = 'nmap'

121

 CVESEARCHINDEX = 'cvesearch'

 NSEINDEX = 'nse'

 WAPPALYZERINDEX = 'wappalyzer'

 ACUNETIXINDEX = 'acunetix'

 ACUNETIX_SUMARY_INDEX = 'acunetix_summary'

 ACUNETIX_DETAIL_INDEX = 'acunetix_detail'

 SCAN_INDEX = 'scan'

 NIKTO_INDEX = 'nikto'

 NESSUS_INDEX = 'nessus'

class CVESearchConfig:

 URL = 'http://localhost:6969/'

 API_CVEFOR = 'api/cvefor/'

 CVESEARCH_ADDRESS = '127.0.0.1'

 CVESEARCH_PORT = 25799

class NmapAgents:

 NMAPAGENTSADDRESS = [{'HOST': '10.211.55.11', 'PORT': 25797}, {'HOST':

'192.168.31.196', 'PORT': 25797}]

 MAX_SCAN_PER_AGENT = 1

 MAX_RETRY_TIMES = 2

 THREAD_SLEEP_SECOND = 10

 MAX_POLL_INTERVAL_MS = 60*60*1000 # An hour in ms

 SESSION_TIMEOUT_MS = 60*1000

class NseAgents:

 NSEAGENTSADDRESS = [{'HOST': '10.211.55.11', 'PORT': 25798}, {'HOST':

'192.168.31.196', 'PORT': 25798}]

 MAX_SCAN_PER_AGENT = 1

 MAX_RETRY_TIMES = 2

 THREAD_SLEEP_SECOND = 15

 MAX_POLL_INTERVAL_MS = 60*60*1000 # An hour in ms

 SESSION_TIMEOUT_MS = 60*1000

class WappalyzerAgents:

 WAPPALYZER_AGENT_ADDRESS = [{'HOST': '10.211.55.11', 'PORT': 11497}]

class NessusAgents:

 NESSUS_AGENT_ADDRESS = [{'HOST': '10.211.55.11', 'PORT': 25701}]

 MAX_POLL_INTERVAL_MS = 60*60*1000 # An hour in ms

 MAX_SCAN_PER_AGENT = 1

 THREAD_SLEEP_SECOND = 20

 SESSION_TIMEOUT_MS = 60*1000

class AcunetixAgents:

 ACUNETIX_AGENT_ADDRESS = [{'HOST': 'localhost', 'PORT': 25700}]

 MAX_POLL_INTERVAL_MS = 60*60*1000 # An hour in ms

 MAX_SCAN_PER_AGENT = 1

 THREAD_SLEEP_SECOND = 20

 SESSION_TIMEOUT_MS = 60*1000

class NiktoAgents:

 NIKTO_AGENT_ADDRESS = [{'HOST': '10.211.55.11', 'PORT': 25801}]

 MAX_POLL_INTERVAL_MS = 60*60*1000 # An hour in ms

 MAX_SCAN_PER_AGENT = 1

 THREAD_SLEEP_SECOND = 20

122

 SESSION_TIMEOUT_MS = 60*1000

class ScanManagement:

 GET_SCAN_INTERVAL = 15

 DEFAULT_SIZE = 10

V.5. How Logging Have Been Saved And Managed?

 Logging is an essential factor of a system because it helps the developers

to know the state of the system, are errors occur when running, how long does it

take your system to run, etc. So we also developed a logging system for our

solution to know how well everything is running.

 We use the logger library of python to log important information, for

example, the error of any module, how data is transferred through modules, etc.

The logging configuration is shown below.

loggingConfig = {

 "version": 1,

 "disable_existing_loggers": False,

 "formatters": {

 "simple": {

 "format": "%(name)-45s - %(levelname)-6s - %(message)s"

 },

 "extended": {

 "format": "%(asctime)s - %(name)-45s - %(levelname)-6s - %(message)s"

 },

 "json": {

 "format": "name: %(name)s, level: %(levelname)s, time: %(asctime)s, message:

%(message)s"

 }

 },

 "handlers": {

 "console_handler": {

 "class": "logging.StreamHandler",

 "level": "DEBUG",

 "formatter": "simple",

 "stream": "ext://sys.stdout"

 },

 "info_file_handler": {

 "class": "logging.FileHandler",

 "level": "INFO",

 "formatter": "extended",

 "filename": "Log/info.log",

 "encoding": "utf8",

 "mode": "a"

 },

123

 "debug_file_handler": {

 "class": "logging.FileHandler",

 "level": "DEBUG",

 "formatter": "extended",

 "filename": "Log/debug.log",

 "encoding": "utf8",

 "mode": "a"

 },

 "error_file_handler": {

 "class": "logging.FileHandler",

 "level": "ERROR",

 "formatter": "extended",

 "filename": "Log/error.log",

 "encoding": "utf8",

 "mode": "a"

 }

 },

 "loggers": {

 "Module": {

 "level": "DEBUG",

 "propagate": True,

 "handlers": ["console_handler", "info_file_handler"]

 }

 },

 "root": {

 # Use this to log error message to file

 "level": "ERROR",

 "handlers": ["error_file_handler"]

 }

}

So the logs can be shown in the terminal and the log file at the same time.

They are separated into info log and error log make the debugging work much

easier.

124

VI. Project Validation

VI.1. Project Idea.

 Today, the protection of organizations information are a top concern in the

field of information security. Every organization needs a thorough risk

management, vulnerability solution for their system so we want to build a

technology system that can help system admin and also user normal can look on

interface and known which vulnerabilities are exists on that system, has it fixed

or any new vulnerabilities are explores.

VI.2. Result.

During the 4 months, we have built up a system of three components: Web

Application, Agent systems, Back-end Services.

 The web application system provides user authentication, vulnerability

management interface, statistic vulnerabilities how dangerous they are, scored by

third-party, web application also help system admin tracking their system and

vulnerabilities.

 Agent system can deploy on different servers or a single servers powerful

enough configuration in a flexible way. Each agent has a seperate function and

work together, data of agent are push on master machine then processing to

display final perspicuous data to user.

 Back-end services are built to process authentication and receive data got

by agent and display to user and receive user command, process it then push back

to agent handling in cycle.

VI.3. Future.

 The need to secure critical information is increasing, so the demand for a

system vulnerabilities management in enterprise will grow up. In the future, we

intend to develop more feature integrated more tools to get more reliable result,

improve performance, speed up scanning time. We also have plans to develop

more function not only management but also scanning specific vulnerabilities on

system, so our solution can be applied more widely.

125

DEFINITION AND ACRONYMS

Acronym Definition Note

CVE The Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

NSE Nmap Scripting Engine

SQL Structured Query Language

CPE Common Platform Enumeration

API Application Program Interface

RCE Remote Code Execution

PDF Portable Document Format

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

GUI Graphic User Interfaces

SSD Solid State Drive

RAM Random Access Memory

VPS Virtual Private Server

CPU Central Processing Unit

OS Operating System

VPN Virtual Private Network

IDS Intrusion Detection System

IPS Intrusion Prevention System

URL Uniform Resource Locator

NMAP Network Mapper

IP Internet Protocol

JSON JavaScript Object Notation

XML Extensible Markup Language

WAN Wide Area Network

LAN Local Area Network

VA Vulnerabilities Assessment

XSS Cross Site Scripting

126

WAF Web Application Firewall

DOS Denial of service

127

Appendix A – References

A.1. Books, Newspaper, and Magazines

[1.1] Darril Gibson, Managing Risk in Information Systems, Jones & Bartlett

Learning 2011.

A.2. Websites and Internet Resources

[2.1] Owasp. (2019). OWASP Risk Rating Methodology - OWASP. [online]

Available at:

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

[Accessed 30 Jul. 2019].

[2.2] Nmap. (2019). Introduction. [online] Available at:

https://nmap.org/

[Accessed 03 Aug. 2019].

[2.3] Wappalyzer.com. (2019). About. [online] Available at:

https://www.wappalyzer.com/about

[Accessed 02 Aug. 2019].

[2.4] Acunetix. (2019). Introduction to Acunetix. [online] Available at:

https://www.acunetix.com/support/docs/introduction/

[Accessed 31 Jul. 2019].

[2.5] Nikto. (2019). Description. [online] Available at:

https://cirt.net/nikto2-docs/introduction.html

[Accessed 01 Aug. 2019].

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://nmap.org/
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.wappalyzer.com/about
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.acunetix.com/support/docs/introduction/
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://cirt.net/nikto2-docs/introduction.html

128

[2.6] Nessus. (2019). Nessus Built for practitioners, by practitioners
. [online] Available at:

https://www.tenable.com/products/nessus

[Accessed 03 Aug. 2019].

[2.7] Vulnerability assessment. (2019). Vulnerability assessment — one step

further towards a better safety
. [online] Available at:

https://www.icheme.org/media/8972/xxiv-poster-07.pdf

[Accessed 28 July. 2019].

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.tenable.com/products/nessus
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.icheme.org/media/8972/xxiv-poster-07.pdf

129

Appendix B – Scan Result.

B.1. Scan at FIS (FPT Information System)

We create four scans and run on four different subnet

Our Dashboard show the analysis information about the system of FIS.

130

This is vulnerability page of the system.

This page show information about targets

131

Information page, which is nmap result.

Detail information scan of one target.

132

This page displays the overview about the technologies used in targets.

This page displays the vulnerabilities of target, which is scanned by CVE-

Search

133

This page show the detail information of a target, which is scanned by

CVE Search.

134

 This page show detail for a target which is scanned by Nikto.

This page shows information for target which is scanned by NSE.

135

 This page displays information for targets which is scanned by Acunetix.

 This page displays information for targets which is scanned by Nessus.

136

B.2. Scan Enterprise Public Range

 This page displays all targets which we scan. They are `FPT Edu (Non-

Commercial)` and `CMC Public IP (Non-Commercial)`

 This page displays the dashboard.

137

 This page displays all vulnerabilities.

138

This page displays all the target.

This page displays NMAP scan results.

 This page displays Wappalyzer scan results.

139

 This page display CVE Search scan results.

This page displays Nikto scan results.

140

 This page displays NSE scan result.

141

Appendix C - Scan performance

C.1. Internal result (LAN range)

 The table below is about our solution when we run the internal IP. The

number is just the result we measure when about ⅓ IPs is up.

 Non-Commercial Tools Commercial Tools

1 IP 8m 43s (contain a web-server) 34m 37s (contain a web-

server)

/24 Subnet 32m 2s (⅓ IPs is UP) 3h 47m 32s (⅓ IPs is

UP)

 Nmap performance:

 Time consuming

1 IP 2m 11s

/24 Subnet 9h 21m 10s

 CVE Search performance:

 Time consuming

1 IP 1s

/24 Subnet 17s

 Nikto performance. The number is just the result we measure when about

⅓ IPs is up.

 Time consuming

1 IP 59s

/24 Subnet 12m 14s

 NSE performance.

 Time consuming

1 IP 1m 39s

142

/24 Subnet 26m 26s

 Acunetix performance. The number is just the result we measure when

about ⅓ IPs is up. And there are just a few web servers running on the subnet.

 Time consuming

1 IP 5m 6s

/24 Subnet 3h 55m 50s

 Nessus performance.

 Time consuming

1 IP 7m 45s

/24 Subnet (Just 23 IPs) 2h 17m 20s

C.2. Internet Result (Public Range)

 Internet results depend on many aspects, internet connection, WAF,

Firewall, ... So, the result may be not really accurate.

 Total time scan:

 Time consuming

1 IP 13m 23s

/24 Subnet (⅕ is UP) 5h 24m 20s (⅕ IPs is UP)

 Nmap performance:

 Time consuming

1 IP 1m 13s

/24 Subnet (⅕ is UP) 4h 17m 10s

 CVE Search performance:

 Time consuming

143

1 IP 1s

/24 Subnet 17s

 Nikto performance. The number is just the result we measure when about

⅓ IPs is up.

 Time consuming

1 IP 7m 25s

/24 Subnet (⅕ is UP) 25m 47s

 NSE performance.

 Time consuming

1 IP 9m 15s

/24 Subnet (⅕ is UP) 3h 52m 27s

	TABLE OF CONTENTS
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACTION
	I. INTRODUCTION
	I.1 Project Information
	I.2. People:
	I.2.1. Team Name:
	I.2.2. Supervisors:
	I.2.3. Team Members:

	I.3. Background Of Our Project:
	I.4. The Initial Idea Of Our Group:
	I.5. A Brief Overview Of Current Vulnerabilities Assessment Tools On The World:
	I.5.1. What Are Vulnerabilities Assessment Tools?
	I.5.2. Overview Of Some Popular Tools.
	I.5.2.1 Nmap & NSE [2.2]
	I.5.2.2 Wappalyzers [2.3]
	I.5.2.3 Acunetix [2.4]
	I.5.2.4 Nikto [2.5]
	I.5.2.5 Nessus [2.6]

	I.5.3. Disadvantages Of Those Tools.

	I.6. The Proposed Idea Of Our Group:

	II. IA PROJECT MANAGEMENT PLAN
	II.1. Problem Setting
	II.1.1. Name Of The Capstone Project:
	II.1.2. Problem Abstraction.
	II.1.3. Project Overview.
	II.1.3.1. Current Situation
	III.1.3.2. The Proposed Solution

	II.2. Project Organization.
	II.2.1. Agile Process Model.
	II.2.2. Role And Responsibilities.
	II.2.3. Tools And Techniques Used.

	II.3. Project Management Plan
	II.3.1. Tasks:
	II.3.1.1 Project initialization, planning.
	II.3.1.2 Technical studies.
	II.3.1.3 Design and analysis project
	II.3.1.4 Implementation
	II.3.1.5 Testing and Fix Bug
	II.3.1.6 Deployment
	II.3.1.7 Document development

	II.3.2. Tasks Schedule Sheet: Assignments and Timetable
	II.3.3. All Meeting Minutes.

	III. RISK ASSESSMENT
	III.1. The Need Of Risk Assessment
	III.2. Identify Critical Information Assets
	III.2.1. Information Asset Classification
	III.2.1.2. Agent Service Components
	III.2.1.3 Web portal Components
	III.2.1.4 ElasticSearch Database Components

	III.2.2. System Characterization
	III.2.2.1. Logical Architecture
	III.2.2.2. System Components
	III.2.2.3. Users of the System
	III.2.2.4. Security and Compliance Requirements
	III.2.2.5. Information Protection Priorities

	III.3. Risk Identification
	III.3.1. Threat Identification
	III.3.2. Vulnerability Identification

	III.4. Risk Analysis
	III.4.1. Likelihood Assessment
	III.4.2. Impact Assessment
	III.4.3. Risk Determination (Rating)

	III.5. Control Identification and Assessment
	III.5.1. Risk Monitoring and Controlling
	III.5.1.1. Inputs to Risk Monitoring and Control
	III.5.1.2. Outputs from Risk Monitoring and Control

	III.5.2. Preventive Measures

	IV. RISK MANAGEMENT PLAN
	IV.1. Objectives of RMP
	IV.1.1. Lists of Threats & Vulnerabilities
	IV.1.2. Costs associated with risks
	IV.1.3. List of Recommendations to Reduce the Risks
	IV.1.4. Costs Associated with Recommendations
	IV.1.5. CBA (Cost-Benefit Analysis)

	IV.2. Assigning Responsibilities
	IV.3. Describing Procedures and Schedules for Accomplishment
	IV.4. Reporting Requirements
	IV.4.1. Present Recommendations
	IV.4.2. Document Management Response to Recommendations
	IV.4.3. Document and Track Implementation of Accepted Recommendations

	V. Specifications, Development and Implementation Plan
	V.1. Logical Model Of Our System.
	V.1.1. Kafka Message Queue.
	V.1.2. ELK Module (Elasticsearch Database).
	V.1.2.1. Elastic Search
	V.1.2.2. Kibana

	V.1.3. Scan Management (Scan Scheduler).
	V.1.4. Agent Callers (Deployed On Master Server).
	V.1.4.1. Nmap Caller.
	V.1.4.2. Wappalyzer Caller.
	V.1.4.3. CVE-Search Caller.
	V.1.4.4. NSE Caller.
	V.1.4.5. Nikto Caller.
	V.1.4.6. Acunetix Caller.
	V.1.4.7. Nessus Caller.

	V.1.5. Vulnerability Database Crawl From Trusted Sources (CVE-Search).
	V.1.6. Agent Services (Deployed On Agent Servers).
	V.1.6.1. Nmap Agent Service.
	V.1.6.2. Wappalyzer Agent Service.
	V.1.6.3. CVE-Search Agent Service.
	V.1.6.4. NSE Agent Service.
	V.1.6.5. Nikto Agent Service.
	V.1.6.6. Acunetix Agent Service.
	V.1.6.7. Nessus Agent Service.

	V.1.7. Web Portal.
	V.1.7.2. Create New Scan.
	V.1.7.3. Show Scan Informations.
	V.1.7.3.a. Tools scan result
	V.1.7.3.b. Target result (combined from tools)
	V.1.7.3.c. Vulnerabilities result (combined from tools)

	○ Common data: Display information about target
	○ Targets in this scan info : Specific information about scanned targets
	V.1.7.4. Analysis Scan Informations.
	V.1.7.5. Authentication.

	V.2. Master Service, How We Assign Jobs For Agents And How Do Master And Agent Can Exchange Data?
	V.2.1. How we used Kafka Message Queue to know which tools to be used next?
	V.2.2. What Is Xinetd? And Why And Where We Used Xinetd To Communicate Between Master And Agent?
	V.2.3. What Is Web REST API? And Why And Where We Used Web RESTful API To Communicate Between Master And Agent?

	V.3. How Does A Target Being Scanned When A User Create New Scan.
	V.4. Configuration Files.
	V.5. How Logging Have Been Saved And Managed?

	VI. Project Validation
	VI.1. Project Idea.
	VI.2. Result.
	VI.3. Future.

	DEFINITION AND ACRONYMS
	Appendix A – References
	A.1. Books, Newspaper, and Magazines
	A.2. Websites and Internet Resources

	Appendix B – Scan Result.
	B.1. Scan at FIS (FPT Information System)
	B.2. Scan Enterprise Public Range

	Appendix C - Scan performance
	C.1. Internal result (LAN range)
	C.2. Internet Result (Public Range)

