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Introduction
Introduction to Neural ODEs-Net,

a new family of Neural Networks.



Introduction1

Machine Learning

Deep Learning

Neural Networks

• Through years, neural 

networks is deeper, that 

the deeper the network is, 

the more difficult the 

model can learn.

• ResNets were born as the 

development of neural 

networks, that the number 

of classes has increased 

dramatically.

• In 2018, Chen et al. 

launched the Neural ODEs-

Net, a new family of neural 

network. Venn diagram showing the relationship 

among Machine Learning, Deep 

Learning and Neural Networks
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Background

• Ordinary Differential Equations

• Neural Networks



Background: Ordinary Differential Equations

A nth order Initial-Value Problems (IPVs) includes two parts:

• A nth order ordinary differential equation in the form of 

• Initial conditions of y and its derivatives at a particular point of x:

The first-order Initial-Value Problems:
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Background: Ordinary Differential Equations

Definition 2.2.1. A function 𝑓(𝑡, 𝑦) satisfies a Lipschitz condition on a 

set 𝐷 if there is a constant L ≥ 0 such that

wherever 𝑡, 𝑦1 , (𝑡, 𝑦2) are in 𝐷.

The Existence and Unique Theorem for First-Order Ordinary 

Differential Equations. Let f(t, y) is continuous on D = {(t, y) | t0 ≤ t ≤ T

and -∞ ≤ y ≤ ∞}. If f satisfies a Lipschitz condition on D in the variable y, 

then the initial-value problem

has a unique solution 𝑦(𝑡) for 𝑡 ∈ [𝑡0, 𝑇].
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Background: Ordinary Differential Equations

Numerical Methods for Initial-Value Problems:

Euler’s Method:

With initial condition 𝑤0 = 𝑦0 for each 𝑖 = 0, 1, 2, … , 𝑁 − 1,

2

Beside Euler’s Methods, it is known that the family of Taylor methods, the 

family of Linear Multistep Method, or the family of Runge-Kutta Methods 

is numerical methods for approximating the solutions of the initial problems



Background: Neural Networks2

Feedforward Neural Networks

Goal: To approximate some functions 𝑓(.) that map the input 𝑥 to the 

output ෝ𝒚 which is close to the desired value 𝑦

Strategies: To learn the value of parameters 𝑾 and 𝒃 that shows the best 

approximation of 𝑓(. )

A feedforward 

neural network.



Background: Neural Networks2

Units

(a) (b)

(a) A human neuron[1], (b) A unit in neural network.

Activation Functions

• Sigmoid Function:

• ReLU:

[1] https://simple.wikipedia.org/wiki/Neuron



Background: Neural Networks2

Layers

Layers in a feedforward neural network.

A feedforward neural network consists of an input layer, an output layer, 

and zero or more hidden layers



Background: Neural Networks2

Architecture of Feedforward Neural Networks

Architecture of 

Feedforward 

Neural Networks.

Hidden state of a feedforward neural network is 

given by

Layers in a feedforward neural network compose 

each other, so its architecture is named chain 

structure.



Background: Neural Networks2

The Universal Approximation Theorem

It is shown that there exists a feedforward neural network which is 

large enough to represent any functions.

It is expected that the network has more layers, it can produce the 

output closer to the desired valued. 



Background: Neural Networks2

Gradient-Based Optimization:

Steps of Gradient descent[2].

[2] https://en.wikipedia.org/wiki/Gradient_descent

Cost Function:

Steepest Gradient Descent:

Parameters Update

where, 𝛼 is learning rate.

Stochastic Gradient Descent (SGD):

Instead of training all large dataset, in SGD,

Dataset is sampled into minibatch size 𝑚′. 

where, 𝛼 is learning rate.



Background: Neural Networks2

Learning Process

Forward Propagation:

Input:

Output of each layer:

Output of Forward Propagation Process:

where, 𝒉(𝑘) is hidden state of the 𝑘𝑡ℎ layer



Background: Neural Networks2

Learning Process

Backward Propagation:

Cost function:

Update parameters 𝑾 and 𝒃 with Stochastic Gradient Descent:

where, 𝛼 is learning rate.



Background: Problems of Feedforward Neural Network2

Vanishing Gradient Problem

Parameters update not too much when vanishing gradient occurs. Therefore, 

our model cannot effectively learn.

Residual Neural Network

A building block 

in a residual network

Hidden state in a residual neural network is 

given by

where, 𝑧(𝑖) is hidden state at the 𝑖𝑡ℎ layer.
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Neural Ordinary 

Differential Equations
• What is Neural ODEs-Net?

• Learning Process of Neural ODEs-Net

• Implementation for Supervised Learning Problems

• Benefits of Neural ODEs-Net



Neural ODEs-Net: What is Neural ODEs-Net?3

ResNets Neural ODEs-Net

Since, the hidden state of 

residual neural network,

we have,

Adding more layers until it goes to 

infinity, then we get following IVP:

Using a neural network of form 

𝑓(𝑧 𝑡 , 𝑡, θ) to replace  𝑔(. ):



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Continuous Forward Propagation:

Input:

Output:

Forward Propagation:

Final time

Initial time

Differential

Initial value

Any ODE solvers



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Continuous Backward Propagation:

Loss function:



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Adjoint Method:

Define: (Adjoint State)

(Adjoint DiffEq)



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Adjoint Method:

Forward: =>



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Adjoint Method:

Forward:

Backward:

=>



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Adjoint Sensivity Method:

Forward:

Backward:
Combine 3 ODE Solves into 1

ODESolver

(DiffFunc, Initial Value, Start Time, End Time)



Neural ODEs-Net: Learning Process3

Learning Process of Neural ODE-Net

Adjoint Sensivity Method:

Forward:

Backward:

DiffFunc Initial Value



Neural ODEs-Net: Implementation3

Implementation for Supervised Learning Problems

Architecture of Neural ODE-Net followed by a linear layer[3]

[3] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. Advances in Neural Information Processing Systems, 2018. 

A Neural ODEs-Net is followed by a linear layer.



Neural ODEs-Net: Benefits3

Benefits of Neural ODEs-Net

Memory Benefits:

Computation Benefits:

• No need to store any intermediate quantity of the forward propagation.

• The model can be trained with constant memory.

• Modern ODE solvers quickly adjust their evaluation strategy to 

accomplish the required level of accuracy.

• The evaluating cost scales with the problem complexity
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Extensions of

Neural ODEs-Net

• Neural ODEs-Net with Evolutionary Parameters

• Neural ODEs-Net with Extra Dimensions



Extensions: Properties of Neural ODEs-Net4

Property 1: Trajectories in Neural ODEs-Net cannot intersect

Fundamental Theorem of ODEs

𝒛(𝑡) is a flow.

ODE trajectories:

Proposition 4.1.1.

Let 𝒛𝟏 𝑡 and 𝒛𝟐(𝑡) be two trajectories of and ODE with two different 

initial conditions, 𝒛𝟏 𝑡 ≠ 𝒛𝟐(𝑡) for all 𝑡 ∈ 0, 𝑇 . This implies that 

ODE trajectories do not intersect each other.



Extensions: Properties of Neural ODEs-Net4

Property 2: Neural ODEs-Net describes a Homeomorphism 

• A homeomorphism function is a continuous bijection that has a 

continuous inverse function.

A continuous deformation between a coffee mug and a donut 

illustrating that they are homeomorphic.[4]

[4] https://en.wikipedia.org/wiki/Homeomorphism#Properties

• Neural ODEs-Net describes a Homeomorphism.



Extensions: Functions Neural ODEs-Net cannot Represent4

Functions Neural ODEs-Net cannot Represent

Continuous trajectories mapping -1 to 1 (red) and 1 to -1 (blue) must intersect

each other, which is not possible for an ODE [5]

Let ℎ1𝑑: ℝ → ℝ be a function such that ℎ1𝑑 −1 = 1 and ℎ1𝑑 1 = −1.

[5] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch´e-Buc, E. Fox, and R. Garnett, 

editors, Advances in Neural Information Processing Systems 32
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Functions Neural ODEs-Net cannot Represent

Not Increasing Functions in One-dimensional Space

Proposition 4.2.1.

Neural ODEs-Net cannot represent a not increasing function ℎ ∶ ℝ → ℝ.

Extensions: Functions Neural ODEs-Net cannot Represent



Extensions: Properties of Neural ODEs-Net4

[6] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch´e-Buc, E. Fox, and R. Garnett, 

editors, Advances in Neural Information Processing Systems 32

(a) Diagram of g(x) in 2-dimentional space. (b) An example of

the feature mapping φ(x) from input data to features. 

(a) (b)

Let 𝑔 𝒙 : ℝ𝑑 → ℝ and 0 < 𝑟1 < 𝑟2, such that:

Functions Neural ODEs-Net cannot Represent



Extensions: Properties of Neural ODEs-Net4

An example of how 𝜙 transforms the disk. [6]

[6] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch´e-Buc, E. Fox, and R. Garnett, 

editors, Advances in Neural Information Processing Systems 32

(a) Diagram of g(x) in 2-dimentional space. (b) An example of

the feature mapping 𝜙(x) from input data to features. 

(a) (b)

𝜕𝐴

int(A) int(A)’

Functions Neural ODEs-Net cannot Represent

𝜕𝐴′



Extensions: ANODEs-Net with Extra Dimensions4

In ANODEs-Net with Extra Dimensions model, we lift the original 

model (ℝ𝑑) up the higher dimensional space (ℝ𝑑+𝑝). 

with input:

[4] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch´e-Buc, E. Fox, and R. Garnett, 

editors, Advances in Neural Information Processing Systems 32

[4]



Extensions: ANODEs-Net with Extra Dimensions4

[4] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch´e-Buc, E. Fox, and R. Garnett, 

editors, Advances in Neural Information Processing Systems 32

[4]



Extensions: ANODEs-Net with Evolutionary Parameters4

Neural ODEs-Net

ANODEs-Net with

Evolutionary Parameters

𝜃(𝑡) depends on 𝑡𝜃 is fixed over time



Extensions: ANODEs-Net with Evolutionary Parameters4

A coupled system of ODEs – Version 1:

• If g = 0, then it is exactly the original Neural ODEs-Net with fixed 

weights

“Activation network”

“Weight network”



Extensions: ANODEs-Net with Evolutionary Parameters4

A coupled system of ODEs – Version 2:

A constrained optimization problem:

(𝑥𝑖 , 𝑦𝑖) is the 𝑖𝑡ℎ training sample and its label Regularization



Extensions: ANODEs-Net with Evolutionary Parameters4

“Activation ODE”

“Evolution ODE”

subject to

A coupled system of ODEs – Version 2:

A constrained optimization problem:

𝐾: a convolution kernel/a Dirac delta function
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Experimental Results

• Compare training loss of pure Neural ODE-Net and its extensions

• Compare test accuracy between models



Experimental Results5

Ten classes of CIFAR-10 dataset

and ten image from each of them[5]

[5] https://www.cs.toronto.edu/~kriz/cifar.html



Experimental Results5

(b)

Training loss and validation loss for original model and augmented models on 

CIFAR-10 dataset. (a) Training losses (b) Validation losses. Note that 𝑝
indicates the numbers of augmented dimensions, so 𝑝 = 0 indicates the original 

neural ODEs-Net model.

(a)



Experimental Results5

Training loss and validation loss for original model and augmented models on CIFAR-10 dataset. 

(a) Neural ODEs Model (b) NODEs with Evolutionary Parameters Model

(b)(a)



Experimental Results5

(a)

(c)

(b)

Training and validation losses for models 

(a) The original NODEs (b) NODEs with 

extra dimensions 𝑝 = 1 (c) NODEs with 

extra dimensions 𝑝 = 5



Experimental Results5

Test accuracies for NODEs model and its extension
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Conclusion &

Future Works

• Conclusion

• Future works



Conclusion6

Recalled the knowledge of ordinary differential equations and 

feedforward neural networks.

Introduced Neural ODEs-Net which consists of its architecture, 

learning process and how to apply it for a supervised learning 

problems.

Pointed out properties of Neural ODEs-Net, its strengths and 

weakness.

Mentioned two extensions of Neural ODEs-Net with extra 

dimensions and evolutionary parameters.

Experimented with Neural ODE models and received the 

positive results.



Future Works6

The training time:

The representation ability:

Training time of a neural ODEs model is quite high compared to 

residual neural network. However, it is proved that it is possible to 

decrease the training time of a neural ODEs model[6].

[6] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman. How to train your neural ode: theworld of jacobian and kinetic regularization, 2020. 

[7] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for irregulartime series, 2020. 

Neural ODEs-Net is not an universal approximation. A new promising 

result which is proved that it is universal approximation

was introduced in 2020 with providing additional theoretical results[7].
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