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Introduction

1.1 Overview

● What is Speech Enhancement?
● The need for Speech Enhancement
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1.1 Overview

● Typical traditional approach: Digital Signal Processing
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1.1 Overview

● The trend of using DNNs for Speech Enhancement
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1.1 Overview

● DNN approaches: RNN and CNN
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1.1 Overview

● Contemporary DNN trend: CDAE, CRNN
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1.1 Overview

● Data
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1.1 Overview

● Common flow
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1.1 Overview

● Challenges
○ Data
○ Model complexity
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1.2 Idea and Motivation

● The success of using Convolutional Encoder-Decoder for Speech 
Enhancement

● The complexity of previous high-performance models
● The shortage of data in previous works
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Figure 1.1: R-CED

1.3 Related Works

● A fully convolutional neural 
network for speech enhancement 
(Park & Lee, 2016)
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Figure 1.2: CRN

1.3 Related Works

● A Convolutional Recurrent 
Neural Network for Real-Time 
Speech Enhancement (Tan & 
Wang, 2018)
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Figure 1.3: TCNN

1.3 Related Works

● TCNN: Temporal 
Convolutional Neural Network 
for Real-Time Speech 
Enhancement in the Time 
Domain (Pandey & Wang, 
2019)
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Figure 1.4: PL-CRNN

1.3 Related Works

● Speech enhancement using 
progressive learning-based 
convolutional recurrent neural 
network (Li et al., 2020)
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Figure 1.5: DEMUCS

1.3 Related Works

● Real Time Speech 
Enhancement in the Waveform 
Domain (Defossez et al., 2020)
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1.4 Contribution

● Main contribution: robust dataset for speech enhancement
● Secondary contribution: applying Unet architecture 
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Data collecting and preprocessing



Data collecting and preprocessing

2.1 Data collecting

● Why choose to collect clean voice data and noise data separately?
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Table 2.1: Clean voice data

2.1 Data collecting

● Clean voice: LibriSpeech (train-clean-100)
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Table 2.2: Classes in noise dataset

2.1 Datasets

● First noise dataset (for training): 
ESC-50

● Compare ESC with others 
(DEMAND, NOISEX, NOIZEUS, 
AURORA) 

● Second noise dataset: UrbanSound 
(fold 1) (for validation and testing)
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2.2 Data preprocessing

x is noisy speech, s is clean speech and n is noise
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2.2 Data preprocessing

Clean speech

Noise
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Figure 3.1: System pipeline

3.1 Problem formulation
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Figure 3.2: Unet pipeline

3.2 Model
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Table 3.1: Unet architecture3.2 Model



Methodology

3.3 Objective function

Huber loss
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Experiments

4.1 Datasets

● Six sub-experiments, each uses the datasets:
○ Training set: 100 hours - 344909 samples
○ Validation set: 5 hours - 17872 samples
○ Testing set: 5 hours - 17980 samples
○ Noise: 

■ ESC-50: 2.5 hours, mixed with training data
■ UrbanSound: 2.5 hours, mixed with validation and 

testing data
● All the data are sampled at 8kHz
● Each sample contains 8064 frames (over 1s)



Experiments

4.2 Experiment settings

● Platform: Google Colab
● Environment: Tensorflow
● GPU: NVIDIA Tesla K80
● STFT: 256 points Hann window, 64 window shift
● Batch size: 64
● Optimizer: Adam
● Learning rate: 0.001
● Epochs: 10



Experiments

Table 4.1: STOI measure results

Table 4.2: PESQ measure results

4.3 Evaluation

● Metrics: STOI (Short-Time Objective Intelligibility) vs PESQ 
(Perceptual Evaluation of Speech Quality)
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Figure 4.1: Improvements in Evaluation Scores4.3 Evaluation
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Figure 4.2: Spectrograms with different levels of SNR

4.4 Results
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Figure 4.3: Waveforms with different levels of SNR

4.4 Results
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Conclusion and Future Works

5.1 Conclusion

● Robust dataset
● Applying Unet
● Common flow
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5.2 Future Works

● Shortcomings:
○ Long training time (45 minutes to 1 hour per epoch)
○ Not training with train-clean-360
○ Huber loss is not a robust objective function
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5.2 Future Works

● Proposed future improvements:
○ Reduce the size of the model
○ Raise the performance of the model

■ Adapt model architecture
■ Data augmentation (especially noise)
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