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ABSTRACT

This paper approaches a significant problem in computer vision: re-identifying
a person when having groups of people. Re-identifying (Re-ID) by group context is
a new direction for improving traditional single-object Re-ID task by additional in-
formation from group layout and group member variations. Adding new improve-
ments in the graph convolution layer structure or using more powerful theories
boosts the model’s accuracy. To handle these issues, we proposed to leverage the
information of group objects: person and subgroups of two or three people inside
a group image. We have reorganized the load data structure to improve training
efficiency. Organizing the data is based on the relational representation of the
central node, and the observed nodes further incorporate their features extracted
through the backbone is Resnet. We propose a graph convolution model that uses
the Selu activation function to study this data. The key challenge in implementing
is to define the optimal group-wise matching using adaptive graph attention based
on a graph convolution network modified and training techniques. However, we
only did this training for a limited amount of time with 20 epochs per training due
to resource limitation. The key challenge in implementing is to define the optimal
group-wise matching using adaptive graph attention based on a graph convolution
network modified and training techniques. However, we only did this training for
a limited amount of time with 20 epochs per training due to resource limitation.

Keywords: Graph Convolution Network, Graph learning, Graph attention, Activa-
tion function, Context Interaction, Neural Networks, Person Re-Identification
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Chapter 1

Introduction

1.1 Background

In computer vision, person re-identification (re-id) is a fundamental and signifi-
cant field of research. Its objective is to reidentify individuals across multi-camera
surveillance systems. Person re-identification has a huge potential in applications
related to video surveillance, for instance searching for lost people or suspects. In
recent years, re-identification has been receiving increasing attention as an effect
of its excellent applications in jobs directly related to security and safety. For a
typical person re-id pipeline, the re-id system is provided with a target person as a
probe. Therefore, the re-id system seeks to search through a gallery of known ID
recordings to find the matched ones.

However, there are several following reasons why the re-id individual has to
face numerous difficult issues. First, the distributions of probe and gallery are
multi-modal as a result of the variety of data sources. To illustrate, pedestrians
can be captured by surveillance cameras or smartphones. Second, vastly differing
illuminations and human poses will amplify intra-class variations. Third, erroneous
detection/tracking, occlusions, and background clutter lead to massive appearance
changes, which further increases the difficulty for a person to re-id.

Typically, traditional person re-id tasks have focused exclusively on manually
cropped image snapshots or video clips from multiple cameras. These techniques
consider learning distance metrics based on individual features. Therefore, one
critical precondition is that the foreground pedestrian should be accurately detected
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or annotated in the scene. Alternatively, inaccuracies in detection or annotation will
cause heavy noise into individual appearances, which makes this problem setting
unfeasible in real scenarios.

To close this gap, several researchers [5, 1] have recently introduced the person
search setting into this domain. Basically, the idea is to simultaneously manage
two tasks (i.e., pedestrian detection and person re-identification) within a single
framework. This setting is more representative of real-world scenarios and enables
the system to operate without the use of off-line pedestrian detectors. Nevertheless,
these methods still employ individual features as appearance cues. Thus, it is
difficult to distinguish people who are dressed similarly, especially in situations
where we have to search through a large gallery set.

Although utilizing context/group information is a potential approach to tackle
real-world person re-identification, but recent works suffer from the following
problems. To begin, determining how to identify a group is not a simple process.
Existing techniques [6] rely heavily on manual annotations to recognize semantic
groups, which entails a significant amount of human labor. Alternative methods
[7, 8] make use of spatial and temporal cues like velocity and relative position in
the incident, which are regarded as social constraints, to model group behaviors
in order to assist in person re-id. These social force models make extensive use
of intricately designed constraints to simulate social influences in a scene, which
ordinarily does not have trivial solutions and is difficult for optimization.

Graph Convolutional Networks [2] have recently gained prominence with ap-
plications in several domains, from node classification [2] to physical systems
simulation [9]. Learning dense and low-dimensional node representations from
graph-structured data has become the keystone in many practical application scenar-
ios, including typical user-item collaborative filtering [10]. Their main advantage is
their ability to deal with node information and relational structure at the same time.
GCNs learn node representations as the summary of the node’s neighborhood,
which allows them to effectively encode the graph’s (higher-order) topological
structure and connectivity information [2, 11, 12]. Moreover, one of the advantages
of GCN is that they seamlessly incorporate graph structure information in the
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form of the graph adjacency matrix into the model. Hence GCNs do not need to
learn that structure and can focus their modeling capacity on learning good node
representations.

1.2 Motivation

Previous research has been done in the area of context-based re-identification. No-
tably, several graph approaches have demonstrated their superiority in aggregating
context information. However, these works have been condensed in-depth because
they rely on primitive ideas that ignore the relationship between recent technologi-
cal advances. Besides, the organization of data also plays a vital role in the training
process is not well organized. The research has focused on implement combinations
of information convolution architectures, training methods, and improving the
sampling method while loading the data set.

1.3 Objectives and Contributions

The goal of this research is to improve the learning efficiency of the graph approach
with the re-id task of the application of the contextual. Notably, this thesis proposes
changes in the data loader engine and the base graph convolution thesis. This thesis
contributes by combining multiple learning methods based on the combination of
graph-based architectures with the customization we propose.

1.4 Organization

This paper is structured as follows. Chapter 2 introduces studies of the literature
studies related to the thesis. Chapter 3 details our strategies, which include a
customized simulation architecture and teaching methods. Chapter 4 presents the
design implementation and the experiments. Chapter 5 concludes the thesis and
suggests future work.
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Chapter 2

Related work

2.1 Graph neural networks

2.1.1 Graph convolutional networks (GCN)

Graph convolutional networks (GCN) [2] has been proposed to learn graph relations
with convolution, which facilitates the optimization of traditional graph model.
GCN has been applied to various tasks [13, 14, 15, 16, 17]. Several recent works
[18, 19] employ graph model for person re-id, but the graphs are constructed to
model relationships between probe-gallery pairs, and no context information is
considered. In this thesis, we design a target-context graph and employ a pairwise
GCN to learn visual relations in the scene.

2.1.1.1 Definitions

Currently, most graph neural network models have a somewhat universal architec-
ture in common. For these models, the goal is then to learn a function of signals/
features on a graph G = (V , E) which takes as input:

• A feature description xi for every node i; summarized in a N × D feature
matrix X (N: number of nodes, D: number of input features)

• A representative description of the graph structure in matrix form; typically
in the form of an adjacency matrix A (or some function thereof)

and produces a node-level output Z (an N× F feature matrix, where F is the number
of output features per node). Graph-level outputs can be modeled by introducing
some form of pooling operation (see, e.g. [20]).
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2.1.1.2 Preprocessing Graphs

The general idea of GCN: For each node, we get the feature information from all its
neighbors and of course, the feature of itself [21].

Assume we use the average() function. We will do the same for all the nodes.
Finally, we feed these average values into a neural network. A is typically not
normalized and therefore the multiplication with A will completely change the
scale of the feature vectors (we can understand that by looking at the eigenvalues
of A).

In graph theory, the Laplacian matrix [22] is defined as L = D− A, where

• A, the adjacency matrix, indicates for each pairs of vertices whether they are
connected by an edge;

• D, the degree matrix, is the diagonal matrix containing the number of edges
attached to each vertex.

Multiplying with D−1A now corresponds to taking the average of neighboring
node features.

To put more weights on the nodes that have low-degree and reduce the impact of
high-degree nodes, Symmetric normalized Laplacian are apply [2] as the “weighted”
average. The idea of this weighted average is that we assume low-degree nodes
would have bigger impacts on their neighbors, whereas high-degree nodes gen-
erate lower impacts as they scatter their influence at too many neighbors. The
normalization equation is modified from:

normalization term = D−
1
2 AD−

1
2 , (2.1)

2.1.1.3 Propagation Rule

Every neural network layer can then be written as a non-linear function

H(l+1) = f
(

H(l), A
)

, (2.2)
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with H(0) = X and H(L) = Z (or z for graph-level outputs), L being the number of
layers. The specific models then differ only in how f (·, ·) is chosen and parameter-
ized.

let’s consider the following simple form of a layer-wise propagation rule:

f (H(l), A) = σ
(

AH(l)W(l)
)

, (2.3)

Combining these 2.1.1.2, we essentially arrive at the propagation rule introduced in
[2]:

f (H(l), A) = σ
(

D̂−
1
2 ÂD̂−

1
2 H(l)W(l)

)
, (2.4)

with Â = A + I, where I is the identity matrix and D̂ is the diagonal node degree
matrix of Â.

2.1.1.4 The number of layers

The number of layers is the farthest distance that node features can travel. For
example, with 1 layer GCN, each node can only get the information from its neigh-
bors. The gathering information process takes place independently, at the same
time for all the nodes.

When stacking another layer on top of the first one, we repeat the gathering info
process, but this time, the neighbors already have information about their own
neighbors (from the previous step) represent in figure 2.1. It makes the number of
layers as the maximum number of hops that each node can travel. So, depends
on how far we think a node should get information from the networks, we can
config a proper number for layers. But again, in the graph, normally we don’t
want to go too far. With 6–7 hops, we almost get the entire graph which makes
the aggregation less meaningful.

In the paper [2], the authors also conducted some experiments with shallow and
deep GCNs. From the figure 2.2, we see that the best results are obtained with a 2
or 3-layer model. Besides, with a deep GCN (more than 7 layers), it tends to get bad
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performances (dashed blue line). One solution is to use the residual connections
between hidden layers (purple line).

Figure 2.1: Example: Gathering info process with 2 layers of target node i.

Figure 2.2: Performance over layers. Picture from the paper [2]

2.1.2 Contextual Graph Representation Learning

In this section, we introduce the detailed structure of the proposed context graph
as well as the GCN model employed to learn graph parameters. The overall struc-
ture is illustrated on the right side of Figure 3. Given two images A and B. The
objective of our model is to judge whether target pair appeared in the images A0
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and B0 (in red bounding boxes) belong to the same identity, given K context pairs
(Ai, Bi), i ∈ {1, .., K}. The objective is to construct a graph to jointly take the target
pairs and the context information into consideration, and eventually outputs the
similarity score. A straightforward solution is to employ two graphs to model each
image, and to utilize a Siamese GCN structure to extract features of both graphs,
as in [20]. However, the Siamese structure prevents the contextual information
to propagate between graphs, which leads to significant information loss. In our
situation, the targets and contexts all appear in pairs. Therefore, we build a graph
whose nodes consist of instance pairs. In this graph, the target node is the center of
the graph, which is connected to all the context nodes for information propagation
and feature updation.

In particular, considering a graph G = (V , E) consisting of N vertices V and a
set of edges E . We assign each node with a pair of features (xAj , xBj), j ∈ {0, ..., K}.
If the images have K context pairs, then N = K + 1. We use X ∈ RN×2d, where d
is the instance-level feature dimension. We use A ∈ RN×N to denote the adjacent
matrix associated with graph G. If we assign the target node as the first node in the
graph, then the adjacent matrix is:

Ai,j =

{
1 i f i = 1 or j = 1 or i = j
0 otherwise

, (2.5)

where i, j ∈ {1, ..., N}. If we use Â to denote the normalized adjacency matrix,
layer-wise GCN propagates as follows:

Z(l+1) = σ
(

ÂZ(l)W(l)
)

, (2.6)

where Z(l) is the matrix activation of the l − th layer, and Z(0) = X as input. W(l)

is the learnable parameter matrix and σ is the ReLU activation function in our
framework. Finally, we utilize a fully connected layer to merge all the vertices
features into 1024-dimensional feature vector. And a binary Softmax loss layer is
employed supervise network training.
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2.1.3 Graph attention

A Graph Attention Network (GAT) [23] is a neural network architecture that oper-
ates on graph-structured data, leveraging masked self-attentional layers to address
the shortcomings of prior methods based on graph convolutions or their approxima-
tions. By stacking layers in which nodes are able to attend over their neighborhoods’
features, a GAT enables (implicitly) specifying different weights to different nodes
in a neighborhood, without requiring any kind of costly matrix operation (such as
inversion) or depending on knowing the graph structure upfront.

GAT introduces the attention mechanism as a substitute for the statically nor-
malized convolution operation. Below are the equations to compute the node
embedding h(l+1)

i of layer l + 1 from the embeddings of layer l.

Figure 2.3: The attention mechanism ~a(W~hi, W~hj) employed by GAT model,

parametrized by a weight vector~a ∈ R2F′ , applying a LeakyReLU activation.

Z(l)
i = W(l)h(l)i , (2.7)
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e(l)ij = LeakyReLU(~a(l)
T
(z(l)i ||z

(l)
j )), (2.8)

a(l)ij =
exp(e(l)ij )

∑k∈Ni
exp(e(l)ik )

, (2.9)

h(l+1)
i = σ

(
∑

j∈Ni

a(l)ij Z(l)
j

)
, (2.10)

Explanations:

• Equation (2.7) is a linear transformation of the lower layer embedding h(l)i
and W(l) is its learnable weight matrix.

• Equation (2.8) computes a pair-wise un-normalized attention score between
two neighbors. Here, it first concatenates the Z embeddings of the two nodes,
where || denotes concatenation, then takes a dot product of it and a learnable
weight vector~a(l), and applies a LeakyReLU in the end. This form of attention
is usually called additive attention, contrast with the dot-product attention in
the Transformer model.

• Equation (2.9) applies a softmax to normalize the attention scores on each
node’s incoming edges.

• Equation (2.10) is similar to GCN. The embeddings from neighbors are aggre-
gated together, scaled by the attention scores.

2.1.4 Graph Learning Network

Given a set of vertices V = {vi}, such that every element vi is a feature vec-
tor, we intend to predict its structure as a set of edges between the vertices,
E = {(vi, vj) : vi, vj ∈ V}. In other words, we want to learn the edges of the
graph G = (V, E) that maximize the relations between the vertices given some
prior patterns, i.e., a family of graphs.

The sequential application of these steps recover effective relations on nodes, even
when trained on families of graphs. We represent this process in 2.4.
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Figure 2.4: The author proposed method is a recurrent block. They create a set of
node embeddings {H(l)

i }
k
i=1 that are later combined to produce an intermediary

representation H(l)
int. Then use the updated node information with the adjacency

information to produce a local embedding of the nodes information H(l)
local thats is

also the output H(l+1). Also broadcast the information of the local embedding to
produce a global embedding H(l)

global. And combine the local and global embeddings

to predict the next layer adjacency A(l+1)[3].

Node Embeddings. At a given step l on the alternating process, we have dl hidden
features, H(l) ∈ Rn×dl , for each of our n nodes, and the set of edges (structure)
encoded into an adjacency matrix A(l) ∈ [0, 1]n×n that represents our graph. As
introduced, our first step is to produce the features of the next step, H(l+1), through
the embedding.

Adjacency Matrix Prediction. After obtaining the nodes embeddings, H(l)
local (5),

we use them to predict the next adjacency matrix A(l+1) through

A(l+1) = ρl

(
H(l)

local

)
= σl

(
M(l)αl

(
H(l)

local

)
M(l)T

)
, (2.11)
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where M(l) ∈ Rn×n is the weight matrix that produces a symmetric adjacency, αl is
a transformation that mixes global and local information within the graph, and ·T

denotes the transposition operator.

The intuition is that nodes similar to the global and local context should receive
higher attention weights for the projection of a new adjacency graph within the
graph creation (2.11).

2.2 Loss function

2.2.1 Cosine embedding loss

This is used for measuring whether two inputs are similar or dissimilar, using
the cosine distance, and is typically used for learning nonlinear embeddings or
semi-supervised learning.

The loss function for each sample is:

L(x, y) =

{
1− cos(x1, x2) if y = 1,
max(0, cos(x1, x2)) if y = −1,

(2.12)

2.2.2 Graph learning loss

We use the modified loss function [24] based on [25] to optimize the learnable
weight vector wi as follows:

LGL =
1

N2

N

∑
i,j=1

exp
(

Ai,j + η||vi − vj||22
)
+ γ||A||2F (2.13)

where ‖ · ‖F represents Frobenius-Norm. Intuitively, the first item means that nodes
vi and vj are far apart in higher dimensions encouraging a smaller weight value Aij ,
and the exponential operation can enlarge this effect. Similarly, nodes that are close
to each other in higher dimensional space can have a stronger connection weight.
This process can prevent graph convolution aggregating information of noise node.
η is a tradeoff parameter controlling the importance of nodes of the graph. We also
average the loss due to the fact that the number of nodes is dynamic on the different
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documents. The second item is used to control the sparsity of soft adjacent matrix
A. γ is a tradeoff parameter and larger γ brings about more sparsity soft adjacent
matrix A of graph.

2.3 Activation methods

2.3.1 Rectified Linear Units

Rectified Linear Units [26], or ReLUs, are a type of activation function that are linear
in the positive dimension, but zero in the negative dimension. The kink in the
function is the source of the non-linearity. Linearity in the positive dimension has
the attractive property that it prevents non-saturation of gradients (contrast with
sigmoid activations), although for half of the real line its gradient is zero. RELUs is
show as Fig.2.5

The RELU activation function is given by:

RELU(x) = (x)+ = max(0, x) (2.14)

2.3.2 Scaled Exponential Linear Unit

Scaled Exponential Linear Units [27], or SELUs, are activation functions that induce
self-normalizing properties. SELUs is show as Fig.2.6

The SELU activation function is given by:

SELU(x) =

{
λx if x ≥ 0
λα (exp (x)− 1) if x < 0

(2.15)

with α ≈ 1.6733 and λ ≈ 1.0507

2.3.3 Continuously Differentiable Exponential Linear Units

The Continuously Differentiable Exponential Linear Units [28], or CELU, is is simply
the ELU [29] where the activation for negative values has been modified to ensure
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Figure 2.5: Rectified Linear Units distribution

Figure 2.6: Scaled Exponential Linear Units distribution
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that the derivative at x = 0 for all values of α is 1. CELUs is show as Fig.2.7 The
CELU activation function is given by:

CELU(x) =

{
x if x ≥ 0

α
(

exp
(x

α

)
− 1
)

otherwise
(2.16)

Figure 2.7: Continuously Differentiable Exponential Linear Units distribution

2.4 Evaluation measures (information retrieval)

2.4.1 MAP (Mean Average Precision)

AP (Average precision) is a popular metric in measuring the accuracy of object
detectors like Faster R-CNN, SSD, etc. Average precision computes the average
precision value for recall value over 0 to 1.

Precision & recall

Precision of a given class in classification, also known as positive predicted value,
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is given as the ratio of true positive (TP) and the total number of predicted positives.
The formula is given as such:

Precistion =
TP

TP + FP
=

TP
total positive results

, (2.17)

Recall also known as true positive rate or sensitivity, of a given class in classification,
is defined as the ratio of TP and total of ground truth positives. The formula is
given as such:

Recall(TPR) =
TP

TP + FN
=

TP
total cancer cases

, (2.18)

where: TP = True positive; TN = True negative; FP = False positive ; FN = False
negative;

IoU (Intersection over union)

IoU measures the overlap between 2 boundaries. We use that to measure how
much our predicted boundary overlaps with the ground truth (the real object
boundary) follow by 2.8

Figure 2.8: Computing the Intersection over Union is as simple as dividing the area
of overlap between the bounding boxes by the area of union

Traditionally, we define a prediction to be a TP if the IoU is > 0.5. The are possible
scenarios are described below:

True Positive IoU > 0.5

False Positive There are two possible scenarios where a BB would be considered
as FP:
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• IoU < 0.5

• Duplicated BB

False Negative When our object detection model missed the target, then it would
be considered as a False Negative. The two possible scenarios are as follows:

• When there is no detection at all.

• When the predicted BB has an IoU > 0.5 but has the wrong classification,
the predicted BB would be FN.

Average precision [30] Formula of mAP:

mAP =
1
N

N

∑
i=1

APi , (2.19)

2.4.2 Cumulative Matching Characteristics (CMC)

Cumulative Matching Characteristics (CMC) curves are the most popular evaluation
metrics for person re-identification methods. Consider a simple single-gallery-shot
setting, where each gallery identity has only one instance. For each query, an
algorithm will rank all the gallery samples according to their distances to the query
from small to large, and the CMC top-k accuracy is

Acck =

{
1 if top-k ranked gallery samples contain the query identity
0 otherwise

, (2.20)

which is a shifted step function. The final CMC curve is computed by averaging
the shifted step functions over all the queries. While the single-gallery-shot CMC
is well defined, it does not have a common agreement when it comes to the multi-
gallery-shot setting, where each gallery identity could have multiple instances.

2.5 Regularization

2.5.1 Dropout

Dropout is a regularization technique for neural networks that drops a unit (along
with connections) at training time with a specified probability (a common value is
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p = 0.5)[31]. At test time, all units are present, but with weights scaled by p (i.e. w
becomes pw).

The idea is to prevent co-adaptation, where the neural network becomes too reliant
on particular connections, as this could be symptomatic of overfitting. Intuitively,
dropout can be thought of as creating an implicit ensemble of neural networks.

Figure 2.9: Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped..[4]

2.5.2 Stochastic Depth

Stochastic Depth[4] aims to shrink the depth of a network during training, while
keeping it unchanged during testing. This is achieved by randomly dropping entire
ResBlocks [32] during training and bypassing their transformations through skip
connections.
Let bl ∈ {0, 1} denote a Bernoulli random variable, which indicates whether the th
ResBlock is active (bl = 1) or inactive (bl = 0). Further, let us denote the “survival”
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Figure 2.10: The linear decay of pl illustrated on a ResNet with stochastic depth for
p0 = 1 and pL = 0.5. Conceptually, we treat the input to the first ResBlock as H0,
which is always active.[4]

probability of ResBlock as pl = Pr (bl = 1). With this definition we can bypass the
lth ResBlock by multiplying its function fl with bl and we extend the update rule to:

Hl = ReLU (bl fl (Hl−1) + id (Hl−1)) (2.21)

If bl = 1, this reduces to the original ResNet update and this ResBlock remains
unchanged.

If bl = 0, the ResBlock reduces to the identity function, Hl = id (Hl − 1).
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Chapter 3

Adaptive graph attention

3.1 Overview

From the base model structure described in [1], we saw several opportunities for
change. Therefore, our central concept is to enhance the model layout by either
changing the nonlinear transformations or entirely altering the embedding design.
Additionally, we experiment with noise learning techniques in the hope that the
model can increase prediction accuracy. All of these three components are explained
in detail as follows.

The attention central node matrix In this stage, we instantiate the attention re-
lational matrix, through which the model can retain the observer nodes’ feature to
the central node. Except for the model that uses graph learning, we applied this
attention matrix for the models we generate.

Adaptive graph model This stage is a critical component of our approach, de-
signed to enhance the in-stance feature with context information to provide a more
accurate representation. Given a probe-gallery pair, we construct a graph to mea-
sure the similarity of the target pair. Graph nodes consist of target persons and the
associated context pairs, which represent in the relational matrix. We generate our
model, which modifies the structure, to learn the similarity between probe-gallery
pairs.

Noise learning This stage is an addition to our strategy. We apply noise com-
ponents to the model based on the restriction of the knowledge collected from the
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hops in the graph model. That helps increase the model’s learning by self-limiting
the information in the early layers, allowing the subsequent layer to learn more.

3.2 The attention central node matrix

The adjacent matrix plays a vital role in describing the relationships between points
in the graph while training the graph model. In this experiment, we would like to
retain the relationship between the central and observer nodes because we want
to gather the feature from the reference nodes to assemble on a central node. To
emphasize the knowledge of the central node, we normalize it such that the sum
of information from the central node is distributed evenly among the nodes to
observe. Then the observer nodes retransmit the amount of information by the
inverse quantity of information received.

In particular, considering a graph G = (V , E) consisting of N vertices V and a
set of edges E . We assign each node with a pair of features (xAj , xBj), j ∈ {0, ..., K}.
If the images have K context pairs, then N = K + 1. We use X ∈ RN×2d, where d
is the instance-level feature dimension. We use A ∈ RN×N to denote the adjacent
matrix associated with graph G. We assign the target node as the first node in the
graph, and normalize by assume above, then add self-loop, the adjacent matrix will
become:

Ãi,j =


√

2/N i f j = 1√
N/2 i f i = 1

1 i f i = j
0 otherwise

, (3.1)

Where i, j ∈ {1, ..., N}.

3.3 Adaptive graph model

In this section, from the base model described in [1], a three-layer graph convolution
network is used to share weight between the two inputs with a header layer used
to calculate similarity (ref-image), that we propose three approaches to improve
the learning of the model. The first is to change the activation function in the
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graph convolution core to help model learning retain more information after each
layer. Next is to implement graph learning to help model and self-capture the
relationships between nodes (which does not match the attention matrix). The last
is to use attention graphs to improve information to the central node.

3.3.1 Graph convolution modified activation network

In this segment, we will change the activation base (ReLU) to SeLU or CeLU based
on theoretical for a particular graph-based neural network model [2]. Then we
consider a multi-layer Graph Convolution Network (GCN) with two the layer-wise
propagation rules from 2.3 as follows:

f (H(l), Ã) = SeLU
(

ÃH(l)W(l)
)

, (3.2)

f (H(l), Ã) = CeLU
(

ÃH(l)W(l)
)

, (3.3)

Here, Ã = Â + I, is the attention matrix 3.2 of the undirected graph G with added
self-connections. I is the identity matrix, and W (l) is a layer-specific trainable
weight matrix. H(l) ∈ RN×D is the matrix of activations in the lth layer; H(0) = X.
In the following, we show that the structure of GCN model 3.1.

Figure 3.1: GCN model structure with 3 layer graph convolution
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3.3.2 Graph attention with graph convolution network

In this segment, to effectively apply the advantages of the graph attention network,
we propose a network with three layers. In the first layer, we use the GAT layer
2.1.3 leveraging masked self-attention layers to focus attention on the central node
with their neighborhoods’ features. By that, the GCN layer deeper to focus on
information enrichment in the central node.

However, the use of an additional GAT layer does not achieve the improvement
effect. The limit has been mentioned in hops that the number of convolution layers
should be equal to the number of hops 2.1.1.4 to ensure that the model can learn suf-
ficiently the relationships between the nodes shown in the adjacency matrix. From
there, we propose to use two more GCN layers to focus on information enrichment
in the central node.

The setup in detail as seen in the figure 3.2.

Figure 3.2: Graph attention with graph convolution network structure

3.3.3 Graph learning combined graph convolution network

To increase the model’s adaptive ability, we propose to use graph learning 2.1.4 to
generate adjacency matrices. In comparison with the attention matrix used previ-
ously, the adjacency matrix created by graph learning will be more adaptive for
each probe input. Additionally, we add a graph convolution layer to aggregate the
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network knowledge. Also, the formula for calculating similarities remains the same
as for the previous models.

In the model we propose, the loss function update in two parts, the similarity
loss 2.2.1 and the loss for graph learning 2.2.2. The general loss is averaging the
component loss.

The setup in detail as seen in the figure 3.3.

Figure 3.3: Graph learning combined graph convolution network structure

3.4 Noise learning

As mentioned in 2.1.1.4, the number of hops depends on the number of layers
of the knowledge graph. In our case, the attention matrix 3.2 only captures the
relationship of the central node to the observer nodes, so the maximum number of
hops would be 2. According to the theory mentioned, setting the number of layers
to accumulate features would not bring more efficiency. Therefore, we exported the
addition of noise components to our model structure. The amount of information
of the early layers is limited, allowing the subsequent layer to learn more.

3.4.1 Dropout base on level hops

As shown in 2.1.1.4 when the model gets the max number of layers GCN as max
level hops, there is no information to collect. It can be lead to the scoring metric

24



not improve for long epochs of training. While adding a Dropout in the previous
layers eventually breaks the amount of information to be learned, this helps the
subsequent layers have more information for better learning.

Figure 3.4: Out GCN + dropout model structure with 3 layer graph convolution

3.4.2 Stochastic Depth in Graph Convolution network

Stochastic Depth helps to reduce the network’s depth during training by using
residual blocks. That is particularly well suited to graph networks with a small
number of hops, as in our case.

The Bernoulli random variable mentioned in 2.5.2 will assist the layers in tak-
ing turns studying, which is intended to increase each layer’s learning level. Base
on 2.21, we modify activation to the Selu, and the downsample, which use when
our layer inactive, is the algorithm used for interpolation is determined by nearest.
The new formula is:

Hl = SeLU (blGCNl (Hl−1) + downsample (Hl−1)) (3.4)

We substitute existing blocks with new ones to construct a three-layer architecture
while preserving the model parameter configuration 3.5.
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Figure 3.5: Out GCN + StoDepth model structure with 3 layer graph convolution
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Chapter 4

Experimental Results

In this section we describe the method of conducting the test. We reworked the load
data with the CUHK-SYSU data-set, in order to improve the training efficiency and
the correctness of the data. From the models in chapter 3 and the base model defined
in [1], we designed the framework to train under the same timing, configuration
and data-sets have been reworked. The accuracy of the model will be assessed by
the mAP and K-rank scores, then from the results obtained, we conduct analysis
and evaluation and make our conclusions.

4.1 Experimental setup

4.1.1 Handle dataset

We evaluate the proposed method on CUHK-SYSU dataset [1]. CUHK-SYSU dataset
is a large-scale person search dataset which contains totally 18184 images, with 8432
different persons and 96143 annotated bounding boxes indicating the locations of
different pedestrians. This dataset covers diverse scenes, where 12490 images are
collected from real street snap and the rest images comes from movies or TVs. For
each query person, there exists at least two images containing the target person in
gallery set. In addition, this dataset includes large variations in lighting, occlusion,
background and resolution, which are close to the real application scenarios.The
whole dataset are officially split into training set and testing set. The training set
contains 5532 persons in 11206 images, and the testing set contains 2900 query
persons and 6978 images.
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4.1.1.1 Traindata

Training data is an indispensable part of model training. In this experiment based
on the CUHK-SYSU data set and the feature data extracted through RestNet, we
process it to form data that the proposed models can learn. In this section we will
go through four stages, which is to load the associated datasets, preprocess, select
sample the probe object, and finally create the context for the training.

In traindata has 3 sub-file, and all of sub-file has 11206 samples:

• psdb train gt roidb.pkl: Origin data contains the boxes and person had de-
tected in 5532 persons.

• gallery detections.pkl: The location of bbox with score iou for each image.

• gallery features.pkl: The feature of bbox.

After loading the relevant files, we remove the bound box samples whose IOU
scores are lower than the threshold to filter out noise 6.1.1. At the same time, it is a
combination of IDs of related people appearing in the same frame 6.1.2.

When in the interactive, the loader generator randomly the index samples of probe
with their bound box features. Then select contextual with each probe by pass all
through 6.1.3 pair group with N node to assume the context.

To generator label and gallery for each sample training, we select random per-
son, who not in that frame as neighbor. The frame that probe person in ignore frame
sample strain will mask as label, the another will be select randomly 6.1.4.

At last, with probe and gallery select before, we calculate each person feature
to each feature of bound box of each frame to fine the most matching 6.1.5.

4.1.1.2 Test dataset

The process has the same with train dataset. In sthis experiment, we use the test set
with 100 gallery for each query.
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4.1.2 Evaluation metric

We utilize the same evaluation protocol as in [1] with two kinds of evaluation
metrics—cumulative matching characteristics (CMC top-K) and mean averaged
precision (mAP). The first one is inherited from the person re-id problem, where
a matching is counted if there is at least one of the top-K predicted bounding
boxes overlaps with the ground truths with intersection-over-union (IoU) greater or
equal to 0.5. The second one is inspired from the object detection tasks. The main
difference is that a matching is accepted only if the overlap between the bounding
box of ground truth person and top-1 matching box is larger than 0.5.

4.1.3 Implementation Details

To train the graph model, we describe the initial structure as the thesis mentioned
in chapter 3. We experiment on four groups structure are: the base model with 2
and 3 GCN layers; our model with GCN modified activation; the attention graph
concatenates 2 GCN layers; and graph learning concatenate GCN layer. The initial
learning rate is 0.1, which decreases by a factor of 2 after 10 epochs, and the total
training epoch is 20. We implement our model on Pytorch, and all the models are
trained and tested on a GTX 3060Ti GPU. About data training, we create a data
loader that follows 4.1.1 for both training and testing.

4.2 Performance

In this section, we report the performance results of our re-make data-loader and
compare our model with author [1] methods on CUHK-SYSU datasets. We also
compare the results using some noisy training technical.

4.2.1 Performance change after re-make data-loader

After optimize train and test dataset loader performane increasing about 1 to 1.5%,
and time training residue 1.5 to 2 times, detail has show in 4.1.
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Table 4.1: Performance evaluate Data processing base on Gcn base model with 3
layer and CUHK-SYSU dataset [1].

Data processing mAP (%) top-1 (%) top-5 (%)
Original 80.30 82.00 91.79
Re-make 81.88 83.14 92.76

4.2.2 Comparison with GCN base [1] Methods

After training all the models under the same conditions is the CUHK-SYSU dataset
[1] with 20 epochs. The table 4.2 summarizes the results. A brief examination
reveals that altering the activation function improved the model’s learning capacity.

Table 4.2: Performance evaluate our model Gcn base model on CUHK-SYSU dataset
with gallery size of 100

Model mAP (%) top-1 (%) top-5 (%) top-10 (%)
Gcn 3 layer [1] 81.80 83.14 92.59 95.07
Gcn 2 layer [1] 81.88 82.66 92.86 95.03
Gcn 3 remove ReLU 82.57 83.90 93.10 95.48
Gcn 2 remove ReLU 82.63 83.86 93.52 95.38
Gcn 3 CeLU 82.62 84.00 93.31 95.34
Gcn 3 SeLU 82.80 84.21 93.28 95.31
Gcn 2 SeLU 82.88 84.34 93.24 95.28
GAT + GCN 81.45 82.34 92.76 94.34
GLCN 82.06 83.72 93.66 95.24

4.2.3 Comparison model when apply noisy learning

The results of the model training show in the table 4.3. The rapid assessment and
training results with noise did not achieve the expected results but did contribute
to proving the Hops hypothesis.

Table 4.3: Performance evaluate our model with noisy training.
Regularization mAP (%) top-1 (%) top-5 (%) top-10 (%)
Gcn 3 SeLU 82.80 84.21 93.28 95.31
Gcn 3 Stochastic Depth 81.51 82.55 92.48 94.59
Gcn 3 Dropout 82.06 83.14 92.97 94.90
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4.3 Analysis

This section focuses on analyzing and evaluating the research outcomes from the
testing process. We concentrate on reiterating the efficiency of load, doing an aspect
analysis on each sample we have, and eventually examining how the impact of
training with noise affects the model’s training.

4.3.1 Results on re-make data loader

Apart from that, the index deviation is initially set to 1 rather than 0. As a con-
sequence of this circumstance, a wide-ranging bias developed. In light of these
shortcomings, we reorganized the data structure to ensure the accuracy of the
training dataset.

After remaking, data loading output was increased by 1.5-2 times due to elimi-
nating data replication errors. This data is a better fit for the node id, allowing
for a more accurate learning model. The results shown in table 4.1 have shown
a marked effect after the modification, increasing by 1.5% mAP and 1% for top-1.
These results undoubtedly provide a great basis for us to continue our experiments.

4.3.2 Results Comparison model

We summarize the comparative results in Table 4.2. The gallery size of all meth-
ods is 100. In comparison to the label using hand-crafted features, we observe
that all our learning methods achieve slightly better performance improvements.
The model with Gcn 2 and 3 layers [1] can be viewed as an overall baseline of
the proposed framework, our framework achieves at least 0.2% improvements on
mAP and 0.6% on top-1 matching rate, which demonstrates the effectiveness of the
proposed frameworks.

Changing the activation function has brought a number of positive effects. That
was demonstrated by the results of the table, specifically an increase of about 1%
for both mAP and top-1 scores. This effect arises from changing the activation from
relu to ones of celu and selu. With relu, the non-linear space is confined to the
positive, which makes the negative components cancel out. However, as shown

31



above, we have seen that the negative components have a beneficial impact on the
model’s learning. The inclusion of two activation functions, celu or selu, proved
that with a nonlinear expansion of the negative part. With celu the negative part
space is smaller than selu, which can be thought to be the reason for the better use
of selenium model. Nevertheless, it is not desirable to maintain negative values.
When we removed the activation layer in our test, i.e., no nonlinear spaces, the
model with a maximum of 82.63 mAP was still lower than the 82.88 mAP of the
model using selu. We conclude from this that the excitation or selu usage model is
the optimal one for our test.

The results affirm once again that the number of the graph convolution layers
is dependent on the number of hops 2.1.1.4. Specifically, the maximum number of
hops specified with the adjacency matrix we have is two, which also explains why
a network with two graph convolutional layers outperformed a network with three
layers in terms of performance before, and after modifying the activation function.

The expectation with Model GAT+GCN 3.3.2 is to use the GAT layer to navigate
features and funnel them to a central node where the GCN layer can learn more
effectively. In comparison to the baseline model, though, this model is inefficient.
Consequently, it can be inferred that using the adjacency matrix as an attention
matrix is more efficient than using graph attention to navigate features to the central
node in the Re-ID task with contextual.

In the results of the graph learning model, basically we can see the self-study
of adjacency matrices has proven its effectiveness, as it has improved by 0.2% mAP
and led in top-5. The application of graph learning in learning adjacency matrices
without using the attention matrix 3.2 is extremely promising because it is capable
of adapting itself to various contexts appropriately. This strength is advantageous
for the Re-ID problem on multiple objects simultaneously, as it can help self-learn
complexity in the context and optimize multiple output targets. However, the
adjacency matrix posed has not really worked out superior to the attention matrix
initiated from the beginning for the issue we set out.
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4.3.3 Results when apply noisy learning

The purpose of this experiment is to increase the noise in order to assess the deeper
layers’ ability to learn. Additionally, the findings demonstrated that adding noise
simply makes learning more difficult because the simulations do not yield optimal
results.

The most significant effect is the use of stochastic depth when the network us-
ing this training gets the lowest score of 81.51 mAP. This can be explained by the
skip layer in stochastic depth.

When dropout is applied to the experiment, we can see from the result of the
baseline model that the hops limit actually occurs since the 2-layer model performs
better than the 3-layer model. Thus, in this experiment, we attempted to improve
learning performance by adding a dropout between grades 2 and 3. The result is
partly positive when it has learned better the baseline model.

To be honest, our experiment’s use of two distinct methods of learning did not turn
out well. The explanation for this is that, according to the studies we refer to, it
all needs to take more than one hundred training rounds for the effect to become
evident.

4.4 Discussion

Modifying the prototype data structure created a meaningful contribution to our
experiments. This improvement serves as the foundation and central value for our
evaluation of the systems we propose.

The use of relu by the original GCN greatly limits the ability of our model to
learn, which our experiments have shown. Depending on the purpose towards that
we have a suitable solution. But in this thesis we have created a new architecture
using selu.

Other learning models, such as GAT or graph learning, are highly appreciated but
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do not bring too much efficiency. Assuming our issue aims at multiple output
targets, the superior adaptability of a GAT or learning graph can be advantageous.
Additionally, it is also our future test orientation.

The application of training methods with noise are being applied very effectively
can be mentioned in the APT article. Unfortunately, due to the limited trial time of
the study, we did not have the resources to evaluate the effectiveness of the method.
We will improve this issue in the subsequent report.
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Chapter 5

Conclusion

The technology landscape is continuously developing and changing. Demand
for advanced technologies never stops increasing as people constantly tackle new
challenges or make new discoveries. Besides that, the demand for identification
technology will be increasing, as it is the basis for user support applications as
well as collective management. To keep up with that trend, the optimization of
the computational complexity of the RE-ID task is critical. It can be said that the
application of the context has actually opened a path toward where we can make
more accurate predictions at a low computational cost.

We have made two propositions in this thesis. First is the improvement of the
data loading method described in Chapter 4. Second, studies were conducted to
expand and improve the model’s learning capabilities through the graphs’ applica-
tion. Along with the coupling from existing models, the proposed models include
a GCN architecture based on selu rather than the conventional GCN architecture
based on Relu stated in Chapter 3. This method gives better identification results
than the traditional method mentioned in the author’s research.

We discovered during the experiment that maintaining a definition of the directed
adjacency matrix assists the model in learning. The result is superior in studies
using adaptive models such as GAT or GLCN. This is due to the orientation sup-
porting the model in learning effectively from the beginning, allowing it to progress
further under the same time limit. Besides, the expansion of the nonlinear space
from relu to selu has also shown a positive effect as the model can learn better.
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In future work, we will develop our simultaneous multi-label recognition institute
deeply with the desire to maximize the subject defined per frame. Then the use of
more adaptive networks will be able to exert its effectiveness in learning complex
contexts instead of the oriented contexts as in the experiment. On the other hand,
there is the application of noise learning methods to improve model quality by
breaking down the hops restriction. The limitation of Hops can only be solved when
we can represent the relationships of the nodes referenced through an adjacency
matrix or have to pass information from the head layers straight to the deeper
layers. That is a direction that we rationally expect will improve the ability of the
model to learn.
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Chapter 6

Appendix

6.1 process data

6.1.1 filter

1 def filter(traindetections ,trainfeatures ,thresh =0.0):

2 det = []

3 feat = []

4 for item ,item2 in zip(traindetections ,trainfeatures ):

5 ids = item[:,4]> thresh

6 item1 = item[ids]

7 item2 = item2[ids ,:,0,0]

8 det.append(item1)

9 feat.append(item2)

10 return det , feat

6.1.2 getIndex

1 def getIndex(self):

2 personSet = {}

3 for i in range(len(self.traindata )):

4 ids = self.traindata[i][’gt_pids ’]

5 detection = self.det[i]

6 if len(detection )==0: continue

7 for j,person in enumerate(ids):

8 if person ==-1: continue

9 try:

10 tmp = [i,detection[j]]

11 except:

12 continue
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13 try:

14 personSet[person ]. append(tmp)

15 except:

16 personSet[person] = [tmp]

17 return personSet

6.1.3 getItem

1 def select_p_n(det ,feat_p ,roi ,num =4):

2 def _compute_comp(a, b,iou_thresh =0.0):

3 x1 = max(a[0], b[0])

4 y1 = max(a[1], b[1])

5 x2 = min(a[2], b[2])

6 y2 = min(a[3], b[3])

7 inter = max(0, x2 - x1) * max(0, y2 - y1)

8 union = (a[2] - a[0]) * (a[3] - a[1]) + \

9 (b[2] - b[0]) * (b[3] - b[1]) - inter

10 iou = inter * 1.0 / union

11 if iou >iou_thresh:

12 return 0

13 else:

14 return a[4]

15 detN = det.shape [0]

16 if detN ==1:

17 feat1 = feat_p [0]

18 featn = [feat_p [0]]* num

19 return feat1 ,np.asarray(featn)

20
21 index = np.zeros(detN)

22 for i in range(detN):

23 index[i] = _compute_iou(det[i],roi)

24 index = [[x, i] for i, x in enumerate(index )]

25 index = sorted(index , key=lambda x: x[0], reverse=True)

26 feat1 = feat_p[index [0][1]]

27
28 index = np.zeros(detN)

29 for i in range(detN):

30 index[i] = _compute_comp(det[i], roi)

31 index = [[x, i] for i, x in enumerate(index )]

32 index = sorted(index , key=lambda x: x[0], reverse=True)

33
34 featn = [feat1]

35 for i in range(num -1):

36 if i>=detN -1:

38



37 featn.append(feat_p[index [1][1]])

38 else:

39 featn.append(feat_p[index[i][1]])

40 return feat1 ,np.asarray(featn)

6.1.4 getGallery

1 def getGallery(probe , randIdx , sample , feat):

2 slice = random.sample(sample ,100)

3 label = [0]*100

4 gallery = []

5 idx = list(range(len(probe )))

6 idx.remove(randIdx)

7
8 for i in range (100):

9 tmp = feat[slice[i]]

10 gallery.append(tmp)

11
12 if len(probe )==1:

13 return label ,gallery

14
15 for i, ix in enumerate(idx):

16 item = probe[ix]

17 if item [0] in slice:

18 id = slice.index(item [0])

19 tmp = random.sample(sample ,1)[0]

20 gallery[id] = feat[tmp]

21 gallery[i] = feat[item [0]]

22 label[i] = 1

23 if not sum(label) == sum(label[:sum(label )]):

24 print(" error")

25 return label , gallery

6.1.5 gallery gcn

1 def gallery_gcn(probe , gallery_feat , num =3):

2 if len(gallery_feat) == 99:

3 gallery_feat.append(gallery_feat [-1])

4 featuresave = [[]] * self.neibor

5
6 for i in range(num):

7 tmp = []
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8 for j, item in enumerate(gallery_feat ):

9 sim0 = -1

10 try:

11 nowfeature = item [0]

12 except Exception:

13 continue

14 for id , person in enumerate(item):

15 sim = Sim1(probe[i], person)

16 if sim > sim0:

17 sim0 = sim

18 nowfeature = person

19 tmp.append(nowfeature)

20 del nowfeature

21 featuresave[i] = tmp

22
23 gallery = []

24 for i in range(len(gallery_feat )):

25 feature = []

26 for j in range(num):

27 try:

28 feature.append(featuresave[j][i])

29 except Exception:

30 break

31 else:

32 gallery.append(feature)

33
34 if len(gallery) == 99:

35 gallery.append(gallery [-1])

36 gallery = np.asarray(gallery)

37 return np.asarray(gallery)

6.2 Model diagram
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Figure 6.1: Out GCN model structure with 3 layer graph convolution
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Figure 6.2: GAT + GCN model diagram
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Figure 6.3: Graph learning with GCN network structure
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Figure 6.4: Graph convolution network add Dropout
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Figure 6.5: Graph convolution network and StoDepth
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