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ABSTRACT

Recently, video anomaly detection is currently a challenge and has attracted much
attention from many researchers, which apply in the variation field like traffic
accident detection, violence detection, intrusion detection systems, surveillance
systems. The most common approach adopted the convolutional autoencoder that
fused with appearance and motion representation to enhance the model’s ability to
describe each ordinary object’s spatial and temporal behavior and quantifies the
predicted error during the testing process. However, the drawback of this approach
is the limit number of normal patterns which a model can learn. When training
with a considerable amount of normal data, information about the normal pattern
recorded in the hidden cells will be compressed, leading to missing or misleading
information. This limitation is handled by a completely new improved model that
applies memory modules to both the motion-appearance network and shares the
same encoder, decoder. The testing on the two public datasets has shown that our
model is efficient and indicates significant results improvements.

Keywords: Co-memory network, Video Anomaly Detection, Optical Flow Estima-
tion, Frame Prediction.
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Chapter 1

Introduction

1.1 Problem and Motivations

In the age of the information technology explosion, the application of new technolo-
gies to surveillance systems or intrusion detection systems such as deep learning
plays a crucial role in improving system efficiency or solving new problems. Indeed,
the issue of detecting video anomalies plays essential terms and is a consequence
of this development. Besides, this problem had garnered more and more attention
over the past decade for its essential application in surveillance systems, which can
serve as a coarse event filter, when the system developed. However, evaluating
the problem of detecting abnormal events in the video remains challenging for two
features of anomaly [7]. First, it’s difficult to define whether the determined events
are abnormal or not, and the definition has a massive impact on the circumstances
in which the event is placed (For example, when a car stops on a highway would
be abnormal. On other hand, if the vehicle park in the parking, it would be a
regular event). Next, anomalous data is challenging to collect because abnormal
events are very diverse, and their frequency of occurrence is much less than regular
events. For that reason, instead of considering the problem of detecting anomalous
events in the video as a supervision approach using anomalous data for training,
building a model to describe normal data is a more accurate choice. Following the
conventional method, the scientists state that when normal data use the inputs of
the model, what describes usual events with normality events as training data [8].
Indeed, with much scientific evidence, this approach has achieved awe-inspiring
results in public datasets.

1



After the revolution of remarkable application of deep learning in computer
vision [9, 10, 11], video anomaly detection has been shifted the approach method
from using the hand-crafted method [12, 13], which human time consuming and
less effective, to the deep learning method [14, 15, 16]. In general, the standard
method to solve this problem is to adopt deep encoder-decoder architecture [17, 18],
a powerful method to build a model to describe multi-dimensional data types, to
build a model to learn regular events. The strategies adopted from the approach
above are divided into main categories: the reconstruction-based framework and
the prediction-based framework. Still, in general, both above methods have two
main parts: the encoder, which transforms input data in a lower-dimensional latent
representation, and the decoder, which extracts latent representation into higher
dimensional data. In particular solutions, the goal of this approach is minimum
the prediction error or reconstruction error of normal data and maximum error
of anomaly outliers because lots number of studies assumed that the model will
perform worse against unseen data which not contain in training data and is an
unusual event in our case [19, 20, 21]. However, the limitation when using the
method above is that there are many cases where the anomaly detection model
works well with anomaly data. The reason for this situation is that the encoder
extracts the common compositional pattern, which appears in both abnormal and
normal data, such as edge patterns, instead of a normal feature. Moreover, the
decoder works too ”good” when decoding bottleneck lower-dimensional features.
To overcome that drawback, some scientists have used some extended methods
to transform or augment the latent representation by guiding the normal memory
[22, 23, 16]. Using the above method is to augment latent representation that
maximizes the distance between normal and abnormal features. Consequently, the
model is likely to maximum the reconstruction or prediction error of unusual events.
Besides, an extraordinary event is not only based on spatial information but also
the motion pattern, which helps detect an abnormal event to solve the problem of
lacking motion information the memory network approached which not included.

Inspired by [23, 15, 24], we introduced the model with two streams capable of
extracting information from both appearance and motion and added with memory
module guidance at each branch. In the training stage, we allow update operation
to affect the memory module, which makes memories possible to record normal
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representation of both motion and appearance. In testing, we disable update opera-
tion to control memory size within an acceptable range. Our model is optimized
according to the difference between the results obtained and the ground truth of the
input data (optical flow - optical flow GT, predicted image - predicted image GT).

1.2 Related Works

1.2.1 Abnormal detection

Abnormal detection is an unsupervised learning problem, which refers to detect
abnormal activities that divert observed normal events, and during the training
process, the use of abnormal data is hard to modeling normally events due to
the unpredictable nature of the data. For a particular solution, training datasets
only contain normal activities which are more undemanding to collect data, and
more approachable than abnormal activities [7]. Abnormal activities identification
model has been built based on cluster method such as flexible genre model (FGM)
[25]. There are also reconstructive and discriminative approaches. Reconstructive
approaches such as deep structured energy based models (DSEBMs) [26], repulsive
forces and sparse reconstruction [13], and generative models [27] encode normal
information then learn their representation. Discriminative approaches such as
Gaussian process regression [28], one-class support vector machines [29] use a
probability allocation of normal data and decision boundary to contain normal data
and eliminate abnormal instances. Using these approaches with high-dimensional
data like images and videos, however, the results are often not satisfactory [30]

Some architectures have been created from the autoencoder model associated
with CNN such as fully convolutional feed-forward autoencoder [19], spatiotem-
poral autoencoder [21], stacked RNN framework [31], and generative adversarial
network (GAN) [14] gave quite promising results. But, they still have drawbacks.
During reconstruction to detect anomalies, sometimes they can even reconstruct
abnormalities into typical instances due to the ability of CNNs. Another method
to detect abnormal detection is to train a network to predict future frames and
compare the predicted frames corresponding to the future frame of input frames
[15]. This method will increase runtime cost by extracting optical flow features of
video frames but its performance is outstanding.
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1.2.2 Memory networks

Long short-term memory (LSTM) [32] is a classic and popular memory, it is used to
store information in hidden states during training models and reuse this information
as needed. However, it also has limitations on the size of the cell or the information
in the hidden state is compressed, causing the information to be transformed from
the original information. Therefore, new memory network structures are born to
solve problems better than classical memory. Kim et al.[33] solved most of the two
notorious issues of unsupervised GAN training using a learnable memory network.
Memory can significantly improve the performance of DGMs as well as density
estimation, image generation, and missing value imputation, Li et al.[34].

Moreover, memory networks [35] also use the query, key, and value (QKV)
concept. The QKV concept is often used when the target information of the current
input exists at the other inputs. In this case, memory networks set the current input
and the other inputs as the query and memory, respectively. The key and value
are extracted from memory, and the correlation map of the query and memory is
generated through a non-local matching operation of the query and key feature.
Then, the weighted average value based on the correlation map is retrieved. The
QKV concept is widely used in a variety of tasks, including natural language
processing [36, 37, 38], image processing [31,54], and video recognition [39, 40, 41].
In VOS, STM [42] has achieved significant success by repurposing the concept of
the QKV.

1.3 Contribution

In brief, our approach considers both appearance and motion features based on the
perception that compared with normal behaviors, an abnormal behavior differs in
their appearance and motion patterns by using memory module. In summary, this
thesis makes the following contributions:

• We proposed a model that includes a motion branch with a motion repre-
sentation extraction task combined with an appearance branch to increase
prediction efficiency. Also integrates the memory module into the motion
branch to store information about the normal movement of objects.
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• We proposed a loss function synthesized from memory, prediction, optical
flow losses to take advantage of these loss functions to the training model.

• Our model was trained on 2 different datasets and resulted in 2.7% (UCSD
Ped2 dataset [5]), 0.9% (CUHK Avenue dataset [6]) increase compared to the
original MNAD model [16]. Hence, we have achieved state-of-the-art with
both datasets Ped2 and Avenue for abnormal detection in video frames.

• We also provide a breakdown of memory size - an important factor in memory
modules.
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Chapter 2

Background

2.1 Auto encoder and its variant

Auto-encoder. Auto-encoders are an unsupervised learning technique. Specifically,
a bottleneck is imposed in the neural network architecture, which plays a significant
role in compressing feature representations of the input. If all of the input’s fea-
tures are independent of each other, this will cause difficulties in compression and
reconstruction tasks. Otherwise, if there are some interactive, mutually supportive
features in the data, the auto-encoder model will learn this relational structure
through bottleneck layers. However, conventional auto-encoder models are only
suitable for reconstruction tasks because they only know how to compress the data
based on features discovered from data in training these models. When taking
an unlabeled dataset and use it into a supervised learning problem with input x
then reconstruction an outputting x̂. This model can be trained by computing the
differences between the input and the output reconstruction then minimize it.

U-net. U-Net is a convolutional neural network architecture (CNN) that ex-
panded with few changes in architecture. Olag Ronneberger et al. [43] introduced
the U-Net architecture for biomedical image segmentation, and the role is not only
to classify whether there is an infection or not but also to detect wherein the area
of infection. The encoder and decoder are two main parts of U-net architecture.
The encoder is used to extract the features in the image by convolutional layers fol-
lowed by pooling operations. The second part decoder consists of up convolution,
concatenation, regular convolution operations.
Skip-connection. In many convolutional architectures, skip connection is a widely-
used technique because it affects convergence, fixes vanishing gradients, and lever-
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Figure 2.1: Auto-encoder architecture.

ages data from previous layers. The skip connection works by creating paths
between layer after layer; the previous layer’s output would become the input of
the following layers. Note that the skip connection does not create a path of two
adjacent layers. For a long structured model, in the backward stage, multiplying
too many results less than one together often results in a gradient of approximately
zero. Therefore, the update will be suspended in the early layers. In this state, a
skip connection path can yield significant improvements. There are two basic ways
to use skip connections:

• Addition skip connection as in ResNet [2].

• Concatenation skip connection as in DenseNet [3].

As mentioned above, the skip connection can help the model to reuse the data of
earlier layers. This feature is of concatenate skip connection, so concatenation is
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Figure 2.2: U-net architecture. Image from [1]

used quite commonly. Note that the addition skip connection has to have the same
dimension and concatenation also. With concatenation, there can be a difference in
the number of channels. In addition, the skip connection has two types of setups:

• Short skip connections.

• Long skip connections.

The short skip connections are used for consecutive layers and have whole input
dimensions (ResNet figure 2.3). Its main effect is to stabilize gradient training and
convergence. Long skip connection is mainly used in symmetrical architecture;
a good example is U-net (U-net figure 2.2). It is used to transport the features
extracted from the encoder to the decoder to recover spatial information lost during
downsampling. Long skip connection is utilized for tasks that have the same spatial
dimension as the input, such as image segmentation, optical flow estimation, video
prediction, etc.
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Figure 2.3: This is example for addition and short connection. Image from [2]

2.2 Deep feature learning for anomaly detection

Image reconstruction. Image reconstruction or image restoration is essential for
problems applied in practice that use images as an input. The corrupted images
such as noise, motion blur, and low resolution will recover the clean images. Image
reconstruction makes images obtained from the actual camera-less affected by the
surrounding environment, weather, etc., improving the model’s accuracy.
Image prediction. Image prediction is a method of predicting the future based
on deep learning. With the input being a series of consecutive frames, feature
representations are extracted then reconstruct a future frame from the features.
To predict a frame with high quality, appearance features combined with motion
features. Motion constraints obtained by performing the optical flow between
future predicted frames and ground truth frames to be consistent [15].
Optical flow. Optical flow can be seen as the motion attribute of objects in a series
of consecutive frames. It computes the motion vector of each pixel in the video
frame. Most optical flow methods consider each pixel in a video frame to be an
object, and the color/intensity of each pixel is the feature to identifying an object in
a series of consecutive frames. Assuming that the color/intensity of each pixel is
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Figure 2.4: Example for long skip connection and feature reusability by concatena-
tion of 5 layers. Image from [3]

constant across video frame s, optical flow methods estimate the motion of a pixel
by monitoring the movement of its color/intensity over time in a video. The flow
fields are then analyzed to create segments into regions, which can be linked to
moving objects. Optical flow has two main variants:

• Sparse optical flow computes the vectors of several pixels represent the edges
or corners of an object in the video frame.

• Dense optical flow computes the vectors of all pixels in the video frame.
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Figure 2.5: Example for reconstruction. Image from [4]

Figure 2.6: Example for sparse (left) and dense (right) optical flows.
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Chapter 3

Proposed Method

3.1 Overview

Appearance (spatial) and motion (temporal) constraints are both important factors
in the which discussed in Section 3.2. In related studies about video frame gen-
eration [44, 45], it has been shown that using individual appearance constraints
for predicting or reconstructing cannot guarantee extract motion features. There-
fore, we propose adding an optical flow extractor branch to ensure prediction
efficiency besides the frame predicted branch. Indeed, several articles have applied
this approach in various fields like future frame prediction [15] and action recog-
nition [46, 47], combining both temporal and spatial stream significant accuracy
improvements [22, 24, 46, 47].

The memory module is a type of architecture that attracted much attention by
the researcher and be applied to video abnormally detection in recent years. It
contains the two most common functionality, which is read and updates operations.
Moreover, that memory module in the model treats actual physical memory, which
keeps normal data representation integrity during training and testing stages. That
is why the memory modules and their properties to store both normal motion and
appearance representations are included in our model. This section is carefully
discussed in Section 3.3.

Our model design is based on memory architecture [16] and appearance (spatial)
constraints combined with motion (temporal) constraints [15, 24]. Furthermore,
according to experiments about enhanced anomaly events detection, they demon-
strated that motion features integrate with frames prediction and learn to describe
normal events better, so by inheriting that property, we introduce a method that
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Figure 3.1: The proposal motion-appearance co-memory network for predict future
video frame and extract optical flow. Our model consists of two branches motion
(upper branch) and appearance (lower branch) with each branch is composed of 3
main components: encoder, memory, and decoder modules.

uses both frame reconstruction and optical flow extraction to take advantage of
property from both appearance features and motion features.

Our model structure consists of 2 branches motion and appearance branch and
each branch has three main components including encoder, memory, decoder mod-
ules. The motion branch extracts optical features from two frames (It−1, It−2), which
are then used for reading, updating normal patterns in memory. We synthesized
optical features with normal patterns read from memory and inserted them into the
decoder module to achieve optical flow (F̂t).

Our appearance branch is similar to our motion branch about encoder, decoder,
memory architecture, forward and backward propagation, training loss. The differ-
ences are that the input of the app-encoder is a frame (It); the features synthesized
from the motion-branch and the app-branch will be concatenated to increase infor-
mation to the decoder for prediction of the input video frame ( Ît+1).

3.2 Appearance and Motion branch

According to reference [16], our encoder and decoder architecture is exploited from
U-Net architecture [48], which is widely used to extract feature representations
from input frames and reconstruct the frames from feature representations. Since
ReLU layers [10] do not accept negative values, which limit the diversity of feature
representations, we removed them together with the last batch normalization[49] in
both encoder modules. Instead, we use an L2 normalization layer, so that feature
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representations have a common scale. Our model mainly focuses on prediction
instead of reconstruction, so we keep skip-connections to utilize their capacity.

3.2.1 Motion branch

Optical flow estimates the pixel-wise motion velocity and direction between two
consecutive frames and is a popular low-level motion representation in videos.
The utilization of optical flow for motion modeling has appeared extensively in
most two-stream-based convolutional networks [46, 47]. Although optical flow
estimation is an expensive computational cost and makes the model have a larger
size, motion representations are very useful. Inspired by [15, 46, 47], we build a
motion branch using optical flow and inheritance memory.

The motion-encoder converts the consecutive frames It−1 ,It to motion represen-
tations. Motion representations are denoted as feature query map qm of size Height
× Weight × Channels. The query map qk

m contains queries of size 1 × 1 × C where
qk

m ∈ RC(k = 1, ...K) with K = Height x Weight. Queries are then input into motion
memory modules Mmotion(.) to update normal patterns during the training stage or
read normal patterns in memories.

pk
m = Mmotion(qk

m) (3.1)

Applying the advantage of the skip connection in using the concatenate opera-
tion to fuse the feature query map qm with obtained normal motion feature p̂m to
enhance the knowledge of featuring both compositional patterns and normally a
pattern which the encoder obtained by extracting from pair of frames:

fm = Concat(qm, p̂m) (3.2)

The motion-decoder Dmotion inputs the feature fm and gives an optical flow
image Ft.

F̂t = Dmotion( fm) (3.3)

3.2.2 Appearance branch

As we mentioned in section 3.2.1, appearance encoder and decoder inherit architec-
ture from the motion branch. The process of extracting feature representations and
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reading normal patterns is similar to the branch it inherits.

fa = Concat(qa, p̂a) (3.4)

where qa is appearance feature query map and p̂a is normal appearance features.
The differences between the two branches encoder are that the app-encoder

converts video frames and gives appearance representations. Appearance represen-
tations are denoted as query map qa of size H × W × C. To complete the information
required for prediction, motion features are exploited from motion memory fm is
combined with fa:

f = Concat( fa, fm) (3.5)

For predicting the future frame Ît+1 our app-decoder using the feature f as the
input, and besides the predicted optical flow the predicted frames both use to
compute the anomaly score (The detailed descriptions of the anomaly score are
presented in the section 3.5)

3.3 Co-memory module

The reading and updating stage is presented in Figure 3.2, then we will explain some
math formulas. We denote normal pattern in the memory by pn ∈ RC(m = 1, ...N).
Where N is the number of normal patterns recorded in the memory module.

3.3.1 Read

To read the normal patterns, there are two main steps. Step 1, we calculate the
matching probabilities wk

n. First, we compute the cosine similarity between each
feature query qk and all normal patterns pn in the memory. Cosine similarity yield
a two-dimensional correlation map with N x K size for all feature query (N x 1 for
each feature query). The matching probabilities wk

n obtained through the softmax
function.

wk
n =

exp((pn)Tqk)

∑N
ń=1 exp((pń)T pk)

(3.6)

Step 2, we compute the feature p̂k ∈ RC for each feature query qk through a
weighted average of the matching probabilities wk

n and the corresponding normal
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Figure 3.2: The architecture of the memory module. Due to both motion and
appearance memories share the same architecture, so the subscripted symbols
of appearance a and motion m will not be displayed. Reading stage is executed
by calculating matching probabilities wk

n between feature query qk and normal
patterns in memory (p1, p2, ...pN). We then compute a weighted average of the
probabilities with the normal patterns to achieve p̂k. In the updating state, we are
obtained matching probabilities vk

n be computed the similarity between feature
queries (q1, ...qK) and normal pattern in memory pn. The average weighted will
be calculated based on the feature queries in the set Un along with the matching
probabilities, the end of the process will be a new normal pattern which is initialized
and added to pn. C: cosine similarities; S: softmax function; W: weighted average;
n: max normalization; Un: a set of indices for the n-th memory item.

patterns items in memory pn.

p̂k =
N

∑́
n=1

wk
nPń (3.7)

After using reading operation for feature query map qm or qa, we obtain cor-
responding P̂ ∈ RHxWxC.Then we concatenate p̂ to its feature query map by C
dimension and output (Equations 3.2, 3.3).

3.3.2 Update

For updating normal patterns in memory, we first also use cosine similarities and
softmax functions to achieve matching probabilities vk

n as Equation 3.1.

vk
n =

exp((pn)Tqk)

∑K
ḱ=1 exp((pn)Tqḱ)

(3.8)
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We have a two-dimensional map vK
N of size N x K when feature queries compute

with all normal patterns in the memory. We choose K’s highest matching probability
in vK

N , which means each query will be assigned to a normal pattern in the memory.
The indexes of these K’s highest matching probability will be recorded in Un. Un is
then used to filter out queries and their corresponding matching probabilities vk

n.
These v́k

n are renormalized through a class of max normalization.

v́k
n =

vk
n

maxḱ∈Un vḱ
n

(3.9)

To the end, memory update normal patterns are based on matching index queries
in Un through g(.) is L2 norm.

Pn ←− g(pn + ∑
k∈Un

v́k
nqk) (3.10)

In terms of the structure and algorithm of the co-memory module, we mentioned
the above formulas. Pack et al. [16] used this memory structure for abnormal detec-
tion, but their model had only one appearance branch for both reconstruction and
prediction. With the idea of using appearance and motion in the detect abnormal
activities model, we have combined memory modules for two branches. The results
in table 2 indicate that combining motion branches with memory has brought about
significant improvements.

3.4 Loss functions

We use compactness and separation losses for training memory modules. Com-
pactness and separation define the quality of clustering results. A cluster has good
compactness when elements are close to each other and good separation when
clusters do not overlap [50]. Optical flow and prediction losses are used to train
motion and appearance branches, respectively.

3.4.1 Optical flow loss

The optical flow loss calculates the difference between the predicted optical flow
and ground truth by minimizing the L2 distance between them as flowing:

L f low(F̂t, It−1, It) = ||F̂t − f (It−1, It)||2 (3.11)
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where F̂t denote optical flow image of decoder output; f (.) stands for the function to
extract optical flow ground truth, and we use the FlowNet2 model for this function,
due to practical experiments.

3.4.2 Prediction loss

The prediction loss makes the video frame predicted from the decoder similar to
its ground truth. Specifically, we minimize the L2 distance between the decoder
output It + 1 and the ground truth It + 1:

Lpred( Ît+1, It+1) = || Ît+1 − It+1||2 (3.12)

where we denote It+1 by the predicted frame in appearance branch.

3.4.3 Compactness loss

When training memory modules with compactness loss, the feature queries will be
close to the other normal pattern, which is nearest in the memory.

Lcompact =
K

∑
k
||qk − pi||2 (3.13)

where i is an index of the normal pattern, with the distance is closest to the query
qk.

i = arg max
n∈N

wk
n (3.14)

3.4.4 Separateness loss

For cluster problems, the spacing between clusters is very important. However,
when training memory with compactness loss in (13), normal patterns tend to form
a single cluster. To solve this problem and enhance the discriminative competence,
we apply separateness loss intending to create a margin α between the query and
its second nearest.

Lseparate =
K

∑
k
[||qk − pi||2 − ||qk − pj||2 + α] (3.15)

where i, j are index of the normal patterns, with the distance are closest and second
closest to the query qk, respectively.

j = arg max
n∈N,n 6=i

wk
n (3.16)
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3.4.5 Training objective

To train our model, we use optical flow, prediction, compactness, and separateness
losses (L f low, Lpre, Lcompact and Lseparate, respectively), where λ f , λp, λac, λas, λmc

and λms act as balance parameters.

Loss = λ f L f low +λpLpred +λacLa−compact +λasLa−separate +λmcLm−compact +λmsLm−separate

(3.17)

3.5 Abnormality Score

For enhancement the efficiency of using both predicted optical flow and predicted
frames when calculating an abnormality score of each frame, we use the score
introduced in [38] instead of the common score employed in the deep learning
approach like Lp or Peak Signal to Noise Ratio (PSRN). Indeed, the drawback
of the common abnormality score, which calculated the similarity between the
ground truth frame and the predicted frame is they attend at entire video frames by
summation or average, which causes missed information in small regions. In our
case, the ratio of the movement brightness pattern in the optical flow is small due
to non-moving objects in the background.

The estimated weighted combination score of motion and appearance branch
defines as:

S = log[wFSF(P̃)] + λS[wISI(P̃)] (3.18)

where the the spatial score SF(P), SI(P) of each branch at same position P define as
follows: {

SI(P) = 1
|P| ∑i,j∈P(Ii,j − Îi,j)

2

SF(P) = 1
|P| ∑i,j∈P(Fi,j − F̂i,j)

2 (3.19)

where P is the index of spatial image patch, and |P| is the total number of pixels
in an image patch. In our experiment the size of image patch P is 16x16, and for
particular solutions we adopt convolutional operation with filter size 16x16 for
computed partial score of two branches. The inverted score of appearance and
motion branch which obtained from n images in training set can computed as:{

wF = [ 1
n ∑n

i=1 SFi(P̃i)]
−1

wI = [ 1
n ∑n

i=1 SIi(P̃i)]
−1 (3.20)
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Moreover, the index P̃ can obtained by search the maximum value partial score
of examine frames P̃ ←− arg max

P slide on f rame
SF(P). Finally, the abnormal score of each

frame t in a video with m frames can be computed as:

Ŝt =
St

max(S1..m)
(3.21)
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Chapter 4

Experimental Results

4.1 Implementation details

4.1.1 Dataset

For evaluation the effectiveness of our model, we use the two most common bench-
mark dataset: (1) UCSD Ped2 dataset [5] contains 4560 frames which separated
into 2550 use for training and 2010 using for testing, and the rare event is riding a
bike and driving the vehicle (Table 4.1); (2) CUHK Avenue dataset [6] consists of
30652 frames that split into 16 clips for training and 21 abnormally event clips for
testing. The irregular action contains 47 abnormal events such as anomaly actions
(e.g., running, throwing), wrong moving direction, anomaly object (e.g., bicycle).

Figure 4.1: Example of anomaly events in Avenue dataset.

Table 4.1: Composition of UCSD Ped2 Anomaly Dataset. a number of clips /
number of anomaly instances. b some clips contain more than one type of anomaly.

Scene Nor Abnormal a
Bike Skater Vehicle Total b

Ped2 16 11/19 3/3 1/1 12/23
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4.1.2 Training

During the training process, input frames are resized into a size of 256x256, which
normalize into the range [-1, 1], and both dimensions of appearance and motion
feature dimensions equal 512. The size of memory size for UCSD Ped 2, CUHK
Avenue are 10 and 15 for both appearance and motion branch, respectively. We
train using Adam optimizer[51] where learning rate, momentum were set to 10−4,
0.9, and we set weight decay to 10−4, 0.1 for CUHK Avenue and UCSD Ped 2. For
the optical flow extractor functions f(.), we use the FlowNet2 [52] model, which
pre-trained in FlyingThing3D [53] and ChairsSDHom [52] dataset for estimated
ground truth. The parameter of λ f , λp, λac, λas, λmc and λms set to 1, 1, 0.1, 0.1,
0.1, 0.1 for both datasets .Our model is implemented in Pytorch [54] and trained in
Google Colab.

4.1.3 Evaluation methodology

The frame-level criterion is an algorithm used to evaluate anomaly detection accu-
racy by predicting frames containing abnormal events. It is based on true positive
rates (TPRs) and false-positive rates (FPRs), denoting “an anomalous event” as
“positive” and “the absence of anomalous events” as “negative.” A-frame con-
taining anomalies is denoted a positive, otherwise a negative. The true and false
positive under the frame-level criterion can be determined by comparing the clip’s
frame-level ground-truth anomaly annotations. Moreover, the True Positive Rate
(TPR) and the False Positive Rate (FPR) are two parameters used to draw the Re-
ceiver Operating Characteristic (ROC) curve, which is the curve of True Positive
Rate (TPR) versus False Positive Rate (FPR), generated by varying an acceptance
threshold. TPR and FPR where True/False Positive/Negative are counts for the
corresponding class are defined as:

TPR =
# o f truepositive f rame

# o f positive f rame

FPR =
# o f f alsepositive f rame

# o f negative f rame
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4.2 Results

In this section, we compare our method with different methods for anomaly detec-
tion on the UCSD Ped2 dataset [5] and CUHK Avenue dataset [6]. From table 1,
we can see that our method results in AUC outperforming all of the other methods
and even when compared to models using memory methods like MemAE [23],
MNAD [16], AMCM [22]. When comparing our model with motion memory to
base model - MNAD [16], the performance of our model increased by 2.7% for the
Ped2 dataset and 0.9% for the Avenue dataset. Also, compared to the latest model
of appearance-motion memory [22], the AUC result of our model is still higher at
3.1% on Ped2 and 2.8% on Avenue. In the model without (w/o) motion memory,
the model also shows an improvement by 0.5% compared to the base model [16] on
the Avenue dataset.

Table 4.2: The measurement of AUC results with different methods on the UCSD
Ped2 [5] and CUHK Avenue [6] datasets.

Method Ped2 dataset Avenue dataset
AMCorrespondence [24] 0.962 0.869

Frame Prediction [15] 0.954 0.851
TSC [31] 0.910 0.806

Stacked RNN [31] 0.922 0.817
ConvLSTM-AE [55] 0.881 0.770
Abnormal GAN [14] 0.935 -

Any-Shot [56] 0.978 0.864
CDAE [57] 0.965 0.860

AMCM [22] 0.966 0.866
MemAE [23] 0.941 0.833

CAC [58] - 0.870
MNAD [16] 0.970 0.885

Our Method w/o motion memory 0.970 0.890
Our Method w motion memory 0.997 0.894

We have performed our model experiments with different memory sizes to
examine the effect of memory size on the model. From the results obtained from
table 2, testing on the UCSD Ped2 dataset [5] shows that a larger memory size does
not mean better results are obtained. On the contrary, with a large memory size, the
AUC is significantly reduced (1.6% with the Ped2 dataset) compared to app-motion

23



Table 4.3: The AUC results of our methods on Ped2 and Avenue datasets with
different sizes of memory module.

Dataset M-memory size A-memory size AUC
0 10 0.970

Ped2 10 10 0.997
15 15 0.981
0 10 0.890

Avenue 10 10 0.891
15 15 0.894

memory size 10. However, in the trial with the CUHK Avenue dataset [6], it gives
the best result (0.894) at the app-motion memory size 15. The above comparisons
indicate that memory size depends on the number of normal objects in each different
dataset. Finally, the results obtained from table 2 show that our method of applying
memory to the motion branch brought about positive improvements.
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Figure 4.2: Biker

Figure 4.3: Skater and Biker

Figure 4.4: Vehicle

Figure 4.5: Skater

Figure 4.6: Example of anomaly events in Ped2 dataset.
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Chapter 5

Conclusion and Future Work

5.1 Future Works

Based on the proposal method given in Chapter 3, some limited is indicated:

• Hyper-parameters for deep models such as kernel size, number of filters,
number of layers in our encoder-decoder architectures were chosen based on
the expected use in the state of the art architectures classification tasks and
anomaly detection tasks without deep turning for our study.

• As we discussed in Chapter 3, the update operations of the memory module
only available during the training process, while we freeze it during the testing
process because of the calculated WI , WF of training datasets when computing
the abnormality score. In practical applications, the lack of reading operation
during inference time may ham the systems due to a lack of developed ability
when the scenario scales up.

• Since our proposal method using two continuous frames as the inputs for
the prediction task, our model cannot capture a longer-time dependence
of an anomaly, especially in the motion. As a consequence, our model has
limitations which cause false alarm when predicts the complex moving case.

• Our parameter of memory size setups by randomly value without analysis
carefully.

Many improvements may be applied to the method proposed by us to solve the
limitations stated above. Moreover, we introduce some directions for our future
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works. First, limiting the number of input frames can make the model design
easier, making our model more challenging to deal with long-term dependencies.
The solution is to adopt LSTM [32] or Conv3D [59] models to represent long-term
motion factors instead of convolution in the encoder of the motion branch. Secondly,
integration of the update operation during the testing process is affected by the
calculation of WI , WF parameters during the update, which can change with each
update normal pattern in the memory module. Therefore, it is necessary to design
a new abnormality score to reduce the effect of update operation on the coefficients
while ensuring the properties of the consideration score. Third, for the improvement
of inferences times purpose, the replacement of the optical flow extractor to RGB
difference maybe apply in our model to reduce the complexation of our model,
which inspired by [57].

5.2 Close Remark

This thesis has introduced frameworks where deep convolutional networks learn
Spatio-temporal dynamics on optical flow fields and predict a future frame with
the additional memory module. Our approach has stepped toward archiving the
exploiting motion and appearance feature based on quantitative and qualitative
results while extract normal-activation features more efficiently. Moreover, our
proposal approach archives state-of-the-art on two benchmark datasets. In conclu-
sion, we hope our proposal method would substantially improve where a normal
manifold is described effectively to detect anomaly events advantageously.
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