
Eye Tracking System to Detect Driver
Drowsiness using Deep Learning

Final Year Project Report

4th Year Student Name

Nguyen Viet Tung
HE130151

Hoang Manh
HE130294

Under the supervision of

MSc. Luong Trung Kien

Bachelor of Computer Science

Hoa Lac Campus – FPT University

Spring 2021



© Nguyen Viet Tung
All rights reserved



DECLARATION

Project Title
Eye Tracking System to Detect Driver Drowsiness using Deep
Learning

Author Nguyen Viet Tung and Hoang Manh
Student ID HE130151 and HE130294
Supervisor MSc. Luong Trung Kien

I declare that this thesis entitled Eye Tracking System to Detect Driver Drowsiness using
Deep Learning is the result of my own work except as cited in the references. The
thesis has not been accepted for any degree and is not concurrently submitted in
candidature of any other degree.

Nguyen Viet Tung and Hoang Manh

Department of Computer Science
Hoa Lac Campus – FPT University

Date: April 27, 2021

iii



ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my research supervisor,
MSc. Luong Trung Kien, for giving me the opportunity to do research and providing
invaluable guidance throughout this work. His dynamism, vision, sincerity and
motivation have deeply inspired me. He has taught me the methodology to carry
out the work and to present the works as clearly as possible. It was a great privilege
and honor to work and study under his guidance.

I am greatly indebted to my honorable teachers of the Department of Computer
Science at the Hoa Lac Campus – FPT University who taught me during the course
of my study. Without any doubt, their teaching and guidance have completely
transformed me to a person that I am today.

I am extremely thankful to my parents for their unconditional love, endless
prayers, caring and immense sacrifices for educating and preparing me for my
future. I would like to say thanks to my friends and relatives for their kind support
and care.

Finally, I would like to thank all the people who have supported me to complete
the project work directly or indirectly.

Nguyen Viet Tung and Hoang Manh
Hoa Lac Campus – FPT University
Date: April 27, 2021

iv



ABSTRACT

An insufficient amount of sleep regimen can have an enormous impact on your
quality of life. According to research, being subjected to stress at work, doing too
much on the laptop, being on your smartphone, and experiencing problems with
sleep deprivation. At the same time, driving can double the chances of you being
tired behind the wheel. They are fatigued and drowsy while driving is a few of
the reasons why there are more traffic accidents. Often, as a result of mental or
physical exhaustion, people can fall asleep and face difficulties. This thesis discusses
a method for determining whether a driver is sleepy behind the wheel and helps
the person stop an accident. As a goal, one side effect of this initiative’s overall goal
is to cut traffic accidents. We want to boost drivers’ alertness and make people’s
attention span longer. Masking drowsiness while driving might lead to frequent
yawning and drooping of the eyelids, or getting progressively drowsier and start
to fall asleep behind the wheel, might occur. We used the network-based face and
eye-expansion feature extraction algorithm to identify the driver and locate his
pupils. To calculate the percentage of eyelid closure over time, we use the driver’s
eye closing characteristic.

Keywords: Drowsiness; Driver Fatigue; Image Processing; Deep Learning; Transfer
learning; Convolutional neural network; PERCLOS algorithm; Multi-task Cascaded
Convolutional Networks;

v



Contents

1 INTRODUCTION 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BACKGROUND 4
2.1 Conventional Approaches for Drowsiness Detection . . . . . . . . . . 4
2.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Neural network components . . . . . . . . . . . . . . . . . . . 6
2.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Convolutional neural network components . . . . . . . . . . . 12
2.3.1.1 Convolutional layers . . . . . . . . . . . . . . . . . . 12
2.3.1.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.3 Fully Connected layer . . . . . . . . . . . . . . . . . . 15

2.3.2 Convolutional neural network architecture . . . . . . . . . . . 16
2.3.3 Training the convolutional neural network . . . . . . . . . . . 16

2.4 Multi-task Cascaded Convolutional Networks (MTCNN) . . . . . . . 18
2.4.1 Proposal network (P-NET) . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Refine network (R-NET) . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Output network (O-NET) . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Architecture of MTCNN . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The percentage of eyelid closure over the pupil (PERCLOS) . . . . . . 20

3 METHODS 23
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Datasets and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Convolutional Neural Network for Drowsiness Detection . . . . . . . 28
3.4 Drowsiness Dectection Tracking Eye System . . . . . . . . . . . . . . 30

3.4.1 Detect Face with Multi-task Cascaded Convolutional Networks 30
3.4.2 Convolutional Neural Networks Detect Eyes Status . . . . . . 33
3.4.3 PERCLOS and Alert . . . . . . . . . . . . . . . . . . . . . . . . 33

4 EXPERIMENTS RESULTS 35

5 CONCLUSION AND FUTURE WORKS 38
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References 40

vii



List of Figures

2.1 A unit in the Neural Network . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The ReLu function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Layers of a neural network . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 The convolution step: Image with the kernal 3x3 and output feature

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Max pooling: Each pooling operation selects the maximum value

of the current view (Left); Average pooling: Each pooling operation
averages the values of the current view (Right) . . . . . . . . . . . . . 15

2.7 Basic architecture of Convolutional Neural Network. . . . . . . . . . 16
2.8 MTCNN: steps the cascaded architecture takes to ensure best perfor-

mance in human face detection and bounding box regression. . . . . 19
2.9 Architecture of MTCNN . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Overall step of Datasets and Preprocessing: Step 1 consists of face
and landmark to get close, open status of eyes and step 2 consists of
drowsiness model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Overall step Detect Drowsiness Driver: Step 1 detect face and consists
of face and landmark of eyes and step apply drowsiness model Step
3 Using PERCLOS to alert drowsiness . . . . . . . . . . . . . . . . . . 24

3.3 Some samples of FPT University . . . . . . . . . . . . . . . . . . . . . 25
3.4 MRL Eye Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 (a) Real-time Camera; (b) Video with size 2560x1820 pixels; (c) Split

Frame in Video size 2560x1820 pixels; (d) Bounding Box of face and
eyes; (e) Crop Bounding box eyes size 56x64 pixels . . . . . . . . . . . 27

3.6 Model CNN to training for system tracking eye to detect drowsiness
while driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



3.7 Input Dataset Open and Close Eye for the model . . . . . . . . . . . 29
3.8 Data image RGB to Gray . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 First layer: Conv2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10 Feature after maxpooling . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.11 Flow of system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.12 MTCNN to extract bounding box of face . . . . . . . . . . . . . . . . 32
3.13 Facial Landmarks points . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.14 Eye when MTCNN and Facial Landmarks extract to predict status . 33

4.1 Model CNN training with GPU in Google Colab . . . . . . . . . . . . 36
4.2 Our System tracking eye to detect Drowsiness and Alert . . . . . . . 37

ix



List of Tables

4.1 FPS when run with the system testing. . . . . . . . . . . . . . . . . . . 35
4.2 Drowsiness Detection Case Testing. . . . . . . . . . . . . . . . . . . . . 36

x



Chapter 1

INTRODUCTION

1.1 Introduction

According to the National Highway Traffic Safety Administration estimated that
in 2017 has 91,000 police-reported crashes involved drowsy drivers (14). In the
fact that the real world maybe has more accidents than the report. Over the year,
with the number of vehicles increasing worldwide, it has become necessary daily.
Many people are driving mentally and in a sleepy state and tend to move to the
destination. Doing so can lead to drowsiness and uncontrolled driving, resulting in
collisions with other vehicles and possibly death.

There are numerous non-driving-related causes to result in accidents, including road
conditions, the weather, and the mechanical performance of a car. However, most
of the accidents are happened due to the awareness and subjectivity of the driver.
Hence, every year thousands of people die in road accidents, and the essential factor
for this is the driver’s drowsiness. The drowsiness behaviors related to fatigue
nature are in any form, including eye closing, head-nodding, etc. Fortunately, the
technology is developing, artificial intelligence and computer vision algorithms can
become a solution to solve this problem. The research on the intelligent detection of
drowsy driving can significantly reduce traffic jams and open the way to making
autonomous cars in the future.

There have many challenges, methods, and research on driving drowsiness de-
tection based on drivers’ behavior caused by low-cost and diverse technology in
recent years. However, the limitation of face detection and fatigue assessing in

1



complex and changing surroundings leads to the algorithm’s performance down.
Follow references (16), use PERCLOS (Percentage of Eyelid Closure Over the Pupil
Over Time) algorithm to recognize the fatigued driver to obtain the driver’s receiver
and evaluate the driving status. The experiment shows that the highest perfor-
mance of this solution in ideal conditions. It firstly assesses whether the driver’s
eyes are open or closed in the current frame according to the eyelid proportion
covering the pupil. Then, PERCLOS is calculated by the number of closed eyes
frames over a period of time. When the proportion of eyelid covering the pupil is
over 80 percent, the eyes are identified as closed in the current frame. However,
this solution does not consider the driver’s differences, especially the differences in
the size of eyes, which may cause misjudgment in practical applications. In some
abnormal situations, the driver is wearing glasses, sunglasses, and in the night –
where the condition is not in the system’s idea. In these cases, a convolution neural
network (CNN) can increase the system’s accuracy to alert the driver effectively.

This paper presents the image processing method based on the Deep Learning
approach combination with PERCLOS for driver drowsiness. Our practice focuses
on the driver’s eyes while riding a car as input and classifies the behaviors of sleepi-
ness into two classes (normal and drowsy). Firstly, we use Multi-task Cascaded
Convolutional Networks (MTCNN) (25) to detect the face from the real-time cam-
era. After that, we calculated all of the eyes’ landmark coordinates to identify eyes’
status (open or closed). Finally, we are using a convolutional neural network (CNN)
model to tracking the driver’s eyes. With the model, the actions can recognize by
following the driver’s face’s eyes to help the human have a safe ride. The system
can easy to deploy on the embedded board while driving and keep the accuracy.
Since the person feels drowsy in real-time, the model instantly can detect and alert
the person to have some solutions to handle sleepiness.

1.2 Outline

Chapter 1: It is a general introduction about drowsiness detection, the scope of this
thesis.

Chapter 2: We provide a detailed overview of the technical and neural networks. In

2



this chapter, we present the problem’s approach, the architect of the neural network
we use, and some methods in our experiment.

Chapter 3: From the technology we have outlined in chapter 2, in this chapter,
we will give the technologies we used in our tracking eye system to tell whether
the driver is sleepy or not and provide a warning for the driver and minimize
unwanted traffic accidents.

Chapter 4: In this chapter, we provide the results from the training model, testing
the above system in some cases we have listed for testing.

Chapter 5: It includes the results of testing our systems and some ways to ex-
tend the system in the future.

1.3 Related Works

With the advent of new technologies, a lot of quick, accurate machine learning
models are coming to the fore, which lessens the workload and, as well as guaran-
teeing high recognition rates of accuracy. The use of strong artificial intelligence
techniques such as machine learning and deep learning is recently widely accepted
as a solution to exhaustion detection of human micro-sleep or state of mind. We
will cover how we implemented deep learning models to reduce overfitting and
how they can help in general to identify sleepiness when driving in this segment.

3



Chapter 2

BACKGROUND

2.1 Conventional Approaches for Drowsiness Detec-
tion

The driving trend may be determined by measuring the rotation of the steering
wheel or the distance from the lane or lateral direction. Micro-adjustment of the
steering wheel is essential while driving to keep the car in the street. Following (9)
achieved an accuracy of 86% in drowsiness detection based on correlations between
micro-adjustments and drowsiness.

The second class of techniques incorporates data from physiological sensors such as
EEG, ECG, and EOG data. EEG impulses provide information about brain function.
Three key cues for calculating the driver’s sleepiness in EEG are alpha, delta, and
theta signals. When the driver is drowsy, the delta and theta signals jump up, and
the alpha signal increases marginally. In paper (12), this technique gives the best
accuracy among all the three methods (more than 90%). Although this solution has
advantages, one major disadvantage is that may bother the driver is having sensors
installed in the vehicle. However, non-invasive bio-signals do not function.

The above is focused on retrieving facial features using Computer Vision, where pat-
terns such as eye closing, shifting of the head, gaze, or facial expression have been
used. The references (4) used the distance between eyelids to measure drowsiness
of 3 levels. The distinction was made based on the number of blinks per minute, on
the premise that the count increases as the individual gets drowsier.

4



2.2 Neural Network

Before we begin discussing CNN, we can tell you about how all the other popular
neural networks function(18). Neural Network (NN) is a model of programming
that simulates the functioning of human neural networks (1). In combination with
deep learning (DL), neural networks are a versatile method that can better achieve
numerous complex problems, including image recognition (8), language recogni-
tion (22), or processing (17). In several fields of science and technology, artificial
intelligence is today becoming a common subject. Apple’s Siri-virtual assistant,
Tesla’s self-driven automotive, and Netflix’s movie recommendation system are
some of the standing applications in the Google Translate multi-language localiza-
tion system.

The neural network history started with developing a neural network comput-
ing model by Warren McCulloch and Walter Pitts in 1943 based on algorithms
called threshold logic (3). For instance, the dog can differentiate among family
members and foreigners, or the kid may differ between species. Things look very
simple but very hard to do with a computer. The response is that the brain has
several neurons connected. Neural is a neuronal adjective, network graph only, so
the neural network (NN) is a computer device influenced by neuronal activation in
the nervous system.

The neuron is the nervous system’s essential component and the most signifi-
cant component of the brain. Our brain comprises around 10 million neurons, and
each neuron connects to 10,000 other neurons. Each neuron has a somatic core body,
dendrites input, and axon output signals attached to other neurons. The dendrites
obtain the input data, and the output data are sent to other dendrites. The signal
passes through the axon through the dendrites of other neurons if the electrical
pulses are adequate to transform the nucleus into a neuron. So any neuron must
determine whether this neuron should be activated or not.

5



In summary, there are functional approximation models for brains and empiri-
cal models that can help in all areas of speculation, particularly in drawing upon
what we know about the brain’s observations. The design and learning mechanism
are explained in this portion if you’re interested in learning more about neural
networks, which components make up neural networks.

2.2.1 Neural network components

Units. Neural networks consist of units, which take inspiration from biological
neurons. Each unit, also known as an artificial neuron, takes one or more data
inputs and produces output, shipped off numerous units. The input of a unit is
external data or output of one or more units.

Besides units, the network consists of connections that are defined as the rela-
tion between two units. These relations are measured by weights which are the
strength of the connections. Weights influence the measure of the impact an adjust-
ment in the input will have upon the output. Along with weights, biases, which
are constants, are added into the input of the following layer. Biases speak for how
isolated the predictions are from the desired values, and they also ensure that the
input of units can be activated when they are equal to zero. To produce the output
of a unit, first, we sum the weighted inputs and add bias to it; the result of this
process is called activation a. a is given by:

a = WTx + b (2.1)

In the final step, activations will be passed through the activation function. The
value we receive after this process is the output of the unit. (Figure 2.1)

Activation Function This is a sub-unit of a neural network, which is a statisti-
cal mapping that defines the contribution of units. The activation function is often
referred to as a transforming function because it converts the data. For instance, in
binary sorting problems, the input is passed into an activation function to obtain
output in the range 0 to 1.

6



Figure 2.1: A unit in the Neural Network

The activation function may be classified into two types: linear and non-linear.
The mechanism of linear activation, or the function of identity activation, is defined
as f(x) = x. The linear activation function returns to output in no certain range (-∞,
∞), that does not help anything in transform the input. In practical, the non-linear
activation function is used to transform the input. In fact, the input is transformed
using a non-linear activation mechanism. This capstone project introduces two of
the most common non-linear activation mechanisms, sigmoid functions, and ReLU.

ReLU The most common activation function for CNNs and also the one used
in this thesis is the ReLu follow equation (2.2). It outputs x when x is positive and
outputs 0 otherwise (Figure 2.2).

A(x) = max(0, x) (2.2)

ReLu is less computationally expensive than some other common activation func-
tions like tanh and Sigmoid because the mathematical operation is simpler and the
activation is sparser. Since the function outputs 0 when x 0, there is a considerable
chance that a given unit does not activate at all. Sparsity also means more concise
models with more predictive power and less noise or overfitting. In a sparse net-
work, neurons are more likely to process meaningful information. For example,
a neuron which can identify human faces should not be activated if the image is

7



Figure 2.2: The ReLu function

actually about a building.

Sigmoid is frequently used to refer to the logistic equation, alternatively known as
the logistic sigmoid function. Since all sigmoid functions map the whole number
line to a finite range, such as between 0 and 1, or -1 and 1, one use is to transform a
real value to one that can be viewed as a probability.2.3

The logistic function is one of the most frequently used sigmoid functions; it maps
every actual value to a set (0, 1). Take note of the distinctive S-shape that gives
sigmoid functions their reputation (from the Greek letter sigma). Since they can
be used as an initiation function in an artificial neural network, sigmoid functions
have gained popularity in deep learning. They were motivated by biological neural
networks’ activation capacity.

Sigmoid functions are often useful in a variety of machine learning applications
that include the conversion of a specific number to a likelihood. A sigmoid feature
applied as the final layer of a machine learning algorithm may be used to transform
the model’s performance to a likelihood score, which is more manageable and
interpretable.

8



Figure 2.3: The Sigmoid function

Sigmoid functions are an important part of a logistic regression model. Logis-
tic regression is a modification of linear regression for two-class classification. It
converts one or more real-valued inputs into a probability, such as the probability
that a customer will purchase a product. The final stage of a logistic regression
model is often set to the logistic function, which allows the model to output a
probability.

Layers units in a neural network are organized into multiple blocks, which are
called layers. In neural networks, units in the same layers do not connect to each
other; they only connect to units in the previous layers and units in the next layers.

There are three types of layers in a neural network (Figure 2.4). Each network
has only one input layer and one output layer. The input layer is the first layer of
a network, while the output layer is the last layer of a network. Besides the input
layer and output layer, a multi-layer neural network can have zero or more hidden
layers. Layers in the network are arranged in the order of input layer, hidden layers,
and output layer. The number of layers in a network is denoted by L, which is
calculated by summing the number of hidden layers and the number of output

9



Figure 2.4: Layers of a neural network

layers. The first layer, or the input layer, is denoted as the 0th layer.

If there is more than one layer in a network, it is called a multi-layer neural network.
The fully connection between 2 layers is that every neuron in a layer connects to
every neuron in another layer. In a feedforward neural network, except the input
layer, layers take input from the output of the immediately preceding layer. Each
unit in the layer sends its output to the following layer, and it will be transformed
by operation and become the input of the following layer. The output of the output
layers is also the output of the models, which are predicted values. Outputs of the
hidden layers are not shown. That is the reason why they are called hidden.

Learning rate is hyperparameter specifies the amount by which the algorithm
is changed in response to the expected error each time the model weights are ad-
justed. Choosing the learning rate is difficult since a value too small may result in a
prolonged training phase that can get stuck, while a value too high may result in
acquiring an inefficient range of weights too quickly or in an unpredictable training
process.

When configuring the neural network, the learning rate can be the most critical
hyperparameter. As a result, it is critical to understand how to investigate the
impact of the learning rate on model success and to develop an understanding of
the learning rate’s dynamics on model behavior.

10



2.3 Convolutional Neural Network

Artificial Intelligence (AI) has grown through various scientific and technical dis-
ciplines over the last few decades. It will develop templates for itself by using
the input data and then self-modify based on knowledge. Convolutional Neural
Networks (CNN) are one of the most widely used architectures for image-based
deep learning (2). Whereas traditional machine learning relevant features have
to be extracted manually, deep learning uses raw images as input to understand
specific features. CNNs consist of an input and output layer and several hidden
layers between the input and output.

Convolutional Neural Networks (CNNs) is a Deep Learning algorithm that can
take an input image and generate an output image, allocate significance (learnable
weights and biases) to various aspects/objects in the image, and distinguish be-
tween them (7). A ConvNet needs far less pre-processing than other classification
algorithms. Although primitive methods include hand-engineering of filters, Con-
vNets may acquire these filters/characteristics with sufficient preparation.

A ConvNet’s architecture is similar to the connectivity structure of Neurons in
the Human Brain and was influenced by the Visual Cortex’s organization. Individ-
ual neurons react to a stimulus only within a small area of the visual field referred to
as the Receptive Field. A set of such domains will converge to fully fill the pictorial
space. While the approach may have an average precision score when performing
class prediction on clear binary images, it would have little or no accuracy when
performing class prediction on complex images with pixel dependencies.

Through the application of appropriate filters, a ConvNet is capable of successfully
capturing the spatial and temporal dependencies in a picture. Owing to the reduced
number of parameters and reusability of weights, the architecture performs a closer
match to the image dataset. In other terms, the network may be programmed to
recognize the image’s sophistication.

In conclusion, rather than seeing convolutional neural networks as cerebrum job

11



constructs, it is preferable to think about them as practical inference devices de-
signed to accomplish factual hypotheses, building on a few examples from what
we know about the brain instances. This section introduces an architecture convolu-
tional neural network, including components, learning process, and neural network
for drowsiness detection.

2.3.1 Convolutional neural network components

The convolution layer (Conv layer) is where all the computational power is con-
centrated in a CNN. Due to being usually fixed to being stationary, images are
stable, which is quite significant. When we expand this phrase, we are saying that
each element is entirely and identically formed. A function learned in one part
of the world bears a resemblance to a similar pattern in another in a preeminent
way explicitly. Take a small section of the image and then particularly expand it
to take on the characteristics of a broad selection of the image (Input). When in
motion, the particles are mostly spaced out and positioned to form a generally
single trajectory (Output), which is significant at every point in their path. That
essentially is a method of converting the kind of smaller portion of the picture to
the more extensive section of the same image (Kernel). To calculate the new values
and type of expanding the search by the backdrop technique.

Convolutional Neural Networks are similar to multilayer perceptrons (and can be
said to be comprised of individual MLPs, but this comparison is somewhat unclear)
in that they include a single input layer, a single output layer, and a collection of –
at least one – unknown layer(s) in between. CNN is made up of several ’compo-
nents.’ A part in a CNN is equivalent to at least one sheet. It is composed of three
components: Layers with convolution, layers with pooling, and layers with full
connectivity.

2.3.1.1 Convolutional layers

Convolution is a specialized method of a linear process that is used for function
extraction. It is performed by applying a small array of numbers called a kernel over
the data, which is an array of numbers referred to as tensor (24). At each place of the
tensor, and element-wise product for each element of the kernel and the input tensor

12



is computed and summed to obtain the output value in the corresponding direction
of the output tensor, referred to as a feature map. This procedure is repeated for
an arbitrary number of kernels to generate a random number of feature maps that
represent the input tensors’ distinct characteristics. Hence, separate kernels may be
thought of as different feature extractors. The size and number of kernels are two
critical hyperparameters that characterize the convolution process. The former is
usually 3x3, but maybe 5x5 or 7x7 at times. The above is entirely arbitrarily chosen
and defines the depth of the output feature maps. (Figure 2.5)

An image to be categorified is provided to the input layer, and output is that
the expected class label computed exploitation extracted options from image. A
personal somatic cell within the next layer is connected to some neurons within
the previous layer. This native correlation is termed as receptive field. The native
options from the input image are extracted victimization receptive fields. The
receptive field of a somatic cell associated to the specific region in the previous
layer forms a weight vector that remains equal in any respect points on the plane,
wherever the plane refers to the neurons within the next layer. Because the neurons
in the plane share the same weights, so the similar options occurring at totally
different locations in the input file are often detected. This has been represented in
the figure to show below.

2.3.1.2 Pooling layer

The first secret sauce that has contributed significantly to CNN’s effectiveness is
pooling. Pooling is a vector to the scalar transformation that, like convolutions,
operates on each local region of an image. They, though, lack filters and do not com-
pute dot products with the local field, in contrast to convolutions. Other than that,
they either apply the area’s average of the pixels (Average Pooling) or choose the
pixel with the maximum strength and delete the remainder (Max Pooling).(Figure
2.6)

The very idea of pooling can seem counter-productive as it leads to loss of in-
formation. However, it has proven to be very effective in practice because it makes
covnets invariant to variations in the presentation of an image. It also reduces
the effects of background noise. Max Pooling has worked best in recent years, it

13



Figure 2.5: The convolution step: Image with the kernal 3x3 and output feature
maps

14



Figure 2.6: Max pooling: Each pooling operation selects the maximum value of the
current view (Left); Average pooling: Each pooling operation averages the values
of the current view (Right)

is based on the idea that the maximum pixel in a region represents the essential
feature in that region. Often images of objects we wish to classify could contain
several other things. For example, a cat appearing somewhere in the picture of a car
could mislead the classifier. Pooling helps to alleviate the effects of this and makes
covnets generalize better.

It also greatly reduces the computational cost of the covnet. Generally, the size of
images at each layer in the network is directly proportional to the computational
cost (flops) of each layer. Pooling reduces the dimensions of the image as the layers
get deeper. Hence, it helps prevent an explosion of the number of flops a network
requires. Stride convolutions are sometimes used as an alternative to pooling.

2.3.1.3 Fully Connected layer

The last layer of the CNN model in the image classification problem is the fully
connected layer. This layer can convert the feature matrix in the previous layer into
a vector containing the probabilities of the objects that need to be predicted.

The process of training the CNN model for the image classification problem is
similar to training other models. An error function is required to calculate the error

15



between the model’s prediction and the correct label and use the backpropagation
algorithm for the weight update process.

2.3.2 Convolutional neural network architecture

Each input neuron is connected to each output neuron in a conventional feedfor-
ward neural network in the following layer. This is often referred to as a fully linked
layer or affine layer. That is not how CNNs operate. Other than that, we calculate
the output using convolutions over the input layer. As a consequence, each area of
the input is bound to a neuron in the output. Each layer adds various filters, usually
hundreds or thousands such as those seen above, and then blends their production.
There is also something called pooling (subsampling) layers, which I will discuss
later. A CNN dynamically learns the values of its filters during the testing process
depending on the mission at hand. For instance, in Image Classification, a CNN can
learn to detect edges from raw pixels in the first layer, then use such advantages
to detect basic shapes in the second layer, and finally use these shapes to prevent
higher-level features facial shapes in subsequent layers. The final layer is a classifier
that makes use of these top-level functions. Follow the Figure 2.7 we can see the
basic architecture of CNN to detect car in image.

Figure 2.7: Basic architecture of Convolutional Neural Network.

2.3.3 Training the convolutional neural network

Adjusting the weights of individual neurons to obtain the correct characteristics
from photos is one of the most difficult aspects of creating CNNs. Adjusting these
weights is referred to as ”training” the neural network.

16



The CNN begins with arbitrary weights. The developers feed the neural network a
huge dataset of photos annotated with their associated groups during processing
(cat, dog, horse, etc.). Each picture is processed using random values and then
compared to the right mark using the ConvNet. If the network’s performance does
not fit the label at the start of the training phase, it makes a slight change to the
weights of its neurons such that the next time it sees the same picture, its output is
a little closer to the correct response.

Backpropagation is used to make the corrections (or backprop). Backpropaga-
tion essentially optimizes the tuning mechanism by allowing the network to choose
which units to modify rather than requiring arbitrary adjustments.

Each iteration of the entire training dataset is referred to as an ”epoch.” Throughout
the preparation, the ConvNet passes through many epochs, changing the weights
in tiny increments. Every epoch improves the neural network’s ability to distin-
guish the training videos. As the CNN progresses, the weight changes it produces
become increasingly lower. At any stage, the network ”converges,” which ensures
it becomes the best it can be.

After educating the CNN, the developers validate its accuracy using a reference
dataset. The evaluation dataset consists of a collection of labeled photos that were
not used in the training sample. Each picture is fed into the ConvNet, and the
output is compared to the image’s real name. Essentially, the research dataset
assesses the neural network’s ability to identify previously unseen images.

If a CNN performs well on training data but poorly on evaluation data, it is consid-
ered ”overfitted.” This usually occurs when the training data is insufficiently varied
or when the ConvNet undergoes an excessive number of epochs on the training
dataset.

Convolutional Neural Networks’ performance is mainly attributed to the availabil-
ity of massive image datasets built over the last decade. The competition listed
at the beginning of this article is named after a dataset of over 14 million labeled
photographs. Additional datasets are more specialized, such as the MNIST, which

17



contains 70,000 photos with handwritten digits.

However, there is no requirement to train per convolutional neural network on
millions of photos. Sometimes, you may take a pre-trained model, such as the
AlexNet or Microsoft’s ResNet, and finetune it for more advanced users. This is
referred to as transfer learning, and it involves retraining a learned neural network
on a smaller number of new instances.

2.4 Multi-task Cascaded Convolutional Networks (MTCNN)

While there are many face detection methods (20)(19)(10)(26)(25), but MTCNN
(Multitask Convolutional Neutral Networks) is adopted in this work for two rea-
sons. On one hand, it achieves a high detection accuracy, and on the other hand,
FaceNet model has already provided MTCNN interface to detect faces.

Multi-task Cascaded Convolutional Networks (MTCNN) is a deep learning al-
gorithm for face recognition built on a cascaded Convolutional Neural Network
with multiple tasks (CNN). It increases its efficiency by using the intrinsic link
between identification and alignment. This paper’s approach leverages a cascaded
architecture with three levels of carefully constructed deep convolutional networks
to forecast face and landmark locations in a coarse-to-fine (25). Figure 2.8 shows a
photo of model of MTCNN

2.4.1 Proposal network (P-NET)

The P-net is a convolutional neural network in its entirety (FCN). The forwarding
propagation function map is a 32-dimensional feature vector at each point. It is used
to decide whether or not 12 x 12 grid cells have faces. If a grid cell includes a human
face, the human face’s Bounding Box is regressed to obtain the Bounding Box
corresponding to the region in the original picture. A Non-maximum suppression
(NMS) stage retains the Bounding Box with the highest ranking, and all other
Bounding Boxes with an overly broad overlapping region are excluded.

18



Figure 2.8: MTCNN: steps the cascaded architecture takes to ensure best perfor-
mance in human face detection and bounding box regression.

2.4.2 Refine network (R-NET)

R-Net is a specific CNN point. As with the previous stage (O-Net), the 24x24 and
corresponding Bounding Box area are enlarged to 48x48. It is then passed to the
R-Net level, which is tasked with detecting Bounding Boxes and facial landmarks
with the highest detection confidence.

2.4.3 Output network (O-NET)

O-NET is intended to improve precision. It is a straightforward CNN; the Bounding
Box created by the P-Net move can or may not contain a human face. This package,
along with the 12x12 input, is first up-scaled to 24x24 using a bilinear interpolation
technique and then used as the input to the O-Net to evaluate the presence of a
human face. When a human face is contained, the Bounding Box is regressed and
the NMS level.

19



2.4.4 Architecture of MTCNN

The layer architectures are used in each stage of the cascaded MTCNN model. Each
phase produces the same class of results using a different set of Conv filters and
a different number of layers. Three types of outputs are available. Two neurons
are used to generate the first series of outputs, which is the face classification score.
One is used to indicate the presence of a face, while the other is used to indicate the
ranking. Another section of the output is the bounding box regression, in which
four neurons represent the bounding box’s upper left and lower right corners as dx1 ,
dy1 , dx2 , and dy2 respectively. Localization of facial landmarks involves regressing
five points: the left eye, the right eye, the nose, the left mouth corner, and the right
mouth corner.

The three networks would use the landmark locations as supervised cues to di-
rect the network’s learning throughout the training process. However, during
the prediction process, P-Net and R-Net perform only face detection and do not
produce landmark locations due to inaccuracy in these areas. The O-Net is used to
determine the landmark location. The outputs of the bounding box and landmarks
synchronization are normalized about the data.

As mentioned above, there are three tasks that Multi-task Cascaded Convolutional
Networks (MTCNN) archives. Precisely, mask recognition, bounding box regres-
sion, and localization of facial landmarks. As a result, the algorithm’s loss function
also has three parts. Due to space constraints, the following is a summary of the
main points; readers seeking further information are directed to (21). Figure 2.9
illustrates the model’s design for face detection and landmark extraction in detail.

2.5 The percentage of eyelid closure over the pupil (PER-
CLOS)

Wierwille et al. (13) developed PERCLOS as a drowsiness metric. PERCLOSURE
can be described as the percentage of time that the eyelids are closed over the
pupil by at least 80%. PERCLOS values can be calculated using continuous video
sequences of eye pictures (6). Until calculating the correct PERCLOS amount,

20



Figure 2.9: Architecture of MTCNN

multiple measures must be completed. Face identification comes first, accompanied
by eye detection and description of eye states. Finally, the following formula is used
to determine the PERCLOS value.

P =
Ec

Et
(2.3)

In the above equation (2.3), P is the PERCLOS value , Ec is the number of closed
eye count over a predefined interval, while Et the total eye count in the same given
interval. E.g., suppose 100 frames of facial images are recorded and 20 such cases are
found where the eyes are closed (at least 80% spatially). In that case, the PERCLOS
value is 20%. The eyes are categorized as open or closed during training based on
80% spatial closure.

Given the detrimental effect of driver drowsiness on driving protection, there
has been considerable interest in designing a device capable of monitoring and
quantifying driver drowsiness and providing real-time warnings to the driver and
controlling the car’s performance. There are various drowsy driver tracking sys-
tems on the market, but almost all of them depend on a single indicator of driver
drowsiness (e.g., eye closures). One disadvantage of utilizing a single predictor of
drowsiness is that they are vulnerable to intermittent data gaps caused by sensor
loss or use beyond the sensor’s operating envelope.

Slow eye closing is one of the measures seen with some drowsiness monitors

21



(i.e., PERCLOS). However, tests of certain specific technologies have shown peri-
odic data loss under various circumstances, including whether the driver is wearing
eyewear (e.g., glasses, sunglasses). The driver’s eyes are not inside the system’s
field of view due to standard visual scanning patterns (e.g., mirror checks), or the
driver is doing a secondary task (e.g., looking down at the speedometer) that causes
the driver’s eyes to be outside the system’s field of view.

22



Chapter 3

METHODS

3.1 Architecture

A general solution has two significant steps: the identification of drowsiness and the
elaboration of a strategy. Datasets and preprocessing should be finished, then refer
to the flow diagram in Fig 3.1. Drowsiness may be detected through facial feature
recognition and facial mapping (23) . However, there is a specific and different
process of finding standard facial features to joint landmarks and checking that they
are in position. Using Multi-Task Cascade Classifier (MTCCN) (25) is usually comes
with both the added to face detection and face alignment to obtain both accuracy
and time. Hence they are given priority in this task. Exploiting the complicated
structure can get high performance in facial recognition and segmentation. Two
positions on left eye coordinates and the right-eye landmarks are often determined
as a result of face recognition and orientation. Having the left-eye coordinates,
right-eye coordinates we create bounding box and expansion measures completed
is necessary to accomplish the data’s label, which will produce bounding box and
cropping landmark of left-right eye’s status outcomes. Afterward, the previously
mentioned method, the CNN model, loads data with the label to training and
returns it to the summary model to detect drowsiness. Next step is application
model to detect drowsiness while driving. Following Fig 3.2 we can observed all
our system. In this step, applying the results we trained for in the first phase, which
utilizes the PERCLOS algorithm (13) to calculate ratio frame of the camera and
warn the driver if the driver is tired, and then repeat this step 2 more often before
the ratio between the two sensors deviates significantly from their initial value.

23



Figure 3.1: Overall step of Datasets and Preprocessing: Step 1 consists of face and
landmark to get close, open status of eyes and step 2 consists of drowsiness model

Figure 3.2: Overall step Detect Drowsiness Driver: Step 1 detect face and consists of
face and landmark of eyes and step apply drowsiness model Step 3 Using PERCLOS
to alert drowsiness

3.2 Datasets and Preprocessing

3.2.1 Datasets

The data we collect is the raw and the machine can not understand fully the mean-
ing of this. Doing so many as converting picture, image, and video data to 1s, and
0s into information is limited to machines. Because our image recognition model
would just need photos to be more trained after this, we can only have images and
videos in our slideshow before it gets finished. In certain contexts, a dataset may
be interpreted as a list of individual data items called documents, points, patterns,
incidents, cases, or tests, but it can also be described as interconnected records,
points, or patterns. The objects can be represented by a variety of attributes, such as
the weight or the period or occurrence of an incident Features can also are named
lengths, characteristics, factors, or properties depending on whether you choose to
say they are.

The Deep Learning model developed here is trained on videos obtained from
the FPT University student we collected and crawl data from the website. These
videos are preprocessed to create images for this project.

24



1) FPT University Student Datasets: This dataset contains 30 subjects including from
different human, both genders, wearing glass and bare eye as Fig 3.3. We collect the
videos data of FPT Univesity Student with the status opening and closing eye. For
each frames, we crop eye image as Figure for the model train.

Figure 3.3: Some samples of FPT University

2) Crawl Datasets in the internet: Face dataset is the common data in the internet.
The internet is the open source and data for every field, it has many dataset for us
to training data. We clone the data and make it like input for the model to training.
From the MRL Eye Dataset (5), the large-scale dataset of human eye images. This
dataset contains infrared images in low and high resolution, all captured in various
lightning conditions and by different devices. The dataset is suitable for testing
several features or trainable classifiers. In order to simplify the comparison of
algorithms, the images are divided into several categories, which also makes them
suitable for training and testing classifiers (Figure 3.4).

25



Figure 3.4: MRL Eye Dataset

3.2.2 Preprocessing

After the inception of convolutional neural networks (CNNs), a family of deep
machine learning algorithms, computers have been created that can conduct facial
recognition and verification tasks as efficiently as humans (15). The ability of in-
telligent machines to successfully perform recognition tasks depends on the CNN
architecture and the format of the input data. For example, the dataset size may be
inadequate for training a neural network. The data distribution may vary, deteriora-
tion due to noise or grey-level resolution may be an issue, and the color space may
be different. Additionally, there might be instances of intra-person disparity due to
variations in posture and illumination. Additionally, inter-person similarities can
occur when the features of members of distinct classes bear a striking resemblance.
Since the latter is more common in face space than in object space, it is not covered
in this analysis.

Typically, the size of the dataset used to train a CNN is critical for deciphering
the complex trends found in the results. The literature often uses data augmen-
tation techniques such as translation, rotating, scaling, and reflection to solve the
limited sample size problem. Another often-used technique is data normalization,
which is used to minimize variance in data distribution. It works by subtracting the
mean from each pixel of the input data and then dividing the resultant output by

26



the standard deviation.

In this experiment, we have collected data from various sources, sizes, and genres
in a subtle way. Firstly, for the videos, we have to use the MTCNN network architec-
ture to get the face and the eye points, thereby building the face and eye bounding
boxes. Once we have the bounding boxes, we have cropped the eye bounding boxes
to shape 56x64 so that the CNN network can, for the most detail, learn the best,
which is quite significant for the training (Figure 3.5).

For another dataset which we have collected from the crawl on the internet, Some
dataset has size like 185x111 pixels, 104x58 pixels,... That so difficult to take the
train, test dataset for the model CNN learning. In this case, we reshape the im-
age to standard shape input to the model convolutional neural network shape 56x64.

The total dataset consists of the training dataset, evaluation dataset, and test

Figure 3.5: (a) Real-time Camera; (b) Video with size 2560x1820 pixels; (c) Split
Frame in Video size 2560x1820 pixels; (d) Bounding Box of face and eyes; (e) Crop
Bounding box eyes size 56x64 pixels

dataset. The training dataset consists of more than 35000 frames open eyes and
more than 35000 frames close eyes. The evaluation dataset consists of 5000 frames
open eyes, 5000 frames close eyes, and the test dataset consists of 10000 frames
open eyes, 10000 frames close eyes. During training and evaluation, each frame
is binary labeled open and closed. The videos are in 2560x1820 pixels, but we are
processing crop the eye and reshape it to 56 × 64 pixels, 24 frames per second PNG
format without audio to prepare for the next step.

27



3.3 Convolutional Neural Network for Drowsiness De-
tection

As I literally mention in section 3.1 we for all intents and purposes have the CNNfor
the model eye-tracking driver to mostly detect drowsiness, which kind of is fairly
significant. To mostly make model can generally detect pretty high accuracy, the
model we actually have some layers specifically likes the 3.6 in a particularly big
way.

Figure 3.6: Model CNN to training for system tracking eye to detect drowsiness
while driving

With the data we have gathered from section 3.2.1 as a figure 3.7 is not eligible to
be able to perform the training model step. To be able to make the input for the
trainning model, in the first step we converted the image from (56x64x3) with 3
RGB color channels to a Gray image (56x64x1) according to the figure. 3.8.
When the input images have been converted to standard gray as the model, we
will transition to the conv2d layer. To prepare the features for image classification
well, we will take 32 filters in this first step and a matrix that will scan through
the data matrix will have a size of 3x3. To be able to optimize all the features in
the image, the distance between 2 kernals when scanning is 1. In this step we use
ReLu, between using the sigmod function and tanh we choose relu by because the

28



Figure 3.7: Input Dataset Open and Close Eye for the model

Figure 3.8: Data image RGB to Gray

convergence speed is much faster. The ReLU convergence speed is 6 times faster
than Tanh (11). This is probably because the ReLU is not saturated at the ends like
Sigmoid and Tanh. Input image as figure 3.8 and the out after step through conv2d
in figure 3.9.

After we passed conv2d step like figure 3.9 then maxpooling layer with 2x2
kernels will help us get the snow position of features in image space that are no

Figure 3.9: First layer: Conv2D

29



Figure 3.10: Feature after maxpooling

longer needed. instead, the relative position holds sufficient features to classify the
object. Besides, max pooling has the ability to reduce the input image dimension
from (56x64) to (28x32), limit overfit, and reduce training time. Figure 3.10

The next layers will do the same to prepare for the final layer of the CNN model
in the eye-state recognition problem. This stage has the function of converting the
symbolic matrix of the preceding layers into a vector containing the probability of
the eye state. The CNN model then returns a model that can classify the eye status
so that it can provide the system with sleep detection while monitoring the driver’s
eyes.

3.4 Drowsiness Dectection Tracking Eye System

According to the tech we mentioned above, in this system we will use three main
parts. The first technology we use in this system is the MTCNN used for facial
recognition, then we will use the trained CNN model to be able to recognize the
state of the eye and finally. PERCLOS to be able to identify the driver is in the sleep
state or not. Our system will be built in flow as shown in Figure 3.11

3.4.1 Detect Face with Multi-task Cascaded Convolutional Net-
works

In our system, face detection is located in the head position because if you want to
identify the driver’s eye, the face detection is very important because if the face can-
not be identified, the tracking the driver’s eye will not be viable. In this experiment,
we used Detect Face with Multi-task Cascaded Convolutional Networks (MTCNN)
one of the facial recognition models used by many people today. With MTCNN,
we can get the facial landmark and bounding box of the face (figure 3.12). From

30



Figure 3.11: Flow of system

31



Figure 3.12: MTCNN to extract bounding box of face

Figure 3.13: Facial Landmarks points

32



Figure 3.14: Eye when MTCNN and Facial Landmarks extract to predict status

MTCNN we get center point of eye and the facial landmarks (figure 3.13) we get
image eye to tracking.

3.4.2 Convolutional Neural Networks Detect Eyes Status

When the Model MTCNN and the facial landmark have obtained the face and image
with the shape (56x64) like as figure 3.14, in this step, the model we trained section
3.3 will predict what state the driver’s eye is in and from which they are. We can
calculate the driver’s eye-closing or eye-opening rate to give the most appropriate
warning.

3.4.3 PERCLOS and Alert

After the system can detect whether the state of the eye is open or closed, then our
system will count the number of frames the camera receives and then apply the
PERCLOS algorithm to be able to calculate the ratio. drowsiness while driving. In
our system there will be 3 types of warning.

Our first warning is when the driver is in a normal sleep state. With short eye-
closing time, continuous frequency, the driver is in a state of lack of alertness.
In section 2.5 we have mentioned PERCLOS, in this case when the driver’s P ra-
tio is between 19-25 %, we will leave warning low to let the owner know he is sleepy.

Next is that the driver closes his eyes for a very long time and when the mid-
level warning driver shows no signs of opening, the driver is in a state of short
sleep and in the body can not. resist sleepiness. In this case, the driver’s P ratio is
between 26-30 %. In this case the driver is having a short nap and the medium alert

33



with louder volume and greater frequency will be the driver to concentrate again.

The last warning is that when the intermediate warning signals the driver that
the driver cannot wake up, our advanced warning can be combined with the slow-
down vehicle and can warn for everyone. people around by lights or sound. In this
case, the driver’s P ratio is over 30 %, which is an alarming case because the driver
is too tired and the alarm cannot make the driver awake. In this case, we will warn
people around with our headlights or warning lights.

34



Chapter 4

EXPERIMENTS RESULTS

In this project, we used a computer with an Intel Core i7 - 10700 processor, Camera
(Webcam) Thronmax STREAM GO X1 1080P to help stream and record full HD
video at 30 frames per second. In this experiment, we want to use pure CPU to
embed it on mobile phone or car software at an optimal cost easily.

According to measured data such as the table 4.1, we have tested some cases
to optimize real-time image processing to detect the driver is sleepy immediately.
We tried with TensorFlow and PyTorch, and the result shows that PyTorch is more
efficient.

Even though the CPU used has eight physical cores, it can be immediately noted by
the elapsed time, that training with a CPU still takes an extreme amount of time
and is not really feasible for fine-tuning in the scope of this project. Even when a
CPU consists of multiple cores and is top of the line, high processing times still

Test FPS
Case Frame Time FPS
Camera normal 100 3.83(s) 26-27
Camera using
mtcnn with
TensorFlow

100 28.3(s) 3-4

Camera using
mtcnn with
PyTorch

100 10.6(s) 9-10

Table 4.1: FPS when run with the system testing.

35



Figure 4.1: Model CNN training with GPU in Google Colab

Test Case
Case Amount of People Accuracy
Bare face 15 92.8%
Wearing Glasses 15 90.4%

Table 4.2: Drowsiness Detection Case Testing.

remain an issue.So we switched to using Google Colab with GPU K80s to optimize
the learning model time and possibly help us test faster. With more than 100,000
images from FPT students and a large data source on the internet, the training took
about 2 hours. And the results are as shown in figure 4.1

From the results in the figure 4.1 for you, our model is doing very well. We
check with 10 epoch, and the number of epochs increases, both Train Loss and
Validation Loss decrease, Train Accuracy and Val Accuracy increased. With the
model learning so well, our system can detect the status of the driver’s eye so that
it can alert them if they feel tired and sleepy.

We tested on 15 people at FPT University, and the result can be very good with
accuracy greater than 90% according to table 4.2. We also tried on some videos on
the Youtube have content fell asleep and the results like figure 4.2

36



Figure 4.2: Our System tracking eye to detect Drowsiness and Alert

37



Chapter 5

CONCLUSION AND FUTURE
WORKS

5.1 Conclusion

In summary, our driver’s drowsiness eye-tracking system is a combination of mul-
tiple neural networks. There are three main things that we have presented in this
thesis.

Firstly, we presented Neural Network (NN), Convolutional Neural Network (CNN),
and Multi-task Cascaded Convolutional Networks (MTCNN). Our thesis clearly
and firmly defines its architecture, its learning process, and how to apply it to a
supervised learning problem.

Secondly, in this thesis, we have shown flow works of combination deep learn-
ing models in each system layer. Each model will have certain strengths and jobs,
so we have exploited the model’s strengths to make the system work in the best way.

Lastly, our experiments showed that the combination models learn better than
the original neural model and achieve higher accuracy. However, it also brings
many problems, which we can improve models to solve in the future.

38



5.2 Future Works

Our system has many limitations that need to be improved to be widely applied in
practice. In the future we want to improve the following two things:

The extension ability: Our system is currently running on pure code, so in the
future, we want to embed it in some smart devices like phones, car systems so we
can monitor the driver’s condition. This will help the driver to report his fatigue
while driving so that he can find a way to handle it in a timely manner, which can be
easily used in traffic to reduce accidents. In some cases, the system may recommend
the motel driver or where the driver can stop and take naps to stay awake before
returning to the road.

The accuracy ability: We want to find some other models that can increase the
exact proportions or incorporate some more facial details, such as the ratio between
the driver’s eyebrows- eyes, mount- eyes to improve the calculation to helps the
driver to be the safest.

39



References

[1] AGGARWAL, C. Neural Networks and Deep Learning: A Textbook, 1st ed. 2018 ed.
Springer, 2018.

[2] ALBAWI, S., MOHAMMED, T. A., AND AL-ZAWI, S. Understanding of a
convolutional neural network. In 2017 International Conference on Engineering
and Technology (ICET) (2017), pp. 1–6.

[3] ARBIB, M. Warren mcculloch’s search for the logic of the nervous system.
Perspectives in biology and medicine 43 (02 2000), 193–216.

[4] DANISMAN, T., BILASCO, I. M., DJERABA, C., AND IHADDADENE, N. Drowsy
driver detection system using eye blink patterns. In 2010 International Confer-
ence on Machine and Web Intelligence (2010), pp. 230–233.

[5] FUSEK, R. Pupil localization using geodesic distance. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 11241 LNCS (2018), 433–444.

[6] JUNAEDI, S., AND AKBAR, H. Driver Drowsiness Detection Based on Face
Feature and PERCLOS. Journal of Physics: Conference Series 1090 (2018), 012037.

[7] KETKAR, N., AND MOOLAYIL, J. Convolutional Neural Networks. 04 2021,
pp. 197–242.

[8] KONSTANTINIDIS, D., DIMITROPOULOS, K., AND DARAS, P. A deep learning
approach for analyzing video and skeletal features in sign language recognition.
In 2018 IEEE International Conference on Imaging Systems and Techniques (IST)
(2018), pp. 1–6.

40



[9] KRAJEWSKI, J., SOMMER, D., TRUTSCHEL, U., EDWARDS, D., AND GOLZ, M.
Steering wheel behavior based estimation of fatigue.

[10] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. Imagenet classification
with deep convolutional neural networks. Neural Information Processing Systems
25 (01 2012).

[11] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification
with deep convolutional neural networks. Communications of the ACM 60, 6
(2017), 84–90.

[12] MARDI, Z., ASHTIANI, S., AND MIKAEILI, M. Eeg-based drowsiness detection
for safe driving using chaotic features and statistical tests. Journal of medical
signals and sensors 1 (05 2011), 130–7.

[13] MARQUART, G., CABRALL, C., AND DE WINTER, J. Review of eye-related
measures of drivers’ mental workload. Procedia Manufacturing 3 (2015), 2854–
2861. 6th International Conference on Applied Human Factors and Ergonomics
(AHFE 2015) and the Affiliated Conferences, AHFE 2015.

[14] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION GOVERNMENT.
Drowsy Driving. https://www.nhtsa.gov/risky-driving/drowsy-driving.

[15] OLISAH, C., AND SMITH, L. Understanding unconventional preprocessors in
deep convolutional neural networks for face identification. SN Applied Sciences
1, 11 (2019).

[16] QING, W., BINGXI, S., BIN, X., AND JUNJIE, Z. A PERCLOS-Based Driver Fa-
tigue Recognition Application for Smart Vehicle Space. 2010 Third International
Symposium on Information Processing (2010).

[17] SANIL, N., VENKAT, P. A. N., RAKESH, V., MALLAPUR, R., AND AHMED,
M. R. Deep learning techniques for obstacle detection and avoidance in
driverless cars. In 2020 International Conference on Artificial Intelligence and
Signal Processing (AISP) (2020), pp. 1–4.

[18] SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural
Networks 61 (04 2014).

41



[19] SUN, Y., LIANG, D., WANG, X., AND TANG, X. Deepid3: Face recognition
with very deep neural networks.

[20] SUN, Y., WANG, X., AND TANG, X. Hybrid deep learning for face verification.
IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (10 2016), 1997–
2009.

[21] TAIGMAN, Y., YANG, M., RANZATO, M., AND WOLF, L. Deepface: Closing the
gap to human-level performance in face verification. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition (2014), pp. 1701–1708.

[22] WADHAWAN, A., AND KUMAR, P. Deep learning-based sign language recog-
nition system for static signs. Neural Computing and Applications 32, 12 (2020),
7957–7968.

[23] WU, Y., AND JI, Q. Constrained joint cascade regression framework for
simultaneous facial action unit recognition and facial landmark detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2016).

[24] YAMASHITA, R., NISHIO, M., DO, R., AND TOGASHI, K. Convolutional neural
networks: an overview and application in radiology. Insights into Imaging 9, 4
(2018), 611–629.

[25] ZHANG, K., ZHANG, Z., LI, Z., AND QIAO, Y. Joint face detection and
alignment using multitask cascaded convolutional networks. vol. 23, pp. 1499–
1503.

[26] ZHANG, S., CHI, C., LEI, Z., AND LI, S. Z. Refineface: Refinement neural
network for high performance face detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020), 1–1.

42


	INTRODUCTION
	Introduction
	Outline
	Related Works

	BACKGROUND
	Conventional Approaches for Drowsiness Detection
	Neural Network
	Neural network components

	Convolutional Neural Network
	Convolutional neural network components
	Convolutional layers
	Pooling layer
	Fully Connected layer

	Convolutional neural network architecture
	Training the convolutional neural network

	Multi-task Cascaded Convolutional Networks (MTCNN)
	Proposal network (P-NET)
	Refine network (R-NET)
	Output network (O-NET)
	Architecture of MTCNN

	The percentage of eyelid closure over the pupil (PERCLOS)

	METHODS
	Architecture
	Datasets and Preprocessing
	Datasets
	Preprocessing

	Convolutional Neural Network for Drowsiness Detection
	Drowsiness Dectection Tracking Eye System
	Detect Face with Multi-task Cascaded Convolutional Networks
	Convolutional Neural Networks Detect Eyes Status
	PERCLOS and Alert


	EXPERIMENTS RESULTS
	CONCLUSION AND FUTURE WORKS
	Conclusion
	Future Works

	References

