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ABSTRACT

This thesis introduces a deep approach, an effective and robust framework in handling complex
document layout, visual features, and textual semantics for Key Information Extraction (KIE).
The algorithm combines graph learning with graph convolution, resulting in a richer semantic
representation that includes both textual and visual features and a clear global layout. The
model's input only with the coordinates of token bounding boxes, avoiding the use of raw
images. It leads to a layout-aware language model, which can fine-tune downstream tasks. The
model is evaluated on a key information extraction task using publicly available datasets
SROIE. We show that it achieves superior performance on datasets consisting of visually rich
documents while outperforming the baseline RoBERTa on documents.

Keywords: Key information extraction, Natural Language Processing, Layout analysis
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CHAPTER 1. INTRODUCTION

Currently, the state-of-the-art Deep Learning models in Computer Vision have been very
successful with Text Detection and Text Recognition. But there is a new problem that has not
been fully explored and challenging: Key Information Extraction (KIE). Key information
extraction(KIE) is extracting key information from textual sources to enable finding entities
and classifying. There is also semantic advanced information extraction (also known as
semantic annotation) that associates those entities with their descriptions and semantics from a
knowledge graph.

Text data in general, invoices in particular, contain a lot of information, but not all information
is important to you that you want to know. Think about when you have to look at all your bills
to see how much to pay. Or go through the literature to find information about a problem.
There are many other examples like collecting records, documents, analyzing reports, meeting
minutes, billing, and more.

But imagine you have to view all that data manually and extract the necessary information.
Sure, it's a very daunting, painful job, and you might even miss out on some critical
information or make a mistake. It could have disastrous consequences for you or the business
where you work.

One of the complex tasks when analyzing text is to find the correct information from the
documents. Understand the primary content of the paper, or find hidden information. This is
what anyone wants when they come across a piece of text. Therefore, finding out how to
automatically extract data from textual data will reap many benefits and significantly reduce
the time we spend skimming through text documents. This is what KIE wants to achieve. KIE's
task extracts meaningful information from unstructured text data. It presents it in a structured
format such as address, name, company, quant from various form types to formatted manner.

In business, an invoice is a document sent by the supplier to the buyer that lists information
such as the seller, the seller's address, the tax code, the buyer's name, the address of the buyer
or products purchased, when and how they were purchased. Large companies may receive tens
to hundreds of thousands of invoices per year. They have used software and systems to manage
such large volumes of bills. Many software and systems can only record the time of issuing and
receiving invoices, control the number of invoices, detect duplicate invoices, flag or mark
suspicious invoices, censor invoices with the order, etc. All to help the company manage their
import and export. However, all information in the invoice cannot be extracted or imported into
the software. Works like this are all done by humans. However, this is a very tedious,
time-consuming, and also very costly job when hiring a lot of staff to extract invoices and
import data into the system, so an exact solution. Automatic information will be of great
benefit.
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In this thesis, we used Processing Key Information Extraction from Documents using
Improved Graph Learning-Convolutional Networks, a powerful and effective method.

● With Text + Box + Image input, using CNN and Transformer to encode, using Graph
Module as Graph Learning-Convolutional Network (GLCN), BiLSTM, and CRF to
decode and obtain the output as entities. Processing Extracting Key Information from
Documents Using Improved Graph Learning Convolutional NetworKs, to improve
part extraction capabilities by automatically using full-text features and images in
documents. Model incorporates graph-inspired learning module Semi-supervised
learning with graph learning-convolutional networks into the existing graph
architecture to learn a soft adjacent matrix to efficiently and effectively refine the
graph context structure that shows the relationships between nodes for downstream
tasks instead of defining artificially predetermined edge types.

● Besides, the model uses document features including text, image, and position features
using graph convolution for richer representation for KIE. The graphical convolution
operation can exploit the relationship created by the graph learning module and pass
information between nodes in a document. Richer graphics learned are eventually
used for the decoder to support character-level sequence tagging. The model combines
the graph module with the encoder-decoder framework for KIE tasks.

The main contributions can be summarized as follows:
● We have contributed billing data.
● We have extracted KIE in Vietnamese invoice.
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CHAPTER 2. RELATED WORK

Existing research recognizes the critical role that textual and visual features of the documents
play in improving KIE performance.

2.1. Previous methods of improving KIE
However, on the word and character level, the majority of methods use different feature
extractors such as recurrent neural networks (RNNs) or convolutional neural networks (CNNs)
to focus on textual features. An example is Neural Architectures for Named Entity Recognition
(NER)[1]. In the above article, the authors have presented the neural architecture for the NER
not to use language-specific resources. Models are designed to capture two intuitions. The first
is because names usually consist of multiple tokens, so it is essential to inference together
about tagging for each token. They compared two models, a two-dimensional LSTM model
with a random conditional class from above (LSTM-CRF) and a new model that built and
labeled chunks of input sentences equal to usage of the transition-based parsing algorithm with
states represented by the LSTM (S-LSTM) stacks. The second, token-level evidence for “being
a name,” including orthographic evidence ( what does the word being tagged as a name look
like?) and distributional evidence (where does the comment being tagged tend to occur in a
corpus?). To capture orthographic sensitivity, used model character-based word representation
to capture distributional sensitivity.

Figure 2.1. Main architecture of the network. Word embeddings are given to a bidirectional LSTM. li represents
the word i and its left context, ri represents the word i and its right context. Concatenating these two vectors yields

a representation of the word i in its context, ci [1]
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Next is End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF [2]. In the paper,
a neural network architecture is proposed for sequence labeling. This is an end-to-end model
that requires no specific resources for the task, feature engineering, or data preprocessing, in
addition to embedding the pre-trained word on the unlabeled corpus. Therefore, the model can
be easily applied to a wide range of sequence labeling tasks across different languages and
domains. The accumulation neural network (CNN) is first used to encode a word's
character-level information into its character-level representation. Then combine letter and
word-level representations, bringing them into a two-dimensional LSTM (BLSTM) to model
the contextual information for each word. On top of BLSTM, use sequential CRF to co-decode
labels for whole sentences.

Named Entity Recognition with Bidirectional LSTM-CNNs[3], the above article presented a
model combining two-dimensional LSTM and CNNs learning both character-level and
word-level features, offering the first assessment of an ant. Such structure on the English
language assessment dataset has been well established. Furthermore, since vocabulary is
crucial to NER performance, they have proposed a new vocabulary encoding scheme and
match algorithm that can use partial matches.

Figure 2.2. The convolution neural network for extracting character-level representations of words. Dashed arrows
indicate a dropout layer applied before character embeddings are input to CNN [2].

Although it uses visual image features to handle extraction, it only focuses on image features
and does not consider text features such as the Eaten: Entity-aware attention for single-shot
visual text extraction[4]. The above post uses a CNN-based feature extractor to extract feature
maps from the original image, then design the entity-aware attention network, including
multiple entity-aware decoders, initial state warm-up, and state transition between decoders to
capture all entities in the image. EATEN can cover most of the corner cases with arbitrary
shapes, projective/affine transformations, position drift without any correction due to
introducing a spatial attention mechanism.
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The next method is Chargrid: Towards understanding 2d documents [5]. In the above method a
model for processing and understanding structured documents is introduced. Instead of
serializing the document to 1D text, the proposed approach represents it as a sparse 2D grid of
characters, which retains the document's spatial structure. The model predicts a segmentation
mask with pixel level labels and object bound boxes to group multiple instances of the same
layer. Try to use both text and images to understand the document and get good performance
on some documents, through pre-training in text and layout, but it doesn't consider the
relationship between text Documentation such as LayoutLM: Pre-training of Text and Layout
for Document Image Understanding [6]. The above method is a pre-training but effective
method for text and layout for document image comprehension tasks. Inspired by the BERT
model, in which the input text information is mainly represented by embedding the text and
embedding the position, LayoutLM adds two types of input embedding: embedding the 2-D
position. display the relative position of the token within a document; embed the image for the
scanned token image in the document. They added two ways of embedding this input because
embedding a 2-D location can capture the relationship between tokens in a document, while
embedding an image can capture some of the features that appear. like font orientation, type
and color. Besides applying a multitasking learning target to LayoutLM, including Masked
Visual-Language Model (MVLM) loss and Multi-label Document Classification (MDC) loss,
which further enforces pre-training for text and layout. In this work, the focus is on pre-training
documents based on the image of the scanned document, while digital documents are less
challenging as they can be considered a special case without OCR.

Figure 2.3. The main architecture of  neural networks. The character representation for each word is
computed by the CNN in Figure 2.1. Then the character representation vector is concatenated with the word

embedding before feeding into the BLSTM network. Dashed arrows indicate dropout layers applied on both the
input and output vectors of BLSTM[3].
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Besides, some other methods make full use of features to support extraction tasks based on
human-designed features or task-specific knowledge, which cannot be extended on other
documents like Extracting relations within and across sentences [7]. Support Vector Machine
extraction of both inter- and intra-sentential relations is used in this process. Some challenges
to face when extracting inter-sentential relations. The structured features, which are based on
the parser tree, have been used successfully to extract internal relations and do not naturally
apply to many sentences. Solve this problem by introducing new structured features for the
inter-sentential case. There is also a larger data sparsity problem when learning the exact
models for inter-sentential relations partly because of the smaller number of denoted inter-sent
connections. There is a learning approach called threshold adjustment (Shanahan and Roma,
2003 [42]) to counteract imbalances in the data.

The following method is Field extraction from administrative documents by incremental
structural templates [8]. In the above method, the task is to extract relevant structured
information from semi-structured document images. Suppose we focus on the specific case of
invoice processing. In that case, the mission's purpose is to provide images coming from a
known supplier so that all data can be extracted and stored in the database—related fields like
date, total amount, invoice number, etc. There are several methods based on the definition of
fixed spatial templates that map the locations where the OCR has to read the particular fields to
extract. Such basic strategies can work perfectly in simple situations and cause problems right
away when faced with large-scale situations and if document layout changes over time.
Research papers often suggest structured patterns that encode the local context of information
to be extracted. Such approaches learn the local layout structure from a sample document
which is then subscribed to the test images to identify the fields to remove. However, the user
must highlight some semantically meaningful layout entities to build a good model. The above
article proposed a method of information extraction based on the registration of parts of layout
elements. The proposed model, though extremely simple, really requires human intervention.

And next is "A fast and efficient method for extracting text paragraphs and graphics from
unconstrained documents"[9]. This method uses knowledge of the logical structure of
documents described in the high-level language. It verifies the localization of the logical
entities extracted from the document content (characters, words), sentences, etc.) and physical
entities removed from the document layout (markers, blocks, lines, etc.). Only a few
applications use a top-down approach but can build a document comprehension system based
on this approach. The bottom-up approach is time-consuming and much less elegant.

Recent research using all feature text and images to support the output work mainly depends on
graph-based symbols due to the graphical market hoarding network (GCN). Successfully
demonstrated a large company in mission non-data structure (Semi-supervised classification
with complex network graph [10]). In general, GCN methods can be divided into spatial
control methods and total control.
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Convolution of the graph Our framework for obtaining a richer representation falls under
spatial convolution, which broadly describes graph convolution operations by illustrating a
process on node groups of neighbors. The first is that Graph attention networks [11] provide an
attention-based architecture to perform node classification of graphically structured data.
According to the self-attention strategy, the idea is to compute the hidden representations of
each node in the chart by observing its neighboring nodes. The attention architecture has
several interesting properties:

- The operation is efficient since it is parallelizable across node neighbor pairs.
- It can be applied to graph nodes having different degrees by specifying arbitrary weights to
the neighbors.
- The model is directly applicable to inductive learning problems, including tasks where the
model has to generalize to completely unseen graphs.

The proposed approach on four challenging points is Cora, Citeseer, and Pubmed citation
networks and an inductive protein-protein interaction dataset to achieve or compare modern
results that highlight the potential of tissues. Shape-based attention when dealing with
arbitrarily structured graphs.

Figure 2.4. Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized by a weight
vector ~a R2F , applying a LeakyReLU activation. Right: An illustration of multihead attention (with K = 3 heads)
by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The

aggregated features from each head are concatenated or averaged to obtain ~h1 [11]

Next is Geometric deep learning on graphs and manifolds using mixture model CNNs[12],
which presents mixed model networks (MoNet). This common framework allows the design of
deep structures that accumulate over non-Euclidean- like graphs and manifolds. The approach
is to follow the general philosophy of spatial domain methods and build convolutional
operations in pattern matching with local internal 'patches' on a graph or manifold. The main
novelty is how the patch is extracted: whereas the previous approaches use fixed fixes. In
particular, the above paper shows that the patch operators can be constructed as a function of
the local graph or pseudo-manifold coordinates and study a family of functions represented as a
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mixture of particles Gauss multiplier. Such construction allows the formation of Geodesic CNN
(GCNN) and Anisotropic CNN (ACNN) proposed earlier on manifolds or GCN and DCNN on
the graph as specific cases of the approach. In the first problem layer, the task is to classify the
image, which is considered the superpixel's adjacency graph. In the second type of problem,
perform a vertex classification on a chart representing a grid of scientific papers. Finally,
consider the problem of finding dense intrinsic correspondence between 3D shapes known as
manifolds. In all the above issues, it is found that the above approach is always superior to the
non-Euclidean deep learning methods previously proposed.

Figure 2.5. Left: intrinsic local polar coordinates , on a manifold around a point marked in white. Right: patch
operator weighting functions wi(, ) used in different generalizations of convolution on the manifold (hand-crafted
in GCNN and ACNN and learned in MoNet). All kernels are L-normalized; red curves represent the 0.5 level set

[12].

However, spectral methods often determine graph convolution operations based on the
semi-supervised classification with graph convolutional networks, which are not conducive to
dynamic graph structures. The article N-ary Relation Extraction using Graph State LSTM[13]
and Cross-Sentence N-ary Relation Extraction with Graph LSTMs[14] have proposed Graph
LSTM, which allows creating a different number of dependencies at each cell. Relational
extraction has been studied in journalism, web publishing, and biomedical as a central task in
natural language processing. It helps detect clear facts, such as cause-and-effect, and predict a
drug's effect on sudden cancer. Variables of a given gene in the biomedical field. While most
existing jobs extract relationships in a sentence, the task of pulling a cross-sentence
relationship is getting more and more attention. In 2017 Peng et al [14], Extended relation
extraction between sentences by detecting different relationships between several entity
references (n-ary relations). They proposed a graphically structured LSTM to extract the n-ary
association. The graph is constructed from input sentences with dependent edges, linking
adjacent words and relationships between sentences so that syntactic and discourse information
can be used to extract the relationship. To calculate the latency coding for each word, they first
separated the input graph into two alternating directional charts (DAGs) by separating
left-to-right edges from right-to-left edges. Two separate gated recurrent neural networks,
which extend tree LSTM), were adopted for each single-directional DAG, respectively. Finally,
for each word, the latent states of both directions are joined together as the final state. The
bi-directional DAG LSTM model shows superior performance over some strong baselines,
such as tree-structured LSTM, on the biomedical domain benchmark.

However, the two-dimensional DAG LSTM model suffers from some limitations. First,
important information may be lost when converting a graph into two separate DAGs. Second,
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only ancestors and descendants can be incorporated for each term using LSTMs on both
DAGs. Modeling an overall chart and learning its representation without splitting it into two
DAGs is one possible solution to the problems described above. Due to the existence of cycles,
the naive extension of tree LSTMs cannot serve this target. In 2017, convolutional network
graph (GCN) and repeating network graph (GRN) had been proposed to represent graph
structure for NLP tasks. Such methods encode a given graph by learning to decentralize the
representations of neighboring nodes in the graph through their connected edges. While GCNs
use CNNs to exchange information, GRNs perform periodic steps over and over to achieve this
goal. To compare pretty with DAG LSTMs, in the lesson N-ary Relation Extraction using
Graph State LSTM built a graph LSTM by extending Song et al. (2018), strictly follow the
configuration of Peng et al[14] such as the source of the features and parameter settings. In
particular, the total input chart is modeled as a single state, with the words in the chart being its
sub-states. The state transitions are performed on the graph continuously, allowing the lengthy
states to exchange information through the dependent and discourse edges. Each word
increases its current state at each repetition step by getting information from the current state of
adjacent wordsTherefore, with an increasing number of repetitive steps increasing, each dish
will receive information from a larger context. Compared with the two-dimensional DAG
LSTM, the above method has several advantages:

1. It preserves the original graph structure, ensuring that no data is lost.
2. By transferring information up and down from a parent, sibling information can be

easily integrated.
3. Information exchange allows for more parallelization and can therefore be very

efficient in computation.

In Cross-Sentence N-ary Relation Extraction with Graph LSTMs explores a common
framework for n-ary cross-sentence relation extraction, based on graph extended short-term
memory networks (LSTM diagrams). By applying the diagrammatic formula, the methodology
framework in the article uses prior approaches based on a series of tree LSTM. It can
incorporate a rich range of linguistic analysis to aid in the extraction of generation. The input
relational classifier for the entity representations is learned from the entire text and can be
easily extended to arbitrary relations. This approach also facilitates joint learning with friendly
relationships where monitoring signals are more abundant.

Together extract entities and relationships through the design of a directed graph schema.
Removing entities and relationships is a fundamental task of information mining (IE). There
are close relationships between entities and relationships, as well as between relational labels in
a sentence. For example, a Direct connection suggests Person and Location entities, and vice
versa. The direct relationship (between “Cuong” and “Ha Noi”) can be inferred from the direct
connection (between “Cuong” and “Thai Binh”) and Loc In (between “Thai Binh” and “Ha Noi
”).

The task has been traditionally resolved as a series of two separate sub-tasks: entity
identification and relation extraction. This separation ignores the association between these two
side quests. Joint exploitation of entities and relationships was able to integrate the information
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of entities and relationships and to achieve a better result in this task. The general patterns were
studied using both statistical methods and neurological methods. Performance of statistical
models mainly rely on complex feature engineering, and it is difficult to exploit global features.

In contrast, neural methods automatically learn non-local features by exploiting repeating
neural networks to understand sentence-level representations and have given the most current
results. However, most existing neural models extract separate entities and relationships,
achieving joint learning only through parametric sharing but not general decoding. This results
in a limitation that information between output entities and relationships cannot be fully
exploited since no explicit features are used to model output-output dependencies. In 2017,
Zheng et al. was the only exception, designing a new tagging scheme and converting the
general extraction task into a tagging problem. In their standard model, the entities and
relationships information is integrated into a unified tagging scheme and can be fully exploited.
However, due to the conversion to tagging, this method only indirectly captures the output
structure correspondences. It cannot define overlapping relationships (e.g., an entity can only
have at most one connection).

The article "Joint Extraction of Entities and Relations Based on a Novel Graph Scheme" [15]
outlined the solution of converting a joint task into an oriented graph by designing a new graph
schema, solved by using The parse framework is based on conversion. Unlike traditional
parsing tasks, the nodes in the output structure can have multiple or no heads. They propose a
new transition system, a variant of the list-based arc-eager algorithm for non-projective tree
parsing . By integrating each entity and their respective relational information step by step, the
method can model fundamental dependencies not only between entities and relationships but
also between relationships. A challenge to designing a forward-based parsing system is
representing the parse states (i.e., the configuration) on which the transformation actions are
classified. They borrowed the idea of neural parsing, designed a particular recursive neural
network to model the underlying entity relationships and dependency relationships. Use
BiLSTM to represent each sentence token to capture richer contextual information.

The paper "Encoding Sentences with Graph Convolutional Networks for Semantic Role
Labeling" [16] proposed a GCN version suitable for modeling the syntax dependency diagram
to encode sentences to label semantic roles. Semantic role labels (SRL) can be informally
described as the task of discovering who did what to whom. SRL is often considered an
essential step in the standard NLP pipeline, providing information for downstream information
mining and questioning tasks.

Semantic representations are closely related to syntax representations, even though the
syntax-semantics interface is far from trivial. Due to these similarities and also because of the
availability of accurate parsers for multiple languages, it seems natural to exploit syntax
information when predicting semantics. Although historically, most of the SRL approaches to
rely on the last generation syntax of the SRL model put the syntax aside in favor of neural
chain models, namely LSTM, and beyond. The authors of the above paper believe that one
reason for this radical choice is the lack of efficient and straightforward ways to incorporate
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syntactic information into sequential (specific) neural networks. It is on the word level). In this
article, they have proposed a workaround for this limitation.

Specifically, they are based on graph convolutional networks (GCNs), a kind of multi-layered
neural network operating on recent graphs. For each node in the diagram (in our case, one word
in a sentence), the GCN encodes the relevant information about its neighborhood as a
true-valued feature vector. The GCN has mainly been studied in the context of undirected
non-label graphs. They introduced the GCN version for syntax-dependent structure modeling
and general application to labeled directional charts

And in the article, A Lexicon-Based Graph Neural Network for Chinese NER[17], Tao Gui and
his colleagues proposed a vocabulary-based GCN with global semantics to avoid word
ambiguity. The above post introduced a vocabulary-based graph neural network (LGN) that
achieves the Chinese NER as a node classification task. The proposed model breaks down the
serialization processing structure of RNNs due to better interaction between letters and words
through careful connections. Vocabulary knowledge connects relevant characters to capture
local layouts. Meanwhile, a global forward button is designed to capture long-range
dependency and high-end features. LGN follows a neighborhood composite diagram in which
the node representation is computed by recursively summing its incoming edges and a global
forwarding node. Due to the aggregation of repetitions, the model may use global context
information to compare ambiguous words for better prediction repeatedly.

2.2. Related methods
However, their methods do not incorporate visual features into the model. The works most
related to our method are "GraphIE: A graph-based framework for information extraction"[18]
and "Graph convolution for multimodal information extraction from visually rich
documents"[19] using graph modules to capture geographic objects.

2.2.1. GraphIE: A graph-based framework for information extraction

The GraphIE method is a prediction system that learns the relationships between local and
non-local dependencies in the input space automatically. The algorithm works on a graph, with
nodes representing textual units (words or sentences) and edges describing their relationships.
A recurrent neural network sequentially encodes local contextual representations in the model,
and then the graph module uses graph convolutions to iteratively propagate information
between neighboring nodes (Kipf và Welling, 2016) [43]. Finally, the learned representations
are projected back to a recurrent decoder to enable word-level tagging.
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Figure 2.6. GraphIE framework: (a) an overview of the framework; (b) architecture for sentence-level graph,
where each sentence is encoded to a node vector and fed into the graph module, and the output of the graph

module is used as the initial state of the decoder; (c) architecture for word-level graph, where the hidden state for
each word of the encoder is taken as the input node vector of the graph module, and then the output is fed into the

decoder [18]

2.2.2. Graph convolution for multimodal information extraction from visually rich
documents

The method combines textual and visual information presented in Visually rich documents (
VRDs). Graph convolution produces graph embeddings that summarize the meaning of a text
segment in a document, which is then combined with text embeddings for entity extraction
using a standard BiLSTM-CRF model.
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Figure 2.7.  BiLSTM-CRF with graph embeddings. [19]

Method and multimodal to extract but still differ from us in some respects. Our process,
however, incorporates graph learning into the framework, which can filter useless and powerful
buttons to capture complex layout structures.
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CHAPTER 3. METHODOLOGY

3.1. Convolutional neural networks(CNN or ConvNet)

Convolutional neural networks(CNN or ConvNet) are a network architecture used to directly
retrieve valuable features from the initial data, removing the need for time-consuming and
expensive manual extraction. It is beneficial for locating subjects, faces, and scenes. CNN is
often used to describe non-visual data including audio, time series, and signal data[20].

Figure 3.1. A CNN sequence to classify handwritten digits[20]

3.1.1. What Makes ConvNets So Useful?

The use of ConvNets for deep learning is every day for three reasons:
● ConvNets remove the need for manual feature extraction since CNN knows the features

directly.
● ConvNets generate largely accurate identification records
● ConvNets may retrain to perform new recognition activities, allowing you to bring on

previously qualified networks.

3.1.2. How ConvNets Work?

A ConvNet, like most neural networks, is made up of an input layer, an output layer, and
several hidden layers in between.

These layers perform operations on the data to learn data-specific features. The typical popular
layers in ConvNet are convolution, activation or ReLU, and pooling.

● Convolution processes the input images through a series of convolutional filters, each
of which stimulates different aspects of the images.

● Rectified linear unit (ReLU) maps negative values to zero while preserving positive
values, so its planning is effective and quicker. It is often known as activation, and only
the activated features that have been enabled are taken on to the next layer. Other
activation functions are used regularly as sigmoid, tank, leaky relu.

● Pooling decreases the number of parameters that the network must learn by doing
nonlinear downsampling on the output.
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These operations are replicated several times over tens or hundreds of layers, with each layer
learning to recognize various features.

3.2. Graph Convolutional Networks

3.2.1. Basic knowledge of graph

Graph

A graph is represented as G = (V, E) with:

● G : graph
● V: a set of nodes of the graph (vertices / nodes)
● E: the set of edges connecting the nodes of the graph (edge).

● is the representation of the edges connecting from node𝑒
𝑖𝑗

=  (𝑣
𝑖
,  𝑣

𝑗
) ∈ 𝐸 𝑒 ∈  𝐸 𝑣

𝑖

to node of the graph𝑣
𝑗

Adjacency Matrix

Adjacency matrix A, is a square matrix of size nxn (where n is the total number of nodes in the
graph).

● 𝐴
𝑖𝑗

=  1 𝑖𝑓 𝑒
𝑖𝑗

 ∈  𝐸

● 𝐴
𝑖𝑗

=  0 𝑖𝑓 𝑒
𝑖𝑗

∉  𝐸

● The weights of the sides of the graph are expressed by the Adjacency matrix (A), also
known as a weighted-matrix.

Degree matrix

Degree matrix D, is a diagonal matrix nxn, containing the degree information of each vertex,
with

● 𝐷
𝑖𝑖

 =  
𝑖=1

𝑛

∑ 𝐴
𝑖𝑗

● Note that with a direct matrix, the order of each node counts only edges connected to
that node
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Identity matrix

Identity matrix I, is a diagonal matrix nxn, with prices on the main diagonal = 1, the remainder
= 0

● 𝐼
𝑖𝑗

= 1 𝑖𝑓 𝑖 ==  𝑗,  𝑒𝑙𝑠𝑒 𝐼
𝑖𝑗

= 0

Self-loop: a button with edge connecting itself to itself

Laplacian matrix: L = D - A

Frobenius norm:
The Frobenius norm is the matrix norm of a matrix A that is defined as the mixed root for𝑚 𝑥 𝑛
the sum of absolute squares of its elements, sometimes known as a euclidean norm,

(unfortunately also used for the vector -norm).𝐿2

(1)||𝐴||
𝐹

= Σ
𝑖=1
𝑚 Σ

𝑖=1
𝑛 |𝑎

𝑖𝑗
|2

Directed graph and undirected graph:

● Undirected graph or undirected matrix, when the edge between vertices i and j is the
same, or 𝑒

𝑖𝑗
=  𝑒

𝑗𝑖

● Direct graph or directional matrix, has a defined dimension from node to node , and𝑣
𝑖

𝑣
𝑗

there is a linkage next to .𝑒
𝑖𝑗

3.2.2. What are Graph Convolutional Networks ?

Related operations are performed by GCNs, in which the model learns the features by
evaluating adjacent nodes. The main distinction between CNNs and GNNs is that CNNs are
designed to work with regular (Euclidean) organized data, while GNNs are a simplified variant
of CNNs in which the number of nodes links varies and the nodes are not in any particular
order (irregular on non-Euclidean structured data)[21].
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Figure 3.2. 2D Convolution (left) and  Graph Convolution(right)[21]

GCNs can be classified into two types of algorithms:

● Spatial Graph Convolutional Networks
● Spectral Graph Convolutional Networks.

Fast Approximate Spectral Graph Convolutional Networks

The initial inspiration for Spectral GCN came from signal/wave propagation. Knowledge
propagation in Spectral GCN can be thought of as signal propagation around the nodes.

To apply this method of knowledge transmission, spectral GCNs use the Eigen-decomposition
of the graph Laplacian matrix. Stated, the Eigen-decomposition assists in the comprehension of
graph form and hence the recognition of graph nodes.

In Neural Networks, we execute the following equation to propagate the features representation
to the next layer (forward pass):

(2)𝐻[𝑖+1] =  σ(𝑊[𝑖] 𝐻[𝑖] +  𝑏[𝑖] )
In GCN to the node features (or so-called input features) in this process, we can use the
Adjacency Matrix (A) in the forward propagation equation. The forward pass equation will
then be:

) (3)𝐻[𝑖+1] =  σ(𝑊[𝑖]𝐻[𝑖]𝐴*

● represents the output of layer i + 1, each layer corresponds to a matrix of size N𝐻 𝑖 𝐻 𝑖

x . With shows the number of output features of each node at layer .𝐹𝑖 𝐹𝑖 𝐻 𝑖

● is an activation function: Softmax, ReLu, Leaky Relu,...σ

26



● is bias at layer i𝑏[𝑖]

● = X, where X is the initialized weight, node feature of each node𝐻 𝑖

● is the weight matrix corresponding to the ith layer𝑊𝑖

● N is the total number of nodes
● A (Adjacency Matrix) matrix that describes the edges or relations between the nodes in

the forward propagation equation is known as an adjacency matrix. The addition of A
to the forward pass equation helps the model to learn function representations
dependent on node connectivity.

● is the normalized version of A.𝐴*

Why do we have to normalize adjacency matrix A?

Initializing the Graph G

As seen below, we have
● An undirected graph with 6 nodes
● Adjacency matrix A.
● Name of the graph is G.
● Number of edges is 7.
● Average degree: 2.3333
● Graph node: [(0, {‘name’:0}), (1, {‘name’:1}), (2, {‘name’:2}), (3, {‘name’:3}), (4,

{‘name’:4}), (5, {‘name’:5})]

Figure 3.3.a. Graph G visualization

Adjacency Matrix (A) Insertion into Forward Pass Equation

The Adjacency Matrix (A) and Node Features Matrix (X) of graph G are obtained next.
● Shape of A: (6, 6)
● Shape of X: (6, 1)
● Adjacency Matrix (A):
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[[0. 1. 1. 1. 0. 0.],
[1. 0. 1. 0. 0. 0.],
[1. 1. 0. 0. 0. 0.],
[1. 0. 0. 0. 1. 1.],
[0. 0. 0. 1. 0. 1.],
[0. 0. 0. 1. 1. 0.]]

● Node Features Matrix (X):
[[0],
[1],
[2],
[3],
[4],
[5]]

Inserting Self-Loops (A_hat) and calculate AX that represents the sum of neighboring nodes
features

● Edges of G with self-loops:
[(0, 1), (0, 2), (0, 3), (0, 0), (1, 2), (1, 1), (2, 2), (3, 4), (3, 5), (3, 3), (4, 5), (4, 4), (5, 5)]

● Adjacency Matrix of added self-loops G (A_hat):
[[1. 1. 1. 1. 0. 0.],
[1. 1. 1. 0. 0. 0.],
[1. 1. 1. 0. 0. 0.],
[1. 0. 0. 1. 1. 1.],
[0. 0. 0. 1. 1. 1.],
[0. 0. 0. 1. 1. 1.]]

● AX:
[[ 6.]
[ 3.]
[ 3.]
[12.]
[12.]
[12.]]

You would be able to see another issue now. AX's components are not normalized. In order for
the model to converge, we must normalize the features, much as we might for every other
Neural Networks activity. This avoids numerical instabilities and vanishing/exploding
gradients. We normalize our data in GCNs by computing the Degree Matrix (D) and
conducting a dot product function with AX on the opposite of D.

(4)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  𝐷−1𝐴𝑋 

● Degree Matrix of added self-loops G (D):
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[(0, 5), (1, 4), (2, 4), (3, 5), (4, 4), (5, 4)]

● Degree Matrix of added self-loops G as numpy array (D):
[[5 0 0 0 0 0],
[0 4 0 0 0 0],
[0 0 4 0 0 0],
[0 0 0 5 0 0],
[0 0 0 0 4 0],
[0 0 0 0 0 4]]

● Inverse of D:
[[0.2  0.   0.   0.   0.   0.  ],
[0.   0.25 0.   0.   0.   0.  ],
[0.   0.   0.25 0.   0.   0.  ],
[0.   0.   0.   0.2  0.   0.  ],
[0.   0.   0.   0.   0.25 0.  ],
[0.   0.   0.   0.   0.   0.25]]

● DAX:
[[1.2 ],
[0.75],
[0.75],
[2.4 ],
[3.  ],
[3.  ]]

If we compare DAX with AX, we will notice that:

AX:
[[ 6.],
[ 3.],
[ 3.],
[12.],
[12.],
[12.]]

DAX:
[[1.2  ],
[0.75],
[0.75],
[2.4  ],
[3.    ],
[3.    ]]

The problem is based on a clustering graph, evaluating an important information node based on
the number of edges connected to it [22]. Looking at Figure 3.5, we see that node 3 has the
number of connected edges 3, node 4,5 has the number of connected edges 2. Also, before
normalization, , weights at node 3 and node 4,5 Equality is 12. Furthermore, after𝐴𝑋

normalization, , node 3 (weight 2.4) has a higher weight than node 4,5 (weight 3). The𝐷−1𝐴𝑋

fact that is more accurate than , or the lower the degree of a node, the stronger a𝐷−1𝐴𝑋 𝐷−1𝐴𝑋
node belongs to a particular group or cluster.
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Renormalization trick [23]:

Kipf and Welling state in the paper that symmetrical normalization makes dynamics more
interesting, and therefore modifies the standardization equation from:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑒𝑟𝑚 =  𝐷−1𝐴 
𝑡𝑜

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑒𝑟𝑚 =  𝐷−1/2𝐴𝐷−1/2 

DADX:
[[1.27082039],
[0.75            ],
[0.75            ],
[2.61246118],
[2.92082039],
[2.92082039]]

3.2.3.  Graph Convolutional Networks architecture

In hidden layers, GCN performs the following layer-wise propagation,

(5)𝐻𝑖+1 = σ(𝐷−1/2𝐴𝐷−1/2𝐻𝑖𝑊𝑖)

GCN defines the final perceptron for semi-supervised node classification as follows:

(6)𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷−1/2𝐴𝐷−1/2𝐻𝐾𝑊𝐾)

The number of classes is represented by and c.  The Z ∈ final output𝑊𝐾 ∈  𝑅
𝑑

𝐾 𝑥 𝑐 𝑍 ∈  𝑅𝑛 𝑥 𝑐

denotes the label prediction for each X data row, whereby each rows denotes the i-th node𝑍
𝑖

label prediction.

The optimal weight matrices W = { , , · · · } are trained by minimizing the𝑊(0) 𝑊(1) 𝑊(𝐾)

following cross-entropy loss function over all the labeled nodes L, i.e.,

𝐿
𝑆𝑒𝑚𝑖−𝐺𝐶𝑁

 =  − Σ
𝑖∈𝐿

Σ
𝑗=1
𝑐 𝑌

𝑖𝑗
𝑙𝑛𝑍

𝑖𝑗
(7)

Where the labeled node set is indicated by L and denotes the respective𝑌
𝑖
,  𝑖 ∈  𝐿

labeling indication of the labeled i-th node.

3.3. Graph Learning-Convolutional Networks

A new Graph Learning-Convolution Network (GLCN)[24] will learn an adaptive (or optimal)
graph representation for GCN learning by combining graph learning and graph convolution
in a single network architecture.
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3.3.1. Graph learning architecture

● Given an input X = ( , … ) ∈𝑥
1

𝑥
2

𝑥
𝑛

𝑅𝑝𝑥𝑛

● = g( , ) a nonnegative function that represents the pairwise relationship between𝑆
𝑖𝑗

𝑥
𝑖

𝑥
𝑗

data and𝑥
𝑖

𝑥
𝑗

● = ( , … ) T ∈ is a weight vector𝑎 𝑎
1

𝑎
2

𝑎
𝑝

𝑅𝑝𝑥1

(8)𝑆
𝑖𝑗

= 𝑔(𝑥
𝑖
,  𝑥

𝑗
) =  

𝑒𝑥𝑝(𝑅𝑒𝐿𝑈(𝑎𝑇|𝑥
𝑖
−𝑥

𝑗
|))

Σ
𝑗=1
𝑛  𝑒𝑥𝑝(𝑅𝑒𝐿𝑈(𝑎𝑇|𝑥

𝑖
 − 𝑥

𝑗
|))

The role of the above softmax operation on each row of S is to guarantee that the learned graph
S can satisfy the following property,

Σ
𝑗=1
𝑛 𝑆

𝑖𝑗
 =  1,  𝑆

𝑖𝑗  
≥  0

We optimize the optimal weight vector by minimizing the following loss function,𝑎

,𝐿
𝐺𝐿

 =  Σ
𝑖,𝑗 = 1
𝑛 𝑥

𝑖
 −  𝑥

𝑗| || |
2

2 𝑆
𝑖𝑗

 +  γ 𝑆| || |
𝐹
2 (9)

3.3.2. Graph Learning-Convolutional Networks architecture

Figure 3.3.b. Architecture of the proposed GLCN network for semi-supervised learning.[24]

From and ,  minimizing the following loss function as:𝐸𝑞. 7 𝐸𝑞. 9
= +𝐿

𝑆𝑒𝑚𝑖−𝐺𝐶𝑁
𝐿

𝑆𝑒𝑚𝑖−𝐺𝐶𝑁
λ𝐿

𝐺𝐿

3.4. Bidirectional long short term memory(Bi-LSTM) and Conditional
random field(CRF)

3.4.1. What is Bidirectional long short term memory(Bi-LSTM)?

The BI-LSTM is based on the model of recurrent neural networks (RNN) and is developed
from LSTM.
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Recurrent Neural Networks

A recurrent neural network(RNN) keeps a memory centered on past data, allowing the model
to forecast current performance based on long-distance features. RNNs are used for sequential
prediction activities, such as speech recognition[25,26] and are capable of predicting the next
term in a sense[27]. RNN has many different types such as: one to one, one to many, many to
one, many to many.

Figure 5.1a is RNN structure [28] with:
● is an input of step , as a one-hot vector.𝑥

𝑡
𝑡

● is hidden memory in step . It is computed using the front hidden state and input𝑠
𝑡

𝑡 𝑠
𝑡−1

at that step. . The function is a nonlinear function as Tang𝑥
𝑡

𝑠
𝑡

= 𝑓(𝑈𝑥
𝑡
 +  𝑊𝑠

𝑡−1
) 𝑓

Hyperbolic (tank) or Rectified Linear Units (ReLu). The initialization value is regularly
set to 0.

● is an output of step t.𝑜
𝑡

Figure 3.4.a. RNN structure [28].

While RNN has made significant advances in Machine Translation or Language
Modeling[29,30], Speech Recognition[31], Generating Text[32], and Generating Image
Descriptions[33] . However, the algorithm can only estimate correctly for short sequences. For
example 1, if we have the phrase "That student is going to school", we can deduce that the
network is "school" by reading "That student is going to". Since the gap between the acquired
knowledge used for prediction is short in this case, the RNN can be fully known. But in many
situations, we are forced to use more context for inference. For the second example, predict the
last word in the paragraph: “I grew up in Vietnam… I speak fluent Vietnamese.”. Obviously,
the information near ("I speak fluently") only allows us to know that behind it will be the name
of a language. It is impossible to know what language it is. To know what language it is, we
need to have the context "I grew up in Vietnam'' again to be able to deduce. Clearly, the
information gap might be quite far now. As a result, RNN Model is difficult to forecast if the
sequence is long, and Long Short-Term Memory(LSTM) has resolved this[34].
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Long Short-Term Memory (LSTM)

The cell status is crucial to the LSTM[35]. The cell status is similar to that of a conveyor belt.
It passes across all network nodes (links) with just a tiny linear interaction. Therefore,
information can be easily transmitted without fear of change.

Figure 3.4.b. It is a unit structure of LSTM, including 4 gates: input modulation gate, input gate, forget
gate and output gate.

● Forget gate: This port determines what information in recent memory is kept and what
information is left behind. Input information is given to the sigmoid.

● Input gate: This port is used to update the memory with new information. Here
appeared 2 sigmoid and fishy functions.

● Output gate: This port determines what the output of the current word is. It gets
information from two sources: current cell status and input. The modified cell state goes
through the tanh function, and the current input is passed through the sigmoid function.
From here, we combine the two results above to get the output. Note that both the
output and the cell state are included in the next step.

Bidirectional long short-term memory (Bi-LSTM) architecture

The Bi-LSTM system will run the data from one past to another and from one future to the next
in two ways. What differs from unidirectional is that it conserves the future using the LSTM,
which runs backward and combines the two hidden states. It can keep information from the
past as well as from the future at any time.
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Let us assume we try to predict the next word in a phrase. What a single LSTM would see on a
high stage is "The boys went to ….". With bidirectional LSTM, you will see details on the path
further and can attempt to guess the next term in this sense. As in NLP, often recognizing a
term requires one to look not just at the previous word, but also at the next word, as in this
example: "Mom said, Donald Duck stands by the field," and "Mom said, Donald Trump has
become the president" Here for the word "Donald," we cannot just say whether the next word
is going to be "Duck" or "Trump." It will depend on the context of the sentence.

Figure 3.4.c. Bi-LSTM structure

3.4.2. What is Conditional random field?

A conditional random field[36] is an algorithm that graphically classifies data, and its ability to
model several variables is dependent on each other. CRF derives from naive Bayes used to
classify discrete data of graphs. Even when naive Bayes has good classification accuracy, its
probability estimates are typically low. Thus, the solving path for a discrete graph is given by
the joint distribution p (y, x) of an HMM with conditional probability p (y | x), also known as a
linear-chain conditional random field.

Let Y,X be random vectors, be a set of real-valued feature functions, 𝑓
𝑘
(𝑦

𝑡
,  𝑦

𝑡−1
,  𝑥

𝑡
) 

be a set of parameters of CRF . The linear-chain CRF is a distribution p(y|x) thatθ =  {λ
𝑘
}

takes from

(10)𝑝(𝑦|𝑥) =  1
𝑍(𝑥) 𝑒𝑥𝑝{

𝑘 = 1

𝐾

∑ λ
𝑘
 𝑓

𝑘
(𝑦

𝑡
,  𝑦

𝑡−1
,  𝑥

𝑡
)}

Z(x) is an instance-specific normalization function

(11)𝑍(𝑥) =  
𝑦
∑ 𝑒𝑥𝑝(λ

𝑘
 𝑓

𝑘
(𝑦

𝑡
,  𝑦

𝑡−1
,  𝑥

𝑡
)
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The penalized maximum likelihood estimator is a standard technique for parameter estimation.
When we are only working with the Gaussian assumptions, the log-likelihood that uses a
conditional distribution is suitable:

(12)𝐿(θ) =  
𝑖=1

𝑁

∑ 𝑙𝑜𝑔 𝑝(𝑦𝑖|𝑥𝑖)

where is a sequence of inputs, is a𝑥𝑖 =  {𝑥
1
𝑖 ,  𝑥

2
𝑖 ,  𝑥

3
𝑖 ,  ....,  𝑥

𝑇
𝑖 } 𝑦𝑖 =  {𝑦

1
𝑖 ,  𝑦

2
𝑖 ,  𝑦

3
𝑖 ,  ....,  𝑦

𝑇
𝑖 }

sequence of the desired predictions.

Figure 3.4.d. Graphical model of a linear-chain CRF in which the transition score depends on the current
observation[36].

3.5. Transformer

The original transformer[37] is an encoder-decoder dependent, the neural network described in
the paper Attention is All You Need (2017). The key feature of the transformer is the so-called
attention. That is a way to determine the relative importance of phrases in a single sentence or
of the words that are most probable.

Figure 3.5.a. The Transformer - model architecture [37].
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There are three elements worth analyzing:
● The multi-head attention (orange): Adapted from the Bahdanau 2014 [38] definition,

with algorithm optimization. According to the principle, a conditioning signal or query
is applied to a set of key-value pairs — the query and key interact in any way, resulting
in some normalized weights. These weights are then added to the value to produce a
weighted number.

● The position-wise feed-forward networks (light blue): Position-wise feed-forward
networks can think about in two respects. Either they are a two-layer, fully connected
ReLU network applied to every location. Alternatively, there may be two 1-kernel-size
convolutions applied throughout location space (which I prefer): Conv → ReLU →
Conv.

● The positional-encoding: The authors decide to use fixed sinusoids of various
frequencies that are applied directly to the input embeddings to inject location
information. It's similar to a Fourier transform. Learned positional encodings often
operate, although the authors expect that this would assist with longer sequence
generalization. In any case, it's a smart solution since it allows for simple modeling of
relative locations using linear functions.

Figure 3.5.b. Main idea of self-attention in transformer-translation structure

3.6. Proposal Model
Figure 3.6. includes:

● Encoder: This module encodes text segments to obtain text embeddings and image
segments to obtain image embeddings using Transformer and CNN. Text and image
segments represent textual and morphological information, respectively. The two types
of embeddings are then combined to form a new local representation X, which is used
as node input to the Graph Module.
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● Graph Module: Through improved graph learning convolutional operation, this
module can capture the latent relationship between nodes and obtain richer graph
embeddings representation of nodes. Meanwhile, bounding boxes containing the
document's layout context are modeled into the graph embeddings so that graph
modules can obtain non-local and non-sequential features.

● Decoder: After obtaining the graph embeddings of the document, this module uses
BiLSTM and CRF to perform sequence tagging on the union non-local sentence at the
character level. By taking into account the layout information and the global
information of the document, our model transforms key information extraction tasks
into a sequence tagging problem.

Figure 3.6. Overview of proposal model. donates node embedding in the l-th graph convolution layer. and𝑉𝑙 α𝑙 𝐻𝑙

represents relation embedding and hidden features between the node and in the l-th graph convolution layer,𝑣
𝑖

𝑣
𝑗

respectively. A is soft adjacent matrix. N, T, and D M odel denotes the number of sentences segments, the
max-length of sentence and the dimension of the model respectively. ⊕ denotes element-wise addition.

3.6.1. Notation

Given a document D that contains N sentences/text segments, the representation of it is denoted
by S = { , . . . , }, where denotes the character set for the i-th sentence/text segments. At𝑠

1
𝑠

𝑁
𝑠

𝑖

position i, we refer to as image segments and as a bounding box. We use the IOB𝑠
𝑖
𝑖𝑠 𝑠

𝑖
𝑏𝑏

(Inside, Outside, Begin) tagging scheme to label each character as = ( , . . . , )𝑦
𝑖

𝑦
1
(𝑖) 𝑦

𝑇
(𝑖)

sequentially for each sentence = ( , . . . , ), where T is the length of sentence .𝑠
𝑖

𝑐
1
(𝑖) 𝑐

𝑇
(𝑖) 𝑠

𝑖

A document D's accessory graph is denoted by G = (V, R, E), where V = { , . . . , } is a set𝑣
1

𝑣
𝑁

of N nodes, R = { , . . . , }, is the set of relations between two nodes, and E⊂ V × R ×α
𝑖1

α
𝑖𝑗

α
𝑖𝑗

V is the edge set and each edge eij = ( , , )∈ E represents that the relation ∈ R exists𝑣
𝑖

α
𝑖𝑗

𝑣
𝑗

α
𝑖𝑗

from node to .𝑣
𝑖

𝑣
𝑗
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3.6.2. Encoder

The encoder module, depicted in Figure 3.6., is located in the top-left corner of the diagram
and contains two branches. Unlike existing key information works [18], [19] only uses text
segments or bounding boxes. One of the most significant contributions of this paper is that we
use picture fragments with morphology detail to refine text representations, which can then be
used to assist key knowledge extraction tasks.

To capture local text contexts, one Encoder branch employs a transformer encoder[37]. Given a

sentence = ( , . . . , ), text embeddings of sentence is defined as follows𝑠
𝑖

𝑐
1
(𝑖) 𝑐

𝑇
(𝑖) 𝑠

𝑖

= , (13)𝑡𝑒
1:𝑇
(𝑖) 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑐

1:𝑇
(𝑖) ;  Θ

𝑡𝑒𝑛𝑐
)

where = ∈ denotes the input sequence, ∈𝑐
1:𝑇
(𝑖) [𝑐

1
(𝑖),  .  .  .  ,  𝑐

𝑇
(𝑖) ] 

𝑇
𝑅

𝑇 𝑥 𝑑
𝑚𝑜𝑑𝑒𝑙 𝑐

𝑡
(𝑖) 𝑅

 𝑑
𝑚𝑜𝑑𝑒𝑙

represents a token embedding (e.g., Word2Vec) of each character , is the dimension𝑐
𝑇
(𝑖)  𝑑

𝑚𝑜𝑑𝑒𝑙

of the model, = ∈ denotes the output sequence, ∈𝑡𝑒
1:𝑇
(𝑖) [𝑡𝑒

1
(𝑖),  .  .  .  ,  𝑡𝑒

𝑇
(𝑖)] 

𝑇
𝑅

𝑇 𝑥 𝑑
𝑚𝑜𝑑𝑒𝑙 𝑡𝑒

1
(𝑖)

represents the encoder output of Transformer for the i-th character , and𝑅
 𝑑

𝑚𝑜𝑑𝑒𝑙 𝑐
𝑇
(𝑖) 

Transformer's encoder parameters are described by . Each sentence is encoded separately, Θ
𝑡𝑒𝑛𝑐

and we can obtain a document D text embeddings, which we define as

TE= [ ; . . . ; ] ∈ (14)𝑡𝑒
1:𝑇
(1) 𝑡𝑒

1:𝑇
(𝑁) 𝑅

𝑁 𝑥 𝑇 𝑥 𝑑
𝑚𝑜𝑑𝑒𝑙

By using CNN to record morphology, another encoder branch generates image injection. Given

a image segment , image embeddings is defined as follows𝑠
𝑖
𝑖𝑠

= CNN( ; ), (15)𝑖𝑒(𝑖) 𝑠
𝑖
𝑖𝑠 Θ

𝐶𝑁𝑁

where is ∈ denotes the vector of input image segment, and represent the𝑠
𝑖
𝑖𝑠 𝑅𝐻' 𝑥 𝑊' 𝑥 3 𝐻' 𝑊'

height and width of image segment respectively, ∈ represents the output𝑠
𝑖
𝑖𝑠 𝑖𝑒(𝑖) 𝑅

𝐻  𝑥 𝑊 𝑥  𝑑
𝑚𝑜𝑑𝑒𝑙

of CNN for the i-th image segment , and represents the CNN parameters. We use𝑠
𝑖
𝑖𝑠 Θ

𝐶𝑁𝑁

ResNet [39] to execute the CNN and resize the image under the condition H × W = T then
encode each image segments individually and we can get a document D image embeddings,
defining it as

38



IE = [ ; . . . ; ] ∈ . (16)𝑖𝑒(𝑖) 𝑖𝑒(𝑁) 𝑅
𝑁 𝑥 𝑇 𝑥 𝑑

𝑚𝑜𝑑𝑒𝑙

Finally, by an additional elemental operation, we combine text embeddings TE and image
embedding IE and then generate the fusion embedding X from document D, which can be
expressed as

X = TE + IE , (17)

where X ∈ represent a set of nodes of graph ant X will be used as input of𝑅
𝑁 𝑥 𝑇 𝑥 𝑑

𝑚𝑜𝑑𝑒𝑙 𝑋
0

Graph Module followed by pooling operation and ∈ .𝑋
0

𝑅
𝑁 𝑥 𝑇 𝑥 𝑑

𝑚𝑜𝑑𝑒𝑙

3.6.3. Graph Module

Existing main information functions[18] and [19] are used to model global design context and
non-sequential information using graph neural networks. Prior knowledge is needed for the
predefined task-based edge type and the graph's adjacency matrix. [18] define the edge to wide,
horizontally, or vertically connected nodes/text and identify four adjacent matrix forms
(left-to-right, right-to-left, up-to-down, and down-toup). But this method cannot make full use
of all graph nodes and excavate latent connected nodes that are far apart in the document.
Although [19] uses a fully connected graph that every node/text segment is connected, this
operation leads to graph aggregate useless and redundancy node information.

We are incorporating better graphical learning networks inspired by[10] in the current graph
architecture, as seen in the bottom left of Figure 3.6., so as to obtain a soft adjacent matrix A
for the graphical background to be used for downstream tasks.

Graph Learning

Given an input, V = ∈ of graph nodes, where ∈ is the i-th[𝑣
1
,  .  .  .  ,  𝑣

𝑁
 ]𝑇 𝑅

𝑁  𝑥 𝑑
𝑚𝑜𝑑𝑒𝑙 𝑣

𝑖
𝑅

 𝑑
𝑚𝑜𝑑𝑒𝑙

node of the graph and the initial value of V is equal to , Graph Module generates a soft𝑋
0

adjacent matrix A, which represents, first of all by graphic learning, the weight of the
relationship between two nodes and extracts H for each node by means of a multi-layered𝑣

𝑖

perceptions network (MLP) just as [19] for Vinput and the corresponding α integrations. Then
we operate the H feature graphics, spread information between nodes, and add that information

to a new feature. Mathematically, we learn a soft adjacent matrix A using a single-layer𝑉'

neural work as

{
𝐴

𝑖
 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒

𝑖
),  𝑖 =  1,..., 𝑁,  𝑗 = 1,..., 𝑁,

(18)
𝑒

𝑖𝑗
 =  𝐿𝑒𝑎𝑘𝑅𝑒𝑙𝑢(𝑤

𝑖
𝑇|𝑣

𝑖
− 𝑣

𝑗
|))
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where ∈ is a learnable weight vector. We use LeakRelu instead of Relu activation to𝑤
𝑖

𝑅
 𝑑

𝑚𝑜𝑑𝑒𝑙

resolve the problem of gradients fading during training. The softmax function is performed on
each A, which can ensure the learning soft, neighboring matrix. The following property is
satisfied by A

. (19)
𝑗=1

𝑁

∑  𝐴
𝑖𝑗

 =  1,  𝐴
𝑖𝑗

 ≥  0

We use the changed loss function based on [10] to optimize the learning weight vector as𝑤
𝑖

, (20)𝐿
𝐺𝐿

 =  1

𝑁2
𝑖,𝑗 = 1

𝑁

∑ 𝑒𝑥𝑝(𝐴
𝑖𝑗

 +  η 𝑣
𝑖
 −  𝑣

𝑗| || |
2

2  +  γ 𝐴| || |
𝐹
2)

where represents Frobenius-Norm. Intuitively, the first item means that nodes and are.| || |
𝐹

𝑣
𝑖

𝑣
𝑗

far apart in higher dimensions encouraging a smaller weight value , and the exponential𝐴
𝑖𝑗

operation can enlarge this effect. Likewise, nuts closer to each other can have stronger
connection weights in higher dimensional space. This process can avoid aggregation of the
noise node information by graph convolution. is a tradeoff parameter that checks theη
importance of graph nodes. The losses are also averaged because the number of nodes on the
various documents is dynamic. The second item controls soft adjacent matrix A sparsity. is aγ
tradeoff parameter, with a larger value resulting in a more sparse soft adjacent matrix A ofγ
graph. As shown in Eq.18 to avoid trivial solutions,. i.e., = 0 as discussed in [10], we use𝑤

𝑖
𝐿

𝐺𝐿

as a regularized term in our final loss function

Graph Convolution

Graph convolutional network (GCN) is being used to collect global visual information and the
layout of the graph nodes. The the node-edge-node triplets ( , , ) as used in [19] is a𝑣

𝑖
α

𝑖𝑗
𝑣

𝑗

graphic convolution instead of the node alone.𝑣
𝑖

Firstly, given an input ∈ as the initial layer input of the graph, initial𝑉0 =  𝑋0 𝑅
𝑁𝑥𝑑

𝑚𝑜𝑑𝑒𝑙

relation embedding between the node and is formulated as followsα
𝑖𝑗
0 𝑣

𝑖
𝑣

𝑗

, (21)α
𝑖𝑗
0  =  𝑊

α
0 [𝑥

𝑖𝑗
,  𝑦

𝑖𝑗 
,  

𝑤
𝑖

ℎ
𝑖

,  
ℎ

𝑗

ℎ
𝑖
,  

𝑤
𝑗

ℎ
𝑖

,  
𝑇

𝑗

𝑇
𝑖
]

𝑇

where ∈ is a learnable weight matrix. The horizontal and vertical distances𝑊
α
0 𝑅

 𝑑
𝑚𝑜𝑑𝑒𝑙

 𝑥 6

between the nodes and are called and , respectively.The width and height of the and𝑣
𝑖

𝑣
𝑗

𝑥
𝑖𝑗

𝑣
𝑖

node is , , , . The aspect ratio of node is , and , has affine invariance𝑣
𝑗

𝑤
𝑖

ℎ
𝑖

𝑤
𝑗

ℎ
𝑗

𝑣
𝑖

𝑤
𝑖

ℎ
𝑖

ℎ
𝑗

ℎ
𝑖

𝑤
𝑗

ℎ
𝑖

and uses the height of node for normalization.𝑣
𝑖
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In addition, the length ratio between the and nodes are different to [19]. The length of
𝑇

𝑗

𝑇
𝑖

𝑣
𝑖

𝑣
𝑗

the sentence intuitively contains information of latent importance. As an example, the age
value entity for medical invoices is usually only three digits, which plays an important role in
improving performance of key information extraction. Furthermore, the model can produce
rough font sizes of text segments, given the length of the sentence and image, making the
relationship embedding more representable.
Then, using the node-edge-node triplets ( , , ) data in the convolution layer, we𝑣

𝑖
α

𝑖𝑗
𝑣

𝑗
 𝑙 − 𝑡ℎ

retrieve hidden features between the nodes and from the graph, and is computed byℎ
𝑖𝑗
𝑙 𝑣

𝑖
𝑣

𝑗
ℎ

𝑖𝑗
𝑙

, (22)ℎ
𝑖𝑗
𝑙  =  σ(𝑊

𝑣
𝑖
ℎ

𝑙 𝑣
𝑖
𝑙 +  𝑊

𝑣
𝑗
ℎ

𝑙 𝑣
𝑗
𝑙 +  α

𝑖𝑗
𝑙  +  𝑏𝑙)

where , ∈ are the learnable weight matrices in the -th convolution𝑊
𝑣

𝑖
ℎ

𝑙 𝑊
𝑣

𝑗
ℎ

𝑙 𝑅
 𝑑

𝑚𝑜𝑑𝑒𝑙
 𝑥  𝑑

𝑚𝑜𝑑𝑒𝑙 𝑙

layer, and is a bias parameter. is a non-linear activation𝑏𝑙 ∈ 𝑅
 𝑑

𝑚𝑜𝑑𝑒𝑙 σ(·) =  𝑚𝑎𝑥(0,  ·)

function. Hidden features ∈ are the total of image elements and the relationℎ
𝑖𝑗
𝑙 𝑅

 𝑑
𝑚𝑜𝑑𝑒𝑙

embedding between the nodes and , and they are essential for collating more richer𝑣
𝑖

𝑣
𝑗

representations for downstream tasks.

Finally, node embedding uses graph convolution to update node representation by𝑣
𝑖
𝑙+1

aggregating information from hidden features .In the same way that a graph learning layerℎ
𝑖𝑗
𝑙

can obtain an optimal adaptive graph soft adjacent matrix A, graph convolution layers can
obtain task-specific node embedding by applying the layer-wise propagation rule. For node ,𝑣

𝑖

we have

= (23)𝑣
𝑖
(𝑙+1) σ(𝐴

𝑖
ℎ

𝑖
𝑙𝑊𝑙)

where ∈ is a layer-specific learnable weight matrix in the -th convolution𝑊𝑙 𝑅
 𝑑

𝑚𝑜𝑑𝑒𝑙
 𝑥  𝑑

𝑚𝑜𝑑𝑒𝑙 𝑙

layer, and ∈ donates the node embedding for node in the + 1-th convolution𝑣
𝑖
(𝑙+1) 𝑅

 𝑑
𝑚𝑜𝑑𝑒𝑙 𝑣

𝑖
𝑙

layer. After L layers, we can get a contextual information containing global layout𝑣
𝑖
𝐿

information and visual information for every node . Then is propagated to the decoder for𝑣
𝑖

𝑣
𝑖
𝐿

tagging tasks.

The relation embedding in the l+1-th convolution layer for node vi is formulated asα
𝑖𝑗
𝑙+1

, (24)α
𝑖𝑗
𝑙+1 =  σ(𝑊

α
𝑙 ℎ

𝑖𝑗
𝑙 )

where ∈ is layer-specific trainable weight matrix in the -th convolution𝑊
α
𝑙

𝑅
 𝑑

𝑚𝑜𝑑𝑒𝑙
 𝑥  𝑑

𝑚𝑜𝑑𝑒𝑙 𝑙

layer.
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3.6.4. Decoder

Figure 3.6. depicts a decoder that includes the BiLSTM [40] layer, CRF [41], and Union layer

layer for key information extraction. Union layer receives the input X ∈ having𝑅
𝑁 𝑥 𝑇 𝑥 𝑑

𝑚𝑜𝑑𝑒𝑙

variable length T generated from Encoder, then packs padded input sequences and fill padding

value at the end of sequence yielding packed sequence ∈ . When𝑋
ℎ𝑎𝑡

𝑅
(𝑁 · 𝑇) 𝑥 𝑑

𝑚𝑜𝑑𝑒𝑙

performing sequence tagging with CRF, packed sequence can be regarded as the union𝑋
ℎ𝑎𝑡

nonlocal document representation rather than local text segment representation. Furthermore, at
each time stamp we configured the node integration of the output of the Graph Module with the

package sequence. Node embedding, which contains the layout of documents as well as𝑋
ℎ𝑎𝑡

contextual features as auxiliary information, appears to improve extraction performance
without ambiguity. BiLSTM can use information from the context past/left and future/right as
final output. The output of BiLSTM is given by

, (25)𝑍 =  𝐵𝑖𝐿𝑆𝑇𝑀(𝑋
ℎ𝑎𝑡

;  0,  θ
𝑙𝑠𝑡𝑚

) 𝑊
𝑧

where the result of BiLSTM is ∈ , which represents the𝑍 = [𝑧
1
,...., 𝑧

𝑁·𝑇
]𝑁·𝑇 𝑅

(𝑁 · 𝑇) 𝑥 𝑑
𝑜𝑢𝑡𝑝𝑢𝑡

scores of the emissions matrix, is the number of different entity, represents the score𝑑
𝑜𝑢𝑡𝑝𝑢𝑡

𝑍
𝑡,𝑗

of the j-th entity of the t-th character in packed sequence , 0 means the initial hidden state𝑐
𝑡

𝑋
ℎ𝑎𝑡

and is zero, and represents the BiLSTM parameters. is the trainableθ
𝑙𝑠𝑡𝑚

𝑊
𝑧
 ∈  𝑅

𝑑
𝑚𝑜𝑑𝑒𝑙

 𝑥 𝑑
𝑜𝑢𝑡𝑝𝑢𝑡

weight matrix.
Given a packed sequence of predictions y, its scores can be defined as follows𝑋

ℎ𝑎𝑡

, (26)𝑆(𝑋
ℎ𝑎𝑡

, 𝑦) =  
𝑖 = 0

𝑁·𝑇

∑ 𝑇
𝑦

𝑖
, 𝑦

𝑖+1

 +  
𝑖 = 1

𝑁·𝑇

∑ 𝑍
𝑖, 𝑦

𝑖

where is the scores of transition matrix and The𝑇 ∈  𝑅(𝑁·𝑇+2) 𝑥 (𝑁·𝑇 + 2) 𝑦 =  (𝑦
1
,..., 𝑦

𝑁·𝑇
).

‘SOS' and ‘EOS' entities of a sentence are represented by and , which stand for start𝑦
0

𝑦
𝑁·𝑇 + 1

of sequence and end of sequence, respectively. Then the sequence CRF layer generates a
family of conditional probability via a softmax for the sequence given as follows𝑦 𝑋

ℎ𝑎𝑡

, (27)𝑝(𝑦|𝑋
ℎ𝑎𝑡

) =  𝑒
𝑠(𝑋

ℎ𝑎𝑡
, 𝑦)

Σ
𝑦

ℎ𝑎𝑡
∈ 𝑦(𝑋

ℎ𝑎𝑡)
𝑒

𝑠(𝑋ℎ𝑎𝑡, 𝑦ℎ𝑎𝑡)

where is all possible entity sequences for .𝑦(𝑋
ℎ𝑎𝑡

) 𝑋
ℎ𝑎𝑡
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We reduce the negative log-likelihood estimate of the right entity series for CRF training,
which is provided by

{
𝐿

𝑐𝑟𝑓
=  − 𝑙𝑜𝑔(𝑝(𝑦|𝑋

ℎ𝑎𝑡
)) =  − 𝑠(𝑋

ℎ𝑎𝑡
, 𝑦) +  𝑍

,(28)
𝑍 =  𝑙𝑜𝑔(Σ

𝑦
ℎ𝑎𝑡

∈𝑦(𝑋
ℎ𝑎𝑡

)
𝑒

𝑠(𝑋
ℎ𝑎𝑡

, 𝑦
ℎ𝑎𝑡

)
 =  𝑙𝑜𝑔𝑎𝑑𝑑

𝑦
ℎ𝑎𝑡

∈ 𝑦(𝑋
ℎ𝑎𝑡

)
 𝑠(𝑋

ℎ𝑎𝑡
,  𝑦

ℎ𝑎𝑡
) 

The following loss function is used to jointly train the model parameters of whole networks:

, (29)𝐿
𝑡𝑜𝑡𝑎𝑙 

=  𝐿
𝑐𝑟𝑓

 +  λ𝐿
𝐺𝐿

where and are defined in Eq.20 and Eq.28 individually, and is a tradeoff parameter.𝐿
𝐺𝐿

𝐿
𝑐𝑟𝑓

λ

The output sequence y* with the highest conditional probability is searched during CRF layer
decoding

. (30)𝑦* =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

ℎ𝑎𝑡
∈ 𝑦(𝑋

ℎ𝑎𝑡
)
 𝑝(𝑦

ℎ𝑎𝑡
|𝑋

ℎ𝑎𝑡
)

The training (Eq.28) and decoding (Eq.30) phases take time, but we can speed things up by
using the dynamic programming algorithm.
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CHAPTER 4. IMPLEMENTATION AND ANALYSIS

4.1. Dataset
The performance of the models is largely determined by the scale and quality of the data set.
So we need a large, quality data set to train the model. Our model is trained by a data set of
more than 2000 images created by us due to a lack of Vietnamese invoice data. Although we do
generate the data on our own, they are perfectly suited for model training because we have
relied on real data to generate them.

VAT invoice is a data set we created that contains more than 2000 pictures. Inside, 2000
pictures contain 1600 invoices for training and 400 invoices for testing. We took four different
invoice templates to create our dataset. It has six key text fields including sales company name,
buyer's full name, tax, buyer's address, ATM, and total money. This data set consists mainly of
Vietnamese numerals and characters. Examples of VAT invoices are shown in the figure down
here.
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Figure 4.1.a. The VAT invoice has been processed
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Figure 4.1.b: VAT invoice we used Ybat tool to get the text box
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Implementation Details

To create the desired data, we must have images, text and boxes. Here are the specifics of our
procedure:

- Step 1. We collect sample value-added invoices. It is blank, no content..
- Step 2. For the image we already have, we use Ybat tool to get the box of text. Here we

get the
- Step 3. coordinates of the box (x, y, width, height). Example of VAT invoice we used

Ybat tool to get the text box, it is shown in figure 4.1.b.
- Step 4. We use our created tool to get relevant data in the content of the invoice. And

put them and each of the different fields in the excel file.
With the existing box and content. We create our VAT invoice data.

An example of a VAT invoice that has been processed by us is shown in figure 4.1.b., and
figure 4.1.b.

We use metrics for evaluation suggested by Guo, He. et al. (2019) [4] to evaluate the
effectiveness of the model. Metrics are mean entity precision (mEP), mean entity recall (mER),
and mean entity F-measure (mEF).
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Figure 4.1.c: The VAT invoice have been defined bbox and labeled

48



Figure 4.1.d. Output of Figure 4.1.c.

4.2. Results
In this project, we used google colaboratory with GPU K80s to optimize the loss function of
Graph learning, the loss function of CRF. With 1600 images of resize 960*720 and 15 epochs,
we trained the model over about 12 hours and gave results in Table 4.2.

Entities mEP mER mEF

ATM 0.917506 0.899287 0.908396

tax 0.915836 0.912856 0.914346

address 0.957516 0.912541 0.935028

name 0.934924 0.915429 0.925176

sum 0.906892 0.927898 0.917395

company 0.901946 0.926472 0.914209

Overall 0.922436 0.915747 0.919091

Table 4.2. Result in VAT data by mEP(mean entity prediction), mER(mean entity recall), mEF((mean entity F1).

Our model achieved better results than we expected on three indicators. MEP is around 92.2%,
MER is around 91.5%, and MEF is around 91.9%. Further analysis reveals that when
combined with the context of words, images, and coordinates (boxes), our model learns the
correlation of irregular data and graph data. The graph model best illustrates the primary key
"address" with very extensive sentence lengths and coordinates. Thus, it receives a very high
MEF score of 93.5 percent due to the very distinctive element of the primary key "address”.
Two keys with a short length of change, "ATM" and "tax," represented as one-digit numbers,
are predicted to be relatively accurate. However, the context of these two keys does not make
much sense. So, the prediction of these two keys is 1-2 percent worse than the other primary
key.
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CHAPTER 5. CONCLUSIONS

We have successfully implemented a model for using contextual information, visual
information, and textual coordination. In particular, The model uses the self-attention feature
of the Transformer model to extract contextual features of the sentence itself, extract image
features using the Convolutional neural network, and use the boxes-shaped coordinates
features, distance, length. Then, the model has combined that factor to give a realistic view of
Key Information Extraction(KIE) for text, especially Vietnamese. Therefore, the labeling for
the documented information was more specific about the training method.
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