

STARS

RATED FOR EXCELI
2012

FPT Education

FPT

NIVERSITY

Meet Our Team

Nguyen Thi Phuong Thao Leader

Bui Van Anh Member

Nguyen Thu Hang Member

Introduction

Brief introduction about the background, objective, and research question as well as the methodology

Literature Reviews

Relevant theories that are the basis to develop research questions and different methods

03 Methodology

Research methods (qualitative, quantitative, and observational studies) and data collection and analysis methods

04

05

02

Empirical Case Analyses of VinFast

Analyses and applies the model and methods proposed in Chapter 3 to evaluate and group green suppliers for VinFast

Conclusions and Implications

Summarizes the findings and suggest implications for VinFast company to choose suitable green suppliers

CHAPTER I: INTRODUCTION

1. BACKGROUND

Green Supplier Selection

TOPIC BACKGROUND

- Over the past decades, GSS has been broadly gaining increasing interest among researchers and practitioners due to the growing awareness of environmental protection and its long-term effects on business and marketing issues.
- GSS is one of the most critical factors for environmental protection and for the world's sustainable development as well.

□ Green economy is one where economic growth and environmental responsibility go hand in hand and mutually support each other, and support the social development process.

□ Some specifically developed countries have adopted this trend: US, EU, Korea, etc.

Vietnam

□ The trend has been affirmed since 2000

Completed a number of specific practical activities.

The world

GREEN ECONOMY TREND IN THE WORLD & VIETNAM

COMPANY BACKGROUND

VinFast Manufacturing and Trading Limited Liability Company

A Vietnamese automobile and electric motorcycle manufacturer

Established in 2017 as a Vingroup Joint Stock Company subsidiary and CEO: Mr. Pham Nhat Vuong

The headquarters is located in Cat Hai District, Hai Phong City, Vietnam

4 Gasoline car model: Fadil, LUX A2.0, LUX SA2.0, President 3 Electric cars: VF31, VF32, VF33

RESEARCH OBJECTIVES

What set of criteria affects Vinfast's selection of green suppliers?

2.RESEARCH QUESTIONS

How is influence level of each criteria on green supplier selection?

2

3. Research Scope

Research method to collect data is direct interview, which focuses on a group of professionals, business and economic specialists, and Vinfast's high-level staffs

4. Methodology and Data review

- * Methodology: Use both quantitative and qualitative research.
- ✤ Data: Mainly use secondary data that conducted through online references (news, Vinfast's official website, research articles, books, etc), consultation with economic experts, and Vinfast's internal data.

CHAPTER II: LITERATURE REVIEW

1. AUTOMOTIVE INDUSTRY OVERVIEW

GLOBAL AUTOMOTIVE INDUSTRY

The automobile industry occupies a significant role in supporting the national economy and being an economic sector with huge profits through the manufacture of goods with outstanding value

01

In 1771 the first automobile was invented with a steam engine.

02

In 1886 the first automobile with gasoline-powered internal combustion engine was born and became a huge turning point for the automotive industry in the world

03

For many decades, the automotive industry has been growing continually, specifically after the Second World War.

04

- Nowadays, China leads the world in total automotive production with 27%.
- Toyota is the largest manufacturer by production volume.

Chart 2.1 Worldwide automobile production under COVID-19 pandemic

Vietnamese Automobile Industry

fees

Contributes 3% to country's gross domestic product Chapter II Literature Review

Chapter II Literature Review

VIETNAMESE AUTOMOTIVE MARKET SHARE

Chart 2.4. Vietnamese automotive marketshare

GREEN SUPPLY CHAIN MANAGEMENT THEORY

Green Supply Chain

An innovative supply chain which complies with social development trends

GSCM is the effort of purchasing departments on activities such as reducing pollutants, recycling and materials substitution (Narasimhan, 1998)

Objectives

Achieve optimal allocation of resources, increase economic benefits and improve environmental consistency in the whole product life cycle

GSCM enterprises cooperate with their downstream and upstream, optimizing the environmental benefits from product design, material selection and retailing to recycling, improving both economic and environmental performances (*Zhu*, 2004)

Green Supplier Selection

Chapter II Literature Review

MULTI - CRITERIA DECISION-MAKING

"MCDM methods provide a possibility to evaluate these and other conflicting factors and to decide which alternative is the most suitable according to different criteria" (Siksnelyte-Butkiene et al., 2020).

Definition

A technique that combines alternative's performance across numerous, contradicting, qualitative and/or quantitative criteria and results in a solution requiring a consensus

Popular methods in GSS

- Analytical hierarchal process (AHP)
- Analytical network process (ANP)
- TOPSIS
- Data envelopment analysis (DEA) and fuzzy decision-making
- etc

Chapter II Literature Review

FUZZY AHP & TOPSIS

FTOPSIS

- Developed base on TOPSIS method- the one that was introduced by Hwang & Yoon in 1981
- Evaluates efficiency in an uncertain environment and allows accurate assessment of multiple criteria at the same time
- Principle relates to Positive and Negative Ideal Solution theory
- □ Used to rank and classify GS

MCDM Methods used in this research

FAHP

- Proposed by Chang in 1996, a synthetic extension of the AHP method
- Overcome the limitation of AHP
- Determine the weights of factors through a pair comparison matrix and also based on expert opinions to make a reasonable decision

Chapter II Literature Review

Research Gap

CHAPTER III: METHODOLOGY

Chapter III: Methodology

Methods

✓ Fuzzy AHP✓ Fuzy TOPSIS

RESEARCH APPROACHES

✓ Inductive✓ Deductive✓ Abductive

DATA VARIABLES

	Criteria	Papers
	Cost (C11)	(Liao, Fu and Wu, 2016)
	Delivery (C12)	(Liao, Fu and Wu, 2016)
	Service level (C13)	(Bali, Kose and Gumus, 2013); (Lee et al., 2009)
Economic	Quality (C14)	(Lee et al., 2009); (Guo et al., 2017)
(04)	Staff training (C15)	(Sevkli et al., 2007)
(01)	Technology (C16)	(Wang Chen et al., 2016)
	Flexibility (C17)	(Wang Chen et al., 2016)
	Financial capability(C18)	(Wang Chen et al., 2016)
	Culture (C19)	(Wang Chen et al., 2016)
	Innovativeness (C110)	(Wang Chen et al., 2016)
	Relationship (C111)	(Wang Chen et al., 2016)
	Human resource management (C31)	(Er and Firat, 2016)
Social	Corporate social responsibility (C32)	(Er and Firat, 2016)
(C3)	Health and safety (C33)	(Er and Firat, 2016)
	Human right issues (C34)	(Er and Firat, 2016)
	Relationship with stakeholders (C35)	(Er and Firat, 2016)

Table 3.1.1 Chosen sustainability criteria

Chapter III: Methodology

DATA VARIABLES

	Green products (C21)	(Bali, Kose and Gumus, 2013);(Lee et al., 2009)
	Green image (C22)	(Bali, Kose and Gumus, 2013);(Lee et al., 2009)
	Eco-design(C23)	(Wang Chen et al., 2016)
	Management commitment(C24)	(Wang Chen et al., 2016)
invironmental	Green technology(C25)	(Wang Chen et al., 2016)s
(C2)	Pollution control(C26)	(Zhang, 2019) ; (Lee et al., 2009)
	Recycle(C27)	(Zhang, 2019);(King et al., 2006)
	Re-manufacturing(C28)	(Zhang, 2019); (King et al., 2006)
	Environmental management system (C29)	(Yildiz, 2019); (Lee et al., 2009); (Guo et al., 2017)
	Resource consumption(C210)	(Guo et al., 2017)

Table 3.1.2 Chosen sustainability criteria

Chapter III: Methodology

FUZZY AHP METHOD

STEP 1: Calculate the fuzzy synthetic extent with respect to *i*th alternative

The value of the fuzzy synthetic extent with respect to the i^{th} object is defined as:

$$S_{i} = \sum_{j=1}^{m} M_{gi}^{j} \times \left[\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j} \right]^{-1}$$
(1)

With

$$\sum_{j=1}^{m} M_{gi}^{j} = \left(\sum_{j=1}^{m} l_{j}, \sum_{j=1}^{m} m_{j}, \sum_{j=1}^{m} u_{j} \right)$$
(2)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j} = \left(\sum_{i=1}^{n} l_{i}, \sum_{i=1}^{n} m_{i}, \sum_{i=1}^{n} u_{i} \right)$$
(3)

Then

$$\left[\sum_{i=1}^{n}\sum_{j=1}^{m}M_{gi}^{j}\right]^{-1} = \left(\frac{1}{\sum_{i=1}^{n}u_{i}}, \frac{1}{\sum_{i=1}^{n}m_{i}}, \frac{1}{\sum_{i=1}^{n}l_{i}}\right)$$
(4)

Chapter III: Methodology

STEP 2: Calculate the degree of possibility

The values of S_i are compared and the degree of possibility of $S_j = (l_j, m_j, u_j) \ge S_i(l_i, m_i, u_i)$ is calculated as

Figure below indicates $_{V(S_j \ge S_i)}$ for the case $m_j < l_i < u_j < m_i$ and "d" is the abscissa value of the highest intersection point between S_j and S_i

With the aim of comparison S_j and S_i , value $V(S_i \ge S_i)$ and $V(S_i \ge S_i)$ are both required.

STEP 3: Calculate the degree of possibility for a convex fuzzy number to be greater than *k* convex number

The minimum degree of possibility d(i) of $_{V(S_j \ge S_i)}$ for i, j = 1, 2, ..., k can be calculated as:

$$V(S \ge S_1, S_2, S_3, ..., S_k) = V [(S \ge S_1) and (S \ge S_2) and ... (S \ge S_k)]$$
(6)
= min V(S \ge S_i) = W'(S_i)

Assume that

$$d'(A_i) = \min V(S \ge S_i)$$
, for $i = 1, 2, ..., k$; $i \ne k$

The weight vector

$$W' = (d'(A_1), d'(A_2), \dots d'(A_n))^T$$
⁽⁷⁾

where A_i (i = 1, 2, 3, ..., n) contains the set of n elements

STEP 4: Normalization reduces the weight vector to

$$W = (d'(A_1), d'(A_2), \dots d'(A_n))^T = (W_1, W_2, \dots, W_n)^T$$
(8)

where W is a non-fuzzy number

Chapter III: Methodology

FUZZY TOPSIS METHOD

Figure 3.6 FTOPSIS Process

STEP 1: Determine the weighting of evaluation criteria

This research employs fuzzy AHP to find the fuzzy preference weights

STEP 2: Construct the fuzzy performance/decision matrix and choose the appropriate linguistic variables for the alternatives with respect to criteria

(9)

(10)

$$C_{1} \quad C_{2} \quad \dots \quad C_{j} \quad \dots \quad C_{n}$$

$$A_{1} \begin{bmatrix} \tilde{x}_{11} & \tilde{x}_{12} & \dots & \tilde{x}_{1j} & \dots & \tilde{x}_{1n} \\ \tilde{x}_{21} & \tilde{x}_{22} & \dots & \tilde{x}_{2j} & \dots & \tilde{x}_{2n} \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ \tilde{x}_{i1} & \tilde{x}_{i2} & & \tilde{x}_{ij} & \dots & \tilde{x}_{in} \\ \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ \tilde{x}_{m1} & \tilde{x}_{m2} & & \tilde{x}_{mj} & \vdots & \tilde{x}_{mn} \end{bmatrix}$$

$$\tilde{x}_{ij} = \frac{1}{K} \left(\tilde{x}_{ij}^{1} \bigoplus \dots \bigoplus \tilde{x}_{ij}^{2} \bigoplus \dots \bigoplus \tilde{x}_{ij}^{K} \right)$$

$$\tilde{W} = [\tilde{w}_{1}, \tilde{w}_{2}, \dots, \tilde{w}_{n}] \qquad (11)$$

$$\tilde{x}_{ij}^{K} = \left(\tilde{l}_{ij}^{K}, \tilde{m}_{ij}^{K}, \tilde{u}_{ij}^{K} \right) \qquad (12)$$

Where i = 1, 2, ..., m j = 1, 2, ..., n \circ A_m : m^{th} alternative \circ C_n : n^{th} criteria \circ k: Number of expert assessments \circ \widetilde{W}_j : weight of j^{th} criteria \circ \widetilde{X}_{ij}^K : is the performance rating of alternative A_m with respect to criterion C_n .

STEP 3: Normalize the fuzzy-decision matrix.

The normalized fuzzy-decision matrix denoted by \tilde{R}

$$\widetilde{\boldsymbol{R}} = \left[\widetilde{r}_{ij}\right]_{m \times n},\tag{13}$$

 $i=1,2,\dots,m$

Then, the normalization process can be performed

$$\widetilde{r}_{ij} = \left(\frac{l_{ij}}{u_j^+}, \frac{m_{ij}}{u_j^+}, \frac{u_{ij}}{u_j^+}\right),$$

$$u_j^+ = max_i \{u_{ij} \mid i = 1, 2, ..., m\}$$
(14)

The weighted fuzzy normalized decision matrix is calculated by matrix $\widetilde{\textit{V}}$

$$\widetilde{V} = \left[\widetilde{v}_{ij}\right]_{m \times n}, \qquad (15)$$

$$i = 1, 2, ..., m$$

$$i = 1, 2, ..., n$$

STEP 4: Determine the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS)

Then the two solution FPIS (A^+) and FNIS (A^-) sets are determined

$$A^{+} = (\tilde{v}_{1}^{+}, \tilde{v}_{2}^{+}, \dots, \tilde{v}_{j}^{+}, \dots, \tilde{v}_{n}^{+})$$
(16)
$$A^{-} = (\tilde{v}_{1}^{-}, \tilde{v}_{2}^{-}, \dots, \tilde{v}_{j}^{-}, \dots, \tilde{v}_{n}^{-})$$
(17)

Where $\tilde{v}_{j}^{*} = (1, 1, 1) \oplus \tilde{w}_{j} = (lw_{j}, mw_{j}, uw_{j})$ and $\tilde{v}_{j}^{-} = (0, 0, 0); j = 1, 2, ..., n$

STEP 5: Calculate the distance of each alternative from FPIS and FNIS

$$\tilde{d}_{i}^{+} = \sum_{j=1}^{n} d(\tilde{v}_{ij}, \tilde{v}_{j}^{+}), i = 1, 2, ..., m$$
 (18)

$$\tilde{d}_{i}^{-} = \sum_{j=1}^{n} d(\tilde{v}_{ij}, \tilde{v}_{j}^{-}), j = 1, 2, ..., n$$
 (19)

*** STEP 6:** Measure the closeness coefficient

$$CC_{i} = \frac{\tilde{d}_{i}^{-}}{\tilde{d}_{i}^{+} + \tilde{d}_{i}^{-}} = 1 - \frac{\tilde{d}_{i}^{+}}{\tilde{d}_{i}^{+} + \tilde{d}_{i}^{-}}, \qquad (20)$$

$$i = 1, 2, ..., m$$

 $\frac{\tilde{a}_i^-}{\tilde{a}_i^+ + \tilde{a}_i^-}$: fuzzy satisfaction degree in i^{th} alternative

$$\frac{d_i}{\tilde{d}_i^+ + \tilde{d}_i^-}$$
: fuzzy gap degree in i^{th} alternative

CHAPTER IV EMPIRICAL CASE ANALYSIS OF VINFAST

VINFAST

CASE STUDY

- > VinFast is known as one of the leading company in automobile industry
- VinFast stated theirs position and approach as a green supplier, they must assess its core competences and recognize the difference in consumer requirements.
- > VinFast maintains good relationships with vendors that would profit from the purchase of goods if necessary

VinFast focuses on launching innovative and environmental-friendly products

Figure 4.1 AHP hierarchy for the GSS problem

Expert	Organization	Duties	Seniority
1	VinFast Commercial and services trading limited liability company	Specialist	10
2	VinFast Commercial and services trading limited liability company	Development Engineer	15
3	VinFast Commercial and services trading limited liability company	Engineer	10
4	VinFast Commercial and services trading limited liability company	Senior Manager	8
5	VinFast Commercial and services trading limited liability company	Project Manager	10
6	VinFast Commercial and services trading limited liability company	Parts Quality Group Manager	15
7	Manufacturing department, Kia Motors Vietnam	Purchasing Manager	8
8	Parts Quality Control Section, Porsche Vietnam	Section Manager	8
9	Body Development Division Engineering Development Engineer, Mercedes- Benz Vietnam Ltd	Team Leader	
10	Automotive Asia Limited (Audi Vietnam)	Engineer	9
11	THACO passenger Car Distribution Co., Ltd (BMW Distributor in Vietnam)	Purchasing Manager	15
12	Production Control Management Division, Isuzu Viet Nam Co., Ltd.	Team Leader	15

Table 4.1 Professional backgrounds of the selected twelve experts in this research

Figure 4.2: Proposed Framework of GSS Process

FUZZY AHP FOR WEIGHTING CALCULATION

Weighting Results for Main Criteria

Weighting Results for Sub-Criteria of Economic Weighting Results for Sub-Criteria of Environmental Weighting Results for Sub-Criteria of Social

WEIGHTING RESULTS FOR MAIN CRITERIA

								Initial C	Compai	rison Mat	rices	5								
	Left Criteria is Greater Pe Abs Ver Fairl Go Pref No Weak rfa alut v v od ora t odvan										Right Crit	teria I	s Grea	ter					Total Num ber of Expe rts	
	Ре	Abs	Ver	Fairl	Go	Pref	No	Weak	Equa	Weak	No	Prefera	Go	Fairl	Ve	Ab	Pe			
	rfe	olut	У	У.	od	era	t	advan	1	advant	t	ble	od	У.	ry	SO	rfe			
	ct	е	goo	good		ble	ba	tage		age	ba			good	go	lut	ct			
			d				d				d				od	e				
C1							4	3	3	2								C2		12
C2							1	4	4	3	1							C3		12
C3						2	2	3	3	3								C3		12

 Table 4.2: Initial Comparison Matrices

WEIGHTING RESULTS FOR MAIN CRITERIA (CONT.)

			Ir	ntegrated	l Fuzzy (Compari	son Mati	rix	
		C1			C2	-		C3	
C1	1	1	1	1.0491	1.5280	2.0891	0.7172	1.0595	1.5280
C2	0.4787	0.6544	0.9532	1	1	1	1.0243	1.5131	2.1683
C3	0.6544	0.9439	1.3943	0.4612	0.6609	0.9763	1	1	1

0.172

9

less than

0.1

Consistency

Ratio (CRg)

Table 4.3: Integrated Fuzzy Comparison Matrix

	Fuzz	zy Sum o Row	of Each	Fuz	zy Synth Extent	netic	D Possi	egree (ibility o Mj	of f Mi >	Degree of Possibilit y (Mi)	normalizatio n	we	igh	ts of ria	Rankin g
C1	2.766 3	3.587 5	4.6171	0.228 4	0.383 3	0.625 2		1.00 0	1.00 0	1.000	0.390		0.39	90	1
C2	2.502 9	3.167 5	4.1215	0.206 7	0.338 4	0.558 1	0.88 0		1.00 0	0.880	0.343		0.34	13	2
C3	2.115 6	2.604 8	3.3706	0.174 7	0.278 3	0.456 4	0.68 5	0.80 6		0.685	0.267		0.26	67	3
Sum	7.384 9	9.359 8	12.109 3							2.565	1.0000				
										ŝ	Sum				
			Compare	e											
Consis Ra (CR	stency tio (m)	0.069 6	with <u>0.1</u> , They should be					·			in Of Main C		- / [mical

Table 4.4: Results Of Fuzzy Weighting Value Of Main Criteria (Economical, Environmental, Social)

WEIGHTING RESULTS FOR MAIN CRITERIA (CONT.)

<u>Step 1</u>: The value of the fuzzy synthetic extent with respect to the i^{th} object is defined as in Eq. (3), (4), (5), (6) and presented in **Table 4.3** and **Table 4.4**:

$$S_{i} = \sum_{j=1}^{m} M_{gi}^{j} \times \left[\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j} \right]^{-1}$$
$$\sum_{i=1}^{m} M_{gi}^{j} = (1 + 1.0491 + 0.7172; 1 + 1.5280 + 1.0595; 1 + 2.0891 + 1.5280)$$

= (2.7663; 3.5875; 4.171) etc.,

Next,
$$\left[\sum_{i=1}^{n} \sum_{j=1}^{m} M_{gi}^{j}\right]^{-1} = \left(\frac{1}{\sum_{i=1}^{n} u_{i}}, \frac{1}{\sum_{i=1}^{n} m_{i}}, \frac{1}{\sum_{i=1}^{n} l_{i}}\right)$$

$$S_1 = (2.7663; 3.5875; 4.171) \times \left(\frac{1}{12.1093}, \frac{1}{9.3598}, \frac{1}{7.3849}\right) = (0.2284; 0.3833; 0.6252)$$

 $S_2 = (0.2067; 0.3384; 0.5581)$

 $S_3 = (0.1747; 0.2783; 0.4564)$

WEIGHTING RESULTS FOR MAIN CRITERIA (CONT.)

(7)

Step 2: The values of S_i are compared and the degree of possibility of $S_j = (l_j, m_j, u_j) \ge S_i(l_i, m_i, u_i)$ is calculated as in Eq. (7) and the results are shown in **Table 4.4**:

$$V(S_j \ge S_i) = \begin{cases} 1, & \text{if } m_j \ge m_i \\ 0, & \text{if } l_i \ge u_j \\ \frac{l_i - u_j}{(m_j - u_j) - (m_i - l_i)} & \text{, otherwise,} \end{cases}$$

 $V_2 \quad \left(S_2 \geq S_1\right) = \left(\frac{0.2067 - 0.6252}{(0.3384 - 0.5581)_{(0.3833 - 0.2284)}}\right) = 0.880$

 $V_{11} (S_1 > S_2) = 1; \qquad V_{23} (S_2 > S_3) = 1;$ $V_{12} (S_1 > S_3) = 1; \qquad V_{31} (S_3 > S_1) = 0.685;$ $V_{21} (S_2 > S_1) = 0.880; \qquad V_{32} (S_3 > S_2) = 0.806.$

WEIGHTING RESULTS FOR MAIN CRITERIA (CONT.)

Step 3: The minimum degree of possibility d(i) of $V(S_i \ge S_i)$ for i, j = 1, 2, ..., k can be calculated as in Eq. (8):

$$V(S \ge S_1, S_2, S_3, ..., S_k) = V [(S \ge S_1) and (S \ge S_2) and ... (S \ge S_k)]$$

= min $V(S \ge S_i) = W'(S_i)$ (8)

> The weights priority is with Consistency Ratio (CRm) = 0.0696 (less than 0.1) in **Table 4.4**:

```
Min V_1 (V_{11}, V_{12}) = 1;

Min V_2 (V_{21}, V_{23}) = 0.880;

Min V_3 (V_{31}, V_{32}) = 0.685;

W= (1, 0.880, 0.685)

W_normalize = (0.390, 0.343, 0.267)<sup>T</sup>
```

70

(CRg)

WEIGHTING RESULTS FOR SUB-CRITERIA OF ECONOMIC (CONT.)

	Fuzz	y Sum of Ea	ch Row	Fuzzy	Synthetic	c Extent				Deg	ree of F	Possibil	ity of M	li > Mj				Degree of Possibility (Mi)	Normalization Weights	Ranking
C11	9.19 16	12.7321	17.3 066	0.0512	0.0955	0.1775		0.983	0.87 0	0.982	0.803	1.000	1.000	1.000	1.000	1.000	1.000	0.803	0.0984	5
C12	9.38 27	13.0161	17.5 220	0.0522	0.0977	0.1797	1.000		0.88 5	0.998	0.819	1.000	1.000	1.000	1.000	1.000	1.000	0.819	0.1004	4
C13	10.7 455	15.0829	20.3 769	0.0598	0.1132	0.2090	1.000	1.000		1.000	0.938	1.000	1.000	1.000	1.000	1.000	1.000	0.938	0.1150	2
C14	9.39 94	13.0433	17.6 255	0.0523	0.0979	0.1807	1.000	1.000	0.88 8		0.821	1.000	1.000	1.000	1.000	1.000	1.000	0.821	0.1007	3
C15	12.0 749	16.3349	21.3 081	0.0672	0.1226	0.2185	1.000	1.000	1.00 0	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.1226	1
C16	6.94 49	9.2891	12.7 089	0.0387	0.0697	0.1303	0.754	0.736	0.61 9	0.735	0.544		0.988	0.517	0.784	0.910	1.000	0.517	0.0634	11
C17	7.01 41	9.4312	12.9 111	0.0390	0.0708	0.1324	0.766	0.749	0.63 1	0.747	0.557	1.000		0.527	0.796	0.922	1.000	0.527	0.0647	10
C18	9.09 95	12.4400	16.5 770	0.0507	0.0933	0.1700	0.982	0.965	0.84 7	0.963	0.779	1.000	1.000		1.000	1.000	1.000	0.779	0.0954	6
C19	9.07 05	12.2204	16.0 155	0.0505	0.0917	0.1642	0.967	0.949	0.82 9	0.948	0.759	1.000	1.000	0.986		1.000	1.000	0.759	0.0930	7
C110	7.68 17	10.4460	14.4 468	0.0428	0.0784	0.1481	0.850	0.833	0.71 7	0.831	0.647	1.000	1.000	0.867	0.880		1.000	0.647	0.0793	8
C111	6.91 12	9.2467	12.8 345	0.0385	0.0694	0.1316	0.755	0.737	0.62 1	0.736	0.548	0.997	0.696	0.772	0.784	0.908		0.548	0.0671	9
Sum	97.5 161	133.2827	179. 6330															8.158	1.0000	
																			Sum	
Cor	nsister (CR nsister	ncy Ratio Rm) ncy Ratio	0.05 39 0.14	ompare	with <u>0.1</u> ,	They sho 0.1	ould be	less th	an	_			_		- -					-

Table 4.7: Results of Fuzzy Weighting Value Of Economic

WEIGHTING RESULTS FOR SUB-CRITERIA OF ENVIRONMENT C2 (CONT.)

	Fu	zzy Sum of Row	Each	Fuzzy	Synthetic	Extent				Degre	e of Pos	sibility c	of Mi > M	j			Degree of Possibility (Mi)	Normalization weights of criteria	Ranking
C21	8.66 42	11.9902	16.2 367	0.0561	0.1035	0.1909		1.000	0.83 4	1.000	0.698	1.000	1.000	1.000	0.967	1.000	0.698	0.1088	4
C22	7.93 74	10.9429	14.8 106	0.0514	0.0945	0.1742	0.929		0.75 9	0.945	0.620	1.000	1.000	0.686	0.894	1.000	0.620	0.0967	7
C23	10.6 368	14.8101	19.5 575	0.0689	0.1278	0.2300	1.000	1.000		1.000	0.868	1.000	1.000	1.000	1.000	1.000	0.868	0.1353	2
C24	8.48 68	11.7400	15.8 358	0.0550	0.05500.10130.18620.08310.15020.2655		0.984	1.000	0.81 6		0.678	1.000	1.000	1.000	0.950	1.000	0.678	0.1058	5
C25	12.8 414	17.4040	22.5 743	0.08310.15020.26550.03910.06870.1277			1.000	1.000	1.00 0	1.000		1.000	1.000	1.000	1.000	1.000	1.000	0.1560	1
C26	6.03 24	7.9595	10.8 594	0.0391	0.0687	0.1277	0.673	0.748	0.49 9	0.690	0.353		0.974	0.479	0.634	0.895	0.353	0.0551	10
C27	6.21 28	8.2266	11.2 219	0.0402	0.0710	0.1320	0.700	0.775	0.52 6	0.717	0.381	1.000		0.500	0.662	0.921	0.381	0.0595	9
C28	8.23 84	11.1600	14.6 617	0.0533	0.0963	0.1724	0.942	1.000	0.76 7	0.959	0.624	1.000	1.000		0.906	1.000	0.624	0.0973	6
C29	9.20 63	12.5145	16.1 692	0.0596	0.1080	0.1901	1.000	1.000	0.86 0	1.000	0.717	1.000	1.000	1.000		1.000	0.717	0.1119	3
C210	6.77 74	9.1004	12.5 165	0.0439	0.0786	0.1472	0.785	0.858	0.61 4	0.802	0.472	1.000	1.000	0.841	0.748		0.472	0.0736	8
Sum	85.0 340	115.8484	154. 4436													Sum	6.411	1.0000	
Cons	Consistency Ratio 0.09 (CRm) 02 Consistency Ratio 0.32 (CRg) 53									Tabl	e 4.1	0 Res	ults d	of Fuz	zzy W	eight	ing Valu	e of Envir	onmenta

WEIGHTING RESULTS FOR SUB-CRITERIA OF SOCIAL C3 (CONT.)

	Fı	ızzy Sum of	Each Row	Fuzz	zy Synthet	ic Extent	Degr	ee c	of Possib	ility of M	i > Mj	Degree of Possibility (Mi)	normalization	Ranking
C31	4. 27 42	5.6477	7.4750	0.1227	0.2139	0.3727		1. 00 0	0.977	0.993	1.000	0.977	0.2153	3
C32	4. 07 57	5.4292	7.1818	0.1170	0.2056	0.3581	0.966		0.943	0.959	1.000	0.943	0.2078	4
C33	4. 36 97	5.7991	7.5513	0.1255	0.2196	0.3765	1.000	1. 00 0		1.000	1.000	1.000	0.2203	1
C34	4. 27 03	5.6958	7.5202	0.1226	0.2157	0.3749	1.000	1. 00 0	0.985		1.000	0.985	0.2169	2
C35	3. 06 70	3.8365	5.1008	0.0881	0.1453	0.2543	0.657	0. 69 5	0.634	0.652		0.634	0.1397	5
	20 .0 57												1.0000	
Sum	0	26.4084	34.8291									4.539 Si	um	
Consister Consiste	ncy F ncy I	Ratio (CRm) Ratio (CRg)	0.0388	Compare	with <u>0.1</u> , T	hey should be 0.1	e less thar	ו	Table	4.13:	Resul	ts of Fuzzy V	Veighting Va	lue of So

WEIGHTING AND RANKING RESULTS OF FAHP

Criteria	W_Concept	Sub-criteria	W_Local	Rank_Local	W_Global	Rank_ Global
		Staff training (C11)	0.098	5	0.0384	12
		Delivery (C12)	0.100	4	0.0391	10
		Service level (C13)	0.115	2	0.0448	8
		Quality (C14)	0.101	3	0.0393	9
Economical		Cost (C15)	0.123	1	0.0478	6
	0.390	Technology (C16)	0.063	11	0.0247	24
(C1)		Flexibility (C17)	0.065	10	0.0252	23
		Financial capability(C18)	0.095	6	0.0372	15
		Culture (C19)	0.093	7	0.0363	17
		Innovativeness (C110)	0.079	8	0.0309	20
		Relationship (C111)	0.067	9	0.0262	21
		Green products (C21)	0.109	4	0.0373	13
		Green image (C22)	0.097	7	0.0332	19
		Eco-design(C23)	0.135	2	0.0464	7
		Management commitment(C24)	0.106	5	0.0363	16
Environmental		Green technology(C25)	0.156	1	0.0535	5
(02)	0.343	Pollution control(C26)	0.055	10	0.0189	26
(62)		Recycle(C27)	0.060	9	0.0204	25
		Re-manufacturing(C28)	0.097	6	0.0334	18
		Environmental management system (C29)	0.112	3	0.0384	11
		Resource consumption(C210)	0.074	8	0.0253	22
		Human resource management (C31)	0.215	3	0.0575	3
Social		Corporate social responsibility (C32)	0.208	4	0.0555	4
	0.267	Health and safety (C33)	0.220	1	0.0588	1
(C3)		Human right issues (C34)	0.217	2	0.0579	2
		Relationship with stakeholders (C35)	0.140	5	0.03/3	14

Table 4.14: Weighting and Ranking Results of FAHP

FUZZY TOPSIS FOR RANKING

Fuzzy number	Linguistic	Triangular fuzzy scale M = (l, m, u)
1	Equal	(1,1,1)
2	Weak advantage	(1,2,3)
3	Not bad	(2,3,4)
4	Preferable	(3,4,5)
5	Good	(4,5,6)
6	Fairly good	(5,6,7)
7	Very good	(6,7,8)
8	Absolute	(7,8,9)
9	Perfect	(8,9,10)

Table 4.15: Linguistic Variables for The Ratings

A linguistic rating set of S was used to express the opinions of the managers, where S = (E, WA, NB, PR, G, FG, VG, A, PE)

S5+

24.3683

FUZZY TOPSIS FOR RANKING (CONT.)

<u>Step 4 and 5</u>: (calculate A+, A-, Di+, and Di-). As shown in Table 4., the distance of each green supplier from A+ and A- can be calculated by Eq. (20)~(21).

	C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26
A1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.7	0.9	0.8	0.9	0.9
	81	27	58	44	78	75	52	68	49	35	76	60	23	17	40	58	79	76	37	64	71	99	35	83	25	09
A2	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.8	0.8
	40	80	92	14	30	35	71	31	69	66	30	66	60	58	07	31	48	29	62	22	24	11	07	46	05	60
A3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.8	0.8	0.9
	66	76	27	38	63	56	33	31	33	51	60	29	42	41	03	43	86	59	11	31	48	69	89	06	68	38
A4	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.8	0.9	0.9	0.9	0.8	0.9	0.7	0.9	0.7	0.7	0.8
	25	88	89	01	83	28	55	06	08	20	81	03	05	76	35	78	91	81	41	94	21	99	48	96	98	62
A5	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9
	80	70	50	64	10	74	30	66	66	68	33	57	62	26	00	92	54	32	08	39	65	11	16	31	10	54
S1	+	24.419	6													1										
S2	+	24.092	2																							
S3	+	24.200	5																							
S4	+	23 713	8																							

S5-

2.0369

FUZZY TOPSIS FOR RANKING (CONT.)

	C1	C2	C3	C 4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26
A 1	0.023	0.1 06	0.0 56	0. 0 7 1	0.0 26	0.03 4	0.06 1	0.04 3	0.06 5	0.08 1	0.03 3	0.05 4	0.09 5	0.10 5	0.02 7	0.17 1	0.02 7	0.03 3	0.07 9	0.04 9	0.04 0	0.24 3	0.09 0	0.15 1	0.10 2	0.11 4
A 2	0.084	0.0 25	0.1 30	0. 1 0 5	0.0 96	0.07 8	0.03 9	0.08 5	0.04 2	0.04 5	0.08 4	0.04 7	0.05 3	0.05 6	0.04 9	0.09 1	0.07 5	0.08 5	0.05 1	0.09 5	0.09 2	0.12 0	0.23 3	0.07 7	0.23 7	0.16 6
A 3	0.044	0.0 30	0.0 93	0. 0 7 8	0.0 47	0.05 5	0.08 2	0.08 5	0.08 2	0.06 2	0.05 2	0.09 2	0.07 3	0.07 7	0.05 1	0.07 7	0.01 8	0.05 2	0.10 7	0.08 6	0.06 5	0.16 7	0.14 3	0.23 6	0.16 8	0.08 2
A 4	0.106	0.0 14	0.1 34	0. 1 1 7	0.0 20	0.08 5	0.05 7	0.11 1	0.10 8	0.09 5	0.02 7	0.12 0	0.11 3	0.14 9	0.03 1	0.15 2	0.01 0	0.02 7	0.07 5	0.12 5	0.09 5	0.24 3	0.07 3	0.24 6	0.24 5	0.16 4
A 5	0.024	0.0 38	0.0 67	0. 0 4 9	0.1 30	0.03 5	0.08 4	0.04 6	0.04 5	0.04 2	0.08 1	0.05 8	0.05 0	0.09 5	0.05 3	0.13 6	0.06 5	0.08 1	0.11 1	0.07 7	0.04 7	0.12 0	0.22 4	0.09 5	0.12 1	0.06 3
S 1	- 1.9787																									
S2	2.3	390																								
S	- 2.2	2040																								
S4	I- 2.7	405																								

FUZZY TOPSIS FOR RANKING (CONT.)

<u>Step 6</u> :(obtain the closeness coefficient). The closeness coefficients of green suppliers can be calculated by Eq. (22), as shown in Table 4.21. Therefore, the ranking order of the five green suppliers is A4 > A2 > A3 > A5 > A1. Consequently, the best green supplier is A4

Rank of Alternatives									
A1	0.0750	0.0750	5						
A2	0.0885	0.0885	2						
A3	0.0835	0.0835	3						
A4	0.1036	0.1036	1						
A5	0.0771	0.0771	4						

Table 4.21: Closeness coefficient of alternatives

CHAPTER V CONCLUSIONS AND IMPLICATIONS

CONCLUSIONS

Green-oriented cooperation has become a leading component as global awareness of environmental sustainability This thesis suggests a novel approach for managers to select suppliers based on the MCDM model

A4 was rated as the top supplier

Future research and different models will be needed to determine how to assign orders to the model's prospective green suppliers

MANGERIAL IMPLICATIONS

Chapter V

Weight elicitation may be complicated in some cases, and imprecise data, such as weight intervals, fuzzy weights, or ordinal data, may be involved in the GSS challenge

Failed to consider the scope for interactions and relationships between the sub-criteria

Could not arrange meeting with more than 12 high-level executives of automotive manufacturing companies

THESIS

LIMITATIONS

Thank You For Listening