Offline Handwritten Signature
Forgery Detection using Deep

Learning Methods

Pham So'n Bach
Nguyén Huy Plrc




Table of contents

1. Introduction 4. Methodogoly

2. Objective 5. Experimental results

3. Dataset & preprocessing 6. Conclusion & Future Work




INTRODUCTION




Biometrics
Authentication




Online
Signature




Handwritten
Signatures

e They are unique distinctive
characteristics in each
person.

They are simple, fast,
non-invasive and familiar
with people.




Handwritten
Signatures

3 types of handwritten forged
signatures:

e Random (Blind) forgery

e Simple Forgery

e Skilled Forgey

Original Signature

Skilled Forgery

Blind Forgery

28

Simple Forgery




Handwritten
Signatures

Challenge:

They have a large
variability between
samples, which make it
challenging to deal with
skilled forgeries.
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OBJECTIVE




One-shot
learning

Using only 1 signatures as
base.

Comparing each new
signature with the base
and be able to see the
similarity or dissimilarity.

One shot
learning

— > Same

One shot
learning

— Different




Why do we focus on Forgery Detection?
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Deep Triplet Ranking CNN architecture
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Contribution

® Applying deep triplet ranking CNN architecture and modifying it.
e Evaluating on various dataset.

® One-shot learning.
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DATASETS
&
PREPROCESSING
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BHSig260 - bengali

e Bengali
e 100 persons

e 24 genuine and 30 forged
signature/ 1 person

e Binary mode (only black and
white color)




Sigcomp 201 1-Dutch(Offline)

e Combination of 2011 and 2009 f
e RGB R
YK
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(a)

Figure 9. An example of BHSig260 that has a long widith. Figure 10. Resizing image with (a) and without padding (b).




METHODOLOGY
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Deep Triplet
Ranking CNNs

Deep
CNNs

Deep
CNNs

Deep
CNNs

minimize the distance
between anchor & positive,
and maximizing the distance
between anchor & neaative
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Triplet loss function

N
LG 2. ¥, o) = & 3 max {D(F(). f£)) = D). £)) + . 0} (1)

f(x) refers to an embedding of the image X
x4, ¥, x" are the anchor image, positive image and negative image, respectively
D( f(x%), f(x)) is the Euclidean distance between the f(x%)and f(x”)

o 1s a constant (or margin) used to make sure that the network does not try to
optimize towards the case D(f(x}), f(x{) ) = D(f(x?), f(x]) ) =0
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Triplet selection

easy triplets: triplets which have a loss of 0, because:
d(a,p) + margin < d(a,n)

e hard triplets: triplets where the negative is closer to the anchor than the
positive:

d(a,n) < d(a,p)

e semi-hard triplets: triplets where the negative is not closer to the anchor
than the positive, but which still have positive loss:

d(a,p) < d(an) < d(a,p)+ margin
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Classification model
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Classification model

Input volume

1024 x 1 Output volume
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Final model overview
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RESULTS




Evaluate Triplet model

A valid triplet can occur when: d(a,p) < d(a,n)

Accuracy = number of valid triplets / total number of triplets




Evaluation metrics for classification model

- TP
Precision =
TP + FP
Recall = o
TP + FN

Fl=2

precision - recall

precision + recall

Actual

Negative

Positive

Predicted
Negative Positive
True False
Negative Positive
(TN) (FP)
False True
Negative Positive
(FN) (Tp)




Precision recall curve (PRC)

1.01

A plot of the tracehold
between precision (y-axis)
and the recall (x-axis) for
different thresholds

- 0.84




False negative rate

positive (P)

® False negative rate is calculated as the number of
incorrect negative (FN) divided by the total number of
positive (P).

e This can be defined as the False Acceptance Rate (FAR) in
our problem.




Result

Dataset Name Number of triplet combinations

SigComp2011 Dutch 33580
CEDAR 284 832
BHSig260 Bengali 654 120

Table 7. Number of training triplet combinations among various datasets.

Set(Train/Test) Pair Label
Genuine - Genuine 0
Train Users
Genuine - Forgery 1
Base Genuine - Genuine 0
Test Users
Base Genuine - Forgery 1

Table 8. Pairs labeling method for train and test



Table 9. Deep Triplet CNN model performance.

Dataset Accuracy on Accuracy on Accuracy on test
training set (%) | validation set (%) set (%)
SigComp2011 95.3 95 80
CEDAR 67.85 67.92 72.84
Bengali 96.46 96.36 81.8




Pairing method

Base signature

Genuine signature Forgery signature
(same id) (same id)
Real Forged

(label 0) (label 1)




Table 11. Performance on test set

Dataset AUC (%) ERR FAR FRR
SigComp2011 65.11 50 70.39 18.82
CEDAR 68.21 34.55 52.09 16.15
Bengali 86.16 22.75 18.57 2191




Pairing method

Base signature

Genuine signature Forgery signature
(same id) (all'id)
Real Forged

(label 0) (label 1)




Table 12. Performance on test set with random forgeries by other user forged

signatures
Dataset AUC (%) ERR FAR FRR
SigComp2011 98.41 75 TX.1D 13.73
CEDAR 96.69 42.84 45 16
Bengali 99.34 14.18 13.66 27917




Pairing method

Base signature

Genuine signature Genuine signature Forgery signature
(same id) (different id) (all'id)
Real Forged Forged

(label 0) (label 1) (label 1)




Table 13. Performance on test set with random forgeries by other user genuine

signatures
Dataset AUC (%) ERR FAR FRR
SigComp2011 98 79.98 81.14 18.83
CEDAR LTS 54.09 53.13 16.32
Bengali 99.32 30.9 30..96 27.97
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Figure 21. PR Curve on SigComp2011 test set.
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Figure 22. PR Curve on CEDAR test set.
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Figure 23. PR Curve on BHSig260 test set.




Table 15. State-of-the-art performance on BHSig260 Dataset (WD = Writer
Dependent, WI = Writer Independent).

Language Tvpe NEAUNILS 2
stag Yp algorithm
WI [24] SigNet 13.89 13.89
WI [25] Dutta et al 14.43 15.78
Bengali
WI [26] Pal et al. 33.82 33.82
- Our model 21.97 13.66
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&
FUTURE WORK










New preprocessing strategy

Triplet selection: new mining
method

Triplet loss: tuning
hyperparameters




Thank you
for listening!

Any question? '\




