
Anime Scene Generator from Real-world Scenario

using Generative Adversarial Networks

Final Year Project Report

4th Year Student Names

Le Xuan Huy HE140555

Bui Thi Bich Ngoc HE140996

Under the supervision of

Dr. Phan Duy Hung

Bachelor of Computer Science

Hoa Lac campus - FPT University

17 June 2015

© Copyright by Le Xuan Huy and Bui Thi Bich Ngoc

All rights reserved

DECLARATION

Project Title: Anime Scene Generator from Real-world Scenario using Generative

Adversarial Networks

Authors: Le Xuan Huy, Bui Thi Bich Ngoc

Student ID: HE140555, HE140996

Supervisor: Dr. Phan Duy Hung

We declare that this thesis entitled Anime Scene Generator from Real-world Scenario using

Generative Adversarial Networks is the result of our own work except the ones cited in the

references. The work has not been accepted for any degree and is not concurrently

submitted in the candidature of any other degree.

 Le Xuan Huy

HE140555

Bui Thi Bich Ngoc

HE140996

 Department of Computer Science

Hoa Lac Campus – FPT University

Date: December 1, 2021

ACKNOWLEDGEMENT

We want to express our deep and genuine gratitude to our research instructor, Dr. Phan

Duy Hung, for giving us the opportunity to do research and providing invaluable guidance

throughout this research. His dynamism, vision, openness, and motivation have profoundly

inspired us. He has taught us the methodology to carry out this study and to present the

research works as clearly as possible. It was a great privilege and honor to work and study

under his guidance. We would also like to thank our teacher for his compassion and

immense knowledge.

Besides our instructor, we also want to extend our thanks to our friends at FPT University

for their understanding, support, and patience. Our honest appreciation also goes to FPT

University and our teachers there, who have created an excellent environment for our

improvement during the four years we have studied here.

We also want to send massive regard to our caring, loving, and supportive families. Their

assistance and encouragement were a great comfort and relief for us during our hard times.

Finally, we would like to acknowledge all the people who have supported us to complete

the project work directly or indirectly. We want to thank the senior and fellow researchers

for their inspiration; and all the artists and creators of artworks, without whom this study

will never be possible.

ABSTRACT

This thesis presents a unique approach for image cartoonization and style transferring:

translating an image or video in real life into an aesthetic, anime-like frame. By paying

exceptional attention to the animation painting conduct, we propose to separately

distinguish three feature maps from pictures: the surface description that contains smooth

color shading characteristic of animation pictures, the construction depiction that emulates

flattened global content and clear boundaries in a typical anime frame, and the texture

representation that reflects high-frequency surface, forms, and details in animation

pictures. All the extracted information will be fed into the Generator with the help of a

VGG based discriminator to learn how to cartoonize a real-world photo. The learning

objectives of our technique are independently based on each extracted feature map, making

our model controllable and adjustable.

Our solution takes unpaired photos and cartoon/anime images for training which can be

fine-tuned for different problems and art styles. It is also incredibly lightweight so as to

provide quick and easy inference. Experimental results show that our method can generate

high-quality cartoon images from real-world photos and outperforms many existing

methods.

Keywords: Style Transfer, Image Translation, Generative Adversarial Networks

TABLE OF CONTENTS

INTRODUCTION 9

1.1 Background 9

1.2 Objectives and Contributions 10

1.3 Outline 10

RELATED WORKS 12

2.1 Image Smoothing and Segmentation 12

2.1.1 Image Smoothing 12

2.1.2 Image Segmentation 13

2.2 Generative Adversarial Networks (GANs) 15

2.3 Non-Photorealistic Rendering (NPR) 17

2.4 Unpaired Image-to-Image Translation 19

METHODOLOGY 22

3.1 Structure Loss 23

3.2 Surface Loss 25

3.3 Texture Loss 25

3.4 Total-Variant Loss and Superpixel Loss 26

3.5 Full Model 26

EXPERIMENTAL RESULTS 27

4.1 Implementation 27

4.2 Dataset 28

4.3 Time Performance and Model Size 29

4.4 Evaluation metrics 29

4.5 Result demo 30

4.6 Qualitative Comparison 32

4.7 Quantitative Comparison 33

4.8 Illustration of Controllability 33

4.9 Analysis of Each Component 34

CONCLUSION 36

REFERENCES 37

LIST OF FIGURES

1. Guided Image Filter 13

2. He et al. guided filter with window radius r = 4, regularization parameter ε = 0.22,

subsampling ratio s = 4. 13

3. Outdoor & indoor scene segmentation results produced by Felzenszwalb

algorithm with σ = 0.8, k = 300 14

4. Basic of GAN’s architecture 15

5. Character creation using GANs 16

6. Original picture and non-photorealistic representation of a lake 17

7. Architecture of a VGG-16 network 18

8. Sample result from famous research: (a) Gatys’s NST, (b) WarpGan, (c) ChipGan,

(d) CartoonGAN with Shinkai style 19

9. Image-to-image translation applications in various graphic problems 20

10. Performances of different models on the face2anime dataset 21

11. Generator architecture 22

12. Model architecture 23

13. Hierarchical Grouping Algorithm 24

14. Model result after 5k-10k-15k-20k training iterations 27

15. Example images from our dataset 29

16. Model results on different categories 31

17. Original images with their results using different model 32

18. Output result controlled by changing opponents in the loss function 33

19. Results of removing components in the loss function 34

CHAPTER 1

INTRODUCTION

1.1 Background

From its crack of dawn, humanity had learned to describe natural scenes that they see on

rocks and wood. We came from simple, straight-line sketches to realistic, detailed

pictures and even cartoon and artistic drawings. Our creations move from caves to wood,

then to paper, and later on, to our computers and Cloud. They serve different purposes in

our daily lives, but all share one similarity of depicting human life and mind.

In this thesis, we focus on Anime/Cartoon style drawings and how to generate them from

the input we have: real-life footage. One primary approach when it comes to this domain

transfer problem is using Generative Adversarial Networks [1].

During the last decades, the world of machine learning, especially computer vision and

neural style transfer, has been shaken by the dawn of new research - Generative

Adversarial Networks (GAN). This whole new idea has led to many valuable pieces of

research of all computer vision fields using GAN. A wide range of applications is found

by learning to translate data from its original domain to another, such as style transferring,

image colorization, image restoration, and super-resolution.

Depending on the quality of the animation, it might take weeks or even months to produce

a minute-long cartoon or anime video with today’s technology. Research using cartoon

images as input might find that their resources are limited to a relatively small number,

around hundreds of thousands (or less) of efficient input. Restriction on intake would

probably lead to degraded quality of output results. GANs are born to solve these

questions.

Nowadays, GAN has shown its prominence with effective and practical solutions in

domain transfer and image generation problems. Some recent research has shown

impressive results in many computer vision fields, such as generating random comic

characters, translating selfies or pictures to anime style, sketches colorization, super-

resolution, etc. A fun yet awesome image generation project called AnimeGAN uses the

DCGAN model trained on a dataset of 143,000 anime character faces to generate new

anime faces [37]. However, we can still see some unclean results, partially caused by

outliers at the input process. CartoonGAN proposes image translation with unpaired

training data, significantly reducing the effort needed for data preprocessing [3]. The

project features a simple patch-level discriminator, edge-promoting adversarial loss, and

L1 sparse regularization of high-level feature maps in the VGG network for content loss.

Nonetheless, this black box model is the enemy of generalization. CycleGAN, one of the

first and most inspirational research, introduced us to the Cycle-consistent Adversarial

Networks with cycle-consistent loss and full-cycle transform [4]. Their methods are

extended and improved in many later studies. A big problem with the Cycle-consistent

Adversarial Networks is that they require a considerable amount of input data. Comixify

works with videos and tries to convert them into comics [5]. They extract keyframes from

the input videos, translate them into comics, and also intend to add speech recognition in

future works.

This thesis mainly focuses on translating real-life footage into anime/cartoon style.

Moreover, it involves new algorithms and manually collected datasets in order to improve

generated animation. Our product is a lightweight and uncomplicated model that can

perform style transferring quicker and easier than many others.

1.2 Objectives and Contributions

The primary target of this thesis is to translate images and videos in real life into

amine/cartoon style. Many researchers have tried to do this before, but we are looking for

a more accurate and artistic result by implementing new methods and evaluators.

This thesis uses a features extraction method of the real-life input which separates images

into three different representations. We also use FID as the evaluation metric to calculate

and compare our work’s performance to SOTA’s models.

1.3 Outline

Chapter 1: A general introduction about Anime/Cartoon Style Transfer using GANs and

the scope of this thesis.

Chapter 2: List of literature studies that are related to this thesis’s fields of research and

an overview of all the technologies used in this study for implementation.

Chapter 3: Details implementation of the technologies introduced in the previous

chapter. We will analyze and extract features from real-life images and videos and then

convert them into anime/cartoon style.

Chapter 4: Display of results from the training model and evaluation metrics. We also

include some mathematical and visual comparisons of our model to SOTA models of the

same topic.

Chapter 5: Conclusion about the results of testing our models and possible future works

that could be done for further improvisation.

CHAPTER 2

RELATED WORKS

2.1 Image Smoothing and Segmentation

2.1.1 Image Smoothing

Image smoothing is an image enhancement process, which is usually applied as one

module of image preprocessing in various projects. Smoothing is often used to reduce

noise in images and give us a more accurate intensity surface.

Commonly used methods are the classic filtering-based and the optimization-based.

There are many types of smoothing filters, such as box filters (simple averaging),

Gaussian filters (center pixels weighted more), edge-preserved filters, bilateral filters, etc.

Box filter averages pixel to smooth image and helps erase noises by making variance of

noise in the average to become smaller than the variance of the pixel noise. Nevertheless,

a significant drawback of box filtering is the reduction of fine image details after

smoothing. Tomasi and Manduchi introduced the concept of bilateral filtering applied on

color images for edge-preserving smoothing [6], and He et al. use a guided filter -

modified bilateral filtering with better performance on edges [7]. The main point is, we

need to make sure that the filter smoothes enough to clean up the noise, but not so much

as to remove important image gradients.

Optimization approaches have tried to utilize quadratic cost functions or solve a linear

system, which is pretty the same as implicit filters. Farbman et al. discard the old ways

by utilizing a weighted least squares optimization framework to tighten up the edge-

preserving operator [8]. Min et al. perform global smoother for edge-preserving image

smoothing based on weighted least squares [9]. However, the explicit filters are often

simpler and lighter than the optimization-based ones. Thus, we will adjust a trainable

guided filter for this thesis - an explicit image filter [10] to extract the top smooth layer

from our input.

Fig. 1. Guided Image Filter

Original image Guided Filter Fast Guided Filter

Fig. 2. He et al. guided filter with window radius r = 4, regularization parameter ε =

0.22, subsampling ratio s = 4.

2.1.2 Image Segmentation

Image segmentation aims to separate images into different regions. Here we want to use

segmentation to establish boundaries between image regions in order to extract its

structure representation.

Introduced by Ren and Malik in 2003, superpixels were created to group pixels similar in

color and other low-level properties. Various well-known segmentation and grouping

methods exploit the power of superpixel algorithms to perform in a faster and more

memory-efficient manner.

Many segmentation methods utilize graph-based algorithms, such as the work of Moore

et al. called superpixel lattices [11], or SLIC & comparison from Achanta et al. [12], and

a variant of SLIC combines with affinity propagation clustering called SLICAP to

improve performance on boundary-based and region-based criteria. More recent

approach includes Yang et al. superpixel segmentation with fully convolutional networks

[13], which attempt to incorporate the method using deep neural nets.

Fig. 3. Outdoor & indoor scene segmentation results produced by Felzenszwalb

algorithm with σ = 0.8, k = 300

This thesis would rely on the image’s graph-based representation, which develops an

efficient Felzenszwalb segmentation algorithm [14] to extract our image’s structure

representation. Details on this algorithm will be discussed later in our thesis.

2.2 Generative Adversarial Networks (GANs)

Fig. 4. Basic of GAN’s architecture

Generative Adversarial Networks (GANs) architecture was first introduced by

Goodfellow et al. in 2014 in a paper of the same name [1]. The initial idea of their work

is to build a model that could estimate the generation process using adversarial networks.

In recent years, GANs have quickly become a state-of-the-art data generation method that

has achieved impressive results. The solution lies in the adversarial training between the

generator and the discriminator. In Fig. 4, we have a simple representation of a GAN’s

architecture, where both the generator and the discriminator are neural networks. They

communicate by the propagation and back-propagation algorithms to update weights and

losses in order to learn.

A GAN structure contains two separately trained networks: the generator (G), which

learns to create fake data while continuously receiving feedback from the discriminator;

the discriminator (D) is basically a binary classifier trying to separate real and generated

data. The authors first define a prior on input noise variables 𝑝𝑧(𝑧) to learn the generator’s

distribution 𝑝𝑔 over data x. A mapping to data space 𝐺(𝑧; 𝜃𝑔) is introduced, where G is

a differentiable function represented by a multilayer perceptron with parameters 𝜃𝑔.

About the discriminator, there is also a second multilayer perceptron 𝐷(𝑥; 𝜃𝑑) that

outputs a single scalar representing the probability that x came from the data rather than

𝑝𝑔.

Their target is to train D so as to maximize the probability of correctly classified examples

from training data and the G. Simultaneously, G is trained to minimize log (1 −

𝐷(𝐺(𝑧))).

In conclusion, GANs is basically a min-max game between the G and D with value

function 𝑉(𝐷, 𝐺), where 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] means the expected value of log 𝐷(𝑥)

given x distributed as 𝑝𝑑𝑎𝑡𝑎(𝑥):

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]

This is what we call adversarial training. We will go into more details in the G and D

architecture in our methodology explanation later. GANs’ results are impressive and

extend to various fields of image processing and multiple types of art styles. Here we

have some examples of character creation using GANs by Jin et al. in Fig. 5. You can see

that the generated characters’ faces look pretty authentic, like those from an art studio

[15]. Although there are still limits on human expression and viewpoint, GANs are still a

great choice to implement our method for image-to-image translation.

Fig. 5. Character creation using GANs

Following the success of Goodfellow’s GAN model, many extensions have arisen and

left their marks in the image processing field. Deep Convolutional Generative Adversarial

Network, DCGAN, attempts to combine the ideas of convolutional nets with

unsupervised learning [16]. It introduces the constraints on the model to develop a high-

quality generator, which then becomes the solid base for even more GANs’ extensions

and applications. Conditional GANs, or cGANs, take extra information in addition to the

image as input to train the generator and the discriminator [17]. Progressive GANs

introduce a new method to train GANs model that involves progressively increasing the

model depth during the training process [18]. We choose to use GANs for our study

because it is indeed powerful for image generation projects, especially domain and style

translation tasks.

2.3 Non-Photorealistic Rendering (NPR)

Non-Photorealistic Rendering (NPR) is a computer graphic area that focuses on various

styles of digital art. NPR algorithms, especially Neural Style Transfer, have been

developed to generate/translate images with different artistic styles, such as painting,

drawing, animation, and architecture illustration, etc. Some common 2D artistic image

rendering techniques include extracting outlines and silhouettes to get sufficient shape

information; pen-and-ink painting with strokes, tone, texture, and outlines to emphasize

essential features. Fig. 6 describes a non-photorealistic rendering from a landscape

picture to some oil-painting style.

Fig. 6. Original picture and non-photorealistic representation of a lake

A variety of methods have been developed to create images with flat shading, mimicking

cartoon styles. One method used is image filtering [19], but applying filtering uniformly

to the entire image has side effects, such as reducing abstraction, losing details, or making

object boundaries clear. For improved results, semantic segmentation of images can be

applied to specific types, such as portraits. Unfortunately, this method does not perform

well on different kinds of images, which means poor generalization.

Neural Style Transfer (NST) is a well-known method to perform non-photorealistic

rendering. Its task is to change the style of an image in this domain to the style of an

image in another domain, so that the origin image can adopt the style of the other. NST

methods synthesize images with artistic style by combining the content of one image and

the style of another image. Recent studies on NST show that the VGG network trained

for object recognition has the ability to extract semantic features of objects [20]. Fig. 7

describes the architecture of a VGG-16 convolutional neural network, which is 16 layers

deep.

Fig. 7. Architecture of a VGG-16 network

There are already many impressive implementations of neural style transfer in animation

translating. Gatys et al. first proposed an NST approach based on CNNs that transfers the

style from the style image to the content image [21]. Chen et al. introduce CartoonGAN,

which trained on unpaired data with several impactful losses for general photo

cartoonization [3]. Their work uses a simple patch-level discriminator with fewer

parameters in D, features edge-promoting adversarial loss, and L1 sparse regularization

of high-level feature maps in the VGG network for content loss. He et al. propose three

constraints based on three drawing techniques focusing on voids, brush strokes, and ink

wash tone to translate images to Chinese ink wash paintings and call it ChipGAN [22].

Meanwhile, CariGANs [23] and WarpGAN [24] use different approaches to perform

geometric exaggeration and appearance stylization to generate caricatures.

(a)

(b)

(c)

(d)

Fig. 8. Sample result from famous research: (a) Gatys’s NST, (b) WarpGan, (c)

ChipGan, (d) CartoonGAN with Shinkai style

However, many methods like these above can only perform in a specific art field

completely different from animation. Most of them work by highlighting semantic edges

and filtering out image details. Meanwhile, our method learns the cartoon data

distribution from a set of cartoon images to synthesize high-quality animation on diverse

cases.

2.4 Unpaired Image-to-Image Translation

Image-to-Image Translation (I2I) focuses on translating images from a source domain to

another target domain while preserving the content representation. This field has drawn

increasing attention in recent years and made fantastic progress, thanks to its wide range

of applications in many image processing and computer vision problems, such as image

synthesis, image segmentation, impainting and restoration, image colorization, and style

transfer, etc.

In order to perform domain translating, we need to train a mapping 𝐺𝐴↦𝐵 that generates

image 𝑥𝐴𝐵 ∈ 𝐵 from the input source image 𝑥𝐴 ∈ 𝐴 so as it is similar to the target domain

of image 𝑥𝐵 ∈ 𝐵. We can express the translation process in mathematical function as:

𝑥𝐴𝐵 ∈ 𝐵 ∶ 𝑥𝐴𝐵 = 𝐺𝐴↦𝐵(𝑥𝐴)

Fig. 9. Image-to-image translation applications in various graphic problems

Image-to-image translation can be applied in a wide range of graphic problems. Some

common examples described in Fig. 9 are domain translation (a), image recovery (b),

semantic segmentation (c), image coloring (d), super-resolution (e), and artistic style

transfer (f).

Combined with unpaired data, this approach becomes a general-purpose solution for

many image processing tasks. Johnson et al. utilize and apply it to stylize photos into

paints faster than the earlier optimization-based method [25]. Zhu et al. introduced

CycleGAN with cycle-consistent loss and full-cycle transform [4], which uses bi-

directional models to transform unpaired images of various styles. Their methods are

extended and modified in many later studies. UNIT model, introduced by Liu et al.,

creates a shared-latent space by mapping source domain and target domain images to

learn the joint distribution between them in an unsupervised manner [26]. Its framework

is also based on both GANs and variational autoencoders VAEs. A multi-model version

of UNIT, MUNIT can produce more diverse outputs [27] by incorporating Adaptive

Instance Normalization (AdaIN) parameters and layers into the style decoder.

Meanwhile, Kim et al. involve attention mechanisms in UGATIT by generating an

attention map and proposing an Adaptive Layer Instance Normalization (AdaLIN) to

adaptively constrain the variation in shapes and textures [28]. Whitebox Catoonization

by Wang and Yu propose representations filtering from images and different losses on

each representation to improvise the result on domain translation [35]. On the other hand,

project FUNIT, Few-shot Image-to-Image Translation, has tried to overcome style

controllability caused by overlapped encoded instances by utilizing a few-shot

classification for controlling the categories of output images [29]. Fig. 10 below shows

the results of different methods on the face2anime dataset.

Fig. 10. Performances of different models on the face2anime dataset

All of the above studies prove that interdomain translation is always an attractive field.

Many interesting and effective methods were proposed to solve various problems in style-

transferring and image translation. However, some problems still require answers, such

as unclean results caused by outliers [37], insufficient data [4], or poor style

generalization caused by partial images segmentation of specific types.

An independent anime dataset was collected to conduct this study. We also utilize new

algorithms to calculate texture loss, aiming to reduce noises and unwanted edges that

many methods have faced. Experiments with different variables also show promising

translation results, which are then fed to the evaluation metric for comparison. The

obtained results demonstrate that this model is lighter, can perform style transferring

faster and easier than other models.

CHAPTER 3

METHODOLOGY

Our GAN framework contains two types of CNNs. One is the generator G which is trained

to produce output that fools the discriminator. The other is the discriminator D, which

classifies whether the image is from the real target manifold or synthetic. We design the

generator and discriminator networks to suit the particularity of cartoon images and can

be easily fine-tuned and modified.

Our Generator is a UNet-based generator capable of generating cartoon images in a short

amount of time. More specifically, the UNet is a convolutional network architecture for

fast and precise segmentation of images. The architecture is symmetric and consists of

two major parts of contracting networks by successive layers, where upsampling

operators replace the right part. Hence these layers can then learn to assemble a precise

output from what they get. A simple representation of the Generator architecture is shown

in Fig. 11 below.

Fig. 11. Generator architecture

After going through the Generator, images are decomposed into the surface

representation, the structure representation, and the texture representations. Three

independent discriminators and losses are also proposed to extract information as

described in Fig. 12.

Fig. 12. Model architecture

To be more specific, surface loss aims to distinguish between surface representation

extracted from model outputs and cartoons. Texture loss is used to differentiate input

photos and outputs between texture representations extracted from outputs and cartoons.

A pre-trained VGG network [20] is used as the discriminator to extract high-level features

and impose spatial constraints on global contents between extracted structure

representations and outputs.

3.1 Structure Loss

The structure loss aims to imitate the animated style of clear edge, high-level

simplification and abstraction, and sparse color blocks. After experiencing different

methods, we achieved high-performance results with Felzenszwalb and Huttenlocher

segmentation and hierarchical grouping, as shown in Fig. 13 [14, 30]. In the first step, we

use Felzenszwalb algorithm to segment the image into separate regions. After that, a

greedy algorithm works to group those regions together iteratively. Now we would have

the similarities between all neighboring regions calculated.

The final result would be the two most similar regions grouped together, and new

similarities are calculated between the resulting region and its neighbors. The process of

grouping the most similar regions is repeated until the remaining regions are equal to the

given segmentation number.

Input: (color) image

Output: Set of object location hypotheses L

Obtain initial regions 𝑅 = {𝑟1, ⋯ , 𝑟𝑛}

Initialize similarity set 𝑆 = ∅

foreach Neighboring region pair (𝑟𝑖, 𝑟𝑗) do:

 Calculate similarity 𝑠 (𝑟𝑖, 𝑟𝑗)

 𝑆 = 𝑆 ∪ 𝑠 (𝑟𝑖, 𝑟𝑗)

While 𝑆 ≠ 𝑛 do:

 Get highest similarity 𝑠 (𝑟𝑖, 𝑟𝑗) = max (𝑆)

 Merge corresponding regions 𝑟𝑡 = 𝑟𝑖 ∪ 𝑟𝑗

 Remove similarities regarding 𝑟𝑖 ∶ 𝑆 = 𝑆 ∖ 𝑠 (𝑟𝑖, 𝑟𝑥)

 Remove similarities regarding 𝑟𝑗 ∶ 𝑆 = 𝑆 ∖ 𝑠 (𝑟𝑗, 𝑟𝑥)

 Calculate similarity set 𝑆𝑡 between 𝑟𝑡 and its neighbors

 𝑆 = 𝑆 ∪ 𝑆𝑡

 𝑅 = 𝑅 ∪ 𝑟𝑡
Extract object location boxes L from all regions in R

Fig. 13. Hierarchical Grouping Algorithm

In order to enforce spatial constraints between the result and the extracted structure

representation, we use a pre-trained VGG-16 feature extractor as a structure

discriminator. Let 𝐹𝑠𝑟 be the extracted structure representation, and the final loss is

formulated as:

𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ‖𝑉𝐺𝐺(𝐺(𝐼𝑥)) − 𝑉𝐺𝐺 (𝐹𝑠𝑟(𝐺(𝐼𝑥)))‖

where 𝐹𝑠𝑟 is the structure extraction filter, and 𝐼𝑥 is the input image to the generator G.

3.2 Surface Loss

The surface loss will try to force the model to learn the cartoon painting style where artists

usually draw drafts with coarse brushes and have smooth surfaces similar to cartoon

images. In order to do that, we use a differentiable guided filter from JoyceMar et al. [36]

for edge-preserving filtering. We can express the surface loss as:

𝐿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = log 𝐷𝑠 (𝐹𝑔𝑓(𝐼𝑦, 𝐼𝑦)) + log (1 − 𝐷𝑠 (𝐹𝑔𝑓(𝐺(𝐼𝑥), 𝐺(𝐼𝑥))))

where the 𝐹𝑔𝑓 is the smooth filter, which will take an image as input and return a smooth,

blur version. 𝐹𝑔𝑓(𝐼𝑥, 𝐼𝑦) is the image with texture and details removed, with 𝐼𝑥 is the input

photo, and 𝐼𝑦 represents the reference cartoon images. A simple discriminator 𝐷𝑠 is used

to decide if the generated output has the same surface as the animated picture to help the

generator G.

3.3 Texture Loss

Along with the color and luminance factor, which have been focused on with the two

losses above, cartoon styles also have unique characteristics with high-level

simplification and high-frequency features that can be treated as key objectives that can

make it easy to distinguish between cartoon images and real-world photos. Due to this,

we propose using a simple random color shift algorithm 𝐹𝑐𝑠 to convert the image to a

grayscale feature map that still contains information about all the high-frequency textures:

𝐼𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 =
𝛽1 ∙ 𝐼𝑟 + 𝛽2 ∙ 𝐼𝑏 + 𝛽3 ∙ 𝐼𝑔

𝛽1 + 𝛽2 + 𝛽3

where 𝐼𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 is our image in grayscale, 𝐼𝑟, 𝐼𝑏, and 𝐼𝑔 are images in three channels

RGB, and 𝛽1, 𝛽2, 𝛽3 are trainable parameters. We also use a simple discriminator 𝐷𝑡 to

separate the grayscale feature map extract from the generated image and the animation

image, with 𝐹𝑐𝑠 being the color shift filter.

𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = log 𝐷𝑡 (𝐹𝑐𝑠(𝐼𝑦)) + log (1 − 𝐷𝑡 (𝐹𝑐𝑠(𝐺(𝐼𝑥))))

3.4 Total-Variant Loss and Superpixel Loss

In order to make the content of the generated photo to be of high quality, the total-

variation loss 𝐿𝑡𝑣 is used to impose spatial smoothness on generated images and reduce

high-frequency noises such as salt-and-pepper noise. For H, W, C represent spatial

dimensions of images, we have:

𝐿𝑡𝑣 =
1

𝐻 ∙ 𝑊 ∙ 𝐶
‖∇𝑥(𝐺(𝐼𝑥)) + ∇𝑦(𝐺(𝐼𝑥))‖

Finally, we propose a superpixel loss 𝐿𝑠𝑝 to maintain important content from the input

photo, which ensures that the cartoonized results and input photos are semantically

unchanged. We also use a pre-trained VGG-16 model to calculate it, similar to the

structure loss:

𝐿𝑠𝑝 = ‖𝑉𝐺𝐺(𝐺(𝐼𝑥)) − 𝑉𝐺𝐺(𝐼𝑥)‖

3.5 Full Model

With all of the losses mentioned above, we can write our final loss function as:

𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = 𝛽1 ∙ 𝐿𝑡𝑣 + 𝛽2 ∙ 𝐿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝛽3 ∙ 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝛽4 ∙ 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 + 𝛽5 ∙ 𝐿𝑠𝑝

where the parameter 𝛽1, 𝛽2, 𝛽3 ⋯ can be changed for separate uses.

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Implementation

Origin 5k 10k 15k 20k

Fig. 14. Model result after 5k-10k-15k-20k training iterations

This GAN model is implemented in Tensorflow [31]. The trained models in our

experiments are available to facilitate the evaluation of future methods. All experiments

were performed on an NVIDIA 1060Ti GPU. We use Adam algorithms with a learning

rate of 1.5 × 10−4 [32] and train the model with batch size 16 for 20000 iterations. Fig.

14 describes our training progress with translated pictures of human faces and outdoor

scenery after 5000 to 20000 training iterations. As the figure shows, our model can be

trained quite fast and reach the state-of-the-art lever in just 20000 iterations.

4.2 Dataset

The training dataset contains four folders, real and cartoon images for scenery and human

face. The cartoon data is collected manually by us, which we crop out from real anime

videos, mainly from Shinkai Makoto’s films. For the cartoon data, we use 10000 for

scenery and 5000 for human faces. In terms of the real-world data, we use 10000 scenery

images crawled from the Internet and 5000 human faces from the FFHQ dataset [33].

And for the validation dataset, we use 1000 real-life images and 1000 cartoon images

collected from the Internet. Some examples from our dataset are shown in Fig. 15 below.

Real scenery Animation Real face Anime face

Fig. 15. Example images from our dataset

4.3 Time Performance and Model Size

Our method has a relatively low number of parameters and running time. On our GPU,

we could reach the time of 17ms to process a 720*1280 image, which is much faster than

other related works and can be totally capable of real-time high-resolution video

processing tasks. Our model only has about 1.5 million parameters with the size of

5.6MB, which can be used to deploy on mobile apps. The table below will show some

comparison with other methods in terms of speed and the number of parameters.

Methods AnimeGan[2] CartoonGan[3] CycleGan[4] Ours

HR, GPU(ms) 45.53 148.02 106.82 17.23

Parameter(million) 3.96 11.38 11.13 1.48

Table 1. Parameters and Time Performance comparison

4.4 Evaluation metrics

For qualitative evaluation, this thesis will present results for different objects compared

to the results from other relevant research. Besides, Frechet Inception Distance (FID) is

proposed for quantitative evaluation to compare the generated images with the target

images [34].

4.5 Result demo

Human portraits

Cat pictures

Food pictures

Scenery pictures

Street pictures

Fig. 16. Model results on different categories

As shown out above in Fig. 16, our model could indeed be general to diverse use cases.

We apply the model in different real-world scenery, including human faces, animals,

foods, and city street images.

4.6 Qualitative Comparison

Origin CartoonGAN[3] AnimeGAN[2] WhiteBox[35] Our

Fig. 17. Original images with their results using different model

Comparison between our method and some related works are shown in Fig. 17.

CartoonGan generates quality results with good texture and clear edges but lacks

abstraction and tends to distort colors. Our model, on the other hand, prevents improper

color modifications. AnimeGan generates darkened images and cannot really show out

the Cartoon/Anime style. The WhiteBox model has really clear boundaries but focuses a

little too much on smoothing the image with color blocks and enhancing edges, which

leads to the lack of small details from the original image and creates noises. Finally, our

model is not perfect, but it gives a balanced result in color, texture and still generates

cartoon feel-like images. To conclude, our method outperforms previous methods in

generating images with harmonious color, clean edges, fine details, and less noise.

4.7 Quantitative Comparison

Method Real Photo CartoonGAN[3] AnimeGAN[2] WhiteBox[35] Ours

FID to

Cartoon

160 125 130 118 110

Table 2: Performance evaluation based on FID

FID is widely used to evaluate the quality of synthesized images quantitatively.

Therefore, our work proposes Heusel’s method to calculate the distance between two

image distributions [34], namely the generated and actual anime images. FID results used

to calculate this study’s performance and performance of related works are shown in

Table 2. This method generates images with the smallest FID score, proving that it has

the most Cartoon/Anime style result, outperforming the others.

4.8 Illustration of Controllability

Input photo More Texture More Structure More Surface

Fig. 18. Output result controlled by changing opponents in the loss function

As shown in Fig. 18, we can adjust the cartoonized results’ style by tuning the weight of

each representation in the loss function. By choosing a higher weight for texture

representation, our model could add more small details to the result; details such as

grassland, stones, or cloud curves are well preserved. The explanation is our model could

maintain and highlight high-frequency details stored in texture representation. In contrast,

fewer details and smoother images are generated with a higher weight of surface

representation. The reason is the model is now focusing more on the smooth picture

created by the guided filter. Finally, to achieve more abstract and sparse images, we can

increase the weight of structure representation, and the details will be well-segmented

into sparse color blocks. The selective search algorithm has flattened the training data and

abstracted them into structure representations. In conclusion, our white-box method is

indeed controllable and can be easily adjusted, unlike black-box models.

4.9 Analysis of Each Component

 Original photo (a)W/O Texture Loss (b)W/O Structure Loss (c)W/O Surface Loss Full Model

Fig. 19. Results of removing components in the loss function

We show the results of the ablation study in Fig. 19. The ablated texture representation

will cause confusion in details. As shown in Fig. 19 (a), the irregular textures on the grass

and dog legs still exist. This is because of the lack of high frequencies stored in the surface

representation, which reduces the cartoonization ability of the model. The ablation

structure representation will cause the high frequency noise in Fig. 19 (b). A serious taste

of salt and pepper appears on the grasslands and mountains. The reason here is that the

structure representation flattens the image and removes high-frequency information. The

ablated surface representation can cause noise and messy details. Fig. 19 (c) shows

unclear cloud edges and grass noise. The reason for this is that the guided filtering process

suppresses high-frequency information and preserves a smooth surface. As a comparison,

the result of our complete model is shown in Fig. 19 (d), which has smoother features,

clearer boundaries, and much less noise. To sum up, all three representations have their

own contribution to the result of our method.

CHAPTER 5

CONCLUSION

This thesis proposes a lightweight and controllable approach for image cartoonization by

translating actual footage into animation. Frechet Inception Distance is used as our

evaluation metric to compare the generated images with the target images and receive

promising results. The methodology we choose pays close attention to the animation

painting process, encouraging us to distinguish three separate feature maps from

generated pictures for independent handling. The Generator will continuously learn the

cartoonization process from five different losses of surface representation, construction

depiction, texture representation, and VGG based discriminators. The losses can be easily

modified for personal improvement. Moreover, unpaired datasets are used for training so

that it can be more easily fine-tuned for different art styles. We have also created our own

dataset and used it along with available ones for the training process. The final

experiments demonstrate that this model can generate better results by surpassing

performance compared to many state-of-the-art models.

In future works, we would like to extend the application of this method on videos to

generate smooth, anime-like cuts. Details on portrait and facial expression are also

considered for improvement so that the character’s emotion and sentiment would be more

well-described in further research.

REFERENCES

1. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., Bengio, Y.: Generative Adversarial Networks. arXiv preprint

arXiv:1406.2661 (2014)

2. Chen, J., Liu, G., Chen, X.: AnimeGAN: A Novel Lightweight GAN for Photo

Animation. In: Li K., Li W., Wang H., Liu Y. (eds) Artificial Intelligence

Algorithms and Applications. ISICA 2019. Communications in Computer and

Information Science, vol 1205. Springer, Singapore (2020).

3. Chen, Y., Lai, Y., Liu, Y.: CartoonGAN: Generative Adversarial Networks for

Photo Cartoonization. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2018, pp. 9465-9474, doi: 10.1109/CVPR.2018.00986.

(2018)

4. Zhu, J., Park, T., Isola, P., Efros, A. A.: Unpaired Image-to-Image Translation

using Cycle-Consistent Adversarial Networks. arXiv preprint arXiv:1703.10593

(2017)

5. Pęśko, M., Svystun, A., Andruszkiewicz, P., Rokita, P., Trzciński, T.: Comixify:

Transform video into a comic. arXiv preprint arXiv:1812.03473 (2018)

6. Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In:

Proceedings of the 1998 IEEE International Conference on Computer Vision,

Bombay, India (1998)

7. He, K., Sun, J., Tang, X.: Guided Image Filtering. IEEE transactions on pattern

analysis and machine intelligence. 35. 1397-1409. 10.1109/TPAMI.2012.213

(2013)

8. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-Preserving

Decompositions for Multi-Scale Tone and Detail Manipulation. ACM Trans.

Graph. 27. 10.1145/1360612.1360666 (2008)

9. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M. N.: Fast Global Image

Smoothing Based on Weighted Least Squares. In: IEEE Transactions on Image

Processing, vol. 23, no. 12, pp. 5638-5653, Dec. 2014, doi:

10.1109/TIP.2014.2366600. (2014)

10. Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast End-to-End Trainable Guided

Filter. arXiv preprint arXiv:1803.05619 (2018)

11. Moore, A. P., Prince, S. J. D., Warrell, J., Mohammed, U., Jones, G.: Superpixel

Lattices. 2008 IEEE Conference on Computer Vision and Pattern Recognition,

2008, pp. 1-8, doi: 10.1109/CVPR.2008.4587471. (2008)

12. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC

Superpixels Compared to State-of-the-artSuperpixel Methods. IEEE Transactions

on Pattern Analysis and Machine Intelligence 34(11), doi:

10.1109/TPAMI.2012.120. (2012)

13. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel Segmentation with Fully

Convolutional Networks. arXiv preprint arXiv:2003.12929 (2020)

14. Felzenszwalb, P. F., Huttenlocher, D. P.: Efficient Graph-Based Image

Segmentation. International Journal of Computer Vision 59, 167–181 (2004).

https://doi.org/10.1023/B:VISI.0000022288.19776.77

15. Jin, Y., Zhang, J., Li, M., Tian, Y., Zhu, H., Fang, Z.: Towards the Automatic

Anime Characters Creation with Generative Adversarial Networks. arXiv preprint

arXiv:1708.05509 (2017)

16. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks. arXiv preprint

arXiv:1511.06434 (2015)

17. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. arXiv preprint

arXiv:1411.1784 (2014)

18. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive Growing of GANs for

Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196

(2017)

19. Winnemoller, H., Olsen, S. C., Gooch, B.: Real-Time Video Abstraction. ACM

Trans. Graph. 25. 1221-1226. 10.1145/1179352.1142018 (2006)

20. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-

Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014)

21. Gatys, L. A., Ecker, A. S., Bethge, M.: A Neural Algorithm of Artistic Style.

arXiv preprint arXiv:1508.06576 (2015)

22. He, B., Gao, F., Ma, D., Shi, B., Duan, L.: ChipGAN: A Generative Adversarial

Network for Chinese Ink Wash Painting Style Transfer. In: Proceedings of the

26th ACM international conference on Multimedia (2018)

23. Cao, K., Liao, J., Yuan, L.: CariGANs: Unpaired Photo-to-Caricature Translation.

arXiv preprint arXiv:1811.00222 (2018)

24. Shi, Y., Deb, D., Jain, A. K.: WarpGAN: Automatic Caricature Generation. arXiv

preprint arXiv:1811.10100 (2018)

25. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual Losses for Real-Time Style Transfer

and Super-Resolution. arXiv preprint arXiv:1603.08155 (2016)

26. Liu, M., Breuel, T., Kautz, J.: Unsupervised Image-to-Image Translation

Networks. arXiv preprint arXiv:1703.00848 (2017)

27. Huang, X., Liu, M., Belongie, S., Kautz, J.: Multimodal Unsupervised Image-to-

Image Translation. arXiv preprint arXiv:1804.04732 (2018)

28. Kim, J., Kim, M., Kang, H., Lee, K.: U-GAT-IT: Unsupervised Generative

Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-

Image Translation. arXiv preprint arXiv:1907.10830v4 (2019)

29. Liu, M., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-

Shot Unsupervised Image-to-Image Translation. arXiv preprint

arXiv:1905.01723 (2019)

30. Sande, K. E. A. van de, Uijlings, J. R. R., Gevers, T., Smeulders, A. W. M.:

Selective Search for Object Recognition. International Journal of Computer

Vision, 104(2):154–171 (2013)

31. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R.,

Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,

Wicke, M., Yu, Y., Zheng, X.: TensorFlow: A system for large-scale machine

learning. arXiv preprint arXiv:1605.08695 (2016)

32. Kingma, D. P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv

preprint arXiv:1412.6980 (2014)

33. Karras, T., Laine, S., Aila, T.: A Style-Based Generator Architecture for

Generative Adversarial Networks. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 4401–4410 (2018)

34. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs

Trained by a Two Time-Scale Update Rule Converge to a Local Nash

Equilibrium. In: Advances in Neural Information Processing Systems, pages

6626–6637 (2017)

35. Wang, X., Yu, J.: Learning to Cartoonize Using White-Box Cartoon

Representations. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) (2020)

36. JoyceMar, G. J., Begum, A. Rijuvana: Guided Filter Smoothing for Third Order

Edge Mask. International Journal of Computer Applications. 120. 36-42.

10.5120/21403-4424 (2015)

37. Lei J.: AnimeGAN. https://github.com/jayleicn/animeGAN, 2017

