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ABSTRACT 

 

This thesis presents a unique approach for image cartoonization and style transferring: 

translating an image or video in real life into an aesthetic, anime-like frame. By paying 

exceptional attention to the animation painting conduct, we propose to separately 

distinguish three feature maps from pictures: the surface description that contains smooth 

color shading characteristic of animation pictures, the construction depiction that emulates 

flattened global content and clear boundaries in a typical anime frame, and the texture 

representation that reflects high-frequency surface, forms, and details in animation 

pictures. All the extracted information will be fed into the Generator with the help of a 

VGG based discriminator to learn how to cartoonize a real-world photo. The learning 

objectives of our technique are independently based on each extracted feature map, making 

our model controllable and adjustable. 

Our solution takes unpaired photos and cartoon/anime images for training which can be 

fine-tuned for different problems and art styles. It is also incredibly lightweight so as to 

provide quick and easy inference. Experimental results show that our method can generate 

high-quality cartoon images from real-world photos and outperforms many existing 

methods.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

From its crack of dawn, humanity had learned to describe natural scenes that they see on 

rocks and wood. We came from simple, straight-line sketches to realistic, detailed 

pictures and even cartoon and artistic drawings. Our creations move from caves to wood, 

then to paper, and later on, to our computers and Cloud. They serve different purposes in 

our daily lives, but all share one similarity of depicting human life and mind. 

In this thesis, we focus on Anime/Cartoon style drawings and how to generate them from 

the input we have: real-life footage. One primary approach when it comes to this domain 

transfer problem is using Generative Adversarial Networks [1]. 

During the last decades, the world of machine learning, especially computer vision and 

neural style transfer, has been shaken by the dawn of new research - Generative 

Adversarial Networks (GAN). This whole new idea has led to many valuable pieces of 

research of all computer vision fields using GAN. A wide range of applications is found 

by learning to translate data from its original domain to another, such as style transferring, 

image colorization, image restoration, and super-resolution. 

Depending on the quality of the animation, it might take weeks or even months to produce 

a minute-long cartoon or anime video with today’s technology. Research using cartoon 

images as input might find that their resources are limited to a relatively small number, 

around hundreds of thousands (or less) of efficient input. Restriction on intake would 

probably lead to degraded quality of output results. GANs are born to solve these 

questions. 

Nowadays, GAN has shown its prominence with effective and practical solutions in 

domain transfer and image generation problems. Some recent research has shown 

impressive results in many computer vision fields, such as generating random comic 

characters, translating selfies or pictures to anime style, sketches colorization, super-

resolution, etc. A fun yet awesome image generation project called AnimeGAN uses the 



 

 

DCGAN model trained on a dataset of 143,000 anime character faces to generate new 

anime faces [37]. However, we can still see some unclean results, partially caused by 

outliers at the input process. CartoonGAN proposes image translation with unpaired 

training data, significantly reducing the effort needed for data preprocessing [3]. The 

project features a simple patch-level discriminator, edge-promoting adversarial loss, and 

L1 sparse regularization of high-level feature maps in the VGG network for content loss. 

Nonetheless, this black box model is the enemy of generalization. CycleGAN, one of the 

first and most inspirational research, introduced us to the Cycle-consistent Adversarial 

Networks with cycle-consistent loss and full-cycle transform [4]. Their methods are 

extended and improved in many later studies. A big problem with the Cycle-consistent 

Adversarial Networks is that they require a considerable amount of input data. Comixify 

works with videos and tries to convert them into comics [5]. They extract keyframes from 

the input videos, translate them into comics, and also intend to add speech recognition in 

future works. 

This thesis mainly focuses on translating real-life footage into anime/cartoon style. 

Moreover, it involves new algorithms and manually collected datasets in order to improve 

generated animation. Our product is a lightweight and uncomplicated model that can 

perform style transferring quicker and easier than many others. 

1.2 Objectives and Contributions 

The primary target of this thesis is to translate images and videos in real life into 

amine/cartoon style. Many researchers have tried to do this before, but we are looking for 

a more accurate and artistic result by implementing new methods and evaluators. 

This thesis uses a features extraction method of the real-life input which separates images 

into three different representations. We also use FID as the evaluation metric to calculate 

and compare our work’s performance to SOTA’s models. 

1.3 Outline 

Chapter 1: A general introduction about Anime/Cartoon Style Transfer using GANs and 

the scope of this thesis.  

Chapter 2: List of literature studies that are related to this thesis’s fields of research and 

an overview of all the technologies used in this study for implementation. 



 

 

Chapter 3: Details implementation of the technologies introduced in the previous 

chapter. We will analyze and extract features from real-life images and videos and then 

convert them into anime/cartoon style. 

Chapter 4: Display of results from the training model and evaluation metrics. We also 

include some mathematical and visual comparisons of our model to SOTA models of the 

same topic. 

Chapter 5: Conclusion about the results of testing our models and possible future works 

that could be done for further improvisation. 

  



 

 

 

CHAPTER 2 

RELATED WORKS 

2.1   Image Smoothing and Segmentation 

2.1.1 Image Smoothing 

Image smoothing is an image enhancement process, which is usually applied as one 

module of image preprocessing in various projects. Smoothing is often used to reduce 

noise in images and give us a more accurate intensity surface. 

Commonly used methods are the classic filtering-based and the optimization-based. 

There are many types of smoothing filters, such as box filters (simple averaging), 

Gaussian filters (center pixels weighted more), edge-preserved filters, bilateral filters, etc. 

Box filter averages pixel to smooth image and helps erase noises by making variance of 

noise in the average to become smaller than the variance of the pixel noise. Nevertheless, 

a significant drawback of box filtering is the reduction of fine image details after 

smoothing. Tomasi and Manduchi introduced the concept of bilateral filtering applied on 

color images for edge-preserving smoothing [6], and He et al. use a guided filter - 

modified bilateral filtering with better performance on edges [7]. The main point is, we 

need to make sure that the filter smoothes enough to clean up the noise, but not so much 

as to remove important image gradients. 

Optimization approaches have tried to utilize quadratic cost functions or solve a linear 

system, which is pretty the same as implicit filters. Farbman et al. discard the old ways 

by utilizing a weighted least squares optimization framework to tighten up the edge-

preserving operator [8]. Min et al. perform global smoother for edge-preserving image 

smoothing based on weighted least squares [9]. However, the explicit filters are often 

simpler and lighter than the optimization-based ones. Thus, we will adjust a trainable 



 

 

guided filter for this thesis - an explicit image filter [10] to extract the top smooth layer 

from our input. 

 

Fig. 1. Guided Image Filter 

   

Original image Guided Filter Fast Guided Filter 

Fig. 2. He et al. guided filter with window radius r = 4, regularization parameter ε = 

0.22, subsampling ratio s = 4. 

2.1.2 Image Segmentation 

Image segmentation aims to separate images into different regions. Here we want to use 

segmentation to establish boundaries between image regions in order to extract its 

structure representation. 

Introduced by Ren and Malik in 2003, superpixels were created to group pixels similar in 

color and other low-level properties. Various well-known segmentation and grouping 

methods exploit the power of superpixel algorithms to perform in a faster and more 

memory-efficient manner. 



 

 

Many segmentation methods utilize graph-based algorithms, such as the work of Moore 

et al. called superpixel lattices [11], or SLIC & comparison from Achanta et al. [12], and 

a variant of SLIC combines with affinity propagation clustering called SLICAP to 

improve performance on boundary-based and region-based criteria. More recent 

approach includes Yang et al. superpixel segmentation with fully convolutional networks 

[13], which attempt to incorporate the method using deep neural nets.   

 

Fig. 3. Outdoor & indoor scene segmentation results produced by Felzenszwalb 

algorithm with σ = 0.8, k = 300 

This thesis would rely on the image’s graph-based representation, which develops an 

efficient Felzenszwalb segmentation algorithm [14] to extract our image’s structure 

representation. Details on this algorithm will be discussed later in our thesis. 



 

 

2.2   Generative Adversarial Networks (GANs) 

 

Fig. 4. Basic of GAN’s architecture 

Generative Adversarial Networks (GANs) architecture was first introduced by 

Goodfellow et al. in 2014 in a paper of the same name [1]. The initial idea of their work 

is to build a model that could estimate the generation process using adversarial networks. 

In recent years, GANs have quickly become a state-of-the-art data generation method that 

has achieved impressive results. The solution lies in the adversarial training between the 

generator and the discriminator. In Fig. 4, we have a simple representation of a GAN’s 

architecture, where both the generator and the discriminator are neural networks. They 

communicate by the propagation and back-propagation algorithms to update weights and 

losses in order to learn. 

A GAN structure contains two separately trained networks: the generator (G), which 

learns to create fake data while continuously receiving feedback from the discriminator; 

the discriminator (D) is basically a binary classifier trying to separate real and generated 

data. The authors first define a prior on input noise variables 𝑝𝑧(𝑧) to learn the generator’s 

distribution 𝑝𝑔 over data x. A mapping to data space 𝐺(𝑧; 𝜃𝑔) is introduced, where G is 

a differentiable function represented by a multilayer perceptron with parameters 𝜃𝑔. 

About the discriminator, there is also a second multilayer perceptron 𝐷(𝑥; 𝜃𝑑) that 



 

 

outputs a single scalar representing the probability that x came from the data rather than 

𝑝𝑔. 

Their target is to train D so as to maximize the probability of correctly classified examples 

from training data and the G. Simultaneously, G is trained to minimize log (1 −

𝐷(𝐺(𝑧))). 

In conclusion, GANs is basically a min-max game between the G and D with value 

function 𝑉(𝐷, 𝐺), where 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] means the expected value of log 𝐷(𝑥) 

given x distributed as 𝑝𝑑𝑎𝑡𝑎(𝑥): 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) =  𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] 

This is what we call adversarial training. We will go into more details in the G and D 

architecture in our methodology explanation later. GANs’ results are impressive and 

extend to various fields of image processing and multiple types of art styles. Here we 

have some examples of character creation using GANs by Jin et al. in Fig. 5. You can see 

that the generated characters’ faces look pretty authentic, like those from an art studio 

[15]. Although there are still limits on human expression and viewpoint, GANs are still a 

great choice to implement our method for image-to-image translation. 

 

Fig. 5. Character creation using GANs 

Following the success of Goodfellow’s GAN model, many extensions have arisen and 

left their marks in the image processing field. Deep Convolutional Generative Adversarial 

Network, DCGAN, attempts to combine the ideas of convolutional nets with 

unsupervised learning [16]. It introduces the constraints on the model to develop a high-

quality generator, which then becomes the solid base for even more GANs’ extensions 

and applications.  Conditional GANs, or cGANs, take extra information in addition to the 

image as input to train the generator and the discriminator [17]. Progressive GANs 



 

 

introduce a new method to train GANs model that involves progressively increasing the 

model depth during the training process [18]. We choose to use GANs for our study 

because it is indeed powerful for image generation projects, especially domain and style 

translation tasks. 

2.3   Non-Photorealistic Rendering (NPR) 

Non-Photorealistic Rendering (NPR) is a computer graphic area that focuses on various 

styles of digital art. NPR algorithms, especially Neural Style Transfer, have been 

developed to generate/translate images with different artistic styles, such as painting, 

drawing, animation, and architecture illustration, etc. Some common 2D artistic image 

rendering techniques include extracting outlines and silhouettes to get sufficient shape 

information; pen-and-ink painting with strokes, tone, texture, and outlines to emphasize 

essential features. Fig. 6 describes a non-photorealistic rendering from a landscape 

picture to some oil-painting style. 

  

Fig. 6. Original picture and non-photorealistic representation of a lake 

A variety of methods have been developed to create images with flat shading, mimicking 

cartoon styles. One method used is image filtering [19], but applying filtering uniformly 

to the entire image has side effects, such as reducing abstraction, losing details, or making 

object boundaries clear. For improved results, semantic segmentation of images can be 

applied to specific types, such as portraits. Unfortunately, this method does not perform 

well on different kinds of images, which means poor generalization. 

Neural Style Transfer (NST) is a well-known method to perform non-photorealistic 

rendering. Its task is to change the style of an image in this domain to the style of an 



 

 

image in another domain, so that the origin image can adopt the style of the other. NST 

methods synthesize images with artistic style by combining the content of one image and 

the style of another image. Recent studies on NST show that the VGG network trained 

for object recognition has the ability to extract semantic features of objects [20]. Fig. 7 

describes the architecture of a VGG-16 convolutional neural network, which is 16 layers 

deep. 

 

Fig. 7. Architecture of a VGG-16 network 

There are already many impressive implementations of neural style transfer in animation 

translating. Gatys et al. first proposed an NST approach based on CNNs that transfers the 

style from the style image to the content image [21]. Chen et al. introduce CartoonGAN, 

which trained on unpaired data with several impactful losses for general photo 

cartoonization [3]. Their work uses a simple patch-level discriminator with fewer 

parameters in D, features edge-promoting adversarial loss, and L1 sparse regularization 

of high-level feature maps in the VGG network for content loss. He et al. propose three 

constraints based on three drawing techniques focusing on voids, brush strokes, and ink 

wash tone to translate images to Chinese ink wash paintings and call it ChipGAN [22]. 



 

 

Meanwhile, CariGANs [23] and WarpGAN [24] use different approaches to perform 

geometric exaggeration and appearance stylization to generate caricatures. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Sample result from famous research: (a) Gatys’s NST, (b) WarpGan, (c) 

ChipGan, (d) CartoonGAN with Shinkai style 

However, many methods like these above can only perform in a specific art field 

completely different from animation. Most of them work by highlighting semantic edges 

and filtering out image details. Meanwhile, our method learns the cartoon data 

distribution from a set of cartoon images to synthesize high-quality animation on diverse 

cases. 

2.4   Unpaired Image-to-Image Translation 

Image-to-Image Translation (I2I) focuses on translating images from a source domain to 

another target domain while preserving the content representation. This field has drawn 

increasing attention in recent years and made fantastic progress, thanks to its wide range 

of applications in many image processing and computer vision problems, such as image 

synthesis, image segmentation, impainting and restoration, image colorization, and style 

transfer, etc. 



 

 

In order to perform domain translating, we need to train a mapping 𝐺𝐴↦𝐵 that generates 

image 𝑥𝐴𝐵 ∈ 𝐵 from the input source image 𝑥𝐴 ∈ 𝐴 so as it is similar to the target domain 

of image 𝑥𝐵 ∈ 𝐵. We can express the translation process in mathematical function as: 

𝑥𝐴𝐵 ∈ 𝐵 ∶ 𝑥𝐴𝐵 = 𝐺𝐴↦𝐵(𝑥𝐴) 

 

Fig. 9. Image-to-image translation applications in various graphic problems 

Image-to-image translation can be applied in a wide range of graphic problems. Some 

common examples described in Fig. 9 are domain translation (a), image recovery (b), 

semantic segmentation (c), image coloring (d), super-resolution (e), and artistic style 

transfer (f). 

Combined with unpaired data, this approach becomes a general-purpose solution for 

many image processing tasks. Johnson et al. utilize and apply it to stylize photos into 

paints faster than the earlier optimization-based method [25]. Zhu et al. introduced 

CycleGAN with cycle-consistent loss and full-cycle transform [4], which uses bi-

directional models to transform unpaired images of various styles. Their methods are 

extended and modified in many later studies. UNIT model, introduced by Liu et al., 

creates a shared-latent space by mapping source domain and target domain images to 

learn the joint distribution between them in an unsupervised manner [26]. Its framework 

is also based on both GANs and variational autoencoders VAEs. A multi-model version 

of UNIT, MUNIT can produce more diverse outputs [27] by incorporating Adaptive 

Instance Normalization (AdaIN) parameters and layers into the style decoder. 



 

 

Meanwhile, Kim et al. involve attention mechanisms in UGATIT by generating an 

attention map and proposing an Adaptive Layer Instance Normalization (AdaLIN) to 

adaptively constrain the variation in shapes and textures [28]. Whitebox Catoonization 

by Wang and Yu propose representations filtering from images and different losses on 

each representation to improvise the result on domain translation [35]. On the other hand, 

project FUNIT, Few-shot Image-to-Image Translation, has tried to overcome style 

controllability caused by overlapped encoded instances by utilizing a few-shot 

classification for controlling the categories of output images [29]. Fig. 10 below shows 

the results of different methods on the face2anime dataset. 

 

Fig. 10. Performances of different models on the face2anime dataset 

All of the above studies prove that interdomain translation is always an attractive field. 

Many interesting and effective methods were proposed to solve various problems in style-

transferring and image translation. However, some problems still require answers, such 

as unclean results caused by outliers [37], insufficient data [4], or poor style 

generalization caused by partial images segmentation of specific types. 

An independent anime dataset was collected to conduct this study. We also utilize new 

algorithms to calculate texture loss, aiming to reduce noises and unwanted edges that 

many methods have faced. Experiments with different variables also show promising 

translation results, which are then fed to the evaluation metric for comparison. The 



 

 

obtained results demonstrate that this model is lighter, can perform style transferring 

faster and easier than other models. 

  



 

 

 

CHAPTER 3 

METHODOLOGY  

Our GAN framework contains two types of CNNs. One is the generator G which is trained 

to produce output that fools the discriminator. The other is the discriminator D, which 

classifies whether the image is from the real target manifold or synthetic. We design the 

generator and discriminator networks to suit the particularity of cartoon images and can 

be easily fine-tuned and modified. 

Our Generator is a UNet-based generator capable of generating cartoon images in a short 

amount of time. More specifically, the UNet is a convolutional network architecture for 

fast and precise segmentation of images. The architecture is symmetric and consists of 

two major parts of contracting networks by successive layers, where upsampling 

operators replace the right part. Hence these layers can then learn to assemble a precise 

output from what they get. A simple representation of the Generator architecture is shown 

in Fig. 11 below.  

 

Fig. 11. Generator architecture 



 

 

After going through the Generator, images are decomposed into the surface 

representation, the structure representation, and the texture representations. Three 

independent discriminators and losses are also proposed to extract information as 

described in Fig. 12. 

 

Fig. 12. Model architecture 

To be more specific, surface loss aims to distinguish between surface representation 

extracted from model outputs and cartoons. Texture loss is used to differentiate input 

photos and outputs between texture representations extracted from outputs and cartoons. 

A pre-trained VGG network [20] is used as the discriminator to extract high-level features 

and impose spatial constraints on global contents between extracted structure 

representations and outputs. 

3.1   Structure Loss 

The structure loss aims to imitate the animated style of clear edge, high-level 

simplification and abstraction, and sparse color blocks. After experiencing different 

methods, we achieved high-performance results with Felzenszwalb and Huttenlocher 

segmentation and hierarchical grouping, as shown in Fig. 13 [14, 30]. In the first step, we 

use Felzenszwalb algorithm to segment the image into separate regions. After that, a 

greedy algorithm works to group those regions together iteratively. Now we would have 

the similarities between all neighboring regions calculated. 



 

 

The final result would be the two most similar regions grouped together, and new 

similarities are calculated between the resulting region and its neighbors. The process of 

grouping the most similar regions is repeated until the remaining regions are equal to the 

given segmentation number. 

Input: (color) image 

Output: Set of object location hypotheses L 

Obtain initial regions 𝑅 = {𝑟1, ⋯ , 𝑟𝑛} 

Initialize similarity set 𝑆 = ∅ 

foreach Neighboring region pair (𝑟𝑖, 𝑟𝑗) do: 

    Calculate similarity 𝑠 (𝑟𝑖, 𝑟𝑗) 

    𝑆 = 𝑆 ∪ 𝑠 (𝑟𝑖, 𝑟𝑗) 

While 𝑆 ≠ 𝑛 do: 

    Get highest similarity 𝑠 (𝑟𝑖, 𝑟𝑗) = max (𝑆) 

    Merge corresponding regions 𝑟𝑡 = 𝑟𝑖 ∪ 𝑟𝑗 

    Remove similarities regarding 𝑟𝑖 ∶ 𝑆 = 𝑆 ∖ 𝑠 (𝑟𝑖, 𝑟𝑥)  

    Remove similarities regarding 𝑟𝑗 ∶ 𝑆 = 𝑆 ∖ 𝑠 (𝑟𝑗, 𝑟𝑥) 

    Calculate similarity set 𝑆𝑡 between 𝑟𝑡 and its neighbors 

    𝑆 = 𝑆 ∪ 𝑆𝑡 

    𝑅 = 𝑅 ∪ 𝑟𝑡 
Extract object location boxes L from all regions in R 

Fig. 13. Hierarchical Grouping Algorithm 

In order to enforce spatial constraints between the result and the extracted structure 

representation, we use a pre-trained VGG-16 feature extractor as a structure 

discriminator. Let 𝐹𝑠𝑟 be the extracted structure representation, and the final loss is 

formulated as: 

𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =  ‖𝑉𝐺𝐺(𝐺(𝐼𝑥)) − 𝑉𝐺𝐺 (𝐹𝑠𝑟(𝐺(𝐼𝑥)))‖ 

where 𝐹𝑠𝑟 is the structure extraction filter, and 𝐼𝑥 is the input image to the generator G. 

3.2   Surface Loss 

The surface loss will try to force the model to learn the cartoon painting style where artists 

usually draw drafts with coarse brushes and have smooth surfaces similar to cartoon 



 

 

images. In order to do that, we use a differentiable guided filter from JoyceMar et al. [36] 

for edge-preserving filtering. We can express the surface loss as: 

𝐿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = log 𝐷𝑠 (𝐹𝑔𝑓(𝐼𝑦, 𝐼𝑦)) + log (1 − 𝐷𝑠 (𝐹𝑔𝑓(𝐺(𝐼𝑥), 𝐺(𝐼𝑥)))) 

where the 𝐹𝑔𝑓 is the smooth filter, which will take an image as input and return a smooth, 

blur version. 𝐹𝑔𝑓(𝐼𝑥, 𝐼𝑦) is the image with texture and details removed, with 𝐼𝑥 is the input 

photo, and 𝐼𝑦 represents the reference cartoon images. A simple discriminator 𝐷𝑠 is used 

to decide if the generated output has the same surface as the animated picture to help the 

generator G. 

3.3   Texture Loss 

Along with the color and luminance factor, which have been focused on with the two 

losses above, cartoon styles also have unique characteristics with high-level 

simplification and high-frequency features that can be treated as key objectives that can 

make it easy to distinguish between cartoon images and real-world photos. Due to this, 

we propose using a simple random color shift algorithm 𝐹𝑐𝑠 to convert the image to a 

grayscale feature map that still contains information about all the high-frequency textures: 

𝐼𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 =
𝛽1 ∙ 𝐼𝑟 + 𝛽2 ∙ 𝐼𝑏 + 𝛽3 ∙ 𝐼𝑔

𝛽1 + 𝛽2 + 𝛽3
 

 

where 𝐼𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 is our image in grayscale, 𝐼𝑟, 𝐼𝑏, and 𝐼𝑔 are images in three channels 

RGB, and 𝛽1, 𝛽2, 𝛽3 are trainable parameters. We also use a simple discriminator 𝐷𝑡 to 

separate the grayscale feature map extract from the generated image and the animation 

image, with 𝐹𝑐𝑠 being the color shift filter.  

𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = log 𝐷𝑡 (𝐹𝑐𝑠(𝐼𝑦)) + log (1 − 𝐷𝑡 (𝐹𝑐𝑠(𝐺(𝐼𝑥)))) 

3.4   Total-Variant Loss and Superpixel Loss 

In order to make the content of the generated photo to be of high quality, the total-

variation loss 𝐿𝑡𝑣 is used to impose spatial smoothness on generated images and reduce 



 

 

high-frequency noises such as salt-and-pepper noise. For H, W, C represent spatial 

dimensions of images, we have: 

𝐿𝑡𝑣 =
1

𝐻 ∙ 𝑊 ∙ 𝐶
‖∇𝑥(𝐺(𝐼𝑥)) + ∇𝑦(𝐺(𝐼𝑥))‖ 

Finally, we propose a superpixel loss 𝐿𝑠𝑝 to maintain important content from the input 

photo, which ensures that the cartoonized results and input photos are semantically 

unchanged. We also use a pre-trained VGG-16 model to calculate it, similar to the 

structure loss: 

𝐿𝑠𝑝 = ‖𝑉𝐺𝐺(𝐺(𝐼𝑥)) − 𝑉𝐺𝐺(𝐼𝑥)‖ 

3.5   Full Model 

With all of the losses mentioned above, we can write our final loss function as: 

𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = 𝛽1 ∙ 𝐿𝑡𝑣 + 𝛽2 ∙ 𝐿𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝛽3 ∙ 𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝛽4 ∙ 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 + 𝛽5 ∙ 𝐿𝑠𝑝 

where the parameter 𝛽1, 𝛽2, 𝛽3 ⋯ can be changed for separate uses. 

  



 

 

 

CHAPTER 4 

EXPERIMENTAL RESULTS 

4.1 Implementation 

Origin 5k 10k 15k 20k 

     

     

Fig. 14. Model result after 5k-10k-15k-20k training iterations 

This GAN model is implemented in Tensorflow [31]. The trained models in our 

experiments are available to facilitate the evaluation of future methods. All experiments 

were performed on an NVIDIA 1060Ti GPU. We use Adam algorithms with a learning 

rate of 1.5 × 10−4 [32] and train the model with batch size 16 for 20000 iterations. Fig. 

14 describes our training progress with translated pictures of human faces and outdoor 

scenery after 5000 to 20000 training iterations. As the figure shows, our model can be 

trained quite fast and reach the state-of-the-art lever in just 20000 iterations. 



 

 

4.2 Dataset 

The training dataset contains four folders, real and cartoon images for scenery and human 

face. The cartoon data is collected manually by us, which we crop out from real anime 

videos, mainly from Shinkai Makoto’s films. For the cartoon data, we use 10000 for 

scenery and 5000 for human faces. In terms of the real-world data, we use 10000 scenery 

images crawled from the Internet and 5000 human faces from the FFHQ dataset [33]. 

And for the validation dataset, we use 1000 real-life images and 1000 cartoon images 

collected from the Internet. Some examples from our dataset are shown in Fig. 15 below. 

Real scenery Animation Real face Anime face 

    

    

    



 

 

    

Fig. 15. Example images from our dataset 

4.3 Time Performance and Model Size 

Our method has a relatively low number of parameters and running time. On our GPU, 

we could reach the time of 17ms to process a 720*1280 image, which is much faster than 

other related works and can be totally capable of real-time high-resolution video 

processing tasks. Our model only has about 1.5 million parameters with the size of 

5.6MB, which can be used to deploy on mobile apps. The table below will show some 

comparison with other methods in terms of speed and the number of parameters. 

Methods AnimeGan[2] CartoonGan[3] CycleGan[4] Ours 

HR, GPU(ms) 45.53 148.02 106.82 17.23 

Parameter(million) 3.96 11.38 11.13 1.48 

Table 1. Parameters and Time Performance comparison 

4.4 Evaluation metrics  

For qualitative evaluation, this thesis will present results for different objects compared 

to the results from other relevant research. Besides, Frechet Inception Distance (FID) is 

proposed for quantitative evaluation to compare the generated images with the target 

images [34]. 



 

 

4.5 Result demo 

   

   

Human portraits 

   



 

 

   

Cat pictures 

  

  

Food pictures 



 

 

   

   

Scenery pictures 

  



 

 

  

Street pictures 

Fig. 16. Model results on different categories 

As shown out above in Fig. 16, our model could indeed be general to diverse use cases. 

We apply the model in different real-world scenery, including human faces, animals, 

foods, and city street images.  

4.6 Qualitative Comparison 

Origin CartoonGAN[3] AnimeGAN[2] WhiteBox[35] Our 

     

     

     



 

 

     

Fig. 17. Original images with their results using different model 

Comparison between our method and some related works are shown in Fig. 17. 

CartoonGan generates quality results with good texture and clear edges but lacks 

abstraction and tends to distort colors. Our model, on the other hand, prevents improper 

color modifications. AnimeGan generates darkened images and cannot really show out 

the Cartoon/Anime style. The WhiteBox model has really clear boundaries but focuses a 

little too much on smoothing the image with color blocks and enhancing edges, which 

leads to the lack of small details from the original image and creates noises. Finally, our 

model is not perfect, but it gives a balanced result in color, texture and still generates 

cartoon feel-like images. To conclude, our method outperforms previous methods in 

generating images with harmonious color, clean edges, fine details, and less noise. 

4.7 Quantitative Comparison 

Method Real Photo CartoonGAN[3] AnimeGAN[2] WhiteBox[35] Ours 

FID to 

Cartoon 

160 125 130 118 110 

Table 2: Performance evaluation based on FID 

FID is widely used to evaluate the quality of synthesized images quantitatively. 

Therefore, our work proposes Heusel’s method to calculate the distance between two 

image distributions [34], namely the generated and actual anime images. FID results used 

to calculate this study’s performance and performance of related works are shown in 

Table 2. This method generates images with the smallest FID score, proving that it has 

the most Cartoon/Anime style result, outperforming the others. 



 

 

4.8 Illustration of Controllability 

Input photo  More Texture           More Structure         More Surface 

Fig. 18. Output result controlled by changing opponents in the loss function 

As shown in Fig. 18, we can adjust the cartoonized results’ style by tuning the weight of 

each representation in the loss function. By choosing a higher weight for texture 

representation, our model could add more small details to the result; details such as 

grassland, stones, or cloud curves are well preserved. The explanation is our model could 

maintain and highlight high-frequency details stored in texture representation. In contrast, 

fewer details and smoother images are generated with a higher weight of surface 

representation. The reason is the model is now focusing more on the smooth picture 

created by the guided filter. Finally, to achieve more abstract and sparse images, we can 

increase the weight of structure representation, and the details will be well-segmented 

into sparse color blocks. The selective search algorithm has flattened the training data and 

abstracted them into structure representations. In conclusion, our white-box method is 

indeed controllable and can be easily adjusted, unlike black-box models. 



 

 

4.9 Analysis of Each Component 

      Original photo   (a)W/O Texture Loss  (b)W/O Structure Loss (c)W/O Surface Loss     Full Model 

Fig. 19. Results of removing components in the loss function 

We show the results of the ablation study in Fig. 19. The ablated texture representation 

will cause confusion in details. As shown in Fig. 19 (a), the irregular textures on the grass 

and dog legs still exist. This is because of the lack of high frequencies stored in the surface 

representation, which reduces the cartoonization ability of the model. The ablation 

structure representation will cause the high frequency noise in Fig. 19 (b). A serious taste 

of salt and pepper appears on the grasslands and mountains. The reason here is that the 

structure representation flattens the image and removes high-frequency information. The 

ablated surface representation can cause noise and messy details. Fig. 19 (c) shows 

unclear cloud edges and grass noise. The reason for this is that the guided filtering process 

suppresses high-frequency information and preserves a smooth surface. As a comparison, 

the result of our complete model is shown in Fig. 19 (d), which has smoother features, 

clearer boundaries, and much less noise. To sum up, all three representations have their 

own contribution to the result of our method. 

 

  

  



 

 

 

CHAPTER 5 

CONCLUSION 

This thesis proposes a lightweight and controllable approach for image cartoonization by 

translating actual footage into animation. Frechet Inception Distance is used as our 

evaluation metric to compare the generated images with the target images and receive 

promising results. The methodology we choose pays close attention to the animation 

painting process, encouraging us to distinguish three separate feature maps from 

generated pictures for independent handling. The Generator will continuously learn the 

cartoonization process from five different losses of surface representation, construction 

depiction, texture representation, and VGG based discriminators. The losses can be easily 

modified for personal improvement. Moreover, unpaired datasets are used for training so 

that it can be more easily fine-tuned for different art styles. We have also created our own 

dataset and used it along with available ones for the training process. The final 

experiments demonstrate that this model can generate better results by surpassing 

performance compared to many state-of-the-art models. 

In future works, we would like to extend the application of this method on videos to 

generate smooth, anime-like cuts. Details on portrait and facial expression are also 

considered for improvement so that the character’s emotion and sentiment would be more 

well-described in further research. 
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