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ABSTRACT 

 

 

 

 

 

 

End-to-end Network has become increasingly important in multi-tasking. One prominent 

example of this is the growing significance of a driving perception system in autonomous 

driving. This thesis systematically studies an end-to-end perception network for multi-tasking 

and proposes several key optimizations to improve accuracy. First, the study proposes 

efficient segmentation head and box/class prediction networks based on weighted 

bidirectional feature network. Second, the study proposes automatically customized anchor 

for each level in the weighted bidirectional feature network. Third, the study proposes an 

efficient training loss function and training strategy to balance and optimize network. Based 

on these optimizations, we have developed an end-to-end perception network to perform 

multi-tasking, including traffic object detection, drivable area segmentation and lane 

detection simultaneously, called HybridNets, which achieves better accuracy than prior art. In 

particular, HybridNets achieves 77.3 mean Average Precision on Berkeley DeepDrive 

Dataset, outperforms lane detection with 31.6 mean Intersection Over Union with 12.83 

million parameters and 15.6 billion floating-point operations. In addition, it can perform 

visual perception tasks in real-time and thus is a practical and accurate solution to the multi-

tasking problem. Code is available at https://github.com/datvuthanh/HybridNets.

https://github.com/datvuthanh/HybridNets
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1 INTRODUCTION 
1.1 Background 

Recent advances in embedded systems' computational power and neural networks' 

performance have made autonomous driving an active field in computer vision. Ideally, to 

create a vehicle capable of driving itself is to feed it with every bit of information available in 

its immediate surroundings. However, unlike conventional thinking, lidar and radar are not 

required to create an accurate perception field for intelligent vehicles. From time to time, it 

has been shown that such vehicles can make relatively good driving decisions with just the 

assistance of a single camera attached to the front. There is a general consensus that the three 

most critical tasks in guiding intelligent vehicles are: traffic object detection, drivable area 

segmentation, and lane line segmentation. 

Each one of these tasks has got its state-of-the-art networks, including but not limited to SSD 

[14], YOLO [21] for object detection; U-Net [23], SegNet [1], ERNet [10] for semantic 

segmentation; LaneNet [29] and SCNN [19] for lane line detection. Still, passing an image 

through three different networks creates unreasonable latency. Many researchers (MultiNet 

[28], DLT-Net [20], YOLOP [30]) have thought about combining the networks into a simple 

encoder-decoder architecture, where the backbone and neck generate context for three 

different heads to process. The architecture can be improved even further with proper 

selection of the feature extractor and fusing lane line with drivable area into one segmentation 

head. This experiment achieves the highest recall of 92.8% and segmentation IoU of 70.8%, 

outperforming existing multi-task networks on the challenging BDD100K dataset [31], as 

shown qualitatively in Figure 1. 

Improvements are made upon the excellent multi-scale feature fusion BiFPN in EfficientDet 

[26], together with an EfficientNet [27] backbone pre-trained on ImageNet with its balanced 

trade-off between accuracy and computational overhead. A BiFPN decoder is constructed to 

utilize existing multi-scale features into the newly designed segmentation head. For an input 

resolution of 640x384, the entire network comes in at 15.6 BFLOPs on 12.83M parameters, 

comparable to the latest multi-task network YOLOP at 18.6 BFLOPs on 7.9M parameters. A 

multi-stage learning strategy is employed to help with the convergence of multiple loss 

functions [5]. 
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To finetune even further, we also tinker with anchor box generation in this study [22]. 

Because anchor boxes theoretically cannot be generalized well for every dataset, nevertheless 

having a significant impact on the performance of one-stage detectors, we empirically choose 

the best possible aspect ratios and scales for the driving dataset BDD100K, where objects 

vary from large upfront trucks to tiny further cars. 

To sum it up, the main contributions of this research are: 

1. HybridNets, an end-to-end perception network, achieving outstanding results in real-time 

on the BDD100K dataset. 

2. Automatically customized anchor for each level in the weighted bidirectional feature 

network, on any dataset. 

3. An efficient training loss function and training strategy to balance and optimize multi -task 

networks. 

 

 

Figure 1: Results for inference of HybridNets. Our proposed network performs three 

tasks, including traffic object detection, drivable area segmentation and lane line 

detection. The green areas indicate the drivable area, the blue lines are the lane lines, 

and the orange boxes are the traffic objects. 
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1.2 Related works 

This section will review some of the best networks in each respective task, then conclude 

with the latest multi-task networks to emphasize the strength of this unified architecture. 

1.2.1 Traffic object detection 

Current developments in improving detectors' performance have nearly split the area into two 

distinct branches: region-based and one-stage detectors. While region-based methods are 

more accurate, one-stage detectors gained more attraction due to their efficiency in embedded 

systems with limited hardware constraints. When FPN came about, it initially supported 

RPNs by providing a top-down pathway to construct higher resolution layers from a 

semantic-rich layer [11]. Then BiFPN officially showed the performance boost of 

bidirectional feature fusion to one-stage detectors. They can now take in multiple scales of 

the feature map in just one pass, alleviating the apparent weakness of YOLOs and the like. 

1.2.2 Drivable area segmentation 

Semantic segmentation has also made remarkable steps with deep-learning instead of the old-

fashioned segmentation algorithms. FCN [25] sparked the flame with the first fully 

convolutional segmentation network. From then on, researchers have found various ways to 

improve the performance, such as encoder-decoder architecture with U-Net [23], the pyramid 

pooling module of PSPNet [32], or even semisupervised learning based on generative 

adversarial networks [6]. SSN [18] incorporated conditional random field units in the post -

processing stage to increase segmentation performance. Many data augmentation techniques 

have been tested throughout to enhance the learning generalization of road detection 

networks [17]. Image analysis is still being explored in segmenting road scenes [9]. 

1.2.3 Lane line detection 

Traditional lane line detections algorithms have been in wide use until recently, a notable 

algorithm being Hough transform [33]. Then LaneNet [29] proposed individual lane lines as 

instances to be segmented. SCNN [19] preferred slice-by-slice convolutions over deep layer-

by-layer convolutions, emphasizing objects with heavy spatial relationships but barely 

noticeable appearances, such as poles, traffic lights, or lane lines. ENet-SAD [8] created self 

attention distillation, a technique allowing models to self-learn. It works by using attention 

maps generated in earlier training points as a form of supervision for later, surpassing SCNN 

by a large margin. 



 

  Vu Thanh Dat, Ngo Viet Hoai Bao - April 2022 4 

1.2.4 Multi-task network 

Many published papers attempted to combine perception tasks into a unified network. Mask 

R-CNN [7] inherited RPN from Faster R-CNN while adding a third output branch for object 

mask, enabling the parallelization of object detection and instance segmentation. BlitzNet [4] 

also showed that object detection and semantic segmentation could benefit from each other. 

LSNet [13] came with a novel loss function named cross-IoU to add pose estimation into the 

output. MultiNet put forward the encoder-decoder structure, allowing DLT-Net to design 

special shared tensors between decoder heads for mutual information streams. Not long after, 

YOLOP became the first real-time state-of-the-art on the BDD100K dataset on three 

perception tasks: vehicle detection, drivable area, and lane line segmentation. However, the 

two similar segmentation heads left room for the obvious optimization task of reducing them 

to a single better-performing one. As hardware constraint is also of utmost importance to the 

application of any real-time decision-making network, model scaling must be taken into 

consideration. 
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2 METHODOLOGY 
2.1 Network architecture 

Based on these challenges, this research has proposed an end-to-end network architecture that 

can multi-task named HybridNets. As shown in Figure 2, our one-stage network includes one 

sharing encoder and two separated decoders to solve distinct tasks. The resolution of each 

feature map level 𝑃𝑖  represents a feature level with resolution of 1/2𝑖 of the input images. For 

instance, if input resolution is 640x384, the 𝑃2 represents feature level 2 (640/22, 384/22) =

(160,96), while 𝑃7 represents feature level 7 with resolution (5,3). 

 

Figure 2: HybridNets Architecture. It consists of one encoder: backbone network and 

neck network; and two decoders: Detection Head and Segmentation Head. The 

backbone network generated 5 feature maps from 𝑷𝟏 to 𝑷𝟓 . By down-sampling the 

feature map 𝑷𝟓, we obtain two feature maps 𝑷𝟔 and 𝑷𝟕. 

2.2 Encoder 

The feature extracting, serving as a backbone, is an essential part of the model that can help a 

variety of networks achieve excellent performance in various tasks. Many modern network 

architectures currently reuse networks that have good accuracy in the ImageNet dataset to 

extract features. Recently, EfficientNet showed high accuracy and efficient performance over 

existing CNNs, reducing FLOPs by orders of magnitude. We choose EfficientNet-B3 as the 

backbone, which solves the problem of network optimization by finding depth, width, and 
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resolution parameters based on neural architecture search to design a stable network. 

Therefore, our backbone can reduce the computational cost of the network and obtain several 

vital features.  

The feature maps from the backbone network are fed to the neck network pipeline. Multi -

scale feature representation is the main challenge; FPN recently proposed a feature extractor 

design to generate multi-scale feature maps to obtain better information. However, the 

limitation of FPN is that information feature is inherited by a one-way flow. Therefore, our 

neck network uses a BiFPN module based on EfficientDet. BiFPN fuses feature at a different 

resolution based on cross-scale connection for each node by each bidirectional (top-down and 

bottom-up) path and adds weight for each feature to learn the importance of each level. We 

adopt the method to fuse features in our work. 

2.3 Decoder 

Each grid of the multi-scale fusion feature maps from the Neck network will be assigned nine 

prior anchors with different aspect ratios. Similar to YOLOv4 [2], this study uses kmeans 

clustering [16] to determine anchor boxes. In addition, we choose 9 clusters and 3 different 

scales for each grid cell. In order to various feature map levels, this study uses scale constant 

to create bounding box priors that covers all regions from small to large. Thus, this proposed 

network can work well on complex dataset. The detection head will predict the offset of 

bounding boxes and the probability of each class as well as the confidence of the prediction 

boxes. This is described as  

 

( )

( )
w

h

x x x

y y y
r

w w
r

h h

b r c

b r c

b c e

b c e

  (1) 

Where , , ,
x y w h
r r r r is the center, width and height of each bounding box, respectively from 

network prediction. Each anchor box has a center ,
x y
c c , width 

w
c  and height 

h
c . 

Segmentation head has 3 classes for output, which are background, drivable area and lane 

line. This study keeps 5 feature levels {𝑃3, … , 𝑃7} from Neck network to segmentation branch. 

First, this study up-samples each level to have the same output feature map with size 

(
𝑊

4
,

𝐻

4
, 64). Second, feeding 𝑃2  level to convolution layer to have the same feature map 
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channels with other levels. Then, we combine them to obtain a better feature fusion by 

summing all levels.  Finally, we restore the output feature to the size (𝑊, 𝐻, 3), representing 

the probability of each belonging pixel class. This research scales feature maps to the size of 

𝑃2 level, because 𝑃2  level is a strongly semantic feature map. Additionally, we feed 𝑃2 feature 

map from backbone network which represents low-level feature into the final feature fusion 

that helps network improve output precision, as shown in Figure 3. 

 

Figure 3: The Segmentation branch of HybridNets architecture. 

2.4 Loss Function and Training 

This study uses multi-task loss to train end-to-end network. Equation 2 expresses the total 

loss function by summing of two parts. 

 all det seg  (2) 
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Where ,  are tuning parameters to balance the total loss, 
det

is the loss for object detection 

task and 
seg

is the loss for segmentation task, the formulation can be written as follow 

 
21 3det class obj box

 (3) 

class
and 

obj
 are focal loss [12], which is implemented for classifying class and the 

confidence of objects, respectively. The focal loss reduces the slope of loss function and 

focuses on misclassified examples. 
box  is computed by smooth L1 loss, which takes 

absolutely between the predicted box and ground truth box, can be expressed as 

 

2

1 2
1

1

s  

ˆ ˆ ˆ ˆ

mooth (x) =

x
x y w h

L

p x y w h

x if

b

x

x

b b b bb b b b

 (4) 

Where b̂  is the prediction of bounding box and b  is the ground truth, and 
p
b  is determined a 

positive label has been assigned to a grid cell. In this study, we force size some anchor boxes 

to the regression network can learn smoothly, 
p
b  can be written as 

 

5

1

1, ( , ) 0.5 1,..., ; 1,...,

0,

i j k k
kp

if IoU c b i n m j p
b

otherwise
 (5) 

Where 
i
c  is the anchor box thi , the total of anchor boxes is combining of each feature map 

level with ,
k k
n m  is the resolution of feature map, and p  is the total of ground truth bounding 

boxes of each input image. Next 
seg  is multiclass hybrid loss that is utilized for multi-class 

segmentation of background, drivable area and lane line. Small object segmentation is a 

challenge in semantic segmentation caused by imbalanced data distribution. Therefore, this 

study combines 
Tversky

 Tversky loss [24] and 
Focal

 Focal loss [12] to predict the class to 

which a pixel belongs. 
Tversky

performs well at class-imbalanced problems and optimizes the 

maximization of score, whereas 
Focal

 aims to minimize the classification error between 

pixels and focuses on hard labels. 



 

  Vu Thanh Dat, Ngo Viet Hoai Bao - April 2022 9 

 

1

1

1

1

0

1

0 1

( ) ( ) ( )

( ) (1 ( )) ( )

( ) ( )(1 ( ))

( )

( ) ( ) (1 ) ( )

1
( )(1 ( )) log( ( ))

seg Tversky Focal

T

N

p n n
n
N

p n n
n
N

p n n
n

C
p

c p

F

p p
versky

ocal

NC

n n n
c n

TP c p c g c

FN c p c g c

FP c p c g c

TP c
C

TP c FN c FP c

g c p c p c
N

 (6) 

Where ( )
p

TP c , ( )
p

FN c , ( )
p

FP c  are true positives, false negatives and false positives for class 

N , ( )
n
p c  is the predicted probability for pixel n  belonging to class c , ( )

n
g c  is the ground 

truth for pixel n  being in class c . C  is the number of classes and N  is the total number of 

pixels in the input image. 

During training, this study does several experiments to finetune a lot of hyperparameters and 

suitable architecture networks. Training from an end-to-end approach will cost computation 

and training time. In addition, several optimization algorithms have also been experimented. 

Therefore, to compress the training time and optimize hyperparameters, we construct a 

training strategy in order to train the model step by step and quickly transform the 

experiments. Algorithm 1 illustrates the strategy of our training method. 
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Algorithm 1: HybridNets training stage. First, we only train Encoder 

and Detection Head as object detection task. Second, we freeze the 

Encoder, Detection head and unfreeze parameters from Segmentation 

Head. Finally, the final network is trained jointly for all tasks. 

Input: Target end-to-end network  with parameter group 

           { , , }
enc det seg

; 

            Training dataset ; 

            Threshold for convergence 
1 2 3

{ , , } ; 

            Total loss function ; 

            Pivot strategy {{ , },{ },{ , , }}
enc det seg enc det seg

 

Output: Proposed network: ( , )  

   1: procedure Train ( , )  

   2:        for i  = 0 to length( )  - 1 

   3:              [ ]i // Freeze parameters  

   4:               repeat 

   5:                   Sample a mini-batch ( , )
m m
x y  from training dataset  

   6:                   ( ( ; ), )
all m m

x y  

   7:                   argmin  

   8:               until [ ]i  

   9:               if i  < length( )  - 1 then 

 10:                  [ 1]i  

 11:               endif 

 12:        end for 

 13: end procedure 

 14: Train ( , )  

 15: return Proposed network ( , )  
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3 EXPERIMENTATION AND 

EVALUATION 
3.1 Experiment settings 

The BDD100K dataset is used in training and validating the model. Since the test labels of 

20K images are unavailable, we opt to evaluate on the validation set of 10K images. The 

dataset for three tasks is prepared according to existing multi-task networks trained on 

BDD100K to aid in comparison. Of all the ten classes in object detection, only {car, truck, 

bus, train} is selected and merged into a single class {vehicle} since DLT-Net and MultiNet 

can only detect vehicles. Two segmentation classes {direct, alternative} are also merged into 

{drivable}. We follow the practice of calculating two lane line annotations into a central one, 

dilating the annotations in training set to 8 pixels while keeping validation set intact [8]. 

Images are resized from 1280x720 to 640x384 due to three main reasons, in order of 

importance: respecting the original aspect ratio, maintaining a good trade-off between 

performance and accuracy, and making sure the dimensions are divisible by 128 for BiFPN. 

Basic augmentation techniques such as rotating, scaling, translating, horizontal flipping, and 

HSV shifting are used. Mosaic augmentation, first introduced in YOLOv4 with great results 

[2], is utilized while training detection head specifically. 

We jump-start the model by using EfficientNet-B3 weights pre-trained on ImageNet. The 

custom anchor box settings found automatically have scales of 
0 0.7 1.32(2 ,2 ,2 )  and ratios of 

[(0.62,1.58),(1.0,1.0),(1.58,0.62)] . The chosen optimizer is AdamW [15] with 

3 8 2

1 2
1 , 0.9, 0.999, 1 , 1e e e . When the model stucks around for 3 

epochs, learning rate is decreased tenfold. For object detection, the model uses smooth L1 

loss with 
1 2

4.5, 1/ 9  for regression and focal loss with 0.25, 2.0  for 

classification. When matching anchor boxes to annotations, the model uses an IoU threshold 

of 0.5 for annotations larger than 100 pixels in area but only 0.25 for those smaller. We 

emphasize regression 4 times more than classification because one-class classification is easy 

to converge. For drivable area and lane segmentation, the model uses a combination of 

Tversky loss with 0.7, 0.3  and Focal loss with 0.25, 2.0 . We train with a batch-

size of 16 on a RTX 3090 for 200 epochs. 
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3.2 Evaluation metrics 

On traffic object detection task, this proposed method uses mAP50. mAP50 is computed by 

the average of the Average Precision calculated for all the classes at single IoU threshold 0.5. 

Average Precision is the area under the precision-recall curve. This study only evaluates one 

class, focusing on how good the proposed method can find all the positives. This study sets 

the lowest confidence and all bounding boxes is computed by mAP50. On semantic 

segmentation task, IoU metric is used to evaluate drivable area and lane line segmentation. 

To be more specific, this study presents mIoU as average of IoU for each class and IoU 

metric for single class. 

3.3 Cost computation performance 

Table 1 compares HybridNets with other multi-task networks. Although our HybridNets has 

more extensive parameters (12.83M) than YOLOP (7.9M), the number of computations of 

HybridNets is lower than the compared networks. By adopting depth-wise separable 

convolutions [3], the computations are significantly reduced to 15.6 BFLOPs. In addition, we 

have also compared the inference latency on V100 GPU FP16. Specifically, our V100 latency 

is the time processing of the model, not including preprocessing and NMS postprocessing. 

Compared to previous multi-networks, HybridNets are up to 1.4x faster on GPU. Therefore, 

HybridNets can run in real-time on standard devices and embedded devices. 

   

Model 

 

Params 

 

FLOPs 

Latency (ms) 

V100 

YOLOP 7.9M 18.6B 52 

HybridNets 12.83M 15.6B 37 

Table 1: Cost computation result for various multi-networks. Params and FLOPs 

denote the number of parameters and the number of computations. Latency is for 

inference with batch size 1. 

3.4 Multi-task performance 

The second experiment presents results on three tasks, including traffic object detection, 

drivable area segmentation, and lane line segmentation. We present the vehicle detection 

results and compare them to six models on the BDD100K dataset. 
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Model Recall (%) mAP50 (%) 

MultiNet 81.3 60.2 

DLT-Net 89.4 68.4 

Faster R-CNN 77.2 55.6 

YOLOv5s 86.8 77.2 

YOLOP 89.2 76.5 

HybridNets 92.8 77.3 

Table 2: The comparison result on traffic object detection task. The experiment settings 

include confidence threshold of 0.001 and NMS threshold of 0.6. This research mainly 

focuses on obtaining highest Recall IoU. 

As listed in Table 2, HybridNets outperforms performance to previous networks on the 

BDD100K dataset. Our model achieves 3.6% better recall and achieves the best mAP50 

at 77.3%. HybridNets can detect incredibly small objects ranging from 3 pixels to 10 pixels 

with input size (640,384,3) thanks to our automatically customized anchor aspect ratio and 

scale. Figure 4 illustrates the visualization of traffic object detection. 

   

(a) Day-time result 

   

(b) Night-time result 

Figure 4: Visualization of the traffic object detection results of HybridNets. Fig. 4. (a) 

shows results in day-time series with different weather conditions such as clear, heat 

stroke and heat-wave. Fig. 4. (b) shows results in night-time series with different 

weathers such as cool and flurries. 
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As shown in Figure 5, our proposed architecture makes further improvement compared to 

YOLOP. Specifically, HybridNets detects small objects and large objects in traffic object 

detection task, whereas YOLOP has high False Negative score and detects wrong objects. In 

addition, HybridNets works well in various complex weather conditions and the bounding 

boxes are more accurate. 

   

(a) YOLOP 

   

(b) HybridNets 

Figure 5: Comparison between YOLOP and HybridNets on traffic object detection. The 

first row shows issues of YOLOP and the second row shows the result of HybridNets. 

The red bounding boxes are the false positive, the yellow bounding boxes are the false 

negative and the purple bounding boxes are not accurate. 

Next we evaluate the drivable area segmentation task. IoU metric is used to evaluate the 

segmentation performance of various networks. 

Model Drivable mIoU (%) 

MultiNet 71.6 

DLT-Net 71.3 

PSPNet 89.6 

YOLOP 91.5 

HybridNets 90.5 

Table 3: Performance comparison on drivable area segmentation task. 
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Table 3 shows the Drivable IoU of five networks. Our HybridNets achieves 90.5 % mIoU, 

pale in comparison to YOLOP (91.5%). We built a decoder network for multi-classes, 

whereas YOLOP constructed two decoders for specific tasks. Therefore, our HybridNets is 

more flexible and optimistic than theirs. Figure 6 visualizes the semantic segmentation output 

of drivable areas in various conditions. As shown in Figure 7, the comparison between 

HybridNets and YOLOP on Drivable Segmentation task, HybridNets is more accurate than 

YOLOP. To be more specific, YOLOP focuses on evaluating the pixel to which class it 

belongs, while needing to consider the intersection of bounding boxes. Therefore, the 

YOLOP model does not work well in harsh conditions such as night or areas with a lot of 

noise. Based on our Neck Network using BiFPN architecture, the information of different 

receptive fields is combined from various feature map levels with weighted parameters. Thus, 

HybridNets can improve the performance of drivable area segmentation task. 

   

(a) Day-time result 

   

(b) Night-time result 

Figure 6: Visualization of the drivable area segmentation results of HybridNets. Fig. 6. 

(a) shows semantic segmentation results in day-time with various views. Fig. 6. (b) 

shows results in night-time series with various brightness views. 
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(a) YOLOP 

   

(b) HybridNets 

Figure 7: Comparison between YOLOP and HybridNets on drivable area segmentation. 

The first row shows the issue of mismatched pixels of YOLOP and the second row 

shows the result of HybridNets. The red regions are false positive and the yellow regions 

are false negative. 

Finally, lane detection is one of the main challenges in autonomous driving. The evaluation 

metrics we use for lane detection are accuracy and IoU. As shown in Table 4, our HybridNets 

outperforms all previous models with accuracy 85.4 % and IoU 31.6 %. The proposed 

method works well in various complex weather conditions as shown in Figure 8. As shown in 

Figure 9, the lane detection results from YOLOP have mismatched pixels and less accuracy, 

whereas HybridNets works well on lane detection task. The lane lines from HybridNets are 

continuous and have high accuracy with less sparse supervisory. However, lane line has low 

IoU because of our approach in preprocessing the training dataset, making lane line 

annotation easier to learn with the drawback of suboptimal results. Thus, this study has added 

another metric of accuracy to evaluate in a more objective and fair manner. 
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Model Accuracy (%) Lane Line IoU (%) 

Enet 34.12 14.64 

SCNN 35.79 15.84 

Enet-SAD 36.56 16.02 

YOLOP 70.50 26.2 

HybridNets 85.4 31.6 

Table 4: Performance comparison on lane detection task. 

   

(a) Day-time result 

   

(b) Night-time result 

Figure 8: Visualization of the lane detection results of HybridNets. Fig. 8. (a) shows 

results in day-time series with various weather conditions. Fig. 8. (b) shows results in 

night-time series with various brightness views. 
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(a) YOLOP 

   

(b) HybridNets 

Figure 9: Comparison between YOLOP and HybridNets on lane detection. The first 

row shows the issue of mismatched of YOLOP and the second row shows the result of 

HybridNets. The green regions are false positive and the yellow regions are false 

negative. 

Figure 10 shows the results of HybridNets. The red lines are the lane lines, the green areas 

are the drviable area, and the orange bounding boxes are traffic objects. Our HybridNets has 

great performance in most scenarios. Based on the context structures, the drivable area 

provides information for the model to help train the model to converge faster. Moreover, each 

task provides context structure for other tasks. Therefore, our HybridNets can detect vehicles 

object easily, which challenges many other prior detection models. Therefore, the model can 

more easily predict traffic objects, which challenges many prior models. In general, our 

HybridNets works well in most complex scenarios such as severe reflective scenes and 

extreme weather conditions. However, our model is unable to adapt to the crossroads, the 

lane lines detection is broken and the drivable area is misjudged to be on the other side of the 

road in some cases. 
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Figure 10: Multi-task results using HybridNets. The red lines are the lane lines, the 

green areas are the drivable area, and the orange bounding boxes are traffic objects. 
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4 CONCLUSION AND 

PERSPECTIVE 
In this research, we systematically study network architecture design choices for multi -

tasking, propose an efficient end-to-end perception network, customize automatic aspect 

ratios for each level in the weighted bidirectional feature network, and build efficient training 

loss function and training strategy to improve accuracy and performance. Based on these 

optimizations, we develop a new end-to-end multi-network, named HybridNets, which 

achieves better accuracy and efficiency than prior art across a broad spectrum of resource 

constraints. Most importantly, our network HybridNets achieves state-of-the-art accuracy 

with fewer FLOPS than previous multi-network models. 

In future works, we would like to propose a robust network, which can perform many tasks 

related to perception and improve parameters and FLOPs of network. To be more specific, 

our work will focus on processing problems in autonomous driving such as building a 

decoder network that can detect 3-D object detection with only one input and classify several 

objects. We will try to ameliorate lane lines performance as well as context of structures in 

drivable area segmentation. 
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