
Tuning Proximal Policy 

Optimization Algorithm 

in Maze Solving with 

ML-Agents

Modern Portfolio 

Designed

CST491_G4



CST491_G4

Mac Duy Dan Truong

STUDENT OF FPT UNIVERSITY

Phan Duy Hùng

LECTURER AT FPT UNIVERSITY

Phan Thanh Hùng

STUDENT OF FPT UNIVERSITY



Table of Contents

01 INTRODUCTION

02 PROJECT’S METHODOLOGY

03 SETUP & IMPLEMENTATION

04 TRAINING RESULTS

05 CONCLUSIONS with Q&A



Today, more projects use automated 

software as a substitution for humans. 

One of them is a puzzling maze that 

consists of a different branch of passages 

where the solver aims to reach the 

destination by finding the most efficient 

route within the shortest possible time. 

1.A. Objective of the project



1.A. Objective of the project

A vital issue in the usability of an RL 

method is sensitivity to hyperparameters. 

Learning complex tasks can take hours 

or days, fine-tuning hyperparameters is 

tedious. 

Thus, this research focuses on 

changing the hyperparameters (Beta, 

Epsilon, Lambd, Num_epcho)



J. 

Schulman

Jul. 2017

J. T. 

Kristensen

Jul. 2020

The algorithm was successful on various 

problems without tuning hyperparameter 

values, meaning that the results still did not 

achieve the best possible outcome.

“Proximal Policy Optimization Algorithms,”

Successfully adapted the popular RL method 

PPO to a production-grade puzzle game where 

the environment is reset after a fixed number of 

steps, but not considering hyperparameter 

tuning

“Strategies for Using Proximal Policy 

Optimization in Mobile Puzzle Games,”

1.B. Literal reviews

A. 

Valdivia

Aug. 2020

“Estimating Player Completion Rate in Mobile 

Puzzle Games Using Reinforcement Learning,”

The work is only for a limited subset of sample 

of ∼900,000 players with default values 

hyperparameter.



A
g

e
n

t 
le

a
rn

s
 b

y
 i

n
te

ra
c
ti

n
g

2.A. Introduction to Reinforcement Learning

LOREM IPSUM DOLOR SIT AMET,

CU USU AGAM INTEGRE IMPEDIT.

The agent receives feedback in terms of a reward (or 

punishment) from the environment

• Reinforcement Learning is the training of 

Machine Learning models to make a 

sequence of decisions.

• Computers use trial and error to come up with 

solutions to problems

• The agent receives feedback in terms of a 

reward (or punishment) from the environment



• Gaming is a booming industry and is 

rapidly advancing with technology. 

• Game developers with environments like 

PSXLE or PlayStation Reinforcement Learning 

Environment focus on providing a better 

gaming environment by modifying the emulator.

• In addition, Reinforcement Learning has Deep 

Learning algorithms like AlphaGo, Alpha Zero 

which are gaming algorithms for games like 

chess, shogi, and Go.

2.A. Reinforcement Learning 

in Video Games



• Proximal Policy Optimization (PPO) is an optimization approach that uses solely

first-order optimization to improve the data efficiency and reliability of Trust Region

Policy Optimization (TRPO).

• The primary objective function of PPO is:

2.B. Proximal Policy Optimization (PPO)

𝐿𝐶𝐿𝐼𝑃 𝜃 = 𝐸𝑡 min 𝜃 መ𝐴𝑡 , 𝑐𝑙𝑖𝑝 𝑟𝑡 𝜃 , 1 − 𝜖, 1 + 𝜖 መ𝐴𝑡

𝜃 is Policy Parameter

𝐸𝑡 Denotes the empirical expection over timesteps

𝑟𝑡 is the ratio of the probability under the new and old 

policies, respectively

መ𝐴𝑡 is the estimated advantage at time t

𝜖 is a hyperparameter, usually 0.1 and 0.2



The steps of the PPO algorithm are:

2.B. Proximal Policy Optimization (PPO)



2.C. ML-Agents Tool kit

• ML-Agents Toolkit is an open-source 

project that enables games and 

simulations to serve as environments 

for training intelligent agents.

• Using a simple-to-use Python API, Agents 

are trained using reinforcement learning, 

imitation learning, neuroevolution, or other 

machine learning methods.



F
ix

e
d

 M
a

z
e

 8
x

8 Maze design for training Agent:

• A fixed maze has 8x8 cells.

• A random maze has 3 different

variants: 4x4, 6x6, 8x8 cells

• A cell includes four walls and

one floor.

• There is a destination for the

Agent to complete the maze.

Collision with it will end an

episode.

3.A. Maze design



3.B. Hunt & Kill Algorithm



3.B. Hunt & Kill Algorithm



3.B. Hunt & Kill Algorithm



3.C. Agent Behavior

The Agent has four raycasts on four 

sides around the Agent. The length of 

the raycast is one cell. The Agent has 

four 3D Ray Perception Sensors - the 

Agent's observations.

Agent’s Observation



3.C. Ray Perception Sensor



3.D. Agent behavior

Agent’s Raycast

• Agent’s Raycast keeps Agent from 

being moved out of the maze. 

• Raycast works as detecting colliders 

on the front and on 4 sides.

• When Raycast detects the walls, it 

will not allow Agent to go through 

that wall and keep Agent in the 

maze. 



3.D. Agent’s Behavior



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.

The Agent -1 point the third time, and the

background box turns purple.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.

The Agent -1 point the third time, and the

background box turns purple.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.

The Agent -1 point the third time, and the

background box turns purple.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.

The Agent -1 point the third time, and the

background box turns purple.

Entering from the fourth time onwards, the Agent

has -2 points, and the background is still purple.

Purple is the final penalty level when entering.



3.D. Agent Detail Behavior
Agent when entering a cell will award or punished:

When the Agent moves in a specific direction and

that side's raycast detects the wall, but the Agent still

decides to go in that direction, -1 point.

02

03

04

05

06

01

Entering for the first time, Agent +3 points, and that

background box turns yellow.

Entering the second time, the Agent -0.5, and the

background cell turns orange.

The Agent -1 point the third time, and the

background box turns purple.

Entering from the fourth time onwards, the Agent

has -2 points, and the background is still purple.

Purple is the final penalty level when entering.

When colliding with the end of the maze, Agent will 

be +100 points and finish solving the maze.



3.E. Hyperparameters Configuration 

Beta Hyperparameters:

Batch_size: 128

Buffer_size: 2048

Learning_rate: 0.0003

Beta: 0.005

Epsilon: 0.2

Lambd: 0.95

Num_epoch: 3 

Learning_rate_schedule: 

linear

This controls the strength of 

the entropy regularization so 

that the agent can explore 

spaces during training. Beta 

typically has a value between 

1e-4 and 1e-2.

Epsilon
This controls how swiftly the 

policy can diverge from an older 

policy. A smaller value has stable 

updates on the policy. Epsilon 

typically has a value between 0.1 

and 0.3. 

Lambd
The regularization factor 

used in calculating GAE. 

Lambd typically has a value 

between 0.9 and 0.95. 

Num_epoch

The number of passes made 

through the buffer before the 

gradient descent step is applied. 

Num_epcho typically has a 

value between 3 and 10.



4.A. Agent Training Process



4.A. Agent Training Process



4.A. Agent Training Process



Compare the results when changing the hyperparameter Beta 

(Fixed 8x8 Maze)

4.B. Results and Analysis

122.8

134.1
143.1 143.2

49.45
43.1 43.53 43.3

0

20

40

60

80

100

120

140

160

0.01 0.001 0.005 0.0001

Fixed maze 8x8 (Beta)

Reward Time Cost (mins)



Compare the results when changing the hyperparameter Epsilon 

(Fixed 8x8 Maze)

111

143.1

132.3

43.12 43.53 43.37

0

20

40

60

80

100

120

140

160

0.1 0.2 0.3

Fixed maze 8x8 (Epsilon)

Reward Time Cost (mins)

4.B. Results and Analysis



Compare the results when changing the hyperparameter Lambd 

(Fixed 8x8 Maze)

34.16

130.8
140.2

49.5
43.53 43.4

0

20

40

60

80

100

120

140

160

0.9 0.95 0.99

Fixed maze 8x8 (Lambd)

Reward Time Cost (mins)

4.B. Results and Analysis



Compare the results when changing the hyperparameter Num_epoch 

(Fixed 8x8 Maze)

117.6

134.5
125.2

25.52

43.53

77

0

20

40

60

80

100

120

140

160

1 3 8

Fixed maze 8x8 (Num_Epoch)

Reward Time Cost (mins)

4.B. Results and Analysis



Compare the results when changing the hyperparameter Beta 

(Random 4x4 Maze)

91.27 90.83 92.49

76.26

63.2

89.2

80.34

126.18

0

20

40

60

80

100

120

140

0.01 0.001 0.005 0.0001

Random maze 4x4 (Beta)

Reward Time Cost (mins)

4.B. Results and Analysis



Compare the results when changing the hyperparameter Epsilon 

(Random 4x4 Maze)

104.9

92.49

112.7

74.28
80.34

126.18

0

20

40

60

80

100

120

140

0.1 0.2 0.3

Random maze 4x4 (Epsilon)

Reward Time Cost (mins)

4.B. Results and Analysis



Compare the results when changing the hyperparameter Lambd 

(Random 4x4 Maze)

4.B. Results and Analysis

87.54

106.6

92.49

107.8

75.16
80.34

0

20

40

60

80

100

120

0.9 0.95 0.99

Random maze 4x4 (Lambd)

Reward Time Cost (mins)



Compare the results when changing the hyperparameter Num_epoch 

(Random 4x4 Maze)

103.6

92.49 95.91

57.32

80.34

135.26

0

20

40

60

80

100

120

140

160

1 3 8

Random maze 4x4 (Num_epoch)

Reward Time Cost (mins)

4.B. Results and Analysis



5.A. Conclusion

This paper gives the tuning for PPO algorithm

through hyperparameters Beta, Epsilon, Lambd,

and Num_epoch. The results show a clear

difference between the training process and the

hyperparameters. The change is based on different

cases according to the complexity of the maze.

Therefore, it is necessary to choose reasonable

hyperparameters to set the best training results.

01. Learning results 

02. Future works 

This research also provides a helpful reference for

tuning hyperparameters when redeployment PPO

algorithm on novel environments in the future.



5.B. Q&A
Tuning Proximal Policy Optimization Algorithm in Maze Solving 

with ML-Agents



Thank you for listening

This is the end of our project presentation


