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ABSTRACT 

 

 

 

 

 

 

 

 

 

The proximal Policy Optimization algorithm is the ML-Agents toolkit's default reinforcement 

algorithm. This approach can switch between sampling data via interaction with the environment 

and utilizing stochastic gradient descent to optimize a "surrogate" cost function. Although when 

creating a new machine learning model, it is tough to know the optimal model architecture for a 

given project immediately. In most cases, We can either utilize the algorithm's default values or 

we may use the machine to undertake this exploration and automatically select the best model 

architecture. Hyperparameters define the model architecture; thus, searching for the best model is 

called hyperparameter tuning. We focus on comparing four hyperparameters: Beta, Epsilon, 

Lambd, Num_epoch of PPO algorithm in solving a maze. The results obtained in the training 

process show the difference in the selection of hyperparameters. The modification of 

hyperparameters will depend on the maze's complexity and the complexity of the Agent's actions. 

This thesis will help to make appropriate choices at hyperparameters in concrete and practical 

projects. Code is available at hungpt17102k/Maze-Solving-ML-Agent (github.com). 
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1. INTRODUCTION 

1.1. Objective 

Today, automated software is used in more projects as a substitution for humans. One of 

them is a puzzling maze made up of several branches of tunnels in which the solver must locate 

the most effective route to the destination in the lowest amount of time[1]. Artificial Intelligence 

is critical in determining the most efficient technique to solve any maze. That is when 

Reinforcement Learning[2] came in handy.  

The sensitivity to hyperparameters is a critical factor in the usefulness of an RL 

approach[3]. Complex tasks might take hours or days to learn, and fine-tuning hyperparameters is 

time-consuming. Thus, this research focuses on changing the hyperparameters in configuration for 

a well-trained PPO algorithm[4] in maze solving with ML-Agent library and Unity[5]. This 

research also provides a helpful guideline for tuning hyperparameters when redeployment 

algorithms on novel environments in the future. 

1.2. Background 

In recent years, several techniques to RL using neural network function approximators have 

been proposed. The paper published by John Schulman[4] has proposed enhancing the current 

situation by proposing a method that achieves data efficiency and consistent performance, called 

Proximal Policy Optimization (PPO). The research team alternates between sampling data from 

the policy and executing many epochs of optimization upon that sampled data to optimize policies. 

They came to the conclusion that these methods offer the same level of stability and reliability as 

trust-region solutions, but are significantly easier to apply. They simply take a few lines of code 

change to a standard policy gradient implementation, are more generalizable, and perform better 

overall. However, the algorithm was successful on various problems without tuning 

hyperparameter values, meaning that the results still did not achieve the best possible outcome. 

PPO is increasingly automating the assessment of game material in a casual mobile puzzle 

game, which has traditionally been a labor-intensive process, with a particular attention on 

improving its dependability in training and generalization during game play[6]. By adopting a reset 

approach in which the environment is reset after a specified number of steps, but without 



addressing hyperparameter tuning, this study was able to successfully transform the popular RL 

method PPO to a production-grade puzzle platformer game for training play-testing agents. 

Different rule-based systems for machine learning methods have been created by other 

autonomous game-playing entities. Many efforts have also been made to create Agents that behave 

in a manner that is as near to that of a human player as possible. To estimate the player completion 

rate of several levels in Lily’s Garden by Tactile Games[7], A set of PPO-based reinforcement 

learning agents was constructed by the study team. It looked at how the Agent's number of steps 

for finishing the levels correlated with the behavior of 900,000 players. The results demonstrate 

that the two-step training scenario generates the most skilled Agent, based on 60% of the game 

mechanics[7]. In contrast, the Agent attains the most significant correlation to real players’ 

completion rates with the one-step curriculum. The work is just for a small number of levels with 

default hyperparameter values, so the given results may not be the best outcome possible. 

All the above studies showed that PPO Is an efficient technique in various problems, but 

the main focus is testing video games or mimicking how humans play. Although most research 

still uses the default hyperparameter or just a little tuning, proper hyperparameter initialization and 

search can improve results. 

1.3. Design 

We design the model to compare the efficiency of different hyperparameters of the PPO 

algorithm in solving mazes. Use ML-Agent to build models and use Unity to design interfaces to 

visualize. The maze model is built-in, and algorithms design the model. Agent's goal is to move 

and find the final finish line in the maze. Agents will be rewarded and distributed during the move. 

We also design config files for training and can evaluate the influence of hyperparameters during 

training. Furthermore, this is also the purpose of doing this research. Detailed information such as 

the rule or the scene design will be discussed in the later Implementation section. 

2. METHODOLOGY 

2.1. Introduction to Reinforcement Learning 

Artificial Intelligence has moved one step closer to its aim of imitating the human brain, 

thanks to advances in computing technology and the development of new sophisticated algorithms. 



In that area, a branch that is becoming more and more important is reinforcement learning (RL)[8]. 

RL is a sort of learning that has a specific goal in mind. It can be viewed as an approach between 

supervised and unsupervised learning. It is not strictly supervised as it does not rely only on a set 

of labeled training data but is not unsupervised learning because RL has a reward that agent aims 

to maximize. 

In order to optimize a reward, an agent learns by interacting with an unknown environment, 

usually through trial and error. The agent receives input in the form of a reward (or punishment) 

from the environment, which it then uses to train itself and gain experience and information about 

the environment[9]. This is the most typical approach for a child to learn: by doing something and 

watching what happens. In any given situation, the agent must choose between utilising its current 

knowledge of the environment (performing an action that has already been attempted in that 

condition) and investigating actions that have never been tried before in that context. 

2.1.1. Elements of Reinforcement Learning System 

A reinforcement learning system, in addition to the agent and the environment, has four 

core components: a policy, a reward, a value function, and, potentially, an environment model [9]. 

A policy is a description of how an agent behaves at a certain point in time. A policy is a mapping 

between environmental conditions, actions, and the activities that an agent does in the environment 

in general. In the most precise instances, the policy can be as basic as a function or lookup table, 

but it can also include complex function computations. The agent's knowledge is built on the 

foundation of the policy. The goal of a reinforcement learning problem is defined by a reward. At 

each time step, the agent's activities result in a reward. The agent's ultimate goal is to maximize 

the total amount of mean earned. As a result, the reward distinguishes between the agent's positive 

and negative action outcomes. We may think of rewards as pleasure and pain experienced in a 

natural system.  

The reward is the most common way to affect policy; If a policy-determined action 

produces a poor reward, the policy can be altered to choose an alternative action in the same 

situation. A value function describes what is desirable in the long run, whereas the reward signal 

shows positive activities in an instant sense: each action results in an immediate reward. The total 

quantity of rewards that an agent can expect in the future if it starts from that state is the value of 



a state. The values show the long-term attractiveness of a set of states, taking into account the most 

likely future states as well as the benefits obtained from them. Even if a state provides a modest 

immediate reward, it might still be valuable since it is frequently followed by states that provide 

more significant benefits. 

For beginners, the interaction between incentives and values might be perplexing because 

one is a sum of the other. Values are secondary projections of rewards, whereas rewards are 

primary and instantaneous. Without rewards, there are no values, and the primary purpose of 

calculating values is to gain greater rewards. Nonetheless, values are taken into account when 

making and assessing decisions. Value judgments are ultimately used to guide action decisions. 

The agent will seek activities that bring the highest value states, not the highest reward, because 

these states will lead to acts that earn the most reward in the long term. 

2.1.2. Application of Reinforcement Learning  

As learning for an unknown environment, reinforcement learning algorithms have been 

proposed. The basis of search problems that utilize robots or agents consists of maze learning. 

The most common application of the RL technique is to solve issues by applying a feedback 

system (rewards and penalties) on an agent that operates in an environment and must proceed 

through a series of phases to reach a pre-defined final state. In a maze, a rat (agent) is attempting 

to discover the shortest path from a beginning cell to a destination cheese cell (environment). To 

reach its purpose, the agent is exploring and utilizing previous experiences (episodes). It may fail 

repeatedly, but with enough trial and error (rewards and penalties), it should be able to solve the 

problem. 

Take a look at a gameing frontier, namely AlphaGo Zero. [10]. AlphaGo Zero taught the 

game of Go from the ground up using reinforcement learning. It figured out how to play against 

itself. Alpha Go Zero was able to exceed the version of Alpha Go known as Master, which had 

defeated world number one Ke Jie, after 40 days of self-training. It just had a single neural network 

and only used black and white stones as input characteristics. Without employing Monte Carlo 

rollouts, a simple tree search based on a single neural network is utilized to evaluate location and 

sample moves. RL has also been used to train artificial intelligence to play games such as Dota2 

with OpenAI Five (2017), Chess and Go (2018), and StarCraft (2019)[11]. 



2.1.3. Introduction to Deep Reinforcement Learning (DRL)  

Deep reinforcement learning has been one of the most controversial areas in artificial 

intelligence in recent years. It blends deep learning's perceptual ability with reinforcement 

learning's decision-making ability to control agents' behavior directly through high-dimensional 

perceptual input learning. Generally speaking, it applies the neural network structure to the process 

of reinforcement learning. Deep Q Network, Deep Deterministic Policy Gradient, Asynchronous 

Advantage Actor-Critic, and Proximal Policy Optimization are some of the most popular deep 

reinforcement learning techniques today (PPO). We used the PPO as our primary AI algorithm in 

our group project, so we combed the PPO principle in the next section. 

 

 Fig. 1. Main Algorithms of Deep Reinforcement Learning 



2.2. Policy Gradient (PG)  

Policy Gradient (PG)[12] are frequently used algorithms in reinforcement learning. In 

PG, the agents observe the state of the environment then take actions based on its policy on the 

state. After the actions, the agent will enter a new environment state. Like this, the agent 

constantly observes the environment and takes actions correspondingly. After a trajectory of 

motions, the agent adjusts his instinct based on the total rewards received. Here are some 

essential expressions of PG: 

In reinforcement learning, the policy π is described as: 

𝜋𝜃(𝑢|𝑠) 

Our purpose is to find a policy θ that create a trajectory τ; the trajectory consists of the 

continuous states s and actions u: 

(𝑠1, 𝑢1, 𝑠2, 𝑢𝑠 , … , 𝑠𝐻, 𝑢𝐻) 

The sum of the probability of a trajectory τ and its corresponding rewards is the expected 

rewards: 

𝐽(𝜃) = 𝐸 [∑ 𝑅(𝑠𝑡, 𝑢𝑡)

𝐻

𝑡=0

; 𝜋𝜃] =  ∑ 𝑃(𝜏; 𝜃)𝑅(𝜏)

𝜏

 

R(τ) means the rewards of the trajectory. 

And the PG use this policy to update the θ: 

∇𝜃𝐽(𝜃) ≈  
1

𝑁
∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑖,𝑡|𝑠𝑖,𝑡)

𝑇

𝑡=1

)(∑ 𝑟(𝑠𝑖,𝑡, 𝑎𝑖,𝑡)

𝑇

𝑡=1

)

𝑁

𝑖=1

 

𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜃) 

The advantage functions A and rewrites the policy gradient: 

𝐴𝜋(𝑠𝑡, 𝑎𝑡) = 𝑄𝜋(𝑠𝑡, 𝑎𝑡) − 𝑉𝜋(𝑠𝑡) 

∇𝜃𝐽(𝜃) ≈
1

𝑁
∑ ∑ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑖,𝑡|𝑠𝑖,𝑡)𝐴𝜋(𝑠𝑖,𝑡, 𝑎𝑖,𝑡)

𝑇

𝑡=1

𝑁

𝑖=1

 

πθ is the policy related to action a and states. The advantage function A includes total 

rewards Q and the value which is not related to total rewards V. 



2.3. Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO)[13] is an optimization approach that uses solely first-

order optimization to improve the data efficiency and reliability of Trust Region Policy 

Optimization (TRPO). PPO is an optimized version based on Policy Gradient and TPRO. Even if 

it uses the same way to perform multiple optimization steps, Policy Gradient Method may often 

lead to destructively significant policy updates. TPRO uses a hard constraint instead of a penalty 

since choosing a fixed penalty coefficient is difficult. In TPRO, the KL penalty coefficient needs 

to be adjusted to improve the algorithm's performance. The primary objective function of PPO is: 

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝜃) �̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡] 

In the L^CLIP (θ) in PPO, if the agent has too large of a policy update, it will be punished, 

which is different from L^CLIP (θ) (The objective function in TPRO). The clip() function can be 

used to keep the incentive factors from moving rt outside of the range [1-ε, 1+ε]. The steps of the 

PPO algorithm are: 

 

Fig. 2. PPO Algorithm 

According to Fig. 2, in each iteration of the PPO algorithm, each parallel (or maybe not 

parallel) actors collect the T timesteps from the environment then computes the advantages of each 

T correspondence. At the end of one iterratio, PPO will optimize the surrogate objective function 

for K epochs. 

2.4. ML-Agents  

The Unity Machine Learning Agents Toolkit (ML-Agents Toolkit) is an open-source 

project that allows intelligent agents to be trained in games and simulations. Agents are trained 



using reinforcement learning, imitation learning, neuroevolution, or other machine learning 

approaches utilizing a simple Python API[11]. ML-Agents uses a socket to communicate 

processes during the training phase; it uses python to create a socket server and uses C# (Unity 

environment) to create a socket client. The TensorFlow trained model saves the bytes file 

generated after the training in its format. ML-Agents uses TensorFlow Sharp to read the trained 

model and use it as a Brain in the Unity Environment to accurately guide the Agent's interaction 

with the environment during the Inference phase. 

 

Fig. 3. Unity ML-Agents Structure 

There are three key components of Unity ML-Agents: Learning Environment, Python API, 

and External Communicator[14]. Three more components in the Learning Environment aid in the 

organization of Unity situations. 



 

Fig. 4. An example of Learning Environment in Unity ML-Agents 

Key Components: 

• Learning Environment: This is where you'll find the Unity scene as well as all 

of the game's characters. The Unity scene creates a setting in which agents can 

watch, act, and learn.  

• Python Low-Level API: This package includes a Python interface for interacting 

with and changing a learning environment at a basic level. 

• External Communicator: This connects the Python Low-Level API to the 

Learning Environment. It is a component of the Learning Environment. 

• Python Trainers: This is where you'll find all of the machine learning algorithms 

for training agents. 

• Gym Wrapper: A Gym wrapper supplied by OpenAI is a standard approach for 

machine learning researchers to engage with simulation environments. 

• Agents: Agents are tied to a Unity GameObject (any actor in a scene) and are in 

charge of generating observations, conducting actions, and awarding a reward 

(positive or negative) as needed. 

• Behavior: specifies the agent's specific characteristics, such as the amount of 

actions it can perform. Learning, Heuristic, and Inference are the three forms of 

behavior. 



2.5. Hunt and Kill Algorithm 

The Hunt and Kill Algorithm[15] work very similarly to the Recursive Backtracker. The 

algorithm picks a random location and starts a random walk. It continues to walk until it hits a 

dead end. At this point, the Recursive Backtracker would take a step back, but the Hunt and Kill 

Algorithm does something different. Instead of backtracking, it will scan the maze for an uncut 

cell at restart the walking process at that location. It continues this process until all cells have 

been cut. 

Pseudo Algorithm 

1. Pick a cell at random. The current cell is this one. Add it to your list of places it have 

been. 

2. Select a cell in the visited list that is adjacent to the present one at random. This is 

now the active cell. 

3. Remove the line that connects the previous and current cells. Add the present cell to 

the list of cells that have been visited. 

4. Repeat steps 2 and 3 until no more travel is feasible. 

5. Scanning the grid from top to bottom, left to right 

 If a non-visited cell is found 

  The cell is converted into the current cell 

  Go to 2 

 Else 

  The algorithm is complete 

An example 

This is a basic 4×4 grid: 

 
The stroll phase is just a series of frames here; it's not really intriguing until it comes to a 

halt. 



 

A leisurely drunken stroll also comes to an end. All roads either lead out of limits or into 

a neighbor who has already been visited. At this point, the recursive backtracker will begin 

looking for an unvisited neighbor in a stack cell that has already been visited. 

Starting with the first row, we scan each row for an unvisited cell with a visited neighbor 

in the first row. Today turns out to be our lucky day: our very first cell is a match: unvisited, with 

a previous occupant. We connect the two of them: 

 

And then start a random walk from the new starting point: 



 
Stuck again, so we go hunting. There are no cells in the first row that match: 

 
And no matches in the second row, either. (Remember, we are looking for unvisited cells 

with visited neighbors) 

 
The third row, on the other hand, has a match in the final cell: 

 
As a result, we connect that unvisited cell to any of its visited neighbors (at random) and 

proceed with our random walk.: 

 



In addition, we've stubbed our digital toes on yet another dead-end. We're stuck, so we go 

seeking again, row by row, for a cell that hasn't been visited yet. 

 
When the scan is finished and no unvisited cells are found, the algorithm stops and we're 

left with our maze. 

3. IMPLEMENTATION 

3.1. Unity Setup 

Step 1: Install Python  

Python for Windows is available for download and installation. We may create a different 

management environment for different Python distributions using Pycharm. Python 3.7 or 3.8 is 

required for this project. Version 3.8 is used in our project. 

Step 2: Setup and Activate Environment 

Open cmd in the project location 

Create a virtual environment:  

python -m venv venv 

We must activate this environment in order to utilise it. In cmd, navigate to 

venv/Scripts/activate. 

Install Pytorch next. Pip, a package management system for installing Python packages, 

is used to install this package. Type the following command in the same CMD: 

pip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 

torchaudio===0.10.1+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html 



Step 3: Install ML-Agent package  

We install the following command: 

pip install mlagents 

Once it has been done, check it by: 

mlagents-learn --help 

Go to Unity: 

ML-Agents is installed via the Unity Package Manager. 

To open the Package Manager in Unity, go to Window > Package Manager. 

Within the Package Manager dialog box: 

• Click on Advanced and enable Show preview packages 

• Make sure the Unity Registry option is selected above the list of packages 

• Search for "ML-Agents" and click on it 

• Click See all versions 

• Choose the version that matches the release downloaded from GitHub 

• Click the Install button and allow the package to install 



 

Fig. 5. Unity Package Manager 

We are using version 2.0.1. Click install and ML-Agent package auto-install to Unity 

project. 

3.2. Maze Design 

We have two types of design: 

• Maze with fixed design 

• Maze with design by Hunt and Kill algorithm 

 



 

Fig. 6. Fixed Maze 8x8 

 

Fig. 7. Random Maze 4x4 

 



Fig. 8. Random Maze 6x6 

 

Fig. 9. Random Maze 8x8 

3.3. Application Structure 

 

Fig. 10. Agent Structure 



 

Fig. 11. Behavior Parameter of Agent 

 

Fig. 12. Decision Requester of Agent 

3.4. Environment Logic 

Maze design for training Agent: 

• We created a fixed maze has 8x8 cells and an algorithm named Hunt and Kill to generate 

a maze. A cell includes four walls and one floor.  

• There is a destination for the Agent to complete the maze. Collision with it will end an 

episode. 

 

Agent actions behavior: 

• An agent with four discrete actions: go up, down, left, and right. Each action is to move 

into a cell. Furthermore, there is a destination for the agent to complete the maze.  

• The agent has four raycasts (to detect collisions with the maze walls) on four sides 

around the agent. The length of the raycast is one cell.  

• Moreover, the agent has four 3D Ray Perception Sensors[16] - the agent's observations, 

arranged according to the other four raycasts.  

• The total number of observations created is: (Observation Stacks) * (1 + 2 * Rays Per 

Direction) * (Num Detectable Tags + 2) = 1 * (1 + 2 * 2) * (1 + 2) = 15. 



 

Fig. 13. Ray Perception Sensor of Agent 

Agent when entering a cell will be awarded or be punished: 

• Entering for the first time, Agent gets 3 points, and that background box turns yellow. 

• Entering the second time, the Agent deducts 0.5, and the background cell turns orange. 

• The Agent deducts 1 point the third time, and the background box turns purple.  

• Entering from the fourth time onwards, the Agent has deducted 2 points, and the 

background is still purple. Purple is the final penalty level when entering.  

• When colliding with the end of the maze, Agent will be awarded 100 points and finish 

solving the maze. 

• When the Agent moves in a specific direction and that side's raycast detects the wall, but 

the Agent still decides to go in that direction, 1 point will be deducted. 



 

Fig. 14. Simple 8x8 Maze. 

3.5. Hyperparameters Configuration 

These are hyperparameters that are important in the context of PPO and are not included in the 

conventional training parameters[17].  

• Beta: This regulates the entropy regularization's strength, allowing the agent to explore 

spaces throughout training. The value of beta is usually between 1e-4 and 1e-2.  

• Epsilon: This determines how quickly the policy can depart from previous policies. The 

policy updates are more stable when the value is lower. The value of Epsilon is usually 

between 0.1 and 0.3.  

• Lambd: When calculating GAE, the regularization factor is employed. Typically, a low 

value resembles utilizing the current benefit value, while a high value resembles using the 

actual environmental advantages (high variance). The value of Lambd is usually between 

0.9 and 0.95.  

• Num_epoch: The number of times the buffer is passed through before the gradient 

descent step is applied. Slower and more stable updates will result if this is reduced. The 

value of Num epcho is usually between 3 and 10. 

➢ To perform tuning, the hyperparameters are taken to default values and then changed 

each of its values to observe and evaluate the results. 

hyperparameters: 

      batch_size: 128 

      buffer_size: 2048 

      learning_rate: 0.0003 

      beta: 0.005 

      epsilon: 0.2 

      lambd: 0.95 

      num_epoch: 3 

      learning_rate_schedule: linear 



Fig. 15. Default configuration hyperparameters. 

4. TRAINING RESULTS 

4.1. Results of Fixed Maze 8x8 

Beta Reward Time Cost 

0.01 122.8 49m 45s 

0.001 134.1 43m 10s 

0.005 143.1 43m 53s 

0.0001 143.2 43m 30s 

Table 1. Compare the results when changing the hyperparameter Beta of Fixed Maze 8x8. 

 

Fig. 16. Graphs with different Beta values in Fixed Maze 8x8. 

 

Epsilon Reward Time Cost 

0.1 111 43m 12s 

0.2 143.1 43m 53s 

0.3 132.3 43m 37s 

Table 2. Compare the results when changing the hyperparameter Epsilon of Fixed Maze 8x8. 



 

Fig. 17. Graphs with different Epsilon values in Fixed Maze 8x8. 

Lambd Reward Time Cost 

0.9 34.16 49m 5s 

0.95 130.8 43m 53s 

0.99 140.2 43m 4s 

Table 3. Compare the results when changing the hyperparameter Lambd of Fixed Maze 8x8. 

 

 

Fig. 18. Graphs with different Lambd values in Fixed Maze 8x8. 



Num_epcho Reward Time Cost 

1 117.6 25m 52s 

3 134.5 43m 53s 

8 125.2 1h 17m 0s 

Table 4. Compare the results when changing the hyperparameter Num_epcho of Fixed Maze 8x8. 

 

 

Fig. 19. Graphs with different Num_epoch values in Fixed Maze 8x8. 

4.2. Results of Random Maze 4x4 

4.2.1. Results of Random Maze 4x4 

 

Beta Reward Time Cost 

0.01 91.27 1h 3m 20s 

0.001 90.83 1h 29m 20s 

0.005 92.49 1h 20m 34s 

0.0001 76.26 2h 6m 18s 

Table 5. Compare the results when changing the hyperparameter Beta of Random Maze 4x4. 



 

Fig. 20. Graphs with different Beta values in Random Maze 4x4. 

Epsilon Reward Time Cost 

0.1 104.9 1h 14m 28s 

0.2 92.49 1h 20m 34s 

0.3 112.7 2h 6m 18s 

Table 6. Compare the results when changing the hyperparameter Epsilon of Random Maze 4x4. 

 

 

Fig. 21. Graphs with different Epsilon values in Random Maze 4x4. 



Lambd Reward Time Cost 

0.9 87.54 1h 47m 8s 

0.95 106.6 1h 15m 16s 

0.99 92.49 1h 20m 34s 

Table 7. Compare the results when changing the hyperparameter Lambd of Random Maze 4x4. 

 

 

Fig. 22. Graphs with different Lambd values in Random Maze 4x4. 

Num_epcho Reward Time Cost 

1 103.6 57m 32s 

3 92.49 1h 20m 34s 

8 95.91 2h 15m 26s 

Table 8. Compare the results when changing the hyperparameter Num_epcho of Random Maze 4x4. 



 

Fig. 23. Graphs with different Num_epoch values in Random Maze 4x4. 

4.2.2. Results of Random Maze 6x6 

Beta Reward Time Cost 

0.01 -1949 1h 4m 13s 

0.001 -17.02 1h 5m 26s 

0.005 -227.4 1h 9m 22s 

0.0001 43.44 1h 12m 37s 

Table 9. Compare the results when changing the hyperparameter Beta of Random Maze 6x6. 

 



 

Fig. 24. Graphs with different Beta values in Random Maze 6x6. 

Epsilon Reward Time Cost 

0.1 42.2 1h 6m 50s 

0.2 -268.7 1h 9m 22s 

0.3 -2056 1h 26m 5s 

Table 10. Compare the results when changing the hyperparameter Epsilon of Random Maze 6x6. 

 

 

Fig. 25. Graphs with different Epsilon values in Random Maze 6x6. 

Lambd Reward Time Cost 

0.9 -2740 1h 1m 45s 

0.95 -227.4 1h 9m 22s 



0.99 4.037 1h 36m 0s 

Table 11. Compare the results when changing the hyperparameter Lambd of Random Maze 6x6. 

 

 

Fig. 26. Graphs with different Lambd values in Random Maze 6x6. 

Num_epcho Reward Time Cost 

1 -121.3 56m 52s 

3 -227.4 1h 9m 22s 

8 -64.08 1h 48m 21s 

Table 12. Compare the results when changing the hyperparameter Num_epcho of Random Maze 6x6. 

 

 

Fig. 27. Graphs with different Num_epoch values in Random Maze 6x6. 



 4.2.3. Results of Random Maze 8x8 

Beta Reward Time Cost 

0.01 -2785 1h 4m 47s 

0.001 -2687 1h 35m 10s 

0.005 -1370 1h 39m 53s 

0.0001 -2690 1h 13m 11s 

Table 13. Compare the results when changing the hyperparameter Beta of Random Maze 8x8. 

 

 

Fig. 28. Graphs with different Beta values in Random Maze 8x8. 

Epsilon Reward Time Cost 

0.1 -114.1 1h 20m 35s 

0.2 -1370 1h 39m 53s 

0.3 -2540 1h 32m 50s 

Table 14. Compare the results when changing the hyperparameter Epsilon of Random Maze 8x8. 



 

Fig. 29. Graphs with different Epsilon values in Random Maze 8x8. 

Lambd Reward Time Cost 

0.9 -2510 2h 30m 6s 

0.95 -1370 1h 39m 53s 

0.99 -2661 1h 0m 33s 

Table 15. Compare the results when changing the hyperparameter Lambd of Random Maze 8x8. 

 

 

Fig. 30. Graphs with different Lambd values in Random Maze 8x8. 

Num_epcho Reward Time Cost 

1 -2818 41m 11s 

3 -1370 1h 39m 53s 



8 -2990 3h 10m 29s 

Table 16. Compare the results when changing the hyperparameter Num_epcho of Random Maze 8x8. 

 

 

Fig. 31. Graphs with different Num_epoch values in Random Maze 8x8. 

4.3. Training Conclusion 

Beta: Beta corresponds to the strength of the entropy regularization, which makes the 

policy "more random." Beta ensures that agents properly explore the action space during training. 

Table 1 shows that when the BetaBeta decreases to 0.0001, the Agent explores the maze lesser and 

keeps moving at a certain distance. Increase the Beta. Agent will take more random action to 

explore the maze faster. However, keep training for a long time; the smallest BetaBeta gets the 

most reward out of 4 tests. 

Epsilon: It can be seen that the reward of epsilon with a value of 0.3 in the first steps 

substracts significantly from the other two values , and it takes longer to reach the destination. The 

value 0.2 has the best training result of the three tests from solving the maze and getting the most 

points. 

Lambd: With a Lamda value of 0.9, the training is inferior. The reward is much less than 

the other two values and the training time is also a bit more. Agent solves the maze about 1 million 

steps slower. Lambd values from 0.95 - 0.99 give good results, and Agent learns faster. 



Num_epoch: Changing this value will make the model train fast or slow and significantly 

affect the model's performance quality. Num_epoch has a small value (equal to 1) that makes the 

training unstable, even taking 2 million steps to solve the maze, much worse than the other two 

values. Increasing this value makes the Agent learn faster and update more consistently. However, 

the training time will extend; because of the number of passes made through the buffer before the 

gradient descent step is applied. 

5. CONCLUSION AND PERSPECTIVE 

 This thesis gives the tuning for the PPO algorithm through hyperparameters Beta, Epsilon, 

Lambd, and Num_epoch. These values are changed, and RL learning results evaluate with the 

maze solving problem. The results show that the most minor Beta gets the most reward the longer 

the training. Meanwhile, Epsilon, with a value of 0.2, has the best training result of the three tests 

from solving the maze and getting the most points. Lambd values from 0.95 - 0.99 give good 

results, and Agent learns faster. Num_epoch may need to configure carefully, this value makes the 

Agent learn faster and update more consistently, but in return, the amount of training time will 

extend. 

This research also provides a helpful reference for tuning hyperparameters when 

redeployment PPO algorithms on novel environments in the future. 
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