

FPT UNIVERSITY

Building Machine Learning Bot with ML-Agents in Tank Battle

Author: Van Duc Dung Thesis Supervisor: Assoc. Prof. Phan Duy Hung

Authors

Author

Assoc. Prof. Phan Duy Hung

Supervisor

Table of Contents

- 1. Introduction
- 2. Background
- 3. Methodology
- 4. Experiments and Results
- 5. Conclusion and Future Works

01

Introduction

Reinforcement Learning in Video Game

Introduction

Video Games

are inherently an extremely fertile ground for AI research, especially Reinforcement Learning

History

There have been many AIs that beat humans in video games, from very simple to highly complex.

Commercial

AI in video games is still for research only.

Introduction

Unity

is a 3D ultimate game engine development platform

ML-Agents Toolkit

is an open-source project that enables games and simulations to serve as environments for training intelligent agents

02

Background

Proximal Policy Optimization, Curriculum Learning, Self-play, Unity3D and ML-Agents Toolkit

Proximal Policy Optimization

"PPO has become the default reinforcement learning algorithm at OpenAI because of its ease of use and good performance"

Proximal Policy Optimization

Policy Gradiant

$$L^{PG}(\theta) = \widehat{\mathbb{E}}_t \left[\log \pi_{\theta}(a_t | s_t) \hat{A}_t \right]$$

Proximal Policy Optimization

Trust Region Policy Optimization

 $r_t(\theta)$: probability ratio between the action under the current policy and the action under the previous policy.

$$r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}, \quad so \ r(\theta_{old}) = 1$$

Proximal Policy Optimization

Trust Region Policy Optimization (TRPO)

 $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}, \quad so \ r(\theta_{old}) = 1$

TRPO object's function:

$$\begin{array}{ll} \text{maximize} & \widehat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{old}}(a_{t}|s_{t})} \hat{A}_{t} \right] \\ \\ \text{subject to} & \widehat{\mathbb{E}}_{t} \left[KL \big[\pi_{\theta_{old}}(\cdot \mid s_{t}), \pi_{\theta}(\cdot \mid s_{t}) \big] \big] \leq \delta \end{array}$$

Proximal Policy Optimization

Clipped Surrogate Objective

With the motives mentioned above, Proximal Policy Optimization attempts to simplify the optimization process while retaining the advantages of TRPO.

$$L^{CLIP}(\theta) = \hat{E}_t \left[\min(r_t(\theta) \, \hat{A}_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

heta is the policy parameter

 \hat{E}_t denotes the empirical expectation over timesteps

 r_t is the ratio of the probability under the new and old policies, respectively

 \hat{A}_t is the estimated advantage at time t

 ϵ is a hyperparameter, usually 0.1 or 0.2

Proximal Policy Optimization

Clipped Surrogate Objective

Proximal Policy Optimization

Clipped Surrogate Objective

Final Objective:

 $L_t^{CLIP+VF+S}(\theta) = \widehat{\mathbb{E}}_t [L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}(s_t)]$

Proximal Policy Optimization

Multiple Epochs for Policy Updating

The algorithm altogether:

Algorithm 1 PPO, Actor-Critic Style

```
for iteration=1,2,..., N do
for actor=1,2,..., N do
Run policy \pi_{\theta_{\text{old}}} in environment for T timesteps
Compute advantage estimates \hat{A}_1, \ldots, \hat{A}_T
end for
Optimize surrogate L wrt \theta, with K epochs and minibatch size M \leq NT
\theta_{\text{old}} \leftarrow \theta
end for
end for
```


Curriculum Learning

Curriculum Learning

Example of Curriculum Learning in Reinforcement Learning

Curriculum Learning

(Image source: Weinshall, et al. 2018)

Self-Play

Self-Play

In Multiplayer Game:

- Interact with both environment and opponent
- Data from bot-handscripted:
 => Not diverse
- Data from human:
 => Not possible

Unity

- Easy enough for the beginner
- Powerful cross-platform 3D engine for experts

ML-Agents Toolkit

ML-Agents Toolkit

The basic idea of training agents

- o Observations
- \circ Actions
- o Rewards signal

ML-Agents Toolkit

Key Components

- Learning Environment: Unity scence create through Unity Editor
- **Python Low-Level API:** connects the environment agent to the learning trainers
- External Communicator: connection between the Low-level Python API and agent's policy.
- Python Trainers: provides the learning algorithm

A diagram of ML-Agents Toolkit in an Environment Learning.

03

Methodology

Environment Setup and Agent Design

Agent Environment

Tank Environment

- 4 walls
- Obstacles
- Even terrain

Tank Environment

STARS Education 2012 FPT UNIVERSITY

Methodology

Agent Environment

Tank Environment

- 4 walls
- Obstacles
- Even terrain
- Health Packs

Even Terrain & Health Pack

Agent Environment

Tank Design

• Body:

- Four-wheel car
- Actions: Forward, backward, turn left, turn right
- Can only go forward
- Backward when colliding obstacle or wall

• Turret:

- Rotate clockwise and counterclockwise
- Cannon control
- Shooting control
- Raycast for aiming

Tank Design

STARS FFT Education 2012 FPT UNIVERSITY

Methodology

Agent Environment

Tank Design

- Vector Moving:
 - The agent try to make its body direction match the Vector Moving
 => the behavior of turning left, turning right
 - naturally

Vector Moving

Enviroment Learning

- There are many agent that trained in duplicated environments.
- Time scale = 20;

RSITY

Duplicated Environment

Enviroment Learning

Current Position (x, z)	2
Current health percent	1
Turret's vector direction (x, z)	2
Vector from itself to enemy (x, z)	2
Fire bullet cooldown	1
Distance from the cannon to the first object that raycast hits	1
Cannon angle	1
Enemy's current health percent	1
Enemy's velocity (x, z)	2
Distance to enemy	1
Total	14

Vector Observation

Enviroment Learning

Current Position (x, z)	2
Current health percent	1
Turret's vector direction (x, z)	2
Vector from itself to enemy (x, z)	2
Fire bullet cooldown	1
Distance from the cannon to the first	1
object that raycast hits	
Cannon angle	1
Enemy's current health percent	1
Enemy's velocity (x, z)	2
Distance to enemy	1
Total	14

Normalizations Vector Observation

normalizedValue =

(*currentValue – minValue*)/(*maxValue – minValue*)

Example

currentPos. x = (40 - 0)/(80 - 0) = 0.5

Vector Observation

Enviroment Learning

Ray Perception Sense	sor 3D	0 ∓ :
Sensor Name	RayPerceptionSensor	
Detectable Tags		2
= Element 0	obstacle	
= Element 1	healthPack	
		+ -
Rays Per Direction	-0	5
Max Ray Degrees	••	90
Sphere Cast Radius	•	0.8
Ray Length	•	25
Ray Layer Mask	Mixed	•
Stacked Raycasts	•	1
Start Vertical Offset	•	0
End Vertical Offset	•	0
Debug Gizmos		
Ray Hit Color		dit.
Ray Miss Color		8

Ray Perception Sensor

RayPerception Sensor whose total size of: (Observation Stacks) * (1 + 2 * Rays Per Direction) * (Num Detectable Tags + 2) = 1 * (1 + 2 * 5) * (2 + 2) = 44

Enviroment Learning

Name	reward	Description
Shooting	0.1	Each bullet that hits the enemy
accurately	2	will get a reward.
pack	5	
Collide with	-1	Collide with walls or rocks.
obstacle		
Turret direction	0.003	Every step if the turret's direction is facing the enemy.
Penalty per step	-0.0001	This penalty is applied every step for making the Agent kill the enemy faster.
Win	2	

Shaped Reward Weights

Enviroment Learning

Self-play hyperparameter

```
self_play:
    save_steps: 50000
    team_change: 200000
    swap_steps: 10000
    window: 10
    play against latest model ratio: 0.6
```

Enviroment Learning

Self-play hyperparameter

Self-Play Snapshots

- 1 snapshot = 50k step
- Change policy every 10k step
- Opponents are using 10 latest snapshot

Education

• 60% Opponents are latest model.

04

Experiments and Result

Statistics and Agent's Behavior

Curriculum Learning

Step 0 to 3M:

- No Rocks
- Turret Direction Reward: On
- Opponent: Latest policy

No Obstacle

Curriculum Learning

Step 0 to 3M:

- No Rocks
- Turret Direction Reward: On
- Opponent: Latest policy

Above step 3M:

- Adding Obstacle proportionally to the mean reward.
- Turret Direction Reward: Off
- Opponent: 60% Latest policy

Cumulative Reward tag: Environment/Cumulative Reward

Curriculum Learning

Step 0 to 3M:

- No Rocks
- Turret Direction Reward: On
- Opponent: Latest policy

Above step 3M:

- Adding Obstacle proportionally to the mean reward.
- Turret Direction Reward: Off
- Opponent: 60% Latest policy

Episode Length tag: Environment/Episode Length

Entropy

- How random of the agent's decision
- Decreasing meaning the agent are learning well

Entropy tag: Policy/Entropy

Normalize: False

Strange behavior

- Go in a circle
- Turret rotate 1 direction only
- Not shooting

The neuron network somehow converges fast to some weird local minimum.

Strange behavior

Live Demo

- o Self-play
- o Human vs Agent

05

Conclusion and Future Works

Potential and Oriented Development

Conclusion

Agent learned the basic task

- Avoid obstacles and walls
- Collect health packs
- Know to shooting and aiming

Conclusion

ML-Agents Toolkit

- Non academy, PPO is treated as black box.
- Any user should be able to set and train an agent
- Has potential in casual game in Commercial.

Future Works

Visual Observations

Snoopy Pop Environment

Future Works

Visual Observations

- Adding camera follow the tank
- Input image from camera as Observations.

Future Works

Cooperative Game

- Adding more tanks.
- Allies can heal each other.
- Increased tactical and interactive.

Human observations

Thank you!

Do you have any question?

Contact info: dungvdhe141196@fpt.edu.vn