

Building machine learning bot

with ML-Agents in Tank Battle

Van Duc Dung

A thesis submitted in part fulfilment of the degree of BSc. in Computer

Science with the supervision of Assoc. Prof. Phan Duy Hung.

Bachelor of Computer Science

Hoa Lac campus - FPT University

April 2022

© FPT University 2022. All rights reserved.

ii

Acknowledgments

Thanks to Assoc. Prof. Phan Duy Hung for continuous support and insightful

comments. Your great assistance pointed me in the right direction and brought

my work to a higher level.

iii

Contents

1 Introduction ... 1

2 Related Work .. 3

3 Background ... 5

3.1. Proximal Policy Optimization (PPO) 5

3.2. Curriculum Learning .. 7

3.3. Self-Play ... 7

3.4. Unity .. 8

3.5. ML-Agent Toolkit ... 8

3.5.1 Behavior Parameters ... 10

4 Methodology 12

4.1 Agent Environment ... 12

5 Experiments and Results 19

6 Conclusions and Future Works 23

References 24

iv

List of Figures

Figure 3.1: PPO Algorithm (Schulman et al., 2017) 7

Figure 3.2: A diagram of ML-Agents Toolkit in an Environment

Learning. .. 10

Figure 3.3: Example of Behavior Parameters. 10

Figure 4.1: Tank Environment ... 12

Figure 4.2: Even Terrain .. 13

Figure 4.3: Turret and body of the tank. 14

Figure 4.4: Raycast Aiming .. 14

Figure 4.5: Tank Battle’s human “Observation Space”. 15

Figure 4.6: Ray Perception Sensor. ... 17

Figure 4.7: Self-Play hyperparameters ... 18

Figure 4.8: Self-Play Snapshots .. 18

Figure 5.1: Cumulative Reward. .. 20

Figure 5.2: Episode Length. .. 21

Figure 5.3: Entropy Metrics. .. 21

file:///D:/FPTU/DoAn/ML-Agents_TankBattle_Thesis.docx%23_Toc101049310

v

List of Table

Table 1: Vector observation. .. 16

Table 2: Shaped Reward Weights. .. 16

vi

Abstract

In recent years, Deep Reinforcement Learning (DRL) has made great progress in

video games, including Atari [1], ViZDoom [2], StarCraft [3], Dota2 [4], and so

on. Those successes, coupled with the release of the Machine Learning Agents

Toolkit (ML-Agents Toolkit), an open-source that helps users create simulated

environments, show that DRL can now be easily applied to video games.

Therefore, stimulating the creativity of developers and researchers. This research

aspires to develop a new video game and turn it into a simulation environment

for training intelligent agents. Experienced it with tuning the hyperparameters to

get the agent the best performance for a final commercial video game product.

Keywords: Reinforcement Learning, Proximal Policy Optimization, Unity, ML-

Agents, Tank-game.

1

1. Introduction

Video games are inherently an extremely fertile ground for AI research. It is

computationally complex, has rich human-machine interactions, and can generate

tons of data to study. Creating agents that play as well or even as excellent as

humans is one of the critical milestones marking the development of RL.

In recent years, we have seen many breakthroughs in artificial intelligence.

Almost 25 years ago, an AI had defeated the strongest chess player for the first time

in history, surprising the whole world [5]. Twenty years later, in 2016, AphalGO,

a computer once again beat humans at Go. A board game whose total number of

moves could be more than the number of atoms in the universe, a thing that was

once thought to be impossible [6]. Not stopping there, two years later, OpenAIFive

was developed to play a game even more hardened: Dota2. A real-time strategy

game with a complexity of several tens to several hundred times Go and chess [4].

OpenAI has opened a new era for the artificial intelligence industry with many

possibilities.

However, the road to applying Reinforcement Learning to commercial games

is still quite far. First, the goals of game developers and scientific researchers are

different. Game developers want to provide a perfect and great experience for users

so that they can profit rather than build an AI that out-performs human. Even

artificial intelligence agents designed to beat humans in games like OpenAI in Dota

2 are only for research purposes, not money-making games. Second, the existing

AI-building methods are already good enough to create incredible games.

Therefore, investing in this field is an application that game developers don't want

to aim for yet.

Although artificial intelligence, specifically RL in video games, is mainly for

research purposes, applying them for commercialization in video games still has a

2

lot of potential. This thesis aims to study the possibilities and performance of agents

trained under the ML-Agent Toolkit. We designed a new game environment and

made incremental improvements when we had DRL in the problem. Specific tasks

include target shooting, objects collection, and obstacle avoidance.

Implementations include environment design, learning process, and algorithm

tuning for the best possible results. Then, we consider the possibility of trained

intelligent agents as an alternative to hand-scripted bots for diverse interactions

with players for a better commercial video game product.

3

2. Related Works

Reinforcement learning (RL), one of a training method of machine learning that

is inspired by how humans and animals learn and adapt to the environment. The

basic working principle of this method is based on the reward and agent received

through the results of a sequence of actions. That is to say, the agent learns by trial

and error, and the reward guidance behavior obtained through interaction with the

environment aims to make the agent get the maximum reward [7]. In some aspects,

it is comparable to supervised learning in that developers must offer algorithms

well defined goals as well as set rewards and punishments. Therefore, explicit

programming is a much more mandatory requirement. In the training process, the

algorithm will be provided with very little information. So, RL usually has a longer

time to reach the optimal solution than other methods. In this way, RL improves

the strategy mainly through its experience in exploring the environment and making

mistakes [8].

Given an environment that delivers valuable and realistic observations for an

agent, reinforcement learning produces excellent results. The environment design

requires an easy and highly configurable tool to imitate real-world ideas and test

researchers' theories. Unity, one of the most popular gaming engines globally, bills

itself as an ecosystem that offers a global real-time platform with detailed physics

and complete usability to meet research demands. Engineering, entertainment,

customer service, and other fields use the research outputs, which subsequently

appear in instructional simulators and mobile or VR applications with multi-

platform compatibility [9].

In order to provide all the necessary information for agents and meet the needs

of research and easy environment creation, Unity has published ML-Agents

toolkits. It is open-source that allows researchers and developers to create an

emulator environment on the Unity editor for interacting with them through a

4

python API. The toolkit helps us define objects and events in the environment

handled by C# scripts which then log and connect to the python algorithm. One of

the critical components of the toolkit is Soft Actor-Critic (SAC) and PPO, which

this research will utilize [10]. Although PPO is a state-of-the-art approach, in many

cases, especially when the interaction in the environment becomes complex, it will

be difficult for the agent to find the optimal solution. For example, in the very first

learning stage, the agent exploration is represented by random actions, which may

lead to sparse rewards. In numerous instances, the sparseness of the rewards can

make the agent hardly improve its policy and get stuck in random actions loop. We

can add more rewards to instruct the agent on such complex problems. Or we can

start from a simpler environment and then gradually increase its complexity. This

concept, called Curriculum Learning, has been shown to significantly reduce

training time and local minima quality [11]. In ML-Agents Toolkit, environment

parameters may be added and changed during the training process. A curriculum is

made of a sequence of lessons triggered by certain completion requirements. Each

criterion should have a threshold to decide when the lesson ends for the chosen

measure (e.g., cumulative reward or step progress). It is also possible to choose a

minimum lesson duration and signal smoothing. Overall, a good curriculum lesson

will result in less training time and better optimal behavior.

5

3. Background

3.1. Proximal Policy Optimization (PPO)

To create OpenAIFive, the OpenAI team introduced a new class of

reinforcement learning algorithms called Proximal Policy Optimization (PPO),

which outperforms state-of-the-art techniques while being significantly easier to

deploy and tweak [12]. PPO is a Policy Gradient approach that makes use of the

actor-critic method. The Policy Gradient equation is defined as below:

𝐿𝑃𝐺(𝜃) = �̂�𝑡[log 𝜋𝜃(𝑎𝑡|𝑠𝑡)�̂�𝑡]

Policy log 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the neural network that receives observations from

the environment and makes outputs as actions. Through the rewards, we will

calculate �̂�𝑡 which is the estimation of the relative value of the selected action. As

appealing as it is to perform multiple gradient descent steps in the same trajectory,

it frequently changes the policy outside the range that often lead to a destructively

large policy.

To keep the policy gradient steps from deviating too far from the initial policy,

the OpenAI team considered an algorithm called TRPO. In this method, 𝑟𝑡(𝜃) is

the probability ratio between the action under the current policy and the action

under the previous policy and is defined as:

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, 𝑠𝑜 𝑟(𝜃𝑜𝑙𝑑) = 1

𝑟(𝜃) will represent one of many action sequences of the current policy that are more

likely to occur than the old policy if its value is greater than 1. Otherwise, the action

has less chance of occurring if the value is between 0 and 1. Then, if we multiply

𝑟(𝜃) with �̂�𝑡 from the above, and adding KL constraint to limit the gradient step,

we get the TRPO’s objective function:

6

maximize
𝜃

 �̂�𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

�̂�𝑡]

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̂�𝑡 [𝐾𝐿[𝜋𝜃𝑜𝑙𝑑
(∙ |𝑠𝑡), 𝜋𝜃(∙ |𝑠𝑡)]] ≤ 𝛿

Based on the above theoretical method, Proximal Policy Optimization’s main

objective is clipped surrogate:

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝑟𝑡(𝜃) �̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)],

where the key idea is ‘clip’ the objective to prevent the gradient policy from going

too far by flattening the loss function out when the probability ratio is too high. All

of these terms can be obtained in the following final objective:

𝐿𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = �̂�𝑡[𝐿𝑡

𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿𝑡
𝑉𝐹(𝜃) + 𝑐1𝑆[𝜋𝜃](𝑠𝑡)]

Finally, Proximal Policy Optimization algorithm works by repeating the

sequence of data collection actions, compute advantage estimate and sample mini-

batches in order to update the policy and fit the value function. A stochastic gradient

ascent optimizer is used to update the policy, while a gradient descent technique is

used to fit the value function. This method is repeated for K epochs until the

environment is resolved.

7

Figure 3.1: PPO Algorithm (Schulman et al., 2017)

3.2. Curriculum Learning

One of the ways to reduce training time or even improve policy performance is

to use the Curriculum Learning approach. Let's take the example of a toddler who

hardly knows any math. Yet we cram into their head derivatives and integrals,

hoping that they will become experts in a few years. It seems almost impossible or

takes a long time to teach them. Just like humans, if an agent is trained in an

environment with extremely complex tasks, it will take a long time for the agent to

find meaningful actions. In fact, agents always start with random sequences of

actions. In some cases, agents get stuck and cannot improve policy because the

rewards are too sparse. Bengio et al. (2009) indicate that RL with curriculum

strategies helps the training convergence faster or provides a better policy [11].

To summarize, the idea of Curriculum Learning is to create an environment that

can vary in complexity based on the agent's current policy. For example, in the

problem of moving to a goal, the environment initially has only agents and the goal.

After the agent successfully completes this task, the environment increases its

complexity by adding obstacles, forces, traps, etc.

3.3. Self-Play

Although in environments like Mario or Pac-man, agents act and learn through

generals interacting with the environment. Competitive games like football and

chess require the agent to interact with both the environment and the opponent. In

8

that case, opponents can be hand-scripted bots or humans. However, reinforcement

learning is a process that requires a large amount of data and training time. The data

set is often not diverse if the algorithm only practices with standard bots because it

may easily lead to overfitting. And if the algorithm practices with humans, we can't

spend thousands of hours or even many years playing to provide data. Self-Play is

not only an optimal solution to overcome the above disadvantages but also creates

behaviors that are more complex than the environment [13]. The idea of the self-

play approach is training multi-agent in a competitive environment without direct

supervision; all the data that the algorithm collect is entirely from itself or an older

version of itself. This approach's success is represented through many complex

multi-player games, particularly in tackling StarCraft [3] and Dota 2 [4].

3.4. Unity

Unity is a 3D ultimate game engine development platform published in 2005.

Not only contain lots of assets, huge community, and tutorials for attracting

beginners. Unity also is a very powerful cross-platform for experts. Making it

become one of the most popular among all the game platforms.

3.5. ML-Agent Toolkit

Unity is very friendly to use. It also can simulate physics and create simulator

environments from simple to complex. Unity Technologies realizes the game

engine as a platform with great potential for the research of Intelligent Agents and

released ML-Agent Toolkit [10]. After researchers and game developers finish

designing the environment, they need to define three components [14]:

Observations – are the information that the agent will collect and feed into the

algorithm. To design reasonable observations, researchers can first imagine how

we would solve this task if we were humans: what we need to know and what

information is unnecessary. Having a sufficient and clear observation will shorten

the training time and have good behavior. On the contrary, if there are too many

redundant observations, it can prolong the training time and have undesirable

behaviors.

9

Actions – which defines how the agent can interact with the environment. Actions

can be continuous or discrete depending on the goal of the environment or the

complexity of the environment is low or high.

Rewards signal – to let an agent know it is making correct decisions, we will add

rewards every time they complete a good action. However, the reward is usually

applied only after the agent has performed a sequence of actions that yielded a

positive result rather than every action that led to the goal.

The ML-Agents Toolkit has four primary components:

 Learning Environment: which is the Unity scene that researchers and

game developers create through Unity Editor. This is where the agent will

be included and receive observations, make actions decision, and added

rewards.

 Python Low-Level API: This external component is not part of Unity. It

connects the environment agent to the learning trainers

 External Communicator: which is part of the Learning Environment and

manages the connection between the Low-level Python API and agent’s

policy.

 Python Trainers: which provides the learning algorithm and allow users

to select option for training.

10

Figure 3.2: A diagram of ML-Agents Toolkit in an Environment Learning.

3.5.1 Behavior Parameters

When creating the agent, a script called Behavior Parameters is required to

attach to it. In this component, we will define various compositions. A policy can

also be implemented for the agent to perform after training.

Figure 3.3: Example of Behavior Parameters

11

These are the concepts that are primary consider since they are in the scope of

this study:

 Behavior name: This is where the name of the policy (behavior) is named.

It must have the same as defined in hyperparameter configuration files.

 Vector Observation: Where we define the observations variable by C#

script, Space Size represents how many of them that the agent observes. If

we want the agent to have “limited” memory, we can increase the Stacked

Vectors. It corresponds to the number of all last frames since the moment

agents feed the observations to its algorithm.

 Vector Action: Where the number of Continuous Actions and Discrete

Actions are defined. Note that the algorithm does not understand their action

to the environment. The agent simply just tries all the actions and adjusts

them through training and reward feedback.

 Model: For running the agent as a test or product, a policy that is already

trained can be attached to this.

 Behavior Type: Depending on which purpose of the users, the policy will

perform according to three types of behavior:

- Default: usual mode for training.

- Heuristic Only: Allow users to test the actions of the agent in the

environment by manually controlling it.

- Inference Only: Running trained policy.

 Team ID: It always is an integer number equal to or greater than 0. For

training multi-agent in competitive games, set different values for any agent

that is not in the same team.

12

4. Methodology
Self-play can be used with implementations of both Proximal Policy Optimization

and Soft Actor-Critic. However, because the opponent is always changing, many

scenarios appear to exhibit non-stationary dynamics from the viewpoint of a

solitary agent. Self-play has a high risk of causing serious problems with SAC's

experience replay system. As a result, users are advised to utilize PPO [15].

4.1 Agent Environment

Tank Battle plays out on a square map surrounded by four walls with two tanks

shooting each other. Each tank has to move around the map to find the enemy, avoid

rocks, take health packs, and align the cannon angle accurately (Figure 4.1). The

game ends when one of them is eliminated or the time runs out. When the time runs

out, that match is considered a draw. To give more varied aiming behavior, we

designed the terrain with certain unevenness to create significant noise that

challenges the agent's abilities. For the aiming behavior to be more varied, we

designed the terrain with certain unevenness to create significant noise that

challenges the agent's shooting task (Figure 4.2).

Figure 4.1: Tank Environment

13

Figure 4.2: Even Terrain

There are two main parts of the tank, the body and the turret (Figure 4.3).

● Body. The tank can move like a standard 4-wheel car, including actions:

forward, backward, turn left, turn right. However, in this study, to reduce the

complexity, the agent will always move forward and cannot stop and only

automatically goes back for a fixed time after colliding with an obstacle. It also

can turn left or right 20 degrees.

● Turret. The turret is fixed on the vehicle’s body and can rotate 360 degrees.

Include two actions: rotate clockwise and counterclockwise. In addition, there

is a cannon on the turret, from which the bullets are fired. Cannon can adjust

the angle up and down to 5 and -5 degrees. Therefore, to accurately shoot the

target, the agent needs to skillfully align both the angle of the turret and the

cannon. To aid in an accurate aim, a ray cast from the cannon beams straight in

the direction it is facing to the first object it hits, indicating the distance from

the cannon to that object (Figure 4.4). When shooting, a bullet gameObject will

be created and added a force to move straight forward of cannon direction, it

also unaffected by the physic systems.

14

Figure 4.3: Turret and body of the tank.

Figure 4.4: Raycast Aiming

4.2 Environment Learning

Although the game is designed for humans to receive information through

visual input (Figure 4.5), the agent observes the environment through numbers to

minimize calculation and neural networks complexity. The game is designed for

players to control the tank from a third-person perspective using input devices like

mouses and keyboards. On the other hand, the agent observes the environment

15

through position, vector to the enemy, and distance provided by the Unity game

engine at each time step (Table. 1). It is considered to normalize all components of

the agent’s Vector Observations for a best practice when using neural networks, so

all information is adjusted to range [-1, +1]. For a sequence of acts that lead to a

match win, we give the agent a reward (or a punishment). Table 2 lists all of the

outcomes rewards that we identify. In experiments, we maximize the reward

function that includes extra signals such as colliding with obstacles and collecting

health packs. When computing the reward function, we also use a method to take

advantage of the problem's zero-sum construction — for example, we symmetrize

rewards by deducting the reward gained by the enemy.

Figure 4.5: Tank Battle’s human “Observation Space”.

16

Table 1: Vector observation.

Current position (x, z) 2

Current health percent 1

Turret's vector direction (x, z) 2

Vector from itself to enemy (x, z) 2

Fire bullet cooldown 1

Distance from the cannon to the first object that raycast hits 1

Cannon angle 1

Enemy's current health percent 1

Enemy's velocity (x, z) 2

Distance to enemy 1

Total 14

Table 2: Shaped Reward Weights.

Name reward Description

Shooting

accurately

0.1 Each bullet that hits the enemy

will get a reward.

Collect a health

pack

3

Collide with

obstacle

-1 Collide with walls or rocks.

Turret direction 0.003 Every step if the turret's direction

is facing the enemy.

Penalty per step -0.0001

This penalty is applied every step

for making the agent kill the

enemy faster.

Win 2

17

In additional, for tracking obstacles and finding health packs, the agent used

RayPerception Sensor whose total size of: (Observation Stacks) * (1 + 2 * Rays Per

Direction) * (Num Detectable Tags + 2) = 1 * (1 + 2 * 5) * (2 + 2) = 44 (Figure

4.6).

Figure 4.6: Ray Perception Sensor.

During inference mode, the agent's policy will determine the actions that map

the current situation based on the information gathered from Vector Observation

and Ray Perception Sensor. The reward in reinforcement learning is an indication

that the agent has made the right series of actions. According to these rewards, the

PPO algorithm optimizes the agent’s decision to maximize the cumulative reward

over time. The training is divided into Episodes, each Episode is a Tank Battle

match. When a match ends, all environments and reward points will be reset, and a

new Episode begin.

If the Self-Play hyperparameters is not defined in configuration files, the model

will train the agent with its current self. But in an environment, only one agent will

learn. The other just runs the latest model to act as an opponent. Since the agent’s

opponents are rapidly changing as the policy is updated every moment, it may lead

to an unstable training process [16]. To have a set of slowly or unchanging

adversaries with low diversity, we define Self-Play hyperparameters as in Figure

4.7

18

self_play:

save_steps: 50000

team_change: 200000

swap_steps: 10000

 window: 10

 play_against_latest_model_ratio: 0.6

Figure 4.7: Self-Play hyperparameters

According to the Self-Play hyperparameters, the

trainer will save the policy every 50k steps, each of

them called a snapshot. When learning, the agent’s

opponent will be chosen from the 10 (window:10)

latest snapshots. The play_against_latest_model_ratio

parameter is set to 0.6 means there are 60%

probability of the fixed opponent is the agent latest

model and 40% from its past version (Figure 4.8).

Every 10k steps (swap_steps:10000), the opponent's

policy will be swapped with a different snapshot. And

after 200k (team_change:200000) steps, the learning

agent and opponent teams will be switched.

Figure 4.8: Self-Play

Snapshots

19

5. Experiments & Results

The statistics were saved by ML-Agents Toolkit and monitored via

TensorBoard during the learning lesson. It gives us the ability to track and evaluate

the learning process through data that has been visualized. Over the whole step

count, a graph illustrates each separate training run with chosen metrics.

In the first lesson of Curriculum Learning, the environment will not contain

rocks as obstacles. So, the early task of the agent is learning to shoot and not hit

walls. In this period, Self-Play is applied by the latest version model meaning that

the agents are trained with its current self. After about 3 million steps, the mean

reward is at its peak. The environment starts to add some obstacles, increasing the

amount gradually proportional to the mean reward. (Figure 5.1). Since the agent

started to grasp the rule of the game, we removed the turret direction reward and

added Self-play hyperparameters so that the agent learns with its past version of

itself to provide a diversity of opponents.

In Figure 5.1., the reward starts from 0, gradually increases to a peak of 4 in

between steps 1M and 2M, then gradually stabilizes and maintains the oscillation

amplitude from around 3. This result happens because there are not only the

rewards received after each right action. The agent also gets a +2 reward for each

game they win. When the policy improved, the agent's opponents grew more

assertive, making each episode ending in win/lose more pronounced.

Because of this reason that it is not reliable to evaluate policy improvement

through the Cumulative Reward metric. The ML-Agent toolkit provides users with

another metric to evaluate agents in self-play called the ELO rating system.

However, to use it, the agent's reward must be designed in a zero-sum game, and

the structure of winners with a positive reward, negative for losers, and 0 for a tie.

This type of reward has been implemented by using 'SetReward()' to negative two

if the agent loses. Unfortunately, this implementation makes the learning unstable.

Experiments show that after training the agent to learn the game's basic rules in the

20

first lesson of Curriculum Learning, the agent knew to turn the cannon at the enemy

and avoid the wall to optimize the reward. But later on, somehow, the above reward

shape made the gent behavior weird. They did not spin the turret in the right

direction of the enemy anymore. They just roamed around in the environment and

shot aimlessly. Agent evaluation becomes more difficult without the ELO metric

because empirical observations must be applied more frequently. The mean length

of the episode (Figure 5.2) shows that agents are killing each other much faster,

meaning they are learning to shoot more precisely. However, after adding obstacles,

projectiles are regularly blocked, causing the episode's length to increase

dramatically and decrease over time.

Figure 5.1: Cumulative Reward.

21

Figure 5.2: Episode Length.

Entropy, which measures the unpredictability of agents' decisions, is another

critical metric for evaluating the policy. As the training progresses, it steadily

declines, indicating a well-selected beta hyperparameter. According to Figure 5.3,

the more training agent has, the fewer random actions agent will have.

Figure 5.3: Entropy Metrics.

One important note is the “Normalize” hyperparameter in the configuration file.

This hyperparameter is recommended to use only when there are continuous

actions. It is even said to be harmful with more straightforward discrete control

problems. In comparison, all of the actions in this study are purely discrete actions.

22

Experiments show that, after only about the first 250k steps, the neuron network

somehow converges fast to some weird local minimum. Making the agent's

behavior selects only one action in each action branch. Expressly, they only turn in

one direction, go in a circle, and constantly rotate the turret clockwise. They do not

even fire any bullets. This issue is entirely resolved after the hyperparameter

switches to True.

23

6. Conclusions & Future Works

This study demonstrates the performance and possibilities of intelligent agent

training by ML-Agents Toolkits, which is remarkably easy to use and to set-up in

order to conduct learning of policies. The agent was able to learn the basic rules of

the game quickly. It can avoid obstacles and walls, collect health packs, and face

its turret toward the enemy. However, the way the agent observes their

surroundings is not visual observations, which is very costly, making shooting a

complex problem. As humans play the game through a screen and control their tank

by keyboard and mouse, they can effortlessly aim and shoot precisely to trounce

the agent. Although we can make the agent do even better if we increase the hidden

units and improve its observations, it is pretty hard for the agent to play the game

as well as humans. The reason is due to the limitations of ML-Agents itself. We

can configure the training by changing Hyperparameters in the configuration file,

but interfering too deeply in the neural network is not allowed. Therefore, we can

conclude that ML-Agents Toolkit and Unity engine still have a high potential for

commercial in video games. However, the more complex the environment, the

harder the agent can learn. So causal games are most likely the best suit for this

commercial due to their simplicity.

We would like to add more agents and make Tank Battle a Cooperative game

for further work. In addition to shooting each other and collecting health packs,

agents on the same team can also fire special bullets to heal teammates and diversify

interactions and tactics. Moreover, we will also alternate entirely current the vector

observation with visual observations by adding a camera following the turret so that

the agent can learn the ability to aim more precisely.

24

References

1. Mnih, Volodymyr, et al. "Playing atari with deep reinforcement

learning." arXiv preprint arXiv:1312.5602 (2013).

2. Guillaume, L., Chaplot, D.S.: Playing FPS games with deep reinforcement

learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence (AAAI'17). AAAI Press, 2140–2146 (2017)

3. Arulkumaran, Kai, Antoine Cully, and Julian Togelius. "Alphastar: An

evolutionary computation perspective." Proceedings of the genetic and

evolutionary computation conference companion. 2019.

4. OpenAI et al.: Dota 2 with Large Scale Deep Reinforcement Learning,

arXiv:1912.06680 (2019).

5. Hsu, F-H.: Behind Deep Blue: Building the computer that defeated the world

chess champion. Princeton University Press, 2002.

6. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K.,

Hassabis, D.: A general reinforcement learning algorithm that masters chess,

shogi, and Go through self-play. Science 362.6419, pp.1140-1144 (2018)

7. Sutton, Richard S., Andrew G. Barto, and Ronald J. Williams. "Reinforcement

learning is direct adaptive optimal control." IEEE control systems

magazine 12.2 (1992): 19-22.

8. Li, Y.: Deep reinforcement learning: An overview. arXiv:1701.07274 (2017)

9. Xie, J.: Research on key technologies base Unity3D game engine. In:

Proceedings of the 7th International Conference on Computer Science &

Education (ICCSE), pp. 695-699, doi: 10.1109/ICCSE.2012.6295169 (2012)

10. Juliani, A. et al.: Unity: A General Platform for Intelligent Agents.

arXiv:1809.02627 (2020).

11. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:

Proceedings of the 26th Annual International Conference on Machine Learning

(ICML '09). Association for Computing Machinery, New York, NY, USA, 41–

48. DOI: https://doi.org/10.1145/1553374.1553380 (2009)

12. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.: Proximal

Policy Optimization Algorithms. arXiv:1707.06347 (2017)

13. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent

complexity via multi-agent competition. arXiv:1710.03748 (2017)

14. Unity-Technologies. “ML-Agents/ML-Agents-Overview.md at Main · Unity-

Technologies/ML-Agents.” GitHub, 15 Apr. 2021, github.com/Unity-

Technologies/ml-agents/blob/main/docs/ML-Agents-Overview.md.

15. Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P.H.S., Kohli, P.,

Whiteson, S.: Stabilising experience replay for deep multi-agent reinforcement

learning. In: Proceedings of the 34th International Conference on Machine

Learning - Volume 70 (ICML'17). JMLR.org, 1146–1155 (2017)

16. Unity-Technologies. “ML-Agents/Training-Configuration-File.md at Main ·

Unity-Technologies/ML-Agents.” GitHub, 15 Dec. 2021,

25

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-

Configuration-File.md.

