
1

–––

MINISTRY OF EDUCATION AND TRAINING

FPT UNIVERSITY

Capstone Project Summary

A study on End-to-End encryption in IoT by

using Elliptic Curve Cryptography

- Ho Chi Minh, 04/2022 -

GSP22IA05

Group member

Huynh Phuc An - SE140698

Nguyen Le Bao Truong - SE140940

Nguyen Tuan Khoi – SE140949

Supervisor Nguyen Tan Cam

Ext Supervisor

Capstone Project code SP22IA09

2

Table of Contents

Table of Figures ... 4

Table of Tables .. 4

CHAPTER 1: INTRODUCTION .. 5

1.1. Project Information ... 5

1.2. The Participants .. 5

1.2.1. Supervisor .. 5

1.2.2. Team Members .. 5

1.3. Actual IA problem .. 6

1.3.1. Overview .. 6

1.3.2. The statistic: ... 7

1.3.3. Solution .. 8

CHAPTER 2: IA PROJECT MANAGEMENT PLAN .. 9

2.1. Problem Setting .. 9

2.1.1. The Current Situations ... 9
2.1.2. The Proposed Solution ... 9
2.1.3. Boundaries of the Solution ... 9
2.1.4. Development Environment .. 10

2.2. Researching ... 11

CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY RESEARCH 12

3.1. Elliptic Curve Arithmetic .. 12

3.1.1. Elliptic Curve ... 12
3.1.2. Adding and Multiplying Points .. 13

3.2. Weaknesses of ECC .. 14

CHAPTER 4: COMPARATIVE ALGORITHMS DEVELOPMENT 15

4.1. ElGamal Encryption Algorithm ... 15

4.2. RSA Encryption Algorithm .. 15

4.3. General comparison of ECC, RSA and ElGamal 16

CHAPTER 5: IMPLEMENTATION OF PROCESS MEASURING 17

5.1. Comparison Criteria ... 17

5.1.1. Time Performance ... 17

3

5.1.2. CPU Performance .. 17

5.1.3. Memory Performance .. 17

5.1.4. Power consumption ... 18

5.2. Environment setting up .. 18

5.2.1. Devices .. 18

5.2.2. Power Source ... 19

5.2.3. Measuring Unit .. 19

5.3. Process Measuring Development ... 19

5.4. Power Measuring Development ... 19

CHAPTER 6: RESULT ANALYSIS .. 20

6.1. Time of processing analysis ... 20

6.2. CPU and memory performance analysis .. 23

6.3. Power consumption analysis .. 28

6.4. Conclusion .. 29

4

Table of Figures

Figure 1. Literature statistics on IoT architecture, IoT architecture and threats, and
IoT architecture and attacks[1] .. 7
Figure 2. Effectiveness comparison between RSA, ECC and AES [3] 8
Figure 3. Curve 𝐸 ∶ 𝑦2 = 𝑥3 + 7 (Having a = 0 and b = 7) 12
Figure 4. Adding a point on a curve .. 13
Figure 5. Encrypting time comparison between algorithms on Raspberry Pi 3 21
Figure 6. Encrypting time comparison between algorithms on Raspberry Pi Zero 21
Figure 7. Decrypting time comparison between algorithms on Raspberry Pi 3 22
Figure 8. Decrypting time comparison between algorithms on Raspberry Pi Zero
 .. 22
Figure 9. Comparison of CPU consumption during Encryption on Raspberry Pi 3
 .. 24
Figure 10. Comparison of CPU consumption during Decryption on Raspberry Pi 3
 .. 24
Figure 11. Comparison of CPU consumption during Encryption on Raspberry Pi
Zero .. 25
Figure 12. Comparison of CPU consumption during Decryption on Raspberry Pi
Zero .. 25
Figure 13. Comparison of Memory usage during Encryption on Raspberry Pi 3 . 26
Figure 14. Comparison of Memory usage during Decryption on Raspberry Pi 3 . 26
Figure 15. Comparison of Memory usage during Encryption on Raspberry Pi Zero
 .. 27
Figure 16. Comparison of Memory usage during Decryption on Raspberry Pi Zero
 .. 27

Table of Tables

Table 1. Supervisor .. 5
Table 2. Team members ... 5
Table 3. Tools and Techniques .. 10
Table 4. Researching .. 11
Table 5. General comparison of ECC, RSA and ElGamal 16
Table 6. Average power consumption ... 29

5

CHAPTER 1: INTRODUCTION

1.1. Project Information

Project name: A study on End-to-End encryption in IoT by using Elliptic Curve

Cryptography

1.2. The Participants

1.2.1. Supervisor

Table 1. Supervisor

Full name Phone Email Title

Nguyen Tan Cam 0909332547 camnt5@fe.edu.vn Dr.

1.2.2. Team Members

Table 2. Team members

Full name
Student

code
Phone Email

Role in

group

Huynh Phuc

An
SE140698 0968402802 anhpse140698@fpt.edu.vn Leader

Nguyen Le

Bao Truong
SE140940 0796731459 truongnlbse140940@fpt.edu.vn Member

Nguyen

Tuan Khoi
SE140949 0349938240 khointse140949@fpt.edu.vn Member

6

1.3. Actual IA problem

1.3.1. Overview

As the incoming 4.0 industry revolution, the growth of IoT has been

accelerated every day. Along with the development, there are certainly a lot of

questions about IoT security problems. The security solutions for IoT devices have

been concerned and researched for some time.

One of the most alarming security problems of IoT systems is the Lack of

encryption techniques. When communicating in plain text, the exchanging

information between IoT devices or service servers may be impacted by a Man-in-

the-Middle attack. These data can be captured for sensitive information or

intentionally altered the communication.

As IoT systems and devices sometimes have high requirements of operating

speed and small data storage, choosing an effective encryption algorithm should

be concerned.

7

1.3.2. The statistic:

Figure 1. Literature statistics on IoT architecture, IoT architecture and threats,
and IoT architecture and attacks[1]

The number of topics about IoT is growing at high speed in the past few

years, but only a few of them shows their concern about the vulnerability of being

attacked.

Less than 15% of the IoT articles talk about the risks and attacks on IoT

systems. The security solutions for IoT devices have been concerned. But as

Figure 1 shows, it is not enough to say that we are safe when using IoT.[2]

8

1.3.3. Solution

Applying encryption for IoT systems is always a real challenge. Most of the

popular encryption techniques that have been used do not satisfy the requirement

of IoT systems. For example, AES will provide high operating speed but secure

strength, while RSA meets the security requirements but it needs large-sized keys

and time-consuming calculations.

Meanwhile, Elliptic Curve Cryptography provides an equivalent level of

encryption strength as the RSA algorithm with a shorter key length. As a result,

the speed and security offered by ECC are faster than RSA does.

Figure 2. Effectiveness comparison between RSA, ECC and AES [3]

A 384-bits key in ECC is strong enough to protect the US government’s top

secret. Comparing to RSA, which needs a 7680-bits key for an equivalent

encryption strength, ECC will be an effective algorithm to encrypt IoT data.[4]

9

CHAPTER 2: IA PROJECT MANAGEMENT PLAN

2.1. Problem Setting

2.1.1. The Current Situations

In the development, IoT systems are now aiming to the full-automation

operations. Machine-to-Machine communications play an important role to

achieve complete automation. If attackers are able to retrieve and exploit these

communications, it would be hard for the machines themselves to detect and

defend against the threats. An IoT system that lacks encryption will be an easy

target for hackers to break through.

2.1.2. The Proposed Solution

Securing IoT products is always an issue for every organization working in

this field. Our team has researched and developed a demo IoT system that is

secured by Elliptic Curve Cryptography in order to evaluate the effectiveness of

the algorithm within IoT services. Then make a comparison with other

cryptographic algorithms.

2.1.3. Boundaries of the Solution

At first, we developed virtualized Raspberry Pi machines using VMWare

Workstation. After development, the communication within our system will be

secured by ECC and others cryptographic algorithms.

After we make sure that the development works well on Raspbian OS, the

code will be built on our Raspberry Pi 3 and Raspberry Pi Zero for realistic data.

We measure and calculate the effectiveness of all the algorithms on the

environment devices, visualize the comparison, and make the decision if ECC is

suitable to be used to secure IoT systems.

10

2.1.4. Development Environment

We are using the VMWare Workstation for the development of the virtual

IoT system.

We used 2 IoT devices: Raspberry Pi 3 and Raspberry Pi Zero as

measurement environment. Raspberry Pi 3 – have a higher CPU and Memory size

– plays a role as a rich-resourced environment. Meanwhile, Raspberry Pi Zero is

used as a low-resourced environment.

By using Golang and VS code, we also building CLI for developing test

cases, and so does the cryptography functions.

For task management, our team uses Trello to split the tasks and manage

deadlines. For code management, we used GitHub.

Table 3. Tools and Techniques

No Tools Function

1 Go Language Used to build CLI and cryptography functions

2 VS Code Development IDE

3 Raspbian OS An OS designed for IoT systems control.

4
Power measuring

unit

Used to measure the power usage of the devices during their

algorithms execution

5 Highcharts
A JavaScript-based tool used to visualize the comparison

charts

6 Benchmark
Go Language feature for measuring processing time and

resources

7 GitHub Code management

8 Trello Task management

9
VMWare

Workstation
Development of the virtual IoT system

11

2.2. Researching

Table 4. Researching

Description

Each member researched for the latest

information about MQTT, Raspberry Pi,

ECC and Benchmarking

Distribution

Researching MQTT, Raspberry Pi, ECC

and Benchmarking

Resources

Knowledge, documents from the

Internet.

Dependencies and Constrains

Collect appropriate information involving

the project’s purpose.

12

CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY RESEARCH

3.1. Elliptic Curve Arithmetic

3.1.1. Elliptic Curve

In cryptography a shortened and simplified equation is used for more

efficiency:

𝐸 ∶ 𝑦ଶ = 𝑥ଷ + 𝑎𝑥 + 𝑏

Figure 3. Curve 𝐸 ∶ 𝑦ଶ = 𝑥ଷ + 7 (Having a = 0 and b = 7)

13

Although the equation looks simply, it is more effective than the complex

one because it will provide faster generation and calculation while being strong

enough to protect the secret messages.

3.1.2. Adding and Multiplying Points

It is possible to add two points on the elliptic curve and the result is a

different point. This operation is called EC point addition. If we add a point P to

itself, the result is:

P + P = 2 * P

Figure 4. Adding a point on a curve

14

If we add P again to the result, we get 3 * P and so on. This is how

the EC score multiplication is determined.

A point P over an elliptic curve can be multiplied by an integer k and

the result is another EC point G on the same curve and this operation can be

calculated easily and very fast

G = k * P

It is important to know is that multiplying EC point by integer

returns another EC point on the same curve and this operation is really fast.

3.2. Weaknesses of ECC

Because of the mathematic complexity, only a small number of

people can completely understand ECC algorithms. We don’t even know whether

there are any vulnerabilities related to the algorithms, from which they can create a

backdoor to attack the system.

Another weakness of ECC is that we are using recommended pre-

defined Elliptic Curves. It is necessary to stay alert that the organizations who

provide these curves (such as NIST) can have a backdoor in them.

The fact that using complicated mathematic algorithms does not

make encryption stronger. Ideally, we should use some algorithms that anyone can

easily understand, not something we have to rely on a small number of people,

hoping them to be on our side.

ECC is also somehow vulnerable to bruteforce attacks. Like all other

public-key cryptographic algorithms, from a public-key, we can obtain the private-

key through bruteforce attacks. Therefore, it is necessary to consider for a bigger-

sized key.

15

CHAPTER 4: COMPARATIVE ALGORITHMS DEVELOPMENT

4.1. ElGamal Encryption Algorithm

Suppose that Alice wants to communicate with Bob：

1. Bob generates public and private keys:

 - Bob chooses a very large number q and a cyclic group Fq.

 - From the cyclic group Fq, he choose any element g and an element a such

that gcd(a, q) = 1.

 - Then he computes h = ga.

 - Bob publishes F, h = ga, q, and g as his public key and retains as a

private key.

2. Alice encrypts data using Bob’s public key:

 - Alice selects k from cyclic group F such that gcd(k, q) = 1.

 - Then she computes p = gk and s = hk = gak.

 - She multiples s with M.

 - Then she sends (p, M*s) = (gk, M*s).

3. Bob decrypts the message:

 - Bob calculates s′ = pa = gak.

 - He divides M*s by s′ to obtain M as s = s′.

4.2. RSA Encryption Algorithm

The idea of RSA is based on the fact that it is difficult to factorize a

large integer. The public key consists of two numbers where one number is

multiplication of two large prime numbers. And private key is also derived from

16

the same two prime numbers. So, if somebody can factorize the large number, the

private key is compromised. Therefore, encryption strength totally lies on the key

size and if we double or triple the key size, the strength of encryption increases

exponentially. RSA keys can be typically 1024 or 2048 bits long, but experts

believe that 1024-bit keys could be broken in the near future. But till now it seems

to be an infeasible task.

4.3. General comparison of ECC, RSA and ElGamal

Table 5. General comparison of ECC, RSA and ElGamal

Factors RSA ElGamal ECC

Development 1997 1984 1985

Performance Fast Slow Very Fast

Power

Consumption

High Low Low

Hardware

requirement

High and not

efficient

Low and efficient Very low and

very efficient

Mathematic based

algorithm

Factoring the

product of 2

large prime

numbers

Computing

discrete logarithms

in a finite field

Computing

elliptic curve

discrete logarithm

Security Strength Strong Strong Very strong

17

CHAPTER 5: IMPLEMENTATION OF PROCESS MEASURING

5.1. Comparison Criteria

5.1.1. Time Performance

The very first criterion we think of when talking about the

effectiveness of Cryptographic algorithms is the amount of time they take to

calculating. Especially in IoT systems, where the size of processing devices is not

very suitable for high-performance CPU and Memory but have high requirements

in the processing time.

Because of that, we have decided the consumption of time is the

most important criterion in comparing the cryptographic algorithms. The shorter

time it takes to calculate an algorithm, the more effective the algorithm is.

5.1.2. CPU Performance

In our development, we want to measure each Cryptography

Algorithm by its CPU performance percentage on Raspberry Pi in an amount of

time.

We expected that all three algorithms will have the same result of

CPU performance percentage as they are running on the same environment of

Raspberry Pi 3 or Raspberry Pi Zero.

The outcome of the measurement is an average usage of CPU for

calculating the algorithms. Analyzing the CPU average usage with the total

processing time will help evaluating the effectiveness of the algorithms.

5.1.3. Memory Performance

Calculating cryptographic algorithms can be determined as a very

memory-consuming task. It needs a large amount of memory to compute heavy

18

calculations. Therefore, in order to ensure that the calculations worked properly,

we assume that memory performance is also an important criterion to be measured

5.1.4. Power consumption

In IoT systems, there are numerous microcontrollers and stripped-

down SBCs like the Raspberry Pi Zero that are more energy efficient options than

a full Raspberry Pi 4. But that efficiency comes with a cost of its own in terms of a

reduction in features and functionality. But in the same testing environment, we

should be looking at ways to save as much unused power consumption on the

Raspberry Pi as possible.

We have used an external measuring tool to get the power

consumption amount of Raspberry Pi Zero and Raspberry Pi 3 while they are

running on processing difference cryptographic algorithms. From which, we can

determine whether there are any differences between those algorithms. Then,

determine which algorithms is the best for saving power usage.

5.2. Environment setting up

5.2.1. Devices

- Raspberry Pi 3:

 + Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

 + 1GB RAM

 + Micro USB power source up to 2.5A

- Raspberry Pi Zero:

 + 1GHz, single-core CPU

 + 512MB RAM

 + Micro USB power

19

5.2.2. Power Source

- Electric potential: 220V

- Power supply unit for Raspberry Pi 3 Adapter: 2.5A – 5V

- Power supply unit for Raspberry Pi Zero: 2A – 5V

5.2.3. Measuring Unit

- Voltage measuring range from 3V ~ 20V

- Electric current range from 0A ~ 3A

5.3. Process Measuring Development

Naturally, we cannot directly measure the CPU performance and

Memory performance of the calculating process. Then, we found Gosputil, which

is a Go language library package that provide process measuring functions.

5.4. Power Measuring Development

In our process of power measurement, a testing unit is plugged

directly between power source and the devices. Because there is no suitable

method to collect and transfer the data to a log file. All the power consumption

usage is logged and calculated manually.

20

CHAPTER 6: RESULT ANALYSIS

6.1. Time of processing analysis

Using a wordlist file with 100 random generated 1024-bits

messages, we let our 2 machines Raspberry Pi 3 and Raspberry Pi Zero send and

receive the messages from and to each other, one by one. With every message sent

and received, we wrote a line on our running-time-log files. Each line indicates

how much time had been consumed to encrypt or decrypt the message. We have

run the code for 10 times, which results in a total of 60 log files.

Each log file has 100 lines indicating encryption time and 100 lines

indicating decryption time.

Having the collected data from the log files, we wrote a simple script

calculating the average time consumption of the processes. The average numbers

are calculated by adding all the lines of the log files with their specific identifiers.

After calculation, we got the data, which is suitable for us to draw

the comparison chart, shown as below:

21

Figure 5. Encrypting time comparison between algorithms on Raspberry Pi 3

Figure 6. Encrypting time comparison between algorithms on Raspberry Pi Zero

22

Figure 7. Decrypting time comparison between algorithms on Raspberry Pi 3

Figure 8. Decrypting time comparison between algorithms on Raspberry Pi Zero

23

With the data, we parsed the numbers into Highcharts – a JavaScript

based tool – to visualize the time-consumption comparison between the algorithms.

Compare to other RSA, Elliptic Curve Cryptography unexpectedly

shows that it is not faster in encryption phase. But in decryption phase, ECC

shows that it is about 2 times faster than RSA. On the other hands, ECC and

ElGamal has a quite equivalent of processing time in both encryption and

decryption phases.

On the first glance, we may see that ECC is not so effective in the

criterion of time consumption. But on the next criterion of CPU and Memory

usage, which is further described in section 6.2, it will be explained. Besides,

although the processing time is similar, comparing to ElGamal which require

much more resource for key generation, ECC is also much more effective.

6.2. CPU and memory performance analysis

Using the same method of collecting time performance data, we

have generated the log files showing the records of CPU and Memory

performance. The scripts for collecting those data are run at the same time and on

the same environment as the time measuring process. Therefore, the data can be

used for explain why ECC’s time consumptions is not the same as we have

expected.

The calculation of average CPU and Memory usage is also similar to

previous section. Having the engineered data, we, again, have Highcharts visualize

the comparison as below:

24

Figure 9. Comparison of CPU consumption during Encryption on Raspberry Pi 3

Figure 10. Comparison of CPU consumption during Decryption on Raspberry Pi 3

25

Figure 11. Comparison of CPU consumption during Encryption on Raspberry Pi Zero

Figure 12. Comparison of CPU consumption during Decryption on Raspberry Pi Zero

26

Figure 13. Comparison of Memory usage during Encryption on Raspberry Pi 3

Figure 14. Comparison of Memory usage during Decryption on Raspberry Pi 3

27

Figure 15. Comparison of Memory usage during Encryption on Raspberry Pi Zero

Figure 16. Comparison of Memory usage during Decryption on Raspberry Pi
Zero

28

As we can see, in rich resourced environment like Raspberry Pi 3,

the CPU performance of ECC and RSA is quite similar at low demand, while

ElGamal consumes a huge amount of CPU resource. As in low resourced

environment like Raspberry Pi Zero, ECC at some first operation consumes much

lower CPU resource than others. But for the later time, CPU consumption

increased and maintain at the same amount as RSA and ElGamal. This problem

may due to the overloading on low resource environment.

In the analysis of both comparison criteria: time consumption and

CPU/Memory usage, we can evaluate the ECC’s effectiveness by comparing the

total resources it consumed while processing.

Comparing to RSA, ECC have higher encrypting time but lower in

decryption which can be count as an equivalence. At the same time, we can see

that ECC uses much lower resource than RSA. So, we can see that the total

resource that ECC used is lower than RSA did. In conclusion, ECC is quite more

effective than RSA on the criteria of resource consumption.

Besides, when comparing to ElGamal, ECC shows equivalence in

both encryption and decryption time consumed but a much lower resource usage.

ElGamal also have the high resource and time demand at key generation process

as its own drawback. So, we can claim that ECC is also more effective than RSA.

Considering all off the fact, ECC beats the other algorithms on the

criteria of resource consumption.

6.3. Power consumption analysis

Using the external measurement unit connected directly between

power source and the devices, we measured and take notes for every 2 seconds

during the processing time of the devices.

29

After measuring, we can calculate the average voltage and electric

current every encrypt/decrypt phase. Then we can calculate the power usage per

second by using Ohm’s Law:

𝑃 (𝑊) = 𝑈 (𝑉) × 𝐼 (𝐴)

Table 6. Average power consumption

Algorithms Raspberry Pi 3 Raspberry Pi Zero

Idle 0.20A – 5.01V ~ 1.00W 0.17A – 5.01V ~ 0.85W

ECC 0.23A – 5.05V ~ 1.16W 0.18A – 5.05V ~ 0.91W

RSA 0.23A – 5.04V ~ 1.15W 0.19A – 5.05V ~ 0.96W

ElGamal 0.32A – 5.17V ~ 1.65W 0.26A – 5.13V ~ 1.33W

From the table, it is easy to see that the power usage of ECC and

RSA is quite similar but RSA’s is a little bit higher. Meanwhile, ElGamal’s power

usage is much higher, shows that ElGamal is not so effective when widely used.

So, in the criteria of power usage, ECC or RSA must be more

effective when used in IoT systems, which will be worldwide used in the future.

6.4. Conclusion

As IoT systems and devices sometimes have high requirements of

operating speed and small data storage, ECC, at the currently time, is the most

effective encryption algorithm should be used in these systems for their best

performance.

30

References

[1] Figure 1 - Krishna, R.R.; Priyadarshini, A.; Jha, A.V.; Appasani, B.; Srinivasulu, A.;

Bizon, N., 23 August 2021. State-of-the-Art Review on IoT Threats and Attacks:

Taxonomy, Challenges and Solutions. Retrieved from:

https://doi.org/10.3390/su13169463

[2] Sjoerd Langkemper. The Most Important Security Problems with IoT Devices.

Retrieved from: https://www.eurofins-cybersecurity.com/news/security-problems-

iot-devices

[3] Figure 2 - Nishaal J. Parmar, January 12, 2019. A Comparative Evaluation of

Algorithms in the Implementation of an Ultra-Secure Router-to-Router Key

Exchange System. Retrieved from:

https://www.hindawi.com/journals/scn/2017/1467614/

[4] Darrel Hankerson, Alfred Menezes, Scott Vanstone, 2004. Guide to Elliptic Curve

Cryptography.

