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Abstract

Falling is one of the biggest public health issues that can cause many serious
long-term repercussions for patients and their families. In this thesis, we propose an
appropriate model for fall detection using graph convolutional networks. Recently,
most problems related to human action recognition, including fall detection, can be
handled by applying the Spatial Temporal Graph Convolutional Networks model
(ST-GCN) using 2D or 3D skeletal data. We take advantage of the transfer learning
technique from the NTU RGB+D consisting of 60 daily actions to extract features for
the fall detection task efficiently. Besides, to highlight critical frames in the original
sequence, we suggest using a temporal attention module. This module consists of two
parts: (1) average global pooling, and (2) two fully connected layers to generate an
attention score for each frame. We perform experiments on two datasets, i.e., FallFree
and TST v2. This leads to a 3.12% increase in the TST dataset and a 2.67%
improvement in the FallFree dataset. Notably, with respect to FallFree, the accuracy of
the model is up to 100%.

Keywords: Fall Detection, Human Action Recognition, Spatial Temporal Graph
Convolutional Networks, Attention Mechanism
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1. Introduction

1.1. Motivation

Falling is one of the major public health problems. Each year, an estimated
684,000 people die from falls, making it the second largest cause of unintentional
injury death, after road traffic injuries. Besides, it also leads to more years of disability
in life than traffic accidents, drowning, burns, and poisoning combined [1]. Falling
accidents not only cause direct consequences for the patient but also greatly affect the
family members. To reduce and prevent falls and their related consequences, a variety
of methods have been developed to monitor, detect as soon as possible, and alert
related personnel of patients timely. Especially for families who often have elderly
people or children at home alone, fall detection becomes an important task in both
healthcare and daily life.

1.2. Related work

1.2.1. Fall detection & Human action recognition

It can be seen that much research and application about fall detection has been
performed and has obtained good results. The three main types of fall detection
methods are video-based, ambience device-based, and wearable device-based. In the
wearable device-based approach, almost any part of the human body can have the
sensors mounted, while in the ambient device-based method, the sensors are installed
in the living space of the person being followed, such as walls, floors, beds, etc. Take
the Apple watch as an example, from series 4, Apple gathered data from 2,500 people
wearing this product and had more than 250,000 days of data for fall detection [2].
The main sensors applied to detect falls are the accelerometer and the gyroscope. The
accelerometer can measure a higher amount of gravity forces (16Gs - 32Gs) and the
gyroscope turned on 24/7 can measure the rate of rotation, and visualize the different
ways it does this through three axes in space. Figure 1 is an example of fall detection
in Apple Watch, if a fall is detected, it first confirms the patient’s condition before
making an emergency call. However, not everyone has the condition and feels
comfortable when wearing devices all the time. Hence, the video-based approach,
including RGB-based (raw video) and skeleton-based, from indoor cameras for fall
detection applications is being widely developed. When compared to the RGB-based
approach, the skeleton-based method has the huge advantage of not only
computational cost but also not being affected by changes in the surrounding
environment. Extracting skeleton points from video helps to recognize human action
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in general and to detect falls in particular. Therefore, it is possible to take advantage of
the research results on human action recognition in the fall detection problem.

Figure 1. An example of fall detection on the Apple Watch [2].

Recently, there have been leaps and bounds in human action recognition
research from CNN, and RNN to graph convolutional networks (GCN). In this section,
papers related to GCN will be focused on reviewing. GCN includes two types: spectral
and spatial. While spectral GCN transforms graphs into the spectrum domain and
employs the graph Fourier transform, spatial GCN gathers information from nearby
nodes [3]. In 2018, Yan et al. presented a “Spatio-temporal graph convolution
network” (ST-GCN) that is much more advanced than old methods by learning both
the space and time in the data. Figure 2 displays the pipeline of the ST-GCN model
presented in [4] which consists of the graph representation of the human body and
ST-GCN blocks to extract spatial and temporal features. Each human skeleton's
spatial characteristics are extracted using a GCN, and the same joint's continuous time
edge is subjected to a time convolution network [4]. Original ST-GCN is created by
ST-GCN blocks that alternately apply temporal and spatial graph convolutions to a
skeleton graph [3]. Finally, the action class is predicted by fully connected layers and a
classifier using softmax.
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Figure 2. Example of a system using ST-GCN to recognize human action through skeleton-based [5].

In the last few years, many researchers have made great improvements based
on ST-GCN. An impressive research was adaptive graph convolution neural networks
(AGCN) by Wang et al. [6]. Their GCN has some improvements such as constructing
a unique graph Laplacian, learning distance metric for graph update, feature
embedding in convolution, accept flexible graph inputs. Xu et al. proposed the
“Multi-scale skeleton adaptive weighted graph convolution networks” (MS-AWGCN)
that establish a model complete understanding of the relationships between human
motion with a fresh depiction of the human body: divided into ten parts, each of them
is extracted spatial and temporal feature by using ST-GCN, finally all features are
integrated with the feature of the body skeleton. Then, for each sampling strategy, they
apply a learning-weighted strategy that enhances the features while combining [7].
However, it still has the challenge of keeping stable or raising the accuracy and
simultaneously simplifying the GCN model.

With respect to the fall detection problem, Oussema Keskes et al. introduced a
general “Vision-based fall detection using ST-GCN” [8]. They encoded temporal
information and used ST-GCN to manage the spatial arrangement and temporal
dynamics of joints. Additionally, they employed the transfer learning technique to aid
the model in utilizing features extracted from the task of human action recognition,
which is related to fall detection. The system showed effectiveness when having good
performance on 2 fall datasets with the accuracy of some experiments up to 100%.
Figure 3 depicts an application of real-time fall detection using deep learning and
advanced image processing techniques with an accuracy of 85% [9].
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Figure 3. An 85% accurate video analytics solution for managing slip and fall accidents was produced
by Abto Software [9].

1.2.2. Attention mechanism

During the research process, we found out that the attention mechanism may be
useful for our problem of fall detection. The method that shifts the focus to the most
critical area of   the scene while simultaneously blurring the surrounding parts is called
the attention mechanism. The human visual processing system serves as an inspiration
for this method. Figure 4 briefly describes how a human’s brain and eyes work in
reality, for example, when you read a book. Your brain directs attention to the small
region you are currently reading and ignores the other parts.

Figure 4. An example of the human visual processing system [10].
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Researchers have taken advantage of this mechanism in many problems that
have sequence data such as machine translation, image captioning, human action
recognition, etc. The attention mechanism helps the model to assign different weights
for each input to represent different levels of importance of the input sequences as
illustrated in Figure 5. Especially, for fall detection problems where some critical
frames have abrupt changes in action [5], it is expected that the attention mechanism
aids the model in reasonably weighing the sequence of skeletal frames.

Figure 5. An example of assigning different weights to each input in a data sequence [10].

Recently, attention modules have received extensive research and have been
widely used in many applications. Attention mechanisms for computer vision can be
classified as soft attention and hard attention [11]. Figure 6 shows the differences
between soft attention and hard attention. Which, soft attention computes a weighted
input from input features so that it is a differentiable function, and the weights of the
network can learn from forward and backward propagation [12]. Hard attention, on the
other hand, Xu et al. [11] use attention scores to select a single feature such as via
argmax function, which makes it not differentiable, and therefore, it is often supported
by using reinforcement learning. Employing hard attention, Mnih et al. [13] presented
the recurrent attention mechanism (RAM) that combines the RNN and reinforcement
learning techniques. RAM takes a glimpse window as its input, then via the network, it
selects the next location to focus on (important regions).
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Figure 6. Examples of attention: (a) soft attention that calculates context vector ( ) as the weighted𝑧
sum of all input vectors ( ), (b) hard attention that uses sample function to select context vector𝑥

𝑖

from all input vectors [14].

With respect to soft attention, there are three well-known types, i.e., channel
attention, spatial attention, and temporal attention [12, 15]. In image processing, each
channel contains specific information about distinct objects. Via CNN, the number of
channels may change in every layer and generate new information. A novel model
called SEnet (squeeze and excitation networks) is presented by Hu et al. [16] to
highlight channels we need to pay attention. First, the input feature is fed into a
squeeze block to extract global features by using global average pooling (GAP). Then,
through fully connected layers (FC) in the excitation block, the model then generates a
weight for each channel.

However, channel attention usually ignores some important features of spatial
attention. For that reason, mixed attention is now studied and applied in many
computer vision applications. For example, in [17], Woo et al. introduce the hybrid of
spatial and channel attention. They exploit the SE block for channel attention by
adding a max pooling (MP) beside the GAP in the original work. Then, for spatial
attention, they also use GAP and MP along the channel axis to highlight informative
regions [17]. In another case, a mix of spatial and temporal attention is proposed in an
"End-to-end spatio-temporal attention model for human action recognition from
skeleton data" [18]. They develop three main modules, including a spatial attention
block to learn essential features of human joints, an RNN block with the LSTM layer,
and finally, a temporal attention block to stay focused on key frames for action
recognition. Recently, Zhu et al. [5] used the collaboration of channel attention and
frame attention (temporal attention). They are supposed to learn the correlations
among channels in the time dimension and extract information about key frames by
adding a squeeze-and-excitation (SE) block with the temporal gated unit and attention
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block, respectively. We can apply that idea to our problem of fall detection, which
needs to pay attention to frames having significant changes to recognize the action [5].

In summary, both fields of research show good performance and potential for
the problem of fall detection. However, there is not much existing research that
combines these two techniques on skeletal data, especially the temporal attention
mechanism and sees how it works. Thus, we are trying to integrate human action
recognition using ST-GCN with a transfer learning technique and attention mechanism
to extract crucial features from skeleton data.

1.3. Contribution

The main contribution of this thesis is to build a model to find an appropriate
method for the fall detection problem. The combination of ST-GCN with the temporal
attention mechanism was applied, in which ST-GCN automatically learns not only
spatial but also temporal patterns from skeletal data while the attention mechanism
helps to improve the extraction of spatio-temporal features of a skeleton sequence by
considering different importance levels of frames.

As an additional contribution, the transfer learning technique is applied to
leverage the available knowledge in extracting features from human action recognition
tasks to help with fall detection problems. Therefore, in our proposed method, the
learned knowledge is employed so that there is no need to retrain from scratch with
new data and still provide high accuracy.

We tested our recommended model to verify its performance. The study
experimented on two fall datasets, TST v2 and FallFree, and then compared with
several methods for the best results with up to 100% accuracy.

2. Methodology

2.1. Overview pipeline

In this thesis, we propose the following pipeline for our problem of fall
detection. Figure 7 illustrates the pipeline's two phases: train and fine-tune on the fall
datasets based on the pre-trained ST-GCN model; apply temporal attention and
determine the output by the classifier layer.
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Figure 7. The structure of our proposed fall detection model.

Our proposal method concentrates on experimenting with the efficiency of the
temporal module when combined with the ST-GCN model for fall detection. In the
next sections, we will explain the details of each step more clearly.

2.2. Spatial temporal graph convolutional networks

The key idea behind ST-GCN is to model the spatiotemporal relationships
between various components of the input data by means of graph convolutional neural
networks (GCNs). Each human joint in a skeleton sequence is typically represented by
2D or 3D coordinates in each frame. In this study, we create hierarchical
representations of the skeletal sequences using the spatial-temporal graph with the
input of , where is the batch size, denotes the number of𝑁 ×  𝐶 × 𝑇 × 𝑉 × 𝑀 𝑁 𝐶
channels, is the length of sequences (frames), is the number of graph nodes, and𝑇 𝑉

indicates the number of instances. In [4], Yan et al. used a skeleton sequence with𝑀 𝑁
joints and frames that has both intra-body connectivities referring to the𝑇 (𝐸

𝑆
)

relationships between different joints in the same frame and inter-frame connectivity
referring to the relationships between the joint positions in different frames. They(𝐸

𝐹
)

constructed an undirected spatial-temporal graph , in particular,𝐺 = (𝑉,  𝐸) 𝑉
denoting the set including all joints in a skeleton sequence:

and edge set consists of two parts: 1)𝑉 = {𝑣
𝑡𝑖

 | 𝑡 = 1,  …,  𝑇;  𝑖 = 1,  …,  𝑁} 𝐸

, where is the group of the human body's naturally𝐸
𝑆

= {𝑣
𝑡𝑖

, 𝑣
𝑡𝑗

 | (𝑖,  𝑗) ∈  𝐻} 𝐻

linked joint pairs; and 2) .𝐸
𝐹

= {𝑣
𝑡𝑖

𝑣
(𝑡+1)𝑖

}

First, the GCN is sort of different from the normal CNN where we just use
weights of a kernel to map with the fixed neighbors of the current pixel. In GCN, for
each node, it is necessary to define its neighbor nodes and label the weight coefficient
for each of them. As can be seen in Figure 8, the authors proposed 3 methods for the
graph labeling process, i.e., uni-labeling partition, distance partition, and spatial
configuration partition. In this work, they used just a 1-neighbor set of joint nodes for
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each current node to convolve. For each neighbor node around the root , they define𝑣
𝑡𝑗

function to map it with a unique label.𝑙
𝑡𝑖

Figure 8. (a) an illustration of an input skeleton frame; (b) Uni-labeling partition;
(c) Distance partitioning; (d) Spatial configuration partitioning [4].

In the uni-labeling partition, all nodes have the same label 𝑙
𝑡𝑖

(𝑣
𝑡𝑗

) =  0

. In distance partition, for the root node, and 1 for the neighbor∀𝑖,  𝑗 ∈ 𝑉  𝑙
𝑡𝑖

(𝑣
𝑡𝑗

) =  0

nodes. Finally is spatial configuration partition, because the body skeleton is restricted
in spatial, they may use this special spatial arrangement in the partitioning process.
Yan et al. come up with a strategy to split the neighbor set into three groups: The root
node itself, the centripetal group, which includes the adjacent node positioned closer
to the skeleton's gravity center, and the centrifugal group. Note that the gravity center
is defined as the average coordinate of all joints at a frame. Properly, the nodes are
labeled by the distance to the skeleton gravity and we have:

Based on these partitioning strategies, the GCN is implemented to extract from
both temporal and spatial features. Then, extracted features are provided into the
classifier layer to predict the class of action.

2.3. The pre-trained ST-GCN model

Recently, the problem of human action recognition has become more popular
and the ST-GCN model applied in almost articles can prove its outstanding
performance. Therefore, many studies were conducted and datasets were introduced to
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solve that problem. In [4], Yan et al. provide the pre-trained ST-GCN model on some
datasets, so Keskes et al. [8] suggested a method that can exploit the huge data for
human action recognition, including fall samples, into the problem of fall detection
and demonstrated that it is effective on FallFree and TST v2 dataset. Figure 9
describes the components of the ST-GCN model which is a list of 10 layers of
ST-GCN units and a fully connected layer for a classifier. According to [8], they froze
the first 9 layers of the second component (ST-GCN networks) and changed the
number of classes in the output layers to 2 (for fall and no fall). The data was split
based on the cross-subject evaluation method. Inspired by that idea, we decide to
apply the pre-trained ST-GCN model on the NTU RGB+D dataset [4], then carried out
new training and fine-tuning with TST v2 and FallFree datasets as the first step in our
pipeline for detecting falls.

Figure 9. ST-GCN model architecture [8].

2.4. Attention mechanism

As noted above, not all frames have the same level of importance when
recognizing human actions. In particular, in fall detection, some frames have sudden
changes in movement, and it is important to pay more attention to those frames.
Therefore, inspired by a “weakly-supervised temporal attention module” in [19], we
propose to involve a temporal attention mechanism in our problem to highlight critical
frames and to detect falls more accurately. As depicted in Figure 10, our temporal
attention module includes an average pooling layer and two fully connected layers
ending up with the Softmax activation function. The average pooling layer takes an
input of the size and compresses and extracts global information𝑁 × 𝐶 × 𝑇 × 𝑉
from each frame into the size of . This layer also helps to downsize𝑁 × 𝑇 × 1 × 1
the number of parameters when fitting in the fully connected layers [5].

Two fully connected layers generate features to learn the appropriate weights𝑇
of each input frame [19]. Then, the output of the second FC layer is applied softmax to
compute a distribution of weights with the same shape. In the original model [19], the
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authors use Sigmoid to calculate the weight matrix and exploit it as the relationship
between frames. However, if very large or small values appear frequently in the data,
sigmoid then returns all weights of approximately 1 or 0. This will bring us senseless
value for emphasizing essential frames, so we decide to employ softmax instead. The
distribution of weights (or attention scores) of each frame is mapped into the range (0,
1) to show different levels of importance in the whole frame sequence. We multiply
this weight distribution with the initial input to adjust attention scores to each frame.
Finally, it is scaled by factor and added back to the input information.α

Figure 10. Structure of the temporal attention module.

3. Experiment

In this section, two fall detection datasets TST v2 [20] and FallFree [21] are
used to train and evaluate the model. The pre-trained ST-GCN model on the NTU
RGB+D dataset [4] was utilized to extract features for the specific task of fall
detection more efficiently.
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3.1. Datasets & Evaluation metrics

3.1.1. Datasets

Regarding human action recognition, the most common dataset may include the
NTU RGB+D [22]. It covers 60 action classes (40 everyday acts, 11 mutual actions,
and 9 health-related actions) and 56,880 video samples of 40 distinct subjects. The
dataset comprises infrared videos, RGB videos, 3D skeletal data of 25 main body
joints that can be seen in Figure 11, and depth map sequences for each sample. All
samples are captured by using three Kinetics cameras concurrently at different
horizontal angles, i.e., - , respectively. For evaluation, they define 2 types45° 0°,  45°
of action classification criteria. The first is the cross-subject evaluation in which the
training and test set is split by the subject’s number. The second one is the cross-view
evaluation, in which the training set includes samples of cameras 2 and 3 while the test
set uses data that is recorded in camera 1.

Figure 11. Illustration of 25 body joints in the 3D skeleton data [22].

The TST fall detection dataset v2 [20] was published in 2015 for the specific
task of fall detection. The data was gathered by using the Microsoft Kinect v2 camera
with the inertial measurement unit (IMU), the device mounted on the actor’s waist and
wrist. It provides three kinds of data: depth, skeletal, and acceleration data. This
dataset is split into two groups: activities of daily living (ADL) and the fall. There are
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four actions in each category. Sitting, grasping, walking, and laying belong to the ADL
category, whereas the front fall, the backward fall, the lateral fall, and the ends-up
sitting fall in the fall category. Each action was simulated by 11 actors between the
ages of 22 and 39 with heights ranging from 1.62 to 1.97 meters. They performed all
actions three times. Consequently, the total number of samples in this dataset is 264,
each category is composed of 132 samples.

Alzahrani et al. [21] introduced the FallFree dataset in 2017. They also use a
Microsoft Kinect v2 camera to collect data. The data videos are provided as extended
event files (XEF). There are five types of data stored in FallFree that are color,
skeleton, depth, infrared, and body index. The dataset contains 79 actions equivalent
to 391 samples. True fall, pseudo fall, and ADL are the three major categories
corresponding with 208, 115, and 68 samples. First, the true fall category is made up
of forward, backward, and sideways falls. Second, falls with recovery or falls due to
syncope are included in the pseudo-fall category. A fall with recovery is the act of a
person losing balance, then obtaining balance, whereas a fall due to syncope is when a
person becomes unbalanced and tries to cling to the wall. And the last category, ADL,
is composed of daily life movements. Two actors performed the actions in three
separate rooms with dissimilar lighting prerequisites. They were 30 and 35 years old
with a height of 1.50 and 1.68 meters respectively. The first actor repeated each action
four times while the other performed most of the actions only once.

Table 1. Descriptions of the datasets

Dataset # Actions # Subjects # Fall samples # Samples Publish year

NTU RGB+D 60 40 276 56,880 2016

TST v2 5 11 132 264 2015

FallFree 10 2 208 391 2017

This thesis only uses 3D skeletal data of the dataset for training and testing due
to the advantages of storage capacity and training time. These skeleton sequences are
all provided by the authors, so extracting the skeletons again from the raw video is not
necessary. Regardless, the FallFree dataset needs an additional tool to read the XEF
file format and transform it into a skeleton file. In [23], Issac introduces a
KineticXEFTools library built-in .NET framework. It supplies two Visual Studio
solutions, i.e., KineticXEFTools solution for reading XEF files and XEFExtract
solution to extract desirable formats including body skeleton files.
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3.1.2. Evaluation metrics

We use the following typical metrics used for evaluating binary classifiers to
the fall detection problem:

Accuracy: describes the percentage of rightly predicted samples out of the total
number of samples.

Sensitivity: measures the rate of correctly predicting positive samples across all
samples belonging to the positive group.

Specificity: measures the ratio of rightly predicting negative samples to all actually
negative samples.

False positive rate (FPR): describes the rate of incorrectly predicted samples from
actual negative to positive over the total number of actual negative samples.

F1-score: is the harmonic mean between precision and recall.

ROC AUC: describes the area under the ROC curve.

where:

TP: stands for true positive, meaning the prediction is "fall", the label is also "fall".
FP: stands for false positive, meaning the prediction is "fall" but the label is "no fall".
TN: stands for true negative, meaning the prediction is "no fall", the label is "no fall".
FN: stands for false negative, meaning the prediction is "no fall" but the label is "fall".

3.2. Experiment settings

Our research is implemented in Python and PyTorch frameworks. We perform
experiments on different machines with 2 types of NVIDIA cards: Geforce GTX 1650
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and Geforce MX130. The training process is applied by following steps. First, we
pre-process data and set the maximum number of frames to 300, i.e., zero-padding
when the original video has less than 300 frames while with videos having more than
300, we remove redundant frames (from the end of videos). For better performance,
we apply the pre-trained model provided in [4] to two datasets for fall detection. Then,
we perform the ST-GCN module to extract the temporal and spatial features
simultaneously. After that, extracted features are put into the temporal attention
module to highlight critical frames in order to detect falls. The kernel size for the
ST-GCN is set to 9, and other configurations are the same as in [8]. The factor in theα
attention module, via experiments, is set to 0.5 for the highest result. Due to the limit
of GPU RAM, we train in 50 epochs and the batch size is 8. Finally, to enhance the
model’s performance, we adjust the SGD optimizer's base learning rate to 0.1.

3.3. Results & Analysis

Our model was carried out through two experiments that correspond with two
datasets. The TST v2 dataset was split into two subsets. The training set contains
videos that were performed by 7 actors: 1, 3, 5, 7, 9, 10, and 11. The videos of the 4
remaining actors were a test set. The FallFree data videos were performed by two
people. While the first person simulated all actions four times, the other did once. Due
to its characteristics, the videos of the first and the second subject were used for
training and testing, respectively.

The first experiment gave acceptable results with the TST v2 dataset. The
values of accuracy, sensitivity, specificity, FPR, F1-score, and ROC AUC were
acquired at 89.58%, 97.22%, 85%, 12.5%, 87.5%, and 91.11%, respectively. The
second experiment had good results when using the FallFree dataset. The achieved
results were 100% accuracy, 100% sensitivity, 100% specificity, 0% FPR, 100%
F1-score, and 100% ROC AUC.

Table 2. Results of our proposed method on two fall datasets

Dataset Accuracy Sensitivity Specificity FPR F1-score ROC AUC

TST v2 89.58% 97.22% 85% 12.5% 87.5% 91.11%

FallFree 100% 100% 100% 0% 100% 100%
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Our proposed method was compared with several methods in Tables 3 and 4,
presenting the reached results on the TST v2 and FallFree dataset, respectively. Both
used datasets store some kind of data such as RGB videos, depth frames, acceleration
streams, skeleton joints, infrared images, etc. Nevertheless, we only used skeleton data
for our method, hence we decided to compare with methods that also used skeleton
instead of the other data types of the two fall datasets.

Table 3. Comparison of our method and others on the TST v2 dataset

Method Algorithms Evaluation method Accuracy

[24] SVM 2/3 of data for training,
1/3 of data for testing

92.05%

[25] SVM 70% of data for training,
30% of data for testing

93.56%

[26] SVM and CUSUM Leave-one-person-out 91.7%

[8] Pre-trained ST-GCN Cross subject 100%

[8]* Pre-trained ST-GCN Cross subject 86.46%

Our method Pre-trained ST-GCN and
attention mechanism

Cross subject 89.58%

* The result we obtained after implementing the method in [8]

On the TST v2 dataset, we compare our method with four others. As can be
seen in Table 3, our approach is inferior to others. We applied the idea of using a
pre-trained ST-GCN model in [8] to our method. However, in the process of
implementing this idea, we did not achieve the results they published on the TST v2
dataset (this did not happen with the FallFree dataset). Compared to their 100%
accuracy, we only received an accuracy of 86.46%. Their study does not mention how
the datasets were pre-processed. Thus, discrepancies between our results and theirs
may occur due to the way we pre-processed data was not the same as they did. After
combining with the attention mechanism we proposed, the accuracy of our model
increased by 3.12%.

The FallFree dataset has been public since 2017, thus the number of studies that
utilized it has not been large. Table 4 compares our method with two models on the
FallFree dataset. Compared to the model in [27], our accuracy is 0.5% higher. Our
approach adopted the idea of [8] that uses the pre-trained ST-GCN model, in addition
to the attention mechanism. It resulted in our model giving 2.67% better accuracy.
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Table 4. Comparison of our method and others on the FallFree dataset

Method Algorithms Evaluation method Accuracy

[27] NCA for feature selection
and RF classifier

70% of data for training,
30% of data for testing

99.5%

[8] Pre-trained ST-GCN Cross subject 97.33%

Our method Pre-trained ST-GCN and
attention mechanism

Cross subject 100%

In Figure 12, which goes from frame 20 to frame 45, the areas that have
brighter colors mean “when to pay attention”, since, in those frames, changes in
movement concur very quickly. The falling action is fast and can last just 1 second, so
the number of frames to focus on is about 30. Frames before the fall starts and after it
ends have little differences, thus acquiring a lower score and dark color in the
distribution map.

Figure 12. The falling process and the distribution of attention weights for a 75-frame sequence.
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(a) (b)

Figure 13. The training and validation loss graph in cases: (a) without and (b) with our proposed
attention mechanism on the FallFree dataset.

As shown in Figure 13, the “distance” between the blue line and orange line in
the case with an attention mechanism is lower than in the case without an attention
mechanism. In Figure 13(b), the training loss in the behind epochs is more “stable”
than the remaining case. In Figure 13(a), the validation loss values are approximately
around 0.1 in later epochs, whereas in Figure 13(b), the entire orange line is
completely under the 0.1 value. It can be seen that the attention technique reduces loss
and makes the learning process more effective.

4. Conclusion & Future Work

This thesis proposes a model for fall detection by combining the pre-trained
ST-GCN model and the temporal attention technique. Using the pre-trained model
helps us gain knowledge of extracting features in both spatial and temporal
dimensions from human action recognition task. Besides, the temporal attention
mechanism enhances the model’s performance by highlighting important frames in a
video. Experiment results demonstrate the effectiveness of our proposed method when
performing on the TST v2 and FallFree datasets. Especially in the experiment with the
FallFree dataset, the result is extremely good when obtaining an accuracy of 100%. It
also leads to over a 3% improvement in the TST v2 dataset.

However, our proposed method’s result on the TST v2 dataset is currently fairly
poor compared to other methods. In the future, we are trying to figure out the causes
and make improvements to this dataset. Moreover, we also want to do more
experiments on different kinds of attention such as spatial attention, channel attention,
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etc., and put them all together to see their effectiveness for our problem. Finally, it is
strongly essential to detect falls as soon as possible, hence, our next goal is to develop
the current model into a real-time fall detection application that can detect falls timely
and send an urgent warning to their relatives.
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