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ABSTRACT

Cluster-GCN is one of the effective methods in studying the scalability of Graph Neural
Networks. The idea of this approach is to use METIS community detection algorithm to split the
graph into several sub-graphs that are small enough to fit into a common GPU. However, METIS
algorithm still has some limitations. Therefore, this project proposes Leiden algorithm as an
alternative, which was scientifically published 21 years after METIS’s and claimed to be powerful
in identifying communities in networks. However, the common feature of community detection
algorithms makes nodes in the same community tend to be similar. For that reason, this project
also proposes to add constraints such as minimum/maximum community size and overlapping
communities to increase community diversity, thereby improving performance of Cluster-GCN by
0.98% ROC-AUC score on a single 8GB GPU device.

Keywords: Graph Convolution Network, Graph clustering, Leiden algorithm, Graph mining,
Constrained clustering
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Chapter 1 Introduction

1.1. Problem &Motivation
1.1.1. Graph Convolutional Network approach

Graph Convolutional Networks (GCNs) [1] are receiving interest from the scientific community, as
illustrated by their widespread graph-based applications in a variety of type domains, such as node
classification, link prediction, and recommender system [2]. The advantage of GCNs is their ability to
simultaneously capture node/edge representations and graph relational structure. Also, the layer-wise
linear architecture of GCNs allows the model to learn richer and more powerful node/edge
representations by stacking multiple GCN layers. Researchers have shown that adding depth to GCNs
results in state-of-the-art performance [3, 4, 5]. Still, adding more layers proportionally increases
runtime and memory usage. This is considered to be one of the major limitations of the GCNs
architecture - the trade-off between the number of layers and computational resources. Furthermore,
handling large-scale graphs by advanced Graph Convolutional Networks (GCNs) architecture is a
challenging task since prediction on each node is processed with regard to information from many
other nodes [2, 3, 6, 7]. Thus, effective training these models at scale requires sophisticated
algorithms that are well beyond standard SGD.

1.1.2. GCN for large datasets

The original GCNs architecture operates with a full batch training method, which may require a large
storage and sometimes can lead to memory overflow. To overcome this burden, several GCNs
architectures based on node-wise and layer-wise sampling have been proposed [3, 6, 7]. Despite
observed improvements, these methods are still affected by neighborhood expansion problem and the
demanding memory for deeper networks. Notably, Cluster-GCN [2] is proposed to tackle two
aforementioned issues with another approach. To be more specific, before passing the entire graph to
the device for training, a clustering algorithm/community detection (e.g. METIS [8]) is used to split a
graph into several clusters, then, each cluster forms a subgraph before fitting into processing units for
training. By using this strategy, the amount of information used to train in each iteration is much
smaller than the entire graph, which not only leads to a significant reduction in runtime and memory
but also achieving outstanding performance on several large datasets such as Reddit and PPI [2].
Furthermore, those findings have inspired more deep GCN-based architecture designs to handle large
datasets, take DeeperGCN [4], DCBGCN [5], RevGNN-Deep [9] and HC-GCN [10] as examples.

1.1.3. Motivation

Looking at the number of citations since its publication in 2019, the Cluster-GCN architecture [2] is
undoubtedly a notable variant of GCN. This architecture has laid the foundation for advanced
methods on Graph Learning [4, 5, 9, 10]. In addition to that, a good community detection algorithm
such as METIS [8], Louvain [11], Leiden [12] can boost the performance of the model due to less
between-partition links removal [2]. This motivates us to deep dive into graph community detection
algorithms to see whether changing clustering algorithms can help the model to improve further or
not. Furthermore, community detection in general leads to communities with nodes with similar
characteristics. Consequently, when applied to Cluster-GCN, it leads to skew node distribution. It
thus encourages us to study on adding constraints such as overlapping communities in order to
balance these distributions with the belief that it may increase the convergence speed or even increase
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performance of the model.

1.2. Related works

1.2.1. Graph Neural Networks (GNNs)

Graph Neural Network models have been studied since 2014; however, their drawback stems from
the specific approach based on Spectral Graph Neural Network [13, 14]. Originally, GNNs utilize
eigen-decomposition, eigenvector, and eigenvalues, which result in high computational cost
proportional to the size of the graphs. To overcome this problem, Kipf & Welling bridged the gap
between “spectral” and “spatial”' GNNs and proposed GCN architecture [1]. with the idea to extract
node embeddings based on their neighbors. Since then, GCN has inspired many researchers and
opened up applications in a variety of domains. Notably, some adaptations of GCN reach the pinnacle
of different benchmark dataset [2, 3, 4, 6].

Graph Convolutional Networks (GCNs).

Graph Convolutional Networks are considered as one of the basic Graph Neural Network variants.
This section provides understanding of GCN’s mechanisms developed by Kipf & Welling.

Definition. Most GCNs variants share the general architecture. Given a graph which is𝓖 = 𝓥,  𝓔{ }
represented by:

● A node features matrix X, where is the number of nodes in graph , 𝐷 is𝑁 × 𝐷 𝑁 = ⏐𝓥⏐ 𝓖
feature dimension. Each row 𝔁𝓲 is a 𝐷 dimensions array represent the feature of node 𝓲.

● An adjacency matrix A, which is a graph structure description in matrix form, or or an edge
index sparse matrix with values indicating non-zero value in the adjacency matrix

The objective of GCN is to learn the representation of the individual node through its neighbors.
Therefore, the dimension of the output matrix Z is corresponding to the number of nodes and
embedding size, which is a matrix. These embeddings represent nodes in the graph and can𝑁 × 𝐸
be further processed to deal with a specific problem such as node, edge, and graph properties
prediction.

Propagation. In general, a deep Neural Network layer can be represented as a nonlinear function:

𝐇(𝑙+1) = 𝑓 𝐇(𝑙), 𝐀( ) (1.1)

In GCNs, and , where L is the number of layers. With the idea of learning node𝐇(0) = 𝐗 𝐇(𝐿) = 𝐙
features through their neighbors, the general propagate function of GCNs can be written as:

𝑓 𝐇(𝑙), 𝐀( ) =  σ 𝐀𝐇(𝑙)𝐖(𝑙)( ) (1.2)

where denotes a nonlinear activation function and is the trainable weight matrix of the -thσ .( ) 𝐖(𝑙) 𝑙
layer.

However, there are two limitations of this simple version of GCNs:

● Firstly, when multiplicated with A, the embedding of each node’s entire neighbors is
summed up together but not the embedding of that node. Kipf & Welling [1] address this by
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adding self-connection for every node in the graph:

𝐀
~

= 𝐀 + 𝐈
𝑛 (1.3)

where is the adjacency matrix of the graph 𝓖 with added self-connections and 𝐈𝑛 is the𝐀
~

identity matrix.

● Secondly, by summing up neighbors embedding, the node feature of each node is then
scaled by the number of its neighbors. In other words, the node features are not normalized,
which affects convergence speed and performance of GCNs. Dealing with this problem,
Kipf & Welling also apply symmetric normalization as follows:

𝐀' = 𝐃
~− 1

2
𝐀
~

𝐃
~− 1

2
(1.4)

where is the degree matrix that .𝐃
~

𝐃
~

𝑖𝑖
=

𝑗
∑ 𝐀

~
𝑖𝑗

Considering equation (1.1), (1.2), (1.3) and (1.4) together, the authors [1] introduce propagation rule
for GCNs architecture:

𝐇(𝑙+1) = 𝑓 𝐇(𝑙), 𝐀( ) = σ 𝐀'𝐇(𝑙)𝐖(𝑙)( ) (1.5)

Layer-wise linear model. A deep Neural Network based on GCNs can be built by stacking multiple
layers in the form of equation (1.5). For instance, Figure 1 gives an example of a 1-layer GCNs: after
the propagation is performed, each node contains information of itself and information of its
neighbor. If another layer GCNs is added, each node holding the information of its neighbors is
aggregated with its neighboring nodes - which also contain their neighbors information.
Understandably, after n layers of GCN, each node contains the information of 1-hop to n-hop
neighborhoods. Nonetheless, for most of the real-world dataset, the entire graph can be extracted with
less than 8 layers GCN, which makes the aggregation less meaningful [15]. To clarify the effect of
the number of layers on GCNs architecture, Kipf & Welling [1] perform some experiments on the
number of GCNs and the best results are obtained with 2-3 layers, the model tends to be worse when
the number of layers is more than 8 layers.

Limitation of GCNs. Considering the scale of real-world data, GCNs can suffer from slow
convergence or even the out-of-memory issue [1, 2, 3]. One of the factors leading to the memory
overflow of GCNs is the full-batch gradient descent, which can observe a sharp growth in memory
consumption during the training process [1]. Another reason for the same problem is the layer-wise
linear model architecture. Understandably, with L layers, GCNs need to store all L-hop neighbors
information for each node separately, causing exponential complexity growth corresponding to the
number of layers [1, 2, 3].
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Layer 3

Layer 2

Layer 1

Initial

Figure 1: Propagation of GCN. Red node is the starting node, blue node indicates
1-hop neighborhood, orange is 2-hop neighborhood and green is 3-hop
neighborhood.

GCN with node-wise and layer-wise sampling methodology.

Sampling in GCN. One of the intuitive ways to solve the memory issues in GCNs is sampling.
Instead of using the whole graph , some sampling method can be applied get a smaller𝓖 = 𝓥,  𝓔{ }
graph (where , and ), which is small enough to fit into memory𝓖' = 𝓥',  𝓔'{ } 𝓖’ ⊆ 𝓖 𝓥’ ⊆ 𝓥 𝓔’ ⊆ 𝓔
for training. Moreover, with this strategy, GCN can be trained using mini-batch gradient descent
instead of full-batch, which is one of the reasons that lead to out-of-memory issues in GCNs. The
above strengths of sampling have attracted a great deal of attention from researchers in the study of
optimal sampling methods for GCNs architectures [2, 3, 6, 7].

Node-wise sampling architecture. One major problem of full-batch gradient descent in GCNs is the
expansion of neighbors information layer by layer. Therefore, GraphSAGE [3] proposed to use
mini-batch gradient descent. At each training iteration, only a subset is used for computed𝓥’ ⊆ 𝓥
propagation, which significantly reduces the size of graphs. However, the number of sampled nodes
grows exponentially if all the neighbors are sampled at each layer, leading to out-of-memory issues.
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To tackle these problems, GraphSAGE used a fixed-size neighbor sampling strategy. Specifically,
instead of using the entire neighbor set, at each layer, a fixed-size of neighbors are sampled for
computing propagation. With these strategy, the memory complexity is reduced with scale from

to where 𝑘 is the size of sampled neighbor and is the set of node ’s⏐𝓝(𝑣)⏐𝐿 𝑘𝐿 𝓝(𝑣) 𝑣
neighborhood. However, the neighbor’s size is reduced in a random manner that leads to bias
sampling and increasing in variance [7]. Therefore, to further improve node-wise sampling from [3],

VR-GCN [7] proposed Control variance base estimator, which maintains historical embeddings 𝐡
𝑣

(𝑙)

as an affordable approximation to reduce variance during sampling. Specifically, each time

embedding of node , is computed, the historical embedding is updated and expect to be the𝑣 𝐡
𝑣
(𝑙) 𝐡

𝑣

(𝑙)

same as if the model's weights do not change too fast. The propagation of VR-GCN can be𝐡
𝑣
(𝑙)

defined as:

𝐇(𝑙+1) = σ 𝐀'(𝑙) 𝐇(𝑙) − 𝐇
(𝑙)( )+ 𝐀𝐇(𝑙)( )𝐖(𝑙)

(1.6)

where is the -th layer sampled symmetric normalized adjacency matrix, is the the node𝐀'(𝑙) 𝑙 𝐇(𝑙)

embedding at the -th layer and is the stack of the historical embeddings. With𝑙 𝐇
(𝑙)

= 𝐡
1

(𝑙)
,  ...  , 𝐡

𝑁

(𝑙){ }
Control variance base estimator, VR-GCN can successfully reduce neighborhood’s sampling size to

while keeping acceptable performance [2].𝑘 = 2

Layer-wise sampling architecture. Another sampling method that is also noticed by researchers is
layer-wise sampling, with the representation of FastGCN [6]. In this architecture, the authors address
the out-of-memory training issues by assuming the input graph is an induced subgraph made of
vertices that are i.i.d. sampled from a possibly infinite graph under some probability [16].
Specifically, FastGCN introduces probability measures for each node in the graph, which turn graph
convolution perspective into integral transform (Figure 2). With this importance sampling strategy,
FastGCN can perform sampling for each layer independently while keeping the probability the same.
Furthermore, [6] state that the implementation of stochastic gradient descent is according to the
additivity of the loss function for independent data samples, therefore, i.i.d samples will help the
model fit better with this training method.

Figure 2: Two views of GCN in FastGCN. Blue nodes indicate sampled nodes,
orange line is the sampled edges. In the integral transform view, embedding of the
next layer is the integral transform of the previous layer (represented by an orange
triangle). Picture from paper [6].
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Limitation.With node-wise sampling strategy in GraphSAGE [3] and the improvement of layer-wise
importance sampling in FastGCN [6], the memory requirements are significantly reduced. However,
these strategies still suffer from the neighborhood expansion problem when GCNs go deep. To be
more clear, consider a L layers GCNs architecture, to compute loss for a single node 𝑣, it required all
𝑣’s neighbors embedding from layer L-1, which again need all neighbors embedding from layer L-2,
.etc. Even with the improvements from FastGCN [6] and the small sampling size, the overhead of
these strategies is still large and time complexity will be increased exponentially corresponding to the
number of layers. Furthermore, despite FastGCN [6] solving the neighborhood expansion problem
better than GraphSAGE [3] (by using fixed-size layer sampling), its independent layer sampling leads
to the deletion of correlation between layers. Contrary to GraphSAGE [3] and FastGCN [6],
VR-GCN [7] succeeded in reducing sampling size to 2 while keeping the acceptable performance,
therefore, the time complexity of this architecture is smaller than these methods above. However,
VR-GCN [7] is required to store all hidden embeddings of all nodes in memory, which leads to bad
memory usage (linearly increasing corresponding to the size of input graph).

1.2.2. Community Detection

Community detection is an important research problem that spans many areas, and it has been studied
extensively over the last few years. The aim of community detection algorithms is to identify the
modules and, possibly, their hierarchical organization, in a graph. In 2004, Girvan and Newman
proposed the modularity metric [17], which is one of the most used and the best known functions to
quantify community structure in a graph.

Why Community Detection?

Community detection can be used to detect groups with similar properties and extract groups based
on preference, which may bring several benefits when analyzing a network. For instance, in
protein-protein interaction network, the discovery of commonly interactive groups of protein provide
insights for researchers in designing target drugs. Moreover, community detection algorithms can be
used as the sampling phase for Cluster-GCN [2] in order to improve the performance of the model on
large-scale datasets.

Definition.

A community is a subset of nodes from a graph that are densely connected in a knit group and loosely
connected to others. In graph theory, a graph is supposed to have a community structure𝓖 = 𝓥,  𝓔{ }
if it is able to divide nodes into communities. Specifically, can naturally divided into multiple𝓖
subgraphs:

𝓖
𝑖

= {𝓥
𝑖
, 𝓔

𝑖
 │ 𝓥

𝑖
⊆ 𝓥,  𝓔

𝑖
⊆ 𝓔,  |𝓔

𝑖
| ≫ |𝐸(𝓥

𝑖
, 𝓥 − 𝓥

𝑖
)|}

where is the number of edge in subgraph , is the set of edges between nodes|𝓔
𝑖
| 𝓖

𝑖
𝐸(𝓥

𝑖
, 𝓥 − 𝓥

𝑖
)

from subgraph and nodes outside community 𝑖 in the same graph. The objective of community𝓖
𝑖

detection is to find these communities within the graphs.

Community Detection versus Clustering.

There are arguments that Community Detection and Clustering are similar; however, the two methods
are distinguishable. On the one hand, clustering is a machine learning technique used to group similar
data points into the same cluster based on their characteristics. On that basis, clustering can be
applied to networks where data points are nodes and attributes are the relationship between them;
beside, it is a broader field in unsupervised machine learning which deals with multiple attribute
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types. On the other hand, community detection is designed specially for network analysis, taking into
account a single attribute called edges or links between nodes. Nevertheless, depending on the
domain and problem, different pros and cons of clustering and community detection may arise.

METIS algorithm.

Intuitively, community detection’s goal can be understood as dividing a graph into multiple
subgraphs while minimizing the number of edges across subgraphs. Based on this criteria, Karypis
and Kumar have proposed METIS algorithm [8]. METIS is an edge-cut based multilevel graph
bisection algorithm, which includes three phases (Figure 3):

- Coarsening phase
- Partitioning phase
- Uncoarsening phase

Each phase of this algorithm is better explained below.

Coarsening phase. The objective of this phases is to transform original graph into a𝓖 = 𝓥,  𝓔{ }
sequence of smaller graph where . Specifically, a set of nodes𝓖

1
,  ...  , 𝓖

𝑚
|𝓥

1
| > |𝓥

2
| >  ...  > |𝓥

𝑚
|

in graph is aggregated together to form a single node of coarser graph . METIS defines a set of𝓖
𝑖

𝓖
𝑖+1

edges no two of which are incident on the same vertex as a matching and based on this to propose 4
approaches to aggregated nodes for coarser graphs: Random matching (RM); Heavy edge matching
(HEM); Light edge matching (LEM) and Heavy clique matching (HCM). Among those approaches,
HEM results in good initial partitions and requires the smallest overall runtime. The idea of HEM
approach is reducing edge-weight of the matching by selecting edges which have a large weight. By
reducing the edge-weight of the coarser graph, the number of edge-cut is also reduced. In other
words, HEM aims to find the maximal matching by matching node u with node v such that the weight
of the edge between u and v is maximum over all valid incident edges (heavier edge). However, this
algorithm does not guarantee that the matching obtained has maximum weight [8].

Partitioning phase. After the Coarsening phase, is used to compute the bisection such that𝓖
𝑚

𝓟
𝑚

the number of edge-cut is small and each part contains approximately half of the number of edge
weights. The graph is much smaller than original graph, however, by aggregated edge weight𝓖

𝑚
from finer graph to form a multinode in the coarser graph, contain sufficient information to𝓖

𝑚
maintain the partition equilibrium. Similar to the Coarsening phase, Karypis and Kumar [8] examine
various algorithms for partitioning phases. One of these is Greedy graph growing partitioning
algorithm (GGGP), which consistently finds smaller edge-cuts than the other algorithms and requires
a smaller runtime. In order to divide into two parts of approximately equal number of edge𝓖

𝑚
weights, GGGP starts from a node and grows a region around it in a breadth-first manner. The
process is repeated until half of the edge's weight is traveled. However, traveling in a breadth-first
manner is very sensitive to the choice of initial node. Therefore, to reduce the sensitivity, instead of
growing in a breadth-first way, GGGP computes the number of edge-cut reductions when a node is
inserted into the growing partition and the insert order is from largest to smallest edge-cut reduce.
Although the sensitivity to the initiating node is reduced compared to breadth-first manner, GGGP is
still sensitive to the initiating node.

Uncoarsening phase. In this phase, the bisection is projected back to original graph by going𝓟
𝑚

backward in the sequence from the coarsening phase. Because every node in coarser𝓖
1
,  ...  , 𝓖

𝑚
graph is a subset of nodes in finer graph , the partition can be obtained through by𝓖

𝑖+1
𝓖

𝑖
𝓟

𝑖
𝓟

𝑖+1
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assigning every node in those subset to corresponding multinode’s partition in . Specifically,𝓟
𝑖+1

assuming is a set of node in that aggregated together to form a multinode 𝑣 in :𝓥
𝑖
𝑣 𝓖

𝑖
𝓖

𝑖+1

𝓟
𝑖
[𝑢] = 𝓟

𝑖+1
[𝑣]  ∀𝑢 ∈ 𝓥

𝑖
𝑣

(1.7)

Figure 3: Illustration of METIS community detection. Picture from [8]

However, may not be local minimum corresponding to graph . Therefore, a partition refinement𝓟
𝑖

𝓖
𝑖

algorithm is used after is obtained. The idea of this algorithm is swapping 2 nodes in different𝓟
𝑖

partitions if the number of edge-cut is reduced.

Limitations. Based on efficiency and fast execution time, METIS is used as a preprocessing stage in
Cluster-GCN [2] with the purpose of dividing a large graph into a set of smaller subgraphs, thereby,
minimizing the amount of memory requirements and improve scalability for GCN on large dataset,
detail in section 3.1. However, METIS still has limitations when applied to supervised learning
algorithms like GCN [1]. Such limitations may include: (1) Nodes with similar characteristics are
often in the same community, so this will skew the distribution of the labels, thereby reducing the
convergence speed and possibly affecting the performance [2, 18]. (2) Edge-cut based algorithm in
general and METIS algorithm in particular is not guaranteed the optimality of the clustering results.
Moreover, due to multilevel bisection properties, METIS needs to specify the number of clustering to
extract from the graph, which also can affect the quality of clustering results [19].
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1.3. Objectives and Contributions
The goal of this work is to improve the performance of the cluster-GCN model. More specifically,
this work focuses on the sampling phase where the graph(s) are divided into many smaller subgraphs.
The thesis has 2 contributions as follow:

● Testing the efficiency of Leiden algorithm in graph-wise sampling phase of Cluster-GCN
architecture

● Suggestions in adding constraints (e.g., minimum/maximum community size, overlapping
community) to Leiden algorithm to improve efficiency of Cluster-GCN

1.4. Organization
This thesis is structured as follows. Chapter 2 introduces and discusses challenges with the dataset.
Chapter 3 details our strategy which includes implementation of Cluster-GCN architecture, Leiden
algorithm and proposed constraints for Leiden algorithm. Lastly, chapter 4 presents experiment results,
conclusion of the thesis and suggestions for further study in the future.
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Chapter 2 Data exploration

2.1. Dataset introduction
In this study, we evaluate our proposed improvement for Cluster-GCN with ogbn-proteins dataset.
This is a protein-protein association network whose proteins are collected from 8 species [20, 21].
The dataset contains an undirected, weighted graph. In particular, each edge describes the
biologically relationship between a pair of proteins. In computational setting, edge features are
represented by an 8-dimensional vector, where each dimension represents the degree of confidence
that there will be a single type of relationship and takes on values between 0 and 1 (the closer the
value to 1, the more certain we are that the relationship exists.). The graph statistics are given in
Table 1.

Additionally, the OGB team also provides researchers with data loaders as packages in Python that
automate downloading and pre-processing of the datasets. Accordingly, data are divided into train,
test, and validation sets. Distribution of node species ID are given in Figure 4 below.

Table 1: Statistics of currently-available ogbn-proteins dataset.

Dataset #Graphs #Node #Edge #Labels #Edge Features

ogbn-proteins 1 132534 39561252 112 8

Figure 4: Distribution of node species among Train, Validation and Test set

2.1.1. Prediction task

The challenge is in predicting the likelihood that protein functions would be present in a multi-label
binary classification scenario, where there are a total of 112 labels to predict (corresponding to 112
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functions).

2.1.2. Dataset splitting

The dataset is splitted into 3 sets: training set, validation set and test set as provided in the loader
package. According to the author, this enables researchers to make generalized evaluations of the
model across different species.

2.1.3. Discussion

There are two points we want to discuss in this part of the thesis:

Firstly, as written in the paper [22], because the authors' choice of species ID one-hot encodings as
node features, the ogbn-proteins dataset actually lacks features for input nodes. Instead, it has edge
features, which are useful. Therefore, the dataset raises an intriguing research question of how to
utilize edge information in a more complex manner rather than naive averaging. The challenge is to
efficiently manage the huge amount of edge features on GPU at scale, which may need sophisticated
graph splitting that utilizes edge weights.

Secondly, although we acknowledge that this dataset has a relatively small number of nodes and can
be easily handled by GPUs, we still want to experiment with the Cluster-GCN to assess its effects in
an environment with limited resources that the majority of undergraduate students can afford.

2.2. Edge feature learning: Aggregate edge features to nodes
As introduced in the paper [22], all edges contain valuable information. Those are important and
should be considered during training to boost the prediction capacity of the model. However,
Cluster-GCN [2] architecture does not have the function to handle edge features but node features;
therefore, before the sampling process takes place, instead of using the speciesID, the model
constructs a set of node features by aggregating edge features of each node’s entire neighbors. This
step can be formulated as follow:

𝔁
𝑖

= 𝑎𝑔𝑔𝑟
𝑗∈𝓝(𝑖)

(𝓮
𝑖𝑗

)

where is the feature of node , is the differentiable and permutation invariant functions𝔁
𝑖

𝑖 𝑎𝑔𝑔𝑟(.)
such as add, mean or max, is the set of node’s neighbors and is the edge feature between𝓝(𝑖) 𝑖 𝓮

𝑖𝑗
node and node . By doing this, each node feature can contain some information of the whole𝑖 𝑗
complete graph. Figure 5 illustrates the edge aggregation process.

Figure 5: The illustration of edge feature learning with mean aggregation
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Chapter 3 Methodology

3.1. Cluster-GCN
To be able to bring the most accurate comparison results, this work uses a baseline model based on
the network architecture of the above Cluster-GCN [2]. The components of the Cluster-GCN model
are described in detail in each section below.

3.1.1. Graph-wise Sampling

Both of the sampling methods mentioned in section 1.2.1 suffer from memory inefficiency or slow
convergence speed. To tackle these problems, Chiang et al [2] proposed another sampling method
called Graph-wise Sampling, which extract mini-batch in the graph level instead of the node level.
Formally, the graph can be divided into 𝑐 subgraph by split 𝓥 into c𝓖 = 𝓥,  𝓔{ } 𝓖‾ = 𝓖

1
,  ...  , 𝓖

𝑐[ ]
group of nodes: . The adjacency can be re-formulate as:𝓥 = 𝓥

1
,  ...  , 𝓥

𝑐[ ]
𝐀

11 ··· 𝐀
1𝑐

𝐀 = 𝐀‾ + 𝝙 = ··· ··· ··· (3.1)

𝐀
𝑐1 ··· 𝐀

𝑐𝑐

where is a diagonal matrix contain all edge inside a subgraph: and is an𝐀‾ 𝐀‾ = [𝐀
11

,  ...  , 𝐀
𝑐𝑐

] 𝝙
off-diagonal matrix containing all edges between subgraphs. To support the idea of the influence of
edges in the same batch on mini-batch, different graph clustering algorithms can be applied to retain
more edges within a batch.

3.1.2. Vanilla Cluster-GCN architecture

Cluster-GCN [2] use Metis algorithms [8] to partition whole graph 𝓖 into 𝑐 sub-graph
. The benefit of this step is that GCNs can be decomposed into batches for𝓖‾ = 𝓖

1
,  ...  , 𝓖

𝑐[ ]
mini-batch training. The propagation flow from equation (1.5) can be rewrite as:

𝐇(𝑙+1) = 𝑓 𝐇(𝑙), 𝐀( ) = σ 𝐀‾ '𝐇(𝑙)𝐖(𝑙)( ) 

σ 𝐀‾ '
11

𝐇(𝑙)𝐖(𝑙)( )
= ··· (3.2)

σ 𝐀‾ '
𝑐𝑐

𝐇(𝑙)𝐖(𝑙)( )
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where is the normalized and regularized version of -th cluster adjacency matrix. By𝐀‾ '
𝑖𝑖

,  0 ≤ 𝑖 ≤ 𝑐 𝑖
only considering links inside the cluster and ignoring between-clusters links, Cluster-GCN can
prevent the neighborhood expansion problem of the previous sampling method (Figure 6).

Layer 3

Layer 2

Layer 1

Initial

Figure 6: Propagation of Cluster-GCN. Red node is the starting node, blue node
indicates 1-hop neighborhood, orange is 2-hop neighborhood and green is 3-hop
neighborhood.

However, graph clustering algorithms only consider graph structure to split graphs into separate
clusters, hence similar nodes will be in the same cluster. Therefore, the label distribution for each
cluster can be different and skew toward each cluster, which affects the convergence speed and may
result in worse performance than random clustering (Figure 7).

3.1.3. Stochastic Multiple Partitions

To tackle skewed label distribution between clusters, Chiang et al [2] proposed Stochastic Multiple
Partitions. Specifically, graph 𝓖 is clustered into very large number of cluster and then each𝑁

𝑐
≫ 𝑐

batch is formed by randomly select a small number 𝑏𝑠 (batch size) clusters (Figure 8). Furthermore,
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all edges between 𝑏𝑠 clusters that is selected: is also added back to reduce𝐀
𝑖𝑗
┃𝑖, 𝑗 ∈ 𝓥

1
,  ...  , 𝓥

𝑏𝑠{ }
the number of lost edges between clusters. This technique reduces variance across batches, therefore,
it boosts the convergence speed and may increase performance.

Figure 7: Histogram of entropy label distribution. Low label entropy indicates
skew label distribution within each batch. As we can see, Metis clustering results
in a low entropy compared to random clustering due to similar nodes that tend to
be in the same cluster. Picture from paper [2]

3.1.4. Training deeper GCNs

For a small dataset, a small number of layers can cover the whole graph, which means that adding
more layers is not helpful. However, for large networks, this may not be corrected. To deep dive into
this, Cluster-GCN [2] investigated deeper GCNs for large networks by borrowing residual ideas from
Resnet [23]. Formally, the propagation from (1.5) is modified by adding the hidden representations in
𝑙-th layer to the next layer:

𝐇(𝑙+1) = 𝑓 𝐇(𝑙), 𝐀( ) = σ 𝐀'𝐇(𝑙)𝐖(𝑙)( ) + 𝐇(𝑙)
(3.3)

However, this strategy does not take the number of layers into account [2] since the coefficient of
activations and the adding representation is equal. Intuitively, the neighbor nearby should contribute
more than the nodes that are far away. Based on that, the representation from previous layers should
have more weight than the following layers. Formally:

𝐇(𝑙+1) = 𝑓 𝐇(𝑙), 𝐀( ) = σ 𝐀' + 𝐈( )𝐇(𝑙)𝐖(𝑙)( ) + 𝐇(𝑙)
(3.4)

Furthermore, to normalized with respect to degree of each node, the term is modified to:𝐀'

𝐀
^

= 𝐃 + 𝐈( )−1 𝐀 + 𝐈( ) (3.5)

With (3.5), the equation (3.4) is modified to:
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𝐇(𝑙+1) = σ 𝐀
^

+ λ𝑑𝑖𝑎𝑔(𝐀
^

)( )𝐇(𝑙)𝐖(𝑙)( ) + 𝐇(𝑙)
(3.6)

By changing propagation from (3.4) to (3.6), Cluster-GCN adopted the “diagonal enhancement”
techniques [2] where the weight of the previous layer can be modified as a hyperparameter, which we
can tune to build deeper GCNs and get better or even state-of-the-art performance for different
problems.

a. Original graph b. Applied Metis [8] c. Forming batches

Figure 8: Illustration of stochastic multiple partitions with and .𝑁
𝑐

= 4 𝑏𝑠 = 2
Note that in step c, each cluster is randomly selected to form a bigger cluster (blue
cluster can be formed with orange cluster and green cluster can be formed with
yellow cluster in different iterations)

3.2. Leiden community detection
Definition (Modularity [17]): Modularity is a metric used to assess how well nodes are assigned to
communities. In other words, it measures how densely connected nodes within a community are
compared to connection of those nodes in the whole graph. Modularity can be described as:

𝓠 = 1
2𝑚 ∑

𝑖,𝑗
𝐀

𝑖,𝑗
− γ

𝑘
𝑖
𝑘

𝑗

2𝑚( )δ(𝑐
𝑖
, 𝑐

𝑗
)

= 1
2𝑚

𝑐=1

𝐂

∑ 𝓮
𝑐

− γ
𝐾

𝑐
2

2𝑚( )
(3.7)

where is the modularity; is the total number of edge in the graph; is the sum of degrees of𝓠 𝑚 𝑘
𝑖

node ; is the Kronecker delta function (equal to 1 when , 0 otherwise); is the set of𝑖 δ 𝑐
𝑖

= 𝑐
𝑗

𝐂
communities in the graph; is the number of edge in the community ; is the sum of degrees of𝓮

𝑐
𝑐 𝐾

𝑐
the nodes in community and is the resolution parameter. Intuitively, a community is𝑐 γ > 0
normally a small group of nodes within a network, whose connection between nodes is extremely
dense. This lead to a small value of and a large value of . Based on that, detecting community is𝐾

𝑐
2 𝓮

𝑐

become maximizing the different between and , or maximizing . At this point, can be used to𝓮
𝑐

𝐾
𝑐
2 𝓠 γ

adjust the number of communities in the network. With higher value of , to maintain , must beγ 𝓠 𝐾
𝑐
2

smaller, which lead to an increasing number of communities, while lower , in contrast, leads toγ
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fewer communities.

Despite its clear definition, optimizing modularity is NP-Hard [24], therefore, many heuristic
algorithms have been proposed [11, 12]. The Leiden community detection [12] is the one of the most
popular modularity-base hierarchical clustering algorithms that is used for detecting communities
(relatively dense groups) in a given graph. Specifically, Leiden takes advantages from smart local
move algorithms to recursively merge communities by greedily optimizing modularity. Those
processes can be divided into three phases: (1) Local moving of nodes; (2) Refinements of the
partitions and (3) Aggregation of the network based on the refined partition, using the non-refined
partition to create an initial partition for the aggregate network [12]. Each phase of the Leiden
algorithm is discussed in the sections below. The full algorithm is described in pseudo-code in [25].
Figure 9 is an illustration of this algorithm.

Figure 9: Illustration of Leiden algorithm. Those steps are repeated until
modularity cannot improve further. Picture from paper [12].

3.2.1. Local moving nodes

Assume given graph contain 𝑁 nodes. The Leiden algorithm starts by assigning a𝓖 = 𝓥,  𝓔{ }
different community for each node in the graph. Therefore, after the initialization, the number of
communities is equal to the number of nodes in the graph, which is 𝑁. Then, for each node 𝑖, a smart
local moving algorithm is applied. This algorithm consider each neighbor 𝑗 of node 𝑖 to compute the
gain in modularity ( ) if node 𝑖 is removed from it community and placing it in the community of 𝑗:∆𝓠
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∆𝓠 =  
Σ

𝑖𝑛
+𝑘

𝑖,𝑖𝑛

2𝑚 −
Σ

𝑡𝑜𝑡
+𝑘

𝑖

2𝑚( )2⎡⎢⎢⎣

⎤⎥⎥⎦
−

Σ
𝑖𝑛

2𝑚 −
Σ

𝑡𝑜𝑡

2𝑚( )2

−
𝑘

𝑖

2𝑚( )2⎡⎢⎢⎣

⎤⎥⎥⎦
(3.8)

where is the sum of the weights of the links inside the community of 𝑗; is the sum of theΣ
𝑖𝑛

𝑘
𝑖,𝑖𝑛

weights of the links from i to nodes in community of 𝑗 and is the sum of the weights of the linksΣ
𝑡𝑜𝑡

within community of 𝑗. The first term (left side of minus sign) in equation (3.8) is the new
modularity when node 𝑖 is removed from it community and placing it in the community of 𝑗 and the
second term (right side of minus sign) is the old modularity before local moving is perform.
However, by visiting all nodes until there is no more gain in modularity is wasteful due to nodes that
are well-connected in their community cannot move to other communities. Therefore, Leiden
speed-up local moving nodes by only visiting nodes whose neighborhood community has changed.

3.2.2. Refinement of partitions

Usually, after moving nodes, aggregation of the network is performed to merge all the nodes in the
same cluster, like the Louvain algorithm [11]. However, it may create multiple subcommunities
inside a community (Figure 10), which cannot be split further due to the property of agglomerative
hierarchical clustering [12]. Therefore, to tackle subcommunity situation, Leiden maintain
refinements partition of original partition 𝓟. Specifically, after Local moving nodes is𝓟

𝑟𝑒𝑓𝑖𝑛𝑒𝑑
performed, graph is divided into multiple partition, which is 𝓟, however, there may be existed some
community which contain multiple subcommunity inside it. The idea of is to further divide𝓟

𝑟𝑒𝑓𝑖𝑛𝑒𝑑
those communities into multiple smaller communities (Figure 9c). First, each node is assigned to
different communities in . Each communities is then consider to be divided by extract 𝓟

𝑟𝑒𝑓𝑖𝑛𝑒𝑑
𝑐

𝑖
∈ 𝓟

all well-connected nodes :𝑣
𝑤𝑒𝑙𝑙

𝓡 = 𝑣
𝑤𝑒𝑙𝑙

│𝑣
𝑤𝑒𝑙𝑙

∈ 𝑐
𝑖
, 𝐸 𝑣

𝑤𝑒𝑙𝑙
, 𝑐

𝑖
− 𝑣

𝑤𝑒𝑙𝑙( ) ≥ α║𝑣
𝑤𝑒𝑙𝑙

║ × ║𝑐
𝑖
║ − ║𝑣

𝑤𝑒𝑙𝑙
║( ){ } (3.9)

where , control how well-connected a node is, in the𝐸 𝐶, 𝐷( ) = 𝑢, 𝑣( ) ∈ 𝐸 𝓖( ), 𝑢 ∈ 𝐶, 𝑣 ∈ 𝐷{ }| | α
community. After that, each well-connected node is assigned randomly to communities 𝑐∗ ∈ 𝓟

𝑟𝑒𝑓𝑖𝑛𝑒𝑑
based on a probabilities:

if else 0 for𝑃𝑟(𝑐∗ = 𝑐') ∼ 𝑒
1
Θ ∆𝓠(𝑣→𝑐')

∆𝓠 > 0 𝑐' ∈ 𝓟
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

(3.10)

where act as normalization term and is the gain in modularity if node v is placing in1
Θ ∆𝓠(𝑣→𝑐')

community . However, cluster in is initialized with a singleton partition, therefore, if all𝑐' 𝓟
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

partitions are considered in equation (3.10), bad communities still happen. To get rid of this𝑐'
problem, Leiden defines the set of all well-communities inside communities :𝑐 ∈ 𝓟

𝓣 = 𝑐'│ 𝑐' ∈ 𝓟
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

, 𝑐' ⊆ 𝑐, 𝐸 𝑐', 𝑐 − 𝑐'( ) ≥ α║𝑐'║ × ║𝑐║ − ║𝑐'║( ){ } (3.11)

Hence, in equation (3.10) is changed to , which means only dense𝑐' ∈ 𝓟
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝑐' ∈ 𝓣
subcommunities should be considered for further division and all communities are guaranteed to be
subpartition -dense.α
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Figure 10: Illustration of a bad community created by the Louvain algorithm.
After node 0 being moved to other communities, the red community contains 2
subcommunities, which are disconnected. Picture from [12]

3.2.3. Aggregation of the network

The final phase of the Leiden algorithm is building a new network whose nodes are𝓖' = 𝓥',  𝓔'{ }
communities found by the previous phase. Specifically, all node’s weights within a community are
aggregated together to form a weight for new nodes in the new network. The edge set of the new
network is defined as:

𝓔’ = 𝐶, 𝐷( )│(𝑢, 𝑣) ∈ 𝐸 𝓖( ),  𝑢 ∈ 𝐶 ∈ 𝓟
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

, 𝑣 ∈ 𝐷 ∈ 𝓟
𝑟𝑒𝑓𝑖𝑛𝑒𝑑{ } (3.12)

which can be understood as the edge between communities. By creating the aggregate network based
on rather than , the Leiden algorithm has more room for identifying high-quality partitions𝓟

𝑟𝑒𝑓𝑖𝑛𝑒𝑑
𝓟

[12]. However, the initial partition for the aggregate network is based on . Specifically, after the𝓟
new network is generated, the partition is maintained corresponding to and act as a𝓖' 𝓟 𝓖'
initialization for next iteration of the Leiden algorithm:

𝓟 =  𝑣│𝑣 ⊆ 𝐶, 𝑣 ∈ 𝓥’{ } │𝐶 ∈ 𝓟{ } (3.13)

3.3. Constraint Leiden algorithm
By applying the maximizing modularity approach, Louvain and Leiden do not need to specify the
number of communities to extract from the graph and all communities are guaranteed to be locally
optimality assigned [12]. Furthermore, all communities extracted by Leiden algorithm are guaranteed
to be subpartition -connected. Due to this property, Leiden convincingly outperforms the Louvainα
algorithm [11], which has been tested and shows competitive results or even better compared to
METIS algorithm [26, 27]. However, when Leiden algorithm is used as a sampling phase for
cluster-GCN architecture, it still has the following limitations: (1) Size disparity among communities
due to properties of agglomerative hierarchical clustering; (2) Intrinsic limitation of modularity,
which is resolution limit. Therefore, Leiden is unable to detect small communities that are smaller
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than a certain scale and (3) Skew the distribution of the labels due to properties of community
detection, detailed in 1.2.2. In order to overcome these limitations, this work proposed adding
constraints such as minimum/maximum community size and overlapping communities for Leiden
algorithm to generate better subgraphs for mini-batch training. Each constraint is described in each
section below.

3.3.1. Maximum and minimum community size

Maximum community size. For real-world dataset, the nodes are not evenly distributed among
communities. Moreover, the Leiden algorithm takes advantage of the agglomerative hierarchical
clustering to optimize modularity. Therefore, it would probably produce communities of vastly
diverse sizes, among them, there may be communities that are much larger in size than others (Figure
11), which cannot be fitted into GPU for mini-batch training. These communities can further apply
the Leiden algorithm to be divided into multiple smaller communities, which can be fitted into GPU
for training. Formally, if there is a community whose size is larger than :𝐶

𝑖
𝑐𝑡

𝑚𝑎𝑥

𝐶 = (𝐶 − 𝐶
𝑖
) ∪ {𝑐 | 𝑐 ∈ 𝐿𝑒𝑖𝑑𝑒𝑛(𝐶

𝑖
)} (3.14)

where C is the set of community in graph 𝓖 and is the set of community extracted by the𝐿𝑒𝑖𝑑𝑒𝑛(.)
Leiden algorithm.This process is repeated until do not contain any community whose size is larger𝐶
than . However, the resolution parameter must be increased to be able to separate a𝑐𝑡

𝑚𝑎𝑥
α

community into many subcommunities, which lead to the second limitation mentioned above. To deal
with this problem, this work proposed a second constraint that controls minimum nodes in each
community based on edges between them instead of using modularity. The details for this constraint
will be discussed below.

Minimum community size. One of the advantages of the Leiden algorithm compared to Louvain is
Leiden guaranteed that all communities are -dense, implies that individual nodes are well connectedα
to their community [12]. However, turning is not an easy work and can lead to singleton partitionsα
or partitions with a small number of nodes. Therefore, to get rid of the situation where Leiden creates
small partitions, this work proposed a constraint to control the minimum number of nodes in each
community extracted by the Leiden algorithm.

Intuitively, minimum constraint can be implemented by merging communities whose size is smaller
than using the same algorithm like the first phase of the Leiden algorithm (section 3.2.1).𝑐𝑡

𝑚𝑖𝑛
However, for small communities, the probability that two separate communities can be merged is
very low. Therefore, the probability that any two communities are merged together is approximately
the same and the community chosen in equation (3.10) will follow the uniform distributions. With
those limitations of modularity, the merging process is done by using the number of edges between
communities. However, if only consider the number of edges across communities, communities with
larger numbers of nodes normally have a higher number of edges, leading to merging processes that
mainly focus on larger communities. Therefore, to be able to use the number of edges instead of
modularity, this work proposed a normalization term for the number of edges. Specifically, each
community that satisfy is considered to compute the edge ratio with others:𝐶

𝑖
|𝐶

𝑖
| < 𝑐𝑡

𝑚𝑖𝑛

𝐸𝑅 𝐶
𝑖
,  𝐶'( )  =

𝐸 𝐶
𝑖
, 𝐶'( )

𝐶
𝑖
+𝐶'| |  + 𝑒𝑝𝑠 (3.15)

where the term as act the normalization that is used to balance the number of edges across𝐶
𝑖

+ 𝑐'| |
communities with different communities size and is a small floating point used to prevent zero𝑒𝑝𝑠
ratio. On this basis, community is randomly merged with community with probability:𝐶

𝑖
𝐶'
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𝑃𝑟(𝐶
𝑖

= 𝐶') ∼
𝐸𝑅 𝐶

𝑖
, 𝐶'( )

∑
𝐶

𝑗
∈(𝐶−𝐶

𝑖
)
𝐸𝑅 𝐶

𝑖
, 𝐶

𝑗( ) (3.16)

With the idea from equation 3.10, the randomness from equation 3.16 allows to exploit the diversity
in the community of networks.

Figure 11: Size of communities extracted by the Leiden algorithm

Combine maximum with minimum constraint. To make mini-batch training effective, the amount
of nodes between batches must be approximately the same. However, maximum constraint and
minimum constraint only consider boundaries in one direction. Specifically, maximum constraint
only guarantee that all communities have size smaller than while minimum constraint𝑐𝑡

𝑚𝑎𝑥
guarantee that all communities have size larger than . Intuitively, those two constraints can be𝑐𝑡

𝑚𝑖𝑛
used together so that all communities are guaranteed to have size within . However,𝑐𝑡

𝑚𝑖𝑛
,  𝑐𝑡

𝑚𝑎𝑥[ ]
when both constraints are used but not related, it can lead to infinite loop problem due to the fact that
merging communities process in minimum constraint can lead to a larger communities whose size is
larger than . Those cluster, in maximum constraint, is further divided into smaller cluster whose𝑐𝑡

𝑚𝑎𝑥
size may be smaller than and etc. Therefore, to combine maximum with minimum constraint,𝑐𝑡

𝑚𝑖𝑛
equation 3.16 is modified so that merging communities is not allowed to create communities whose
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size is larger than :𝑐𝑡
𝑚𝑎𝑥

if else 0𝑃𝑟(𝐶' = 𝐶
𝑖
) ∼

𝐸𝑅 𝐶
𝑖
, 𝐶'( )

∑
𝐶

𝑗
∈(𝐶−𝐶

𝑖
)
𝐸𝑅 𝐶

𝑖
, 𝐶

𝑗( ) 𝐶
𝑖

+ 𝑐'| | ≤ 𝑐𝑡
𝑚𝑎𝑥 (3.17)

3.3.2. Overlapping community

Combining maximum and minimum community size constraints can handle limitations (1) and (2)
discussed above. However, community detection algorithms in general and the Leiden algorithm [12]
in particular only consider the structure of the graph (how nodes are connected together) to divide it
into communities. Therefore, nodes in the same communities tend to be similar, leading to skew label
distribution across batches. Despite the fact that Stochastic Multiple Partitions has reduced the
effectiveness of this problem [2], it still suffers from skew node feature distribution across batches
(green bar chart vs blue bar chart in Figure 12). To overcome skew node feature distribution, this
work proposes overlapping communities to balance the node feature across batches, with the
assumption that the subgraphs will be more similar to the original graph, thereby, it can boost the
performance of the model.

Figure 12: Difference between node features distribution of clusters generated by
using the Leiden algorithm before and after using the overlapping community
constraint. Green bar chart is the before and the orange chart is the after. Blue
chart is the distribution of the whole graph.

As discussed above, a community extracted by community detection algorithms normally leads to a
group of similar nodes. However, intuitively, the relationship between nodes not only indicates that
their label is approximately similar, but also shows that, in some way, they have similar
characteristics. Existing research [2, 18] only analyzes and handles skew between batches in the label
distribution aspect but ignores the skew node feature across batches. Therefore, this thesis aims to
balance the skewness across batches in the node feature aspect by modifying the Stochastic Multiple
Partition phase from cluster-GCN [2]. Specifically, as discussed in section 3.1.3, original graph is
divided into community, which is very large. Instead of merging a number of communities𝑁

𝑐
together to form subgraphs that is used for training mini-batch gradient descent, each𝑏𝑠 ≪ 𝑁

𝑐
community is analyzed and divided into pre-defined clusters based on its𝑐 ∈ 𝑁

𝑐
𝑐

𝑓𝑒𝑎𝑡𝑢𝑟𝑒
characteristics. In this work, dataset ogbn-proteins [22], whose nodes come from 8 species, which are
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described as 8 dimension one-hot vectors, is used for experiments. Therefore, to keep it as simple as
possible, instead of using clustering algorithms, is set to 8, which is equal to the number of𝑐

𝑓𝑒𝑎𝑡𝑢𝑟𝑒

species that a node comes from. After that, assume is the frequency of appearance of species i in𝑓
𝑖
𝑐

the community c, each community is assigned with one from 8 species based on the most appearance
of species within the community (which is ):𝑖*

𝑆(𝑐) = 𝑖*{ } = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈𝑆(𝓖)

𝑓
𝑖
𝑐( ){ } (3.18)

where is the set of species in . Then, community is turned into ,𝑆(𝓖) 𝓖 𝑁
𝑐

𝑁
𝑠𝑝𝑒𝑐𝑖𝑒𝑠

= 𝑁
1
𝑠 ,  ...  , 𝑁

8
𝑠{ }

where and is the set of∑
𝑁

𝑖
𝑠∈𝑁

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑁
𝑖
𝑠|||
||| = 𝑁

𝑐| | 𝑁
𝑖
𝑠 = 𝑐 │ 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈𝑆(𝓖)
𝑓

𝑗
𝑐( ) = 𝑖 ,  𝑐 ∈ 𝑁

𝑐{ }
communities whose nodes mostly come from species i. From here, the randomness from section 3.1.3
is used. Specifically, assume the number of batches used for training mini-batch gradient descent is

, for each , communities are assigned to each batch, randomly. By this way, the𝑏𝑠 𝑁
𝑖
𝑠 ∈ 𝑁

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑁
𝑖
𝑠|||
|||

𝑏𝑠
balance of the label distribution is preserved, like Stochastic Multiple Partition in section 3.1.3.
Furthermore, by narrowing the randomness within each species, each batch is equally distributed in
the node feature aspect (orange bar chart vs blue bar chart in Figure 12). However, assigning a
species for a community based on the species of mostly nodes within the community will ignore the
case when there are two or more species whose frequency of appearance is approximately the same
(Figure 13). Leading to the dividing of communities is skewed toward one specific species, despite
the fact that the community may be evenly distributed among two or more species.

Figure 13: Communities with multiple species.

To solve the above problem, this work proposed the overlapping constraint: .0 ≤ 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

≤ 1
Instead of assigning only one species for each community like equation 3.18, community c𝑐 ∈ 𝑁

𝑐
can reach two or more species based on the largest frequency of appearance of species within
community:
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𝑆(𝑐) = 𝑖 │ 𝑓
𝑖
𝑐 ≥ 𝑐𝑡

𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑓

𝑖*
𝑐{ } (3.19)

if close to 1, each community tends to belong to only one species. In contrast, if𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

close to 0, each community tends to belong to all species, which reduces the effectiveness of dividing
communities based on species. Based on the equation 3.19, is also changed,𝑁

𝑠𝑝𝑒𝑐𝑖𝑒𝑠
= 𝑁

1
𝑠 ,  ...  , 𝑁

8
𝑠{ }

where and .∑
𝑁

𝑖
𝑠∈𝑁

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑁
𝑖
𝑠|||
||| ≥ 𝑁

𝑐| | 𝑁
𝑖
𝑠 = 𝑐 │ 𝑖 ∈ 𝑆(𝑐) ,  𝑐 ∈ 𝑁

𝑐{ }
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Chapter 4 Experiments and Conclusion

4.1. Experiments
To evaluate the effectiveness of constraints, experiments are performed in ogbn-proteins dataset [22],
Moreover, the authors of ogbn-proteins dataset use standardized evaluator, which is average of
ROC-AUC scores across the 112 tasks (detail in Appendix B) and a leaderboard to monitor
state-of-the-art results [22]. Therefore, to ensure fairness, this work uses the assessment given by the
authors of this dataset to evaluate the results. Finally, this work uses the random partition as a
benchmark for comparison due to its superiority over the METIS algorithm [18].

4.1.1. Experiments setup

To understand the effectiveness of constraints, this work experiments on four different models:

r-Cluster-GCN. Cluster-GCN [2] with random partition. The architecture is described in Figure 14.

LeidenGCN. Cluster-GCN with the Leiden algorithm for community detection (blue block in
graph-wise sampling phase in Figure 14).

b-LeidenGCN (ours). Bounded LeidenGCN, the LeidenGCN model with and𝑐𝑡
𝑚𝑖𝑛

𝑐𝑡
𝑚𝑎𝑥

constraints. The graph-wise sampling phase of b-LeidenGCN is described in Figure 15.

ob-LeidenGCN (ours). Overlapping and Bounded LeidenGCN architecture, the b-LeidenGCN with
constraint. The graph-wise sampling phase of ob-LeidenGCN is described in Figure 16.𝑐𝑡

𝑜𝑣𝑒𝑟𝑙𝑎𝑝

Each model is fine-tuned to get the most objective comparison results. Common hyperparameters
between architectures are listed in Table 2. Inspired by [18], to avoid the situation that lost edges are
impossible to retrieve again during training, the community is generated at each epoch instead of just
one before training. All models are implemented based on Pytorch Geometric [28]. Experiments are
run on a single NVIDIA GeForce RTX 3070 8GB.

Table 2: Common hyperparameters between architectures

Hyperparameter Value

Number of layers {3,4,5,6,7}

Number of subgraphs 20

Edge feature learning type Mean

Epochs 1000

Learning rate 0.005

Propagation dropout rate 0.5

Hidden channels 256



33

Figure 14: Baseline architecture. In Graph-wise sampling phase, communities are
chosen randomly to merge together to form subgraphs. Community detection used
in experiments is the Leiden algorithm. In GCN architecture, Cluster-GCN block
is the message passing described in equation (3.6) and activation is the nonlinear
function.
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Figure 15: Graph-wise sampling using the Leiden algorithm with
minimum/maximum community size constraints.

4.1.2. Results

Limitation of the Leiden algorithm. The Leiden algorithm has overcome the limitations of the
METIS algorithm by automatically finding the optimal number of communities and guaranteeing the
locally optimality of the partition. Therefore, when the number of communities is fixed according to
the optimal number of communities extracted from the Leiden algorithm, this algorithm outperforms
other algorithms in terms of the number of edges retained (Table 3), which is one of the reasons that
lead to better results stated in [2]. Nevertheless, due to the properties of hierarchical agglomerative
clustering, the number of nodes across communities is fluctuating significantly (Figure 11).
Consequently, there may be some batches that are too large and cannot fit to gpu for training. If the
Leiden algorithm is not refined properly, it cannot be used for the graph-wise sampling phase in the
Cluster-GCN architecture.
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Figure 16: Graph-wise sampling using the Leiden algorithm with
minimum/maximum community size and overlapping community constraints.

Table 3: Total number of edges retained using different algorithms. Results are
the mean of 5 independent runs plus or minus the standard deviation.

Algorithm Total number of edges

Random 1,798,910 ± 1,149.709

METIS [8] 25,407,758 ± 0

Leiden [12] 33,055,514.5 ± 26,454.954

Effect of maximum/minimum constraint. With and constraints, the number of nodes𝑐𝑡
𝑚𝑖𝑛

𝑐𝑡
𝑚𝑎𝑥

within each community is guaranteed to be in range . Therefore, each batch is𝑐𝑡
𝑚𝑖𝑛

,  𝑐𝑡
𝑚𝑎𝑥[ ]

considered approximately equal in terms of size (Figure 17) and b-LeidenGCN is able to train with
GPU. In terms of modularity, the Leiden algorithm outperforms METIS algorithm. However,
continuing to split and force communities into the range lead to much smaller𝑐𝑡

𝑚𝑖𝑛
,  𝑐𝑡

𝑚𝑎𝑥[ ]
modularity compared to the original Leiden algorithm. From Table 4, the modularity of the Leiden
algorithm reduce over 87% when and . Nevertheless, this is a necessary𝑐𝑡

𝑚𝑖𝑛
= 80 𝑐𝑡

𝑚𝑎𝑥
= 100

trade-off to make communities size approximately even across batches. The random partition is the
worst among 3 algorithms, whose modularity is almost zero due to the fact that each community is
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generated randomly. In terms of ROC-AUC, from Table 5, it can be seen that b-LeidenGCN is 1.17%
ahead of Cluster-GCN with the METIS algorithms. Although random partition is the worst in terms
of modularity, r-Cluster-GCN with random partition outperform b-LeidenGCN and Cluster-GCN.

Figure 17: Number of nodes across batches after using maximum/minimum
community size constraint. The number of batches is set to 20

Table 4: Modularity comparison with different constraints value and different
algorithms.

Algorithm Modularity

Random -0.00003675

METIS [8] 0.08049441

Leiden [12] 0.73213373

Leiden [12], and𝑐𝑡
𝑚𝑖𝑛

= 80 𝑐𝑡
𝑚𝑎𝑥

= 100 0.09024661

Leiden [12], and𝑐𝑡
𝑚𝑖𝑛

= 200 𝑐𝑡
𝑚𝑎𝑥

= 300 0.18143729

Leiden [12], and𝑐𝑡
𝑚𝑖𝑛

= 400 𝑐𝑡
𝑚𝑎𝑥

= 500 0.19769391

Effect of overlapping constraint. By introducing constraints, the node feature distribution𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

across batches are adjusted to be similar (Figure 12). From Table 5, the performance of
ob-LeidenGCN is improved 1.16% compared to b-LeidenGCN, which shows the effect of balancing
the node feature distribution across batches. Moreover, although still behind r-Cluster-GCN 0.25%,
the standard deviation across runs of ob-LeidenGCN is smaller, indicating that ob-LeidenGCN is the
most stable model among models mentioned above. To see more clearly the effect of 𝑐𝑡

𝑜𝑣𝑒𝑟𝑙𝑎𝑝
constraint, ob-LeidenGCN is tested 2 times with different values, detailed results are listed𝑐𝑡

𝑜𝑣𝑒𝑟𝑙𝑎𝑝
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in Table 6.

Table 5: Performance comparison between models. Result of Cluster-GCN is
taken from paper [18] with mean and standard deviation of 10 runs, other models
run 5 times. The constraints of b-LeidenGCN are set to and𝑐𝑡

𝑚𝑖𝑛
= 80

. The number of layers is 3.𝑐𝑡
𝑚𝑎𝑥

= 100

Algorithm ROC-AUC

Cluster-GCN [2] 0.7513 ± 0.0044

r-Cluster-GCN 0,7771 ± 0,0025

b-LeidenGCN (ours) 0.7630 ± 0.0030

ob-LeidenGCN (ours) 0.7746 ± 0.0007

Table 6: The effect of constraints. Constraint minimum/maximum𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

community size are fixed to: and . The number of layers𝑐𝑡
𝑚𝑖𝑛

= 80 𝑐𝑡
𝑚𝑎𝑥

= 100
is 3.

Algorithm ROC-AUC

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 1 0.7839313367

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 2 0.7867266871

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 3 0.7872546432

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 4 0.788294836

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 5 0.7943720784

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 6 0.7875076298

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 7 0.7894462016

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 8 0.7910601422

ob-LeidenGCN, 𝑐𝑡
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

= 0. 9 0.7913429585

Deeper models. As discussed in Chapter 3, node features are generated by aggregation of neighbor’s
edge features. Consequently, node features without any GCNs layer still contain a lot of information
and this may be one of the reasons that r-Cluster-GCN, with the least number of edges, is the best
method in Table 5. Moreover, community detection algorithms' ability to retain a large number of
edges is also not exposed if the number of layers is set to be small. To clarify this, all models are
trained with a larger number of layers, the results are listed in Table 7. When the number of layers is
increased from 3 to 5, ob-LeidenGCN performance gets better and better, with a growth rate
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approximately 1% per layer. Except for the case when the number of layers is 3, ob-LeidenGCN has
the best performance among mentioned models. The peak is achieved when the number of layers
equals 5, ob-LeidenGCN archives 79.4%, which is almost 1% better than r-Cluster-GCN. For both
models, when the number of layers is larger than 5, it fails to converge and results in a loss of
roc-auc. As stated in [2], the optimization for deeper GCNs becomes more difficult and the message
passing needs to be refined so that the information from the first few layers is not impeded.

Table 7: Comparison of stacking deeper models. The constraints are fixed to
, and . The results are the mean of 5𝑐𝑡

𝑚𝑖𝑛
= 80 𝑐𝑡

𝑚𝑎𝑥
= 100 𝑐𝑡

𝑜𝑣𝑒𝑟𝑙𝑎𝑝
= 0. 5

independent runs. The best results for each number of layers is bolded.

ROC-AUC

Algorithm 3 layers 4 layers 5 layers 6 layers 7 layers

r-Cluster-GCN 0.7771 0.7833 0.7842 0.7643 0.7597

ob-LeidenGCN (ours) 0.7746 0.7848 0.7940 0.7864 0.7780

4.2. Conclusion
This thesis proposes using Leiden algorithm with additional constraints to leverage the performance
of Cluster-GCN. The results show that our approach achieves better classification outcome than
random partition, which previously has been shown to outperform METIS. This demonstrated that
fine tuning the graph-wise sampling step can improve model performance to some extent. We believe
that this work suggests a direction for building more complex and deeper architectures.

In the future, we can expand the scope to a variety of community detection algorithms to analyze the
effect of each algorithm on model performance. Furthermore, we aim to experiment with more
datasets from different domains to demonstrate the effect of adding constraints. In order to do that, a
generalization for the overlapping constraint needs to be studied.
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Appendix

A. Proteins and representing protein data with graphs
Proteins data

Proteins play crucial roles in almost every important biological process by physically interacting with
other proteins [29]. Therefore, to make significant contributions to biomedicine and pharmaceuticals,
researchers must understand life at the molecular level, starting with correct annotations of protein
functions. However, traditional methods to classify those functions are expensive and difficult to
scale up to accommodate the vast amount of sequence data [30]. Fortunately, the advent of low-cost,
high-throughput sequencing techniques and information technology makes the verification of a
function become more accessible, especially when scientists need to work with newly discovered
proteins [31].

Nonetheless, there are several reasons why computational biology faces numerous difficulties [32].
First, protein data, or biomedical data in general is often high-dimensional but sparse by nature. This
is in contrast with large datasets in other domains such as social networks in computational social
science and computer vision, which typically contain high-quality data. Second, biomedical data is
frequently inaccurate and skewed due to technological, environmental, and physical limitations and
especially biases in study design. Third, there are biological dynamics such as the evolution of cancer
cells, bacteria, and viruses against drugs [33] that can lead to poor performance in computing
models.

Representing protein data with graphs

Graphs naturally appear in the bioinformatics domain because of its capacity in capturing the
structural relations of data. In a protein-protein association network, nodes represent proteins and
edges signify various kinds of physiologically significant relationships such as physical interactions,
co-expression, or homology [20]. Thus, traditional machine learning techniques that are based on
statistical analysis cannot be directly applied for the computational tasks on graphs. More
specifically, this domain often involves large-scale graphs with billions of edges or a dataset with
millions of graphs. Recently, deep learning has proven its capabilities in representation learning,
which has greatly advanced research in biology. Therefore, bridging deep learning with graphs will
result in more powerful knowledge discovery, such as drug and material discovery. With that idea, the
protein functions classification task becomes a single node property prediction task in the graph
mining subfield.

B. Evaluation metric
To measure the performance of our model, we can count on an ROC-AUC Curve. The ROC
(Receiver Operating Characteristics) - AUC (Area Under the Curve) is one of the most important
evaluation metrics for checking any model’s classification capability, which can be helpful in
visualizing the performance of a binary classification problem.

To be more specific, ROC is a probability curve and AUC represents the degree or measure of
separability. By looking at the curve, researchers know the extent that the model can distinguish
between classes. AUC can be considered as the likelihood that the model ranks a random positive
example higher than a random negative example. The higher the AUC score, the better the model is
at predicting 0 classes as 0 and 1 classes as 1. In our experiment, by analogy, higher AUC means
more precise protein function prediction.

39
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Defining terms used in AUC and ROC Curve.

- TPR (True Positive Rate) / Recall / Sensitivity

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

- Specificity

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

- FPR

𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑜𝑟 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Visualization.

The ROC curve is plotted with TPR against FPR where TPR is on the y-axis and FPR is on the
x-axis. Besides, AUC measures the entire two-dimensional area underneath the entire ROC curve.
Figure 18 gives an example of AUC-ROC visualization.

Figure 18: Example of a ROC-AUC curve image - by Mathworks.com
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