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Introduction




Q0

Graph are used to describe and analyze
entities with interactions/ relations

The explosive growth in volume of data
poses challenges for deep learning
algorithm, esp GCN

Training large graphs typically requires
expensive hardware that students can’t
afford
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MOTIVATION

GCN is a good architecture for learning large graphs, but it
suffers from slow convergence and out-of memory issue

— We aim to study strategies to scale GCN
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Related works

e Previous approach to scale GCNs
e Community detection and METIS
algorithm.
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SCALABILITY OF GCNs 0

Architecture simplication
via pre-computation

/\

Simplifying GCN
(Wu et al, 2019)

Scaling up GCN

/\.

Sampling methodologies

|

Scalable Inception GCN
(Rossi et al, 2020)

!

GraphSAGE VR-GCN Fast-GCN GraphSAINT Cluster-GCN
(Hamilton et al, 2017) (Chen et al, 2017) (Chenetal, 2018) (H Zeng et al, 2019) (Chiang et al, 2019)

- Still have problems with complexity - Include a potentially slow sampling steps
- Bias sampling & increase in variance - Can't be generalized




QQ COMMUNITY DETECTION T

Multilevel Graph Bisection

METIS algorithm was proposed in rfined partton

paper: "A fast and high quality
multilevel scheme for partitioning
<VNAY
G

irregular graphs." by Karypis et al. in

Coarsening Phase

aseyd Buuasieooun

1998

T4

Initial Partitioning Phase

Figure: An illustration of METIS algorithm \l/




QQ COMMUNITY DETECTION T

Negative Modularity Single Community
M=0.12 M=0 »

Y = A &y
In 2004, NEWMAN et al. proposes | N <Y Ny
modularity as a metric to evaluate Sis.
C|UStering reSUH:S Suboptimal Partition Optimal Partition
=  Modularity-based algorithms e _ s
(e.g., Louvain, Leiden) is proven to be I W . e W <ith.
better than METIS234 ) N TS N

Modularity

Figure: An illustration of modularity

! NEWMAN, Mark EJ; GIRVAN, Michelle. Finding and evaluating community structure in networks. Physical review E, 2004, 69.2: 026113.

2 SHIOKAWA, Hiroaki; ONIZUKA, Makoto. Scalable Graph Clustering and Its Applications. 2018.

SLIU, Yike; SHAH, Neil; KOUTRA, Danai. An empirical comparison of the summarization power of graph clustering methods. arXiv preprint arXiv:1511.06820, 2015. \l/
4XU, Hongteng; LUO, Dixin; CARIN, Lawrence. Scalable gromov-wasserstein learning for graph partitioning and matching. Advances in neural information processing

systems, 2019, 32.




OBJECTIVE AND CONTRIBUTION

The goal of this thesis is to improve Cluster-GCN sampling
phase. Our contributions are as follow:

e Testing Leiden algorithm in graph-wise sampling phase

e Suggestions in adding constraints to Leiden to improve
efficiency of Cluster-GCN
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Data exploration

e Datasetintroduction
e Edge feature learning: aggregate edge
features into node features
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QQ DATA INTRODUCTION T

OGBN-PROTEINS DATASET INTRODUCTION

Dataset
240 24679 . Train

25000
. Test
kS 21236 Validation

18108

15000

Count

- Dataset designed for node property
prediction

10000

20000 19354
13015
- Include a protein-protein association 50

6568
4125
networks, collected from 8 species .

- Cha"enge: multi—label protein 3702 4932 6239 722;pede7$955 906 10090 511145
function prediction, 112 labels in total

o

Figure: Distribution of node species among train,
#Graphs #Node #Edge #Labels #Features validation and test set

1 132534 39561252 112 8 \l/
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EDGE FEATURE LEARNING

0.006

Instead of using the species ID, the model constructs a set of node features by
aggregating edge features of each node’s entire neighbors

Target node

%

‘ Node A's 1 - hop neighbor
e(A,C) = 0.005

. Node A's 2 - hop neighbor

*Note: This graph is undirected so e(a,b) = e(b,a)

Figure: An illustration of edge feature learning
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e Cluster-GCN
e Leiden algorithm
e Constraints to improve Leiden algorithm
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QQQ CLUSTER-GCN

Graph-wise N, community A /

: \ / GCN
sampling

Community bs subgraph . e
architecture L layers
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(Node feature, detection 2 Graph ‘

adjacency matrix)
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adj matrix (NxN)

Cluster-GCN
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\V4
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Subgraph

Activation and Dropout
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Node prediction (NxY)
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> Subgraph w eR WO c RP*D, |

Community /

Figure: Baseline architecture.




Q2 STOCHASTIC MULTIPLE PARTITIONS /l\

- Proposed to tackle skewed label distribution

W Wl W ol

a. Original graph b. Applied community detection c. Forming batches

Figure: Anillustration of stochastic multiple partitions




LEIDEN ALGORITHM

Move nodes Refine

Level 1
e o ® e ¢ ®
/M
d) e) f)
\\ Move nodes Refine
Level 2 ) —r— —l —

Figure: lllustration of Leiden algorithm
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LEIDEN ALGORITHM /]\

= The objective of Leiden algorithm is to maximizing the modularity (Q):

1 ,\?,l/ = . \
21m “— (A"‘j L 2m ) dC)

Q




QQQ COMMUNITY SIZE CONSTRAINTS /l\

Limitation of Leiden

. . . . . 'I
algorithm: resolution limit Hing o3 dliaues

One clique per cluster
Q=0.65

2 ~

Ring of 10 3-cliques
Two cliques per cluster
Q=0.675

Figure: Resolution limit of modularity \l/

'FORTUNATO, Santo; BARTHELEMY, Marc. Resolution limit in community detection. Proceedings of the national academy of sciences, 2007, 104.1: 36-41.
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COMMUNITY SIZE CONSTRAINTS

Limitation of Leiden algorithm:
not guarantee of approximately
equal size community

= Proposes constraints: ct .
andct__

X

Community size
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8
8

0
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2173
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492 486 401
| P
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Ci ity

Figure: Size of subgraphs extracted by

Leiden algorithm
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COMMUNITY SIZE CONSTRAINTS

Edge ratio:

E(C;, C;)

ER(C;,C;) = I

+ eps

Community size

Probability of merging 2
communities:

ER(C;, Cj)

Pr(C; = Cj) = Y c.ccc—c.) ER(Ci, Ck)
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Figure: Size of subgraphs after using maximum,/minimum
community size constraint.




COMMUNITY SIZE CONSTRAINTS

Original graph

(Node feature,
adj matrix)

X
A

Leiden
Algorithm

MaximumMinimum
Constraint

Community

Community

Community

N

Sub graph

Sub graph

Figure:Leiden algorithm with community size constraints.
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OVERLAPPING COMMUNITY CONSTRAINTS
22 41% Distribution
Subgraph
’ mmm Original graph
19.2% s 19.41% i J
17.43%
16.02%
14.6%
13.66% 13.89%
0.72¢ 8
S 10.3%q g0y
5.81%
4.96%
311%
0.03% .
3702 4932 6239 7227 7955 9606 10090 511145
Species
Figure: Node species distribution of a subgraph generated by Leiden with
community size constraints compare to original graph




Q00 OVERLAPPING COMMUNITY CONSTRAINTS

Original graph

(Node feature,
adj matrix)

B

Species 1 | \
Community \‘
Species 2 Sub graph
Leiden
Algorithm
: Species 3
o pecies 3
e Sub graph
chods Overlapping Species 4
. Community —
Maximum/Minimum Species 5
Constraint g
Species 6
; i Sub graph
Community Species 7
Species § | /

_4

Figure: Leiden algorithm with community size and
overlapping community constraints.




000 OVERLAPPING COMMUNITY CONSTRAINTS
= mmm Histogram - 84
o o . 80
Each community is assigned 0
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S 0 8w
30
) 2 »
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Figure: Communities with one species
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OVERLAPPING COMMUNITY CONSTRAINTS /l\
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Figure: Number of communities in each species




QOQ OVERLAPPING COMMUNITY CONSTRAINTS N
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50
Each community is assignedto  « »
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2 14
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Figure: Communities with multiple species




Distribution
263% EE Original graph
Subgraph with overlap
I Subgraph without overlap
20 19.68% '
19.2% 1035%
18.58% 18.62%
7.74%
17.03%
16.22% 16.02%
15 14.6%
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o 2.39%
967%9:82%
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3702 4932 7221 7955 10090 511145
Species
Figure: Node species distribution of a subgraph generated by Leiden with constraints
compare to original graph
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Experiments

Experiments setup and results
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QQQ EXPERIMENTS SETUP N

- Experiments are performed with YperpaTamaer Yk

ogbn-proteins dataset Number of layers 13.4.5.6,7}

- r-Cluster-GCN: Cluster-GCN with - -
random partition. Number of subgraphs 20

- LeidenGCN: Cluster-GCN with Edge feature learning type Mean
Le/de.n algorithm instead of METIS Epoichis 1000
algorithm.

- b-LeidenGCN. LeidenGCN with ¢t~ Leammngrate e
and Ctrpax constraints. ' _ Propagation dropout rate 0.5

- ob-LeidenGCN: b-LeidenGCN with
ct constraint. Hidden channels 256

overlap

Table: Common hyperparameters
between architectures \l/




000 RESULTS N

Algorithm Modularity

Random -0.00003675 : @
Algorithm ROC-AUC
METIS 0.08049441
Cluster-GCN 0.7513 £0.0044
Leiden 0.73213373
-Cluster-G »‘.L- 0 == | 5
Leiden,ct =80andct =100 009024661  _ Cluster-GCX 0,771+ 0,002
b-LeidenGCN (ours) 0.7630 = 0.0030

Leiden . ct
mn

= 200 and ct = 300 0.18143729

ax

ob-LeidenGCN (ours) 0.7746 £ 0.0007

Leiden, ct =400 and ct =500 0.19769391

Table: Modularity comparison with different constraints
value and different algorithms.

Table: Performance comparison between models \l/




Q00 RESULTS A

ROC-AUC
Algorithm 3 layers 4 layers 5 layers 6 layers 7 layers
r-Cluster-GCN 0.7771 0.7833 0.7842 0.7643 0.7597
ob-LeidenGCN  0.7746 0.7848 0.7940 0.7864 0.7780
(ours)

Table: Comparison of stacking deeper models




Algorithm ROC-AUC

ob-LeidenGCN, ct = 0.1 0.7839313367
overlap

ob-LeidenGCN, ct = 0.2 0.7867266871
overlap

ob-LeidenGCN, ct = 0.3 0.7872546432
overlap

ob-LeidenGCN, ct = 0.4 0.788294836
overlap

ob-LeidenGCN, ctom_zap = 0.5 0.7943720784

ob-LeidenGCN, Cto"er’ap = 0.6 0.7875076298

ob-LeidenGCN, Cto-wqu = 0.7 0.7875076298

ob-LeidenGCN, CtG“erlap = 0.8 0.7910601422

ob-LeidenGCN,ct = = 0.9 0.7913429585
overlap

Table: The effect of ctoverlap constraints. \l/




06 | Conclusion

e Summary of the thesis
e Future works
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QQQ CONCLUSION

- Better than the random partition, outperform the METIS algorithm.
- Can improve model performance to some extent.
— Can be the basis for building more complex and deeper architectures

FUTURE WORK:
- Extend to various community detection algorithms

- Experiment on more datasets of different fields to demonstrate the effect of
adding constraints




Thanks for watching!

Please give us any
question!




