

Duong Thuy Trang HE150573 trangdthe150573@fpt.edu.vn Nguyen Thanh Tung HE150163 tungnthe150163@fpt.edu.vn Nguyen Bao Phuoc HE153036 phuocnbhe153036@fpt.edu.vn

$\mathbf{O}\mathbf{O}\mathbf{O}$

- Graph are used to describe and analyze entities with interactions/ relations
- The explosive growth in volume of data poses challenges for deep learning algorithm, esp **GCN**
- Training large graphs typically requires expensive hardware that students can't afford

• Food webs

MOTIVATION

GCN is a good architecture for learning large graphs, but it suffers from **slow convergence** and **out-of memory** issue

 \rightarrow We aim to study strategies to scale GCN

∞

02 Related works

- Previous approach to scale GCNs
- Community detection and METIS algorithm.

COMMUNITY DETECTION

METIS algorithm was proposed in paper: "*A fast and high quality multilevel scheme for partitioning irregular graphs.*" by Karypis et al. in 1998

COMMUNITY DETECTION

In 2004, NEWMAN et al. proposes *modularity* as a metric to evaluate clustering results

⇒ Modularity-based algorithms (e.g., Louvain, Leiden) is proven to be better than METIS^{2,3,4}

¹ NEWMAN, Mark EJ; GIRVAN, Michelle. Finding and evaluating community structure in networks. Physical review E, 2004, 69.2: 026113. ² SHIOKAWA, Hiroaki; ONIZUKA, Makoto. Scalable Graph Clustering and Its Applications. 2018.

³LIU, Yike; SHAH, Neil; KOUTRA, Danai. An empirical comparison of the summarization power of graph clustering methods. arXiv preprint arXiv:1511.06820, 2015. ⁴XU, Hongteng; LUO, Dixin; CARIN, Lawrence. Scalable gromov-wasserstein learning for graph partitioning and matching. Advances in neural information processing systems, 2019, 32.

OBJECTIVE AND CONTRIBUTION

The goal of this thesis is to **improve Cluster-GCN sampling** phase. Our contributions are as follow:

- Testing Leiden algorithm in graph-wise sampling phase
- Suggestions in **adding constraints** to Leiden to improve efficiency of Cluster-GCN

\mathbf{c}

03 Data exploration

- Dataset introduction
- Edge feature learning: aggregate edge features into node features

DATA INTRODUCTION

OGBN-PROTEINS DATASET INTRODUCTION

OGB

- Dataset designed for node property prediction
- Include a protein-protein association networks, collected from 8 species
- **Challenge**: multi-label protein function prediction, 112 labels in total

#Graphs	#Node	#Edge	#Labels	#Features
1	132534	39561252	112	8

Figure: Distribution of node species among train, validation and test set

EDGE FEATURE LEARNING

Instead of using the species ID, the model constructs a set of node features by **aggregating edge features** of each node's entire neighbors

LEIDEN ALGORITHM

 \mathbf{O}

LEIDEN ALGORITHM

 \Rightarrow The objective of Leiden algorithm is to **maximizing the modularity (Q)**:

$$Q = \frac{1}{2m} \sum_{i,j} \left(\mathbf{A}_{i,j} - \gamma \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$
$$= \frac{1}{2m} \sum_{c=1}^{\mathbf{C}} \left(\mathbf{e}_c - \gamma \frac{K_c^2}{2m} \right)$$

 \bigcirc

COMMUNITY SIZE CONSTRAINTS

Limitation of Leiden algorithm: resolution limit¹

Figure: Resolution limit of modularity

¹FORTUNATO, Santo; BARTHELEMY, Marc. Resolution limit in community detection. *Proceedings of the national academy of sciences*, 2007, 104.1: 36-41.

COMMUNITY SIZE CONSTRAINTS

Limitation of Leiden algorithm: not guarantee of approximately equal size community

⇒ Proposes constraints: ct_{min} and ct_{max}

Figure: Size of subgraphs extracted by Leiden algorithm

∞

COMMUNITY SIZE CONSTRAINTS

Edge ratio:

$$ER(C_i, C_j) = \frac{E(C_i, C_j)}{|C_i + C_j|} + eps$$

Probability of merging 2 communities:

$$Pr(C_i = C_j) = \frac{ER(C_i, C_j)}{\sum_{C_k \in (\mathbf{C} - C_i)} ER(C_i, C_k)}$$

Figure: Size of subgraphs after using maximum/minimum community size constraint.

COMMUNITY SIZE CONSTRAINTS

Figure: Node species distribution of a subgraph generated by Leiden with community size constraints compare to original graph

OVERLAPPING COMMUNITY CONSTRAINTS

overlapping community constraints.

OVERLAPPING COMMUNITY CONSTRAINTS

Each community is assigned to one species S(C):

$$S(C) = \{i^*\} = \left\{ \operatorname*{argmax}_{i \in S(\mathbf{G})} f_i^C \right\}$$

Figure: Communities with one species

$\mathbf{C}\mathbf{C}\mathbf{O}$

OVERLAPPING COMMUNITY CONSTRAINTS

Figure: Number of communities in each species

OVERLAPPING COMMUNITY CONSTRAINTS

Each community is assigned to more than one species S(C):

$$S(C) = \left\{ i | f_i^C \ge ct_{overlap} f_{i^*}^C \right\}$$

Figure: Communities with multiple species

$\mathbf{O}\mathbf{O}\mathbf{O}$

EXPERIMENTS SETUP

- Experiments are performed with ogbn-proteins dataset
- r-Cluster-GCN: Cluster-GCN with random partition.
- **LeidenGCN:** Cluster-GCN with Leiden algorithm instead of METIS algorithm.
- **b-LeidenGCN.** LeidenGCN with **ct**_{min} and **ct**_{max} constraints.
- **ob-LeidenGCN:** b-LeidenGCN with **ct**_{overlap} constraint.

Hyperparameter	Value		
Number of layers	{3,4,5,6,7}		
Number of subgraphs	20		
Edge feature learning type	Mean		
Epochs	1000		
Learning rate	0.005		
Propagation dropout rate	0.5		
Hidden channels	256		

Table: Common hyperparameters between architectures

RESULTS			
Algorithm	Modularity		
Random	-0.00003675	Algorithm	ROC-AUC
METIS	0.08049441	Cluster-GCN	0 7513 + 0 0044
Leiden	0.73213373	a Chuster CCN	0.7771 + 0.0025
Leiden, $ct_{min} = 80$ and $ct_{max} = 100$	0.09024661	r-Cluster-GCN	0,7771 ± 0,0025
Leiden, $ct_{min} = 200$ and $ct_{max} = 300$	0.18143729	<u>b-LeidenGCN (ours)</u>	0.7630 ± 0.0030
Leiden, $ct_{min} = 400$ and $ct_{max} = 500$	0.19769391	ob-LeidenGCN (ours)	0.7746 ± 0.0007
Table: Modularity comparison with different constraints value and different algorithms.		Table: Performance com	parison between models

• • 1

			ROC-AUC	2	
lgorithm	3 layers	4 layers	5 layers	6 layers	7 layers
-Cluster-GCN	0.7771	0.7833	0.7842	0.7643	0.7597
b-LeidenGCN <mark>ours</mark>)	0.7746	0.7848	0.7940	0.7864	0.7780

• • 1

$\mathbf{O}\mathbf{O}\mathbf{O}$

RESULTS

Algorithm	ROC-AUC
ob-LeidenGCN, $ct_{overlap} = 0.1$	0.7839313367
ob-LeidenGCN, $ct_{overlap} = 0.2$	0.7867266871
ob-LeidenGCN, $ct_{overlap} = 0.3$	0.7872546432
ob-LeidenGCN, $ct_{overlap} = 0.4$	0.788294836
ob-LeidenGCN, $ct_{overlap} = 0.5$	0.7943720784
ob-LeidenGCN, $ct_{overlap} = 0.6$	0.7875076298
ob-LeidenGCN, $ct_{overlap} = 0.7$	0.7875076298
ob-LeidenGCN, $ct_{overlap} = 0.8$	0.7910601422
ob-LeidenGCN, $ct_{overlap} = 0.9$	0.7913429585

Table: The effect of ctoverlap constraints.

06 Conclusion Summary of the thesis • Future works

CONCLUSION

- Better than the random partition, outperform the METIS algorithm.
- Can **improve** model performance to some extent.
- \rightarrow Can be the basis for building more complex and deeper architectures

FUTURE WORK:

- Extend to various community detection algorithms
- Experiment on more datasets of different fields to demonstrate the effect of adding constraints

