
Detecting duplicate multiple choice questions

(MCQs) in the large question bank

 Final Year Project Final Report

A 4th Year Student Name

Phan Duc Manh

 Nguyen Tuan Minh

Instructor

Assoc. Prof. Phan Duy Hung

Bachelor of Artificial Intelligence

Hoa Lac campus - FPT University

– Hanoi, 6 May 2023 –

1

ACKNOWLEDGEMENT

Foremost, we are especially indebted to our advisor Assoc. Prof. Phan Duy Hung for the invaluable

guidance throughout this thesis. His dynamism, enthusiasm, motivation, and immense knowledge

have deeply inspired our group.

We would like to express our special thanks to University, FPT, for giving us a golden opportunity

to study and all of the resources provided.

Finally, our sincere thanks also go to our friends and family for their support and love during this

process. We would not have been able to finish our journey without their encouragement and

motivation.

2

ABSTRACT

A question bank is a database of questions in a variety of formats, used as a central repository for

building tests. Question banks are the core tool for innovative testing and assessment of learners'

learning outcomes. It can be built and added over time, from many sources, and many people. So

creating new questions may result in duplicate questions and deciding whether to include that

question in the real database will take time to manually search across data files. This study proposes

an end-to-end machine learning architecture to combine the information from the text data and the

data from the image in question through optical character recognition into an encoded vector. From

there, the system can query to find similar questions based on similarity ranking. The machine

learning model was evaluated on a part of the question bank of FPT University, a university of

information technology in Vietnam. The obtained F1 score of 0.95 proves that the model can be

used for intelligently managing the question bank of the FPT education system as well as of other

educational institutions.

Keywords: Question Bank, Duplicate Question Detection, Similarity Score.

3

Table of Contents

ACKNOWLEDGEMENT ... 1

ABSTRACT .. 2

TABLE OF CONTENTS .. 3

LIST OF ABBREVIATIONS AND ACRONYMS ... 5

LIST OF TABLES ... 6

LIST OF FIGURES ... 7

1. PROJECT INTRODUCTION ... 8

1.1. Problem & Motivation .. 8

1.2. Related Work .. 10

1.2.1. Question bank management .. 10

1.2.2. Optical Character Recognition (OCR) .. 11

1.2.3. Two-sentence comparison ... 11

1.3. Contribution .. 12

2. METHODOLOGY ... 13

2.1. Overview pipeline ... 13

2.2. OCR .. 13

2.2.1. Text detection with CRAFT .. 14

2.2.2. Scene Text Recognition .. 15

2.3. BERT .. 17

2.3.1. Transformer in BERT.. 17

2.3.2. Pre-trained BERT .. 19

2.3.3. Fine-tuning .. 20

2.4. SBERT .. 20

2.4.1. SBERT with triplet loss function .. 21

2.4.2. SBERT with cross-entropy loss function .. 21

2.4.3. SBERT with multiple negatives loss function .. 21

2.5. Similarity measurement method ... 22

2.5.1. Cosine-similarity ... 22

2.5.2. Euclid distance .. 22

2.5.3. Spearman’s rank correlation coefficient ... 22

2.6. Evaluation metric .. 23

3. EXPERIMENT ... 24

3.1. Data collection .. 24

3.2. Implementation ... 25

3.3. Result & Analysis ... 25

4. WEB APPLICATION DEPLOYMENT ... 27

4

4.1. Overall question bank architecture ... 27

4.1.1. Database ERD ... 27

4.1.2. Use case specifications .. 28

4.2. Pinecone .. 28

4.3. Process adding new questions .. 29

5. CONCLUSION AND FUTURE WORK .. 31

REFERENCES ... 32

5

List of abbreviations and acronyms

Abbreviations Meaning

MC Multiple choice

MCQs Multiple choice questions

SAT Scholastic Aptitude Test

TOEIC Test of English for International Communication

IELTS International English Language Testing System

EOS Exam online system

NLP Natural language processing

TF-IDF Term frequency and inverse document frequency

VSM Vector space model

CQA Community-based question-answer

CNN Convolutional neural network

RNN Recurrent neural network

LSTM Long short-term memory

WV-LSTM Word-vector long short-term memory

OCR Optical Character Recognition

EAST Efficient and Accurate Scene Text detection

CRAFT Character Region Awareness for Text detection

CRNN Convolutional recurrent neural network

POS tagging Part-of-Speech tagging

BERT Bidirectional Encoder Representations from

Transformers

SBERT Sentence-BERT

STS task Semantic Textual Similarity task

nltk Natural Language Toolkit

6

List of tables

Table 1. Data statistic ... 24

Table 2. Word frequency for English question types ... 25

Table 3. Word frequency for Math question types .. 25

Table 4. SBERT with F1 Score .. 26

7

List of figures

Figure 1. EOS exam software interface ... 8

Figure 2. Case one: Adding a new question to the question bank ... 9

Figure 3. Case two: Adding a new question to the question bank ... 9

Figure 4. Question bank architecture ... 13

Figure 5. CRAFT architecture ... 14

Figure 6. Training stream in CRAFT ... 15

Figure 7. The CRNN network architecture .. 16

Figure 8. BERT architecture .. 17

Figure 9. Self-attention .. 18

Figure 10. Multi-head attention ... 19

Figure 11. SBERT architecture .. 20

Figure 12. SBERT with triplet loss function (a), cross-entropy loss function (b) 21

Figure 13. SBERT with multiple-negatives loss function ... 22

Figure 14. The confusion matrix .. 23

Figure 15. Examples of the MCQs in the database .. 24

Figure 16. The schema in PostgreSQL .. 27

Figure 17. Use case of teacher role (a), Use case of manager role (b)... 28

Figure 18. Workflow in Pinecone .. 28

Figure 19. Website homepage with Manager account ... 29

Figure 20. Folder import and template of a question in a word file(.docx) 30

Figure 21. List of duplication question pairs ... 30

8

1. Project Introduction

1.1. Problem & Motivation

Multiple choice (MC) objective response or multiple-choice questions (MCQs) was created

in the early 20th century by E. L. Thorndike and B. D. Wood. It became widely used after almost

fifty years. Nowadays, multiple-choice questions are one of the most commonly used in exam

construction and popular survey question types. A multiple-choice question is a form of inquiry

where the respondent must select one or more items from a constrained list of options. The

component of multiple-choice questions is the question text, answer options, and correct answers.

The question text describes the issues with closed-ended questions or an incomplete statement to

be finished to make up the complete statement. The correct answer is a single choice or a list of

choices in multiple response question type. Multiple choice format is superior to other testing

formats since the cost-effective advantage when the outcome is usually checked using scanners and

data processing devices, elimination of examiner bias. The set of multiple-choice questions with

the same subject is stored and can be repeatedly called question banks. Making a question bank

reduces cheating since the pool of questions are large and diverse. The identical questions appear

in different sets and in a random order for the students. In recent years, with the high demand for

examination, multiple-choice questions have been utilised universally throughout all educational

testing, market research, and elections when a person chooses between multiple candidates, parties,

or policies. Many international examinations evaluate candidates using a multiple-choice style such

as: the Scholastic Aptitude Test (SAT), Test of English for International Communication (TOEIC),

International English Language Testing System (IELTS), etc.

Figure 1. EOS exam software interface

In FPT university [1], the exam online system named EOS (Figure 1) has been used to generate

exams for student evaluation. The EOS system takes multiple-choice questions form the question

bank which is the main database for storing questions. There are two methods for adding new

questions to the question bank at FPT university. In case one (Figure 2), the creation of the question

bank is the responsibility of one teacher, and the question bank is generated into a word file and

makes all information in the databases accessible. The instructor manually identifies duplicate

questions before adding a new question to the database. The created questions must be eliminated

if their contents are similar; else, new questions are imported into the question bank. Because the

databases are completely accessible, it causes a risk of revealing question information and the

import process is costly. In case two (Figure 3), the subject's primary lecturer divides the curriculum

into many sub-categories for instructors to create new questions. Due to the variety in the question's

9

substance and content relationships between subcategories, many teachers may generate similar

questions. Additionally, teachers are incapable of engaging with question bank databases, hence

they are unable to determine whether or not questions are present in the databases. The head of the

department is responsible for grouping all the doc files and manually checking duplicate questions.

If the generated questions have similar contents, they must be reported back to the subject's primary

lecturer to change or remove duplicate questions before it added to the question bank. In both two

approaches, duplicate questions are identified through keyword manual searches, making the

identification process difficult and time-consuming. This difficulty is exacerbated when some

questions are stored as images, which further complicates the search process.

Figure 2. Case one: Adding a new question to the question bank

Figure 3. Case two: Adding a new question to the question bank

In general, as the number of questions in the question bank increases, it becomes more difficult to

manage their content and impossible to avoid question duplication. Current research on multiple-

choice tests solely concentrates on generating exam questions from the available question bank;

still, it ignores the necessity of making sure that the questions' substance is unique across question

bank. This can cause a massive consequence since it negatively affects the evaluated quality of the

overall exam, for instance, two similar multiple-choice questions can appear in the same test. Along

with this rising issue, due to the distinctive nature of the multiple-choice question format, the

problem of MCQs content duplication is still a significant barrier. Aside from the difficulty of

10

multiple-choice question structure, due to the security concern and the limitation in exam

application, questions are frequently stored in several formats, including a form of a document, an

image, and a combination of text and image. Consequently, storing formats is one of the main issues

needed to tackle during retrieving and comparing questions. In order to determine how similar the

questions are, an additional pre-processing question to extract valuable text from the image must

be added before extracting and comparing. With the development of computer vision, especially

optical character recognition (OCR) models have been employed for extracting documents from

images. The goal of this thesis is to address the issue of difficulties when adding a new question to

the question bank. We conducted research on building a model for comparing image and text

multiple-choice questions and deployed it on a web application, which made the enlarging question

bank task more efficient.

1.2. Related Work

1.2.1. Question bank management

In the scope of question bank management, much research focuses on the creation, and

assessment of question bank management systems for different areas of education, including

medicine, computer science, engineering, and online learning environments. These studies

emphasise the importance of efficient and effective question bank management systems for

assistance in the evaluation of student learning outcomes. Purohit et al. [2] implemented an adaptive

question bank management system that queries wisely from an extensive question database and

generates a question paper based on the course curriculum by using the Concept Map tool.

However, the redundancy of duplicate questions in the question bank typically has a significant

effect on the system. Mia et al. [3] employed NLP technologies to construct a system that is suitable

for storing and pre-processing multiple-choice questions in the Bangla language. For instance,

questions stored in the database are categorised into three classes: cognitive class contains the title

and four options; analytical class provides three or more options, and the candidate must choose

one of the combinations of these options; higher ability class is a group of multiple-choice questions

containing two or three cognitive class or analytical class questions. All questions are stored in a

B+ tree to optimise the data access time, the key of the tree is constructed based on the question

class and question number. After the pre-processing stage consists of stop-word removal,

stemming, and tokenization the term frequency and inverse document frequency (TF-IDF) will be

calculated. The term frequency value determines how often a phrase appears in a document, and

the inverse document frequency value determines the significance of a word. The vector of a

question is constructed based on a vector space model (VSM) which uses TF-IDF weights to

calculate the word weighting for each text feature component. Finally, cosine similarity is applied

to measure the similarity and the result is the ranking of similar scores. However, it is inappropriate

to compare two questions that share the same content but different keywords by building a vector

using the TF-IDF weights.

In the field of managing and optimising large-scale question datasets, Wang et al. [4] presented a

question-answering model for Stack Overflow, a well-known community-based question-answer

(CQA) platform. The model utilised Word2Vec to embed questions and applied deep learning

techniques such as convolutional neural network (CNN), recurrent neural network (RNN), and long

short-term memory (LSTM) to identify duplicate questions, the evaluation results indicated that the

use of CNN and LSTM produced significant improvements compared to traditional machine

learning approaches. Particularly, the outcome of the word-vector long short-term memory (WV-

LSTM) model outperformed all other models. Li et al. [5] put forth an end-to-end system that can

instantly locate questions that are similar to unanswered medical questions. The system initially

collects certain metadata from a new question when it is uploaded on the website, like the question's

intention and category. Such metadata is useful for highlighting the key phrases in the unsolved

11

question. Then, the system pulls out a select group of possible questions from the current question

corpus using the key terms that are determined as important. Otherwise, the new question will be

compared with every solved question in the corpus, which is time-consuming or even impossible

when the size of the question corpus is large. The proposed system's effectiveness can be greatly

increased by taking this step. The similarity score of the unsolved question with each question in

the candidate set will be calculated based on question vector representations produced by a trained

LSTM. All candidate questions are then ordered according to their corresponding similarity scores,

and the top candidates with similarity scores greater than a predetermined threshold are taken into

consideration as similar medical questions for the unanswered question. Nevertheless, these

keyword-based algorithms have the drawback of just considering the information in the keywords

and ignoring the comprehensive information.

1.2.2. Optical Character Recognition (OCR)

 OCR refers to the process of automatically recognizing and converting written or typed text

in an image or scanned document into machine-readable text. Related work in this field has been

extensive, with numerous research studies and commercial solutions developed over the years. A

critical area of related work in the OCR field has been the development of textual detection models.

One popular model is TextBoxes proposed by Liao et al. [6], which integrates text region proposal

and text classification into a single CNN and trains the network on various picture scales to handle

texts of varying sizes, demonstrating fast and efficient results on SynthText, IC11, and IC13

datasets. Zhou et al. [7] present a method for scene text detection called Efficient and Accurate

Scene Text detection (EAST) that uses a fully-convolutional neural network adapted for dense word

or text line predictions at the pixel level. In 2019, Baek et al. [8] presented a highly efficient text

detection model called Character-Region Awareness For Text detection (CRAFT) that is suitable

for real-time applications and able to detect text in complex or low contrast backgrounds. The

CRAFT method has been shown to be highly efficient, making it suitable for real-time text detection

applications. In experiments, the result showed superior performance to other popular text detection

methods, including EAST and TextBoxes, on the ICDAR 2013 and ICDAR 2015 datasets. Another

important component of OCR is the text recognition model. Jaderberget et al. [9] present the model

using a CNN to recognize text in images. The model has shown to outperform existing state-of-the-

art text recognition algorithms in terms of accuracy and robustness. In 2015, an end-to-end trainable

deep neural network to minimise the recognition error proposed by Shi et al [10], the convolutional

recurrent neural network (CRNN) architecture has been used for the model consisting of multiple

convolutional, recurrent layers, and transcription layers from bottom to top. This architecture is

trained in an end-to-end manner, where the parameters of both the CNN and RNN components are

learned simultaneously from the input images and their corresponding text annotations. The model

has been demonstrated to attain high accuracy on the IC 2013 and IIIT 5K-Words datasets by

combining convolutional and recurrent layers. Overall, it can be stated that the capabilities of OCR

have greatly advanced and can now successfully recognise text in various font styles, orientations,

and languages, even in complex scenes with noise and low resolution. OCR can serve as a

preliminary processing stage where it can transform image-based sentences into a text format for

further processing and comparison.

1.2.3. Two-sentence comparison

 Related to the evaluation of two-sentence comparison, Gokul et al. [11] propose a method

utilising cosine similarity to find the similarity score between two Malayalam sentences and

determine whether two input sentences are two paraphrases or not. First, the input sentence is split

into separate words like 𝑆1 = {𝑊1, 𝑊2,𝑊3, … ,𝑊𝑛} where 𝑊𝑛 represents the last word of the input

sentence. Then, the study apply Malayalam WordNet and POS tagging (Part-of-Speech tagging)

for determining the functions of each word to choose a standard set of tags (N, V, Prep, Det, Adj,...).

After that, cosine similarity is employed to calculate similarity scores and determine whether they

12

have the same meaning or not. The study obtained an accuracy of 0.8 in test data of 900 sentence

pairs of FIRE 2016 Malayalam corpus. In 2018, Dhar et al. [12] suggested using TF-IDF to

represent the text as a collection of word frequency vectors and computing text similarity using

cosine similarity. The study based on Bangla text documents is normalised and utilised as the

experiment's inputs after being received from various online web sources. However, this approach

disregards the semantic details connected to the text's phrases.

Devlin [13] introduced Bidirectional Encoder Representations from Transformers (BERT)

employing a cross-encoder: The transformer network receives two sentences, and it predicts the

target value. Due to a large number of combinations, this approach is unsuitable for many pair

regression tasks. This led to the time of searching similar questions issue when this process is time-

consuming and inappropriate for a large question bank. To address the time-consuming issue of

BERT, Reimers [14] introduced Sentence-BERT (SBERT) which adds one of three pooling

strategies such as CLS-token, MAX-strategy, and MEAN-strategy to the output of BERT. After

that, the study employed a siamese network structure [15] to fine-tune and construct semantically

meaningful sentence embeddings for the STS (semantic textual similarity) [16] task. Then, applying

a similarity measure method such as cosine similarity or Euclidean distance to calculate the

semantic textual similarity between two sentence embeddings. These similarity measures can be

performed extremely efficiently on modern hardware, allowing SBERT to be used for semantic

similarity search and clustering. The study also emphasised that SBERT uses siamese network

structures that share their weights and uses optimised index structures, so the number of operations

decreased significantly compared to BERT. Thanh et al. [17] conducted research on different

SBERT strategies for STS and they suggested that the triplet loss function is the most effective

function for training and fine-tuning SBERT. Therefore, SBERT should be used to identify similar

questions in order to increase the effectiveness of managing multiple-choice questions in question

bank.

1.3. Contribution

This study aims to improve question bank management at FPT University by addressing

the problem of question duplication and purpose a new method for lecturers when enlarging the

question bank. In this thesis, we primarily focus on theoretical research to improve the effectiveness

of a model that can identify duplicate questions, whether they are in text or image form. The

research improves the accuracy and the time consumption of similarity question search by using

SBERT for encoding the question. Then, similarity score will be calculated using the similarity

measurement method. For questions containing images, the OCR model which contains two

components: CRAFT to identify and locate text regions, and CRNN for text recognition. That

framework will be applied to extract text from images and then concatenate them with the questions.

By combining SBERT and OCR, our goal is to build an end-to-end machine learning architecture

that represents questions in text or image form into a vector to detect duplicate multiple-choice

questions in the question bank containing images in minimal time. A new dataset has been built for

the purpose of model evaluation, which will be covered in the following section. According to the

architecture's pipeline, the model processes both the question and the image by first converting the

image into text and then combining it with the text part. This combined input runs through the

SBERT model to obtain embeddings and compare the similarity with existing questions in the

database. Finally, for the practical perspective, we utilise Django as a framework to deploy the

model on a question bank web application. The website allows the storage of numerous questions

in image and text format, along with two specific role permissions (manager, teacher), making the

process of import questions and managing question bank in the FPT University more efficient.

13

2. Methodology

2.1. Overview pipeline

Figure 4. Question bank architecture

To provide a clearer explanation of the proposed system, a high-level overview is

introduced. Figure 4 describes the flow of the whole architecture that is designed to detect

duplicates of multiple-choice questions. When a new question is added, the presence of images is

checked, and then the OCR model is applied to extract relevant information. Then the model joins

the extracted information with the textual question. In many cases, the image questions also include

options, so the text part and options will be merged to improve accuracy. Finally, all the compared

questions will be sorted in descending order according to similarity scores, and all the top questions

that exceed the threshold are marked as duplicate questions. The detail about each component is

described in the following sections.

2.2. OCR

The OCR model used to extract information from images is the EasyOCR [18] framework.

It is designed to highly accurate and, easy to use even for low-quality images. The OCR task is

divided into several stages, including image pre-processing for noise reduction, character

segmentation, and character recognition. The detection model - CRAFT, which is introduced by

Baek et al. [8], is applied to localize each individual character in the image. After detecting the

character region, the result is the input of the recognition model which is a CRNN model proposed

14

by Shi et al. [10]. CRNN is an end-to-end trainable neural network, takes advantage of CNN and

RNN to achieve high performance on image-based sequence recognition.

2.2.1. Text detection with CRAFT

Figure 5. CRAFT architecture [8]

Scene text detection is a task to detect text regions in the complex background and mark

them with bounding boxes. The main objective of CRAFT is to localize the character region in the

image and group detected characters to a text instance. The backbone of CRAFT's design is a fully

convolutional network architecture based on VGG-16. CRAFT architecture primarily uses VGG-

16 to extract features from the input of the network and encode them into a specific feature

representation. The decoding segment of the CRAFT network is similar to UNet which skips

connections that aggregate low-level features (Figure 5). Moreover, to surmount the missing

character-level annotations datasets, the CRAFT model is trained using the weakly supervised

learning method. The result of the models is two scores for each character: the region score which

represents the probability that the given pixel is the centre of the character and the affinity score

represents the centre probability of the space between adjacent characters.

15

 Figure 6. Training stream in CRAFT [8]

CRAFT employed Gaussian heatmap representation to learn both the region score and the affinity

score. Typically, perspective projections deform the character bounding boxes on an image so three

steps have been deployed to approximate and generate the ground truth for the region score and the

affinity score: 1) prepare a 2-dimensional isotropic Gaussian map; 2) compute perspective

transform between the Gaussian map region and each character box; 3) warp the Gaussian map to

the box area [8]. For the affinity score, the model draws diagonal lines connecting opposite vertices

of the character box, creating 2 triangles - upper and lower, and the affinity box is created with the

vertex central point of four triangles from two adjacent character boxes. Unlike synthetic datasets

that have character-level annotations, real images usually have word-level annotations. So, the

CRAFT creates a character box from each word box. When a real image with word-level

annotations is provided, the transient model (under training) will predict the character region score

of the words that have been clipped to create character-level bounding boxes. The steps for training

real images: first cut the word boxes, then use the temporary model to predict the region score (heat

map), next the watershed [19] algorithm is applied to separate the characters to create the character

bounding box, finally the character boxes' coordinates are changed back into the original image

coordinates. Figure 6 illustrates the training phase of CRAFT for both real images and synthetic

images in a weakly-supervised style.

2.2.2. Scene Text Recognition

After detecting text by using CRAFT, the input for CRNN is the bounding boxes and the

objective is to recognise the letter inside the bounding boxes. From bottom to top, the network

architecture of CRNN is made up of three parts: convolutional layers, recurrent layers, and a

transcription layer (Figure 7). The convolutional layer of CRNN is based on taking convolutional

and max-pooling layers from a standard CNN model and the fully-connected layer is removed. So,

a sequential feature representation is extracted from an input picture using such a component.

Before being fed into the network, the images are scaled to have the same height. After that, the

component of convolutional layers extracts the sequence of feature vectors from the feature maps.

The feature vectors are generated by taking a column of feature maps from left to right, the width

of each column is a single pixel. Therefore, each column of the feature map, which is called the

receptive field of the original image, corresponds to a rectangle region.

Next, the feature sequence which is made up of feature vectors is the input of the recurrent layer.

The recurrent layer has the advantage of capturing contextual information within a sequence. RNN

uses backward propagation enabling the model to train the convolutional and recurrent layers

together in a single network. Using RNN, the input sequence can have a flexible length, but the

recurrent layer suffers from a vanishing gradient and causes the issue of limiting the range of

16

context it can store. So, the study employed a bidirectional LSTM consisting of two components,

one forward and one backward. Each part is made up of three multiplicative gates: the input, output,

and forget gates. Compared to a one-directional LSTM structure, the bi-directional allows for more

levels of abstraction and has significantly improved performance.

Figure 7. The CRNN network architecture [10]

Transcription is the process of converting frame predictions made by the RNN to a label sequence.

Mathematically, the goal of transcription is to identify the label sequence that has the highest

probability given the per-frame predictions. Two types of transcription used in practice are lexicon-

free and lexicon-based transcriptions. A lexicon is a collection of label sequences to which

prediction is limited, such as a dictionary used for spell checking. By using the lexicon-free mode,

predictions are made without any lexicon. But in the lexicon-based mode, the highest probability

label sequence is used to make predictions. For the training phase, in the formular (1) the CRNN

minimizes the negative log-likelihood of the conditional probability of ground truth:

 𝐿 = − ∑ log𝑝(𝑙𝑖|𝑦𝑖)

𝐼𝑖,𝑙𝑖𝜖 𝜒

, (1)

where 𝜒 = {𝐼𝑖 , 𝑙𝑖}𝑖 denotes the training dataset, 𝐼𝑖 denotes the training images, 𝑙𝑖 denotes the ground

truth label sequence, and 𝑦𝑖 is the sequence produced by the recurrent and convolutional layers

from image 𝐼𝑖.

17

2.3. BERT

BERT stands for Bidirectional Encoder Representation from Transformer and is

constructed to pre-trained deep bidirectional vector representations from the unlabeled text by

combining left and right context of a sentence. BERT has the unique ability to balance the context

in both the left and right directions in a sentence based on the transformer technique. BERT model

architecture is a multi-layer bidirectional transformer based on the encoding process of the

transformer. BERT stacks the encoder to produce word embeddings. Let L denote the number of

stacked encoders, H denotes the number of hidden sizes, A is the number of self-attention heads,

there are two main models, which are 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 with the parameter L = 12, H = 768, A = 12, the

total parameter = 110 million and 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 with the parameter, L = 24, H = 1024, A = 16, the

total parameter = 340 million (Figure 8). Natural processing tasks are neural machine translation,

question answering, sentiment analysis, and question answering necessary comprehension of

human language. So BERT has two phases, pre-training for understanding language and then fine-

tuning depending on a specific task.

Figure 8. BERT architecture

2.3.1. Transformer in BERT

BERT uses a stack of 12 identical encoder layers [13] for 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 and 24 encoder layers

for 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸, each layer made-up of two sub-layers which are multi-head self-attention and

position-wise fully connected feedforward layers. The residual connections are employed around

two sublayers followed by a normalization layer. The output of each layer has a dimension of 512,

which can be defined in the formular (2):

 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)), (2)

where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚() is layer normalisation, 𝑥 is the input matrix, 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) is multi-head self-

attention or feed-forward layer of matrix 𝑥.

First, the input embedding in the transformer works as a look-up table to convert a word to a vector

representation. The embedding layer produces an embedding vector for each word in the sentence.

For example, the word “I” can be represented in the formular (3):

 𝐼 = [0.1; 0.54; 0.29. . .]𝑇, (3)

18

Next, the positional encoding injects positional information of a word into word embeddings so

that the model can use the order of sequence. The progress of positional encoding is applied after

the input embedding at the encoder stacks. Let 𝑡 be the desired position in an input sentence

𝑝𝑡⃗⃗ ⃗ 𝜖 𝑅
𝑑 be its corresponding encoding and 𝑑 be the dimensions of the model. The formular (4)

defined the function of positional encoding:

{

𝑝𝑡⃗⃗ ⃗
(𝑖)

 = sin(𝑤𝑘 . 𝑡) 𝑖𝑓 𝑖 = 2𝑘

 𝑝𝑡⃗⃗ ⃗
(𝑖)

 = cos(𝑤𝑘 . 𝑡) 𝑖𝑓 𝑖 = 2𝑘 + 1
 𝑤ℎ𝑒𝑟𝑒 𝑤𝑘 = 1/100002𝑖/𝑑,

(4)

Figure 9. Self-attention

Self-attention (Figure 9) allows a model to associate and adjust the weights of each individual word

to other words in the input. After the input embedding and positional encoding, the input of the

attention layer is a matrix that has a size of 𝑚 × 𝑛, where m is the length of sentences and n is the

dimension of the word embedding vector. The input matrix is multiplied with three weight matrixes

𝑊𝑘, 𝑊𝑞, and 𝑊𝑣 which are learned through the training process. Three results are called key, query,

and value. The attention score of each word pair (𝑤𝑖, 𝑤𝑗) is calculated by using the dot-product of

the query and the key divided by √𝑑𝑘 where 𝑑𝑘 is the dimension of the vector key. The higher

attention score is, the more the association of the word 𝑤𝑖 and the word 𝑤𝑗 is. After that, the

attention score has to go through the softmax operation to be normalised to be in the range of [0;

1]. Then, the attention score with softmax is multiplied by the value vector to obtain the final result.

The goal of multiplying with a value vector is to preserve the value of the important word while

fading out the irrelevant word by multiplying them with a small number. In actual implementation,

the embedding vector of an individual word is stacked together to create one matrix for each

sentence. The query, key, and value vectors of each word are also stacked to create three matrixes

Q, K, and V and the attention score is calculated in the formular (5):

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝐾𝑇

√𝑑𝑘

)𝑉,
(5)

19

In the transformer architecture, to expand the ability to focus on different positions, the study

employed multi-head attention [20] (Figure 10). The calculation is similar to self-attention, but in

the multi-head attention layer, the model does self-attention many times with different weight

matrices 𝑊𝑘, 𝑊𝑞, and 𝑊𝑣. Then it concatenates eight matrixes and multiplies by an additional

weight matrix 𝑊𝑜 to return the final matrix having the same dimension as the input matrix. The

formula of multi-head attention (6) can be expressed as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ℎ𝑒𝑎𝑑0, ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖 , 𝑉𝑖)
(6)

Figure 10. Multi-head attention

Finally, the fully connected feed-forward is a position-wise transformation that consists of two

linear transformations and a ReLU activation function. The purpose is to process the output from

one attention layer in a way to better fit the input for the next attention layer.

2.3.2. Pre-trained BERT

The goal of pretraining is to make BERT understand language and context. BERT is trained

on the Wikipedia dataset with 2.5 billion words and Google’s BooksCorpus with 800 million words

[21]. Two unsupervised tasks for simultaneous training are the masked language model and next-

sentence prediction.The masked language model enables BERT to bidirectionally learn from text.

The task is hiding a word (masking) in a sentence and forcing BERT to use the words on either side

of the sentence to predict the masked word. A random of 15% tokenized words is hidden during

the training phase. NSP (Next Sentence Prediction) is used to help BERT learn about relationships

between sentences by predicting whether a given sentence follows the previous sentence. For

constructing input for pre-training, the beginning of the sentence will be denoted with the token

[CLS] and separated by the pair sentence with the token [SEP]. For example, the pair “[CLS] I

worked at the library. [SEP] I borrowed a new book” is related to each other and has the label

“IsNext”. In contrast, the pair “I worked at the library. The coffee tastes like earth” has the label

“NotNext”. In the training phase, 50% of related sentence pairs are mixed with 50% of random

sentence pairs to increase the BERT accuracy.

20

2.3.3. Fine-tuning

After pre-training, BERT can be fine-tuned for a specific task. At the input, the data of the

task simply feed into BERT and fine-tune all the parameters. The input during fine-tuning can be

sentence pairs in paraphrasing, question-passage pairs in question answering, and a degenerate text

pair in text classification or sequence tagging. The [CLS] representation is fed into an output layer

for classification, such as entailment or sentiment analysis, while the token representations are fed

into an output layer for token-level tasks, such as sequence tagging or question answering.

2.4. SBERT

Figure 11. SBERT architecture

Most of the previous research in STS (semantic textual similarity) is not appropriate for a

massive range of pair regression tasks. The drawbacks of BERT are independent sentence

embeddings cannot be computed directly so it is challenging to derive sentence embeddings from

BERT. One typical way to get around this problem is to push single sentences through BERT, and

then create a fixed-sized vector by averaging the results (much like average word embeddings), or

by utilizing the result of the first token (the CLS (classification)] token) [22]. However, the

produced sentence embeddings are quite bad and cause high computational costs and time-

consuming search time. To bypass this issue, we used SBERT (Figure 11), which adds a pooling

layer to the BERT model's output to create fixed-sized sentence embeddings. Three pooling layers

can be used as CLS-token, computing the mean of all output vectors (MEAN-strategy) and

computing a max of the output vectors (MAX-strategy). To construct semantically relevant phrase

embeddings and to update the weights, a siamese network is applied to fine-tuned in SBERT. There

are several loss functions that can be used, and this study focuses on three loss functions: triplet

loss, cross-entropy loss, and multiple negative loss functions. The approach is efficient in terms of

search time while preserving the accuracy of BERT on STS tasks [17].

21

2.4.1. SBERT with triplet loss function

Figure 12. SBERT with triplet loss function (a), cross-entropy loss function (b) [14]

The triplet loss function [23] in SBERT (Figure 12(a)) employs the anchor question, the

positive question, and the negative question. The triplet loss function tries to reduce the distance of

the anchor question with positive question embedding and increase the distance with negative

question embedding simultaneously. The desired embedding is obtained when the distance of the

anchor-positive gets longer than the anchor-negative equals a margin 𝑚. The loss function can be

defined in the formular (7):

 𝐿 = ∑max (||𝑠𝑎 − 𝑠𝑝|| − ||𝑠𝑎 − 𝑠𝑛|| + 𝑚, 0) ,

𝑁

𝑖=1

 (7)

with 𝑠𝑎 , 𝑠𝑝, 𝑠𝑛 are the sentence embeddings for anchor, positive, and negative questions

respectively; ||. . . || represents the distance metric; margin 𝑚 ensures that 𝑠𝑝 is closer to 𝑠𝑎 than 𝑠𝑛.

2.4.2. SBERT with cross-entropy loss function

The cross-entropy loss function is applied by adding a softmax layer and a cross-entropy

loss to learn weight and directly predict a label. The structure of SBERT with cross-entropy loss

function [14] is shown in figure 12(b). After two sentence embeddings 𝑢 and 𝑣 is obtained, the

architecture concatenates two sentences embedding with the element wise difference |𝑢 − 𝑣| then

multiply with the trainable weight 𝑊𝑡 ∈ ℝ3𝑛×𝑘 where 𝑘 is number of labels and 𝑛 is the dimension

of the sentence embeddings (formular (8)):

 𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑡(𝑢, 𝑣, |𝑢 − 𝑣|)), (8)

2.4.3. SBERT with multiple negatives loss function

SBERT utilising a multiple negatives loss function [24] (Figure 13) is used when the

training set only has positive pairs. The function focuses on balancing the distance of a positive

question over multiple negative questions simultaneously. The loss function defined in the formular

(9):

 𝐿 = −
1

𝐾
∑[𝑆(𝑥𝑖, 𝑦𝑖) − 𝑙𝑜𝑔 ∑𝑒𝑆(𝑥𝑖,𝑦𝑗)

𝐾

𝑗=1

]

𝐾

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 (𝑖 ≠ 𝑗) (9)

where (𝑥𝑖 , 𝑦𝑖) represent the pair of anchor question and positive questions, (𝑥𝑖 , 𝑦𝑗) represent the

pair of anchor question and negative question and 𝑖 ≠ 𝑗. 𝑆(𝑥𝑖 , 𝑦𝑖) is a distance of two questions.

22

Figure 13. SBERT with multiple-negatives loss function [17]

2.5. Similarity measurement method

We utilise similarity measurement methods to determine the similarity score between each

vector representation of the input question computed by SBERT and each encoded question from

the database. Three proposed methods are Cosine-similarity, Euclid distance, and Spearman rank

correlation coefficient.

2.5.1. Cosine-similarity

Cosine similarity is a metric for calculating the similarity of two non-zero vectors specified

in an inner product space. In other words, it is the dot product of the vectors divided by the product

of their lengths. Cosine similarity is the cosine of the angle between two vectors and the result is

constrained to the range [0, 1]. The formula of cosine-similarity (10) can be defined as:

 𝑠𝑖𝑚(𝐴 , �⃗�) = 𝑐𝑜𝑠(𝜃) =
𝐴.𝐵

||𝐴||.||𝐵||
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖 = 1

√∑ 𝐴𝑖
2𝑛

𝑖 = 1 √∑ 𝐵𝑖
2𝑛

𝑖 = 1

 (10)

where 𝐴 and �⃗� are two sentence embedding vectors for multiple-choice questions A and B

respectively.

2.5.2. Euclid distance

Euclidean distance (formular (11)) is the square root of the sum of squared differences

between corresponding elements of the two vectors. In a multidimensional space, the closer two-

word vectors are to one another, the more probable it is that their meanings are similar:

 𝑠𝑖𝑚(𝐴 , �⃗�) = 𝑑(𝐴 , �⃗�) = √∑ (𝐴𝑖 − 𝐵𝑖)
2𝑛

𝑖 = 1 (11)

2.5.3. Spearman’s rank correlation coefficient

The Spearman's rank correlation coefficient is a nonparametric measurement method of

the correlation between two variables. The value is constrained in the range of [-1,1] which means

the closer a value is to 1, the more similar the two variables are. The formula (12) represents the

similarity score between vectors 𝐴 and �⃗� using Spearman's rank correlation coefficient:

23

 𝑠𝑖𝑚(𝐴 , �⃗�) = 𝜌 = 1 −
6∑ (𝐴𝑖 − 𝐵𝑖)

2𝑛
𝑖 = 1

𝑛(𝑛 − 1)2
 (12)

where 𝐴𝑖, 𝐵𝑖 is the value of two sentence embedding vectors 𝐴 and �⃗� .

2.6. Evaluation metric

Figure 14. The confusion matrix

The F1 score is a machine learning assessment statistic that focuses on a model's

performance inside each class rather than its overall performance to evaluate a model's predictive

ability. F1 score combines two competing metric precision, and recall scores of a model. Precision

and recall are constructed based on a confusion matrix consisting of four parts (Figure 14): the

number of samples that were correctly predicted as "positive" (true positives; TP), the number of

samples that were incorrectly predicted as "positive" (false positives; FP), the number of samples

that were correctly predicted as "negative" (true negatives; TN), and the number of samples that

were incorrectly predicted as "negative" (false positives; FN) (Figure 14). F1 score is useful when

the classes are imbalanced, especially in finding duplicate question cases, when the number of

samples duplicates class is significantly smaller than non-duplicates ones. The formula (13) and

(14) represent precision, recall, and F1 score:

𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 and 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(13)

 𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14)

24

3. Experiment

3.1. Data collection

Table 1. Data statistic

Information Value

Corpus size 312811

Vocabulary size 10306

Average length of question 252

We collected data from 1242 multiple-choice questions based on the FPT university

question bank, the datasets include two types: English which indicates the questions refer to

studying skills, and common situations in university; Math implies that the problems are probability

and statistics, function definitions, etc. The number of English questions and Math questions are

682 and 560 respectively. Table 1 shows the general information of the data statistics. 398 Math

questions are in the form of an image or a combination of text and images where the images

represent figures, functions, and special characters. Figure 15 shows an illustration of a few

multiple-choice questions from the dataset.

Figure 15. Examples of the MCQs in the database

To better understand the question domain, we use nltk (Natural Language Toolkit) to display word

frequency that appears commonly in the dataset. Tables 2 and 3 represent the top 5 common words

for each question type. In the English type, the domain of words is mostly based on the request for

25

candidates to choose an option when answering the multiple-choice questions, while the domain in

the Math type represents the words in the probability and statistics fields.

Table 2. Word frequency for English

question types

 Table 3. Word frequency for Math

question types

Word Value Word Value

group 244 probability 216

following 143 random 193

members 132 none 187

check 107 distribution 180

option 99 mean 176

3.2. Implementation

Machine learning is implemented in PyTorch. The experiments were conducted on a GPU

Nvidia Tesla T4 15Gb GPU. The encoding model uses two pre-trained sentence transformations

models SBERT. The all-mpnet-base-v2 model is trained on a 1 billion sentence pairs dataset with

a sequence length limited to 128 tokens, batch size of 1024, and learning rate of 2e−5 with 100,000

steps. The multi-qa-mpnet-base-dot-v1 model is concatenated from total 215 million question-

answer pairs dataset to trained and fine-tuned. We fine-tuned SBERT for detecting duplicate

multiple-choice questions on our datasets with multiple-negative loss function, 5 epochs, and batch

size of 8. The fine-tuned SBERT was compared with other models with different similarity

measurement methods. For deciding whether the pair multiple choices are duplicated or not, we set

a threshold after calculating the similarity score. If the score crosses the threshold the pair is

considered a duplicate.

3.3. Result & Analysis

We apply two pre-trained models SBERT [25] multi-qa-mpnet-base-dot-v1, all-mpnet-

base-v2 before and after fine-tuning, with softmax loss function, triplet loss function, and multiple-

negative loss function following by using three measurement methods for computing similarity

score. The result is listed in table 4. In three loss functions, both multi-qa-mpnet-base-dot-v1 and

all-mpnet-base-v2 models perform well on the Cosine and Spearman method, but when it comes to

the Euclidean distance method, the multi-qa-mpnet-base-dot-v1 model yields poor results. After

fine-tuning with softmax loss and triplet loss, the obtained result is significantly lower than pre-

trained models. In the first experiment with softmax loss, we obtained an F1 score of around 0.77

for two models and 0.44 for multi-qa-mpnet-base-dot-v1 model with the Euclid measurement

method. The F1 score is significantly improved by around 0.7 for both models with triplet loss

function since it required anchor question, positive question, and negative question for training

simultaneously so the models better understand the context of multiple-choice questions. When

applied multiple negative loss function, both models achieved outstanding F1 scores around 0.94,

and the all-mpnet-base-v2 model with Spearman measurement methods achieved the highest result

with a 0.95 F1 score. In our dataset, the number of positive questions is lower than the number of

negative questions, SBERT with a multi-negative loss function outperforms other approaches in

terms of F1 score because it better manages skewed data.

26

Table 4. SBERT with F1 Score

Model Cosine Spearman Euclid

multi-qa-mpnet-base-dot-v1 0.89 0.9 0.12

all-mpnet-base-v2 0.89 0.9 0.9

multi-qa-mpnet-base-dot-v1 fine-tune

softmax loss

0.77 0.77 0.44

all-mpnet-base-v2 fine-tune softmax

loss

0.75 0.76 0.76

multi-qa-mpnet-base-dot-v1 fine-tune

triplet loss

0.88 0.89 0.25

all-mpnet-base-v2 fine-tune triplet

loss

0.80 0.80 0.80

multi-qa-mpnet-base-dot-v1 fine-tune

multiple negative loss

0.94 0.92 0.15

all-mpnet-base-v2 fine-tune multiple

negative loss

0.94 0.95 0.93

27

4. Web Application Deployment

Based on the result after the experiment phase, to tackle the problem of time-consuming

and improve the effectiveness when enlarging the question bank, we propose a web-based called

Queslet. The web application has a user-friendly application that uses the Django framework to

manage the question bank and supports the professor in the adding question phase. The architecture

applied Pinecone and PostgreSQL as a database for retrieving and storing multiple-choice

questions.

4.1. Overall question bank architecture

4.1.1. Database ERD

Figure 16. The schema in PostgreSQL

Overall, to better manage the question bank, the tables auth_group and auth_user_group

divide users into two main groups with different roles including teacher and manager. The table

auth_user contains data of all users with the unique filed username for them to login to the system.

Each user must be assigned to access the subject by the manager and store it in the

questionbank_subjectaccess table to interact with specific subject in the question bank. The

information of the subject is stored in the table questionbank_subject, currently there are two main

subjects which are Math and English corresponding to the dataset that built for the SBERT model.

28

The question is designed based on multiple-choice questions in FPT university that contains

question, options, answer, and image with a corresponding subject (Figure 16).

4.1.2. Use case specifications

The first role is the manager which represents the head of the subject. The manager has

permission to import, delete, view, search, update, and export questions in the database. The

manager can view all subjects that exist in the question bank. Also, they can appoint teachers to

access appropriate subjects (Figure 17 (b)). The second group is the teacher who can view and

search assigned subjects (Figure 17 (a)).

Figure 17. Use case of teacher role (a), Use case of manager role (b)

4.2. Pinecone

Figure 18. Workflow in Pinecone

29

To tackle the problem of retrieving and searching questions for comparison in the large

question bank, the Pinecone vector database is employed to store encoded questions. Pinecone is a

vector database, which has features like CRUD operations, metadata filtering, horizontal scaling,

indexes, and saves vector embeddings for fast retrieval and similarity searches. Pinecone performs

semantic search as opposed to employing keyword lookups, focusing on the meaning of the search

question. The meaning of a specific word, sentence, paragraph, or lengthy document can be

effectively encoded into a data structure by applied vector embedding using pre-trained neural

networks on vast collections of text data. Semantic search better comprehends the content and

context of multiple-choice questions in order to produce more precise search results. Furthermore,

to better assist the searching operation, Pinecone enables image similarity search which transforms

image data into vector embeddings and allows users to search images through keywords.

The workflow of Pinecone is illustrated in Figure 18. First, a Pinecone API key, the name of an

index, and the number of dimensions for each vector are needed in order to create a Pinecone Index.

In this study, a 768-dimensional vector for maps of each piece of text is employed. When

connecting to the index, the Pinecone vector database requires vector embeddings so we use the

trained SBERT model as a method for embedding multiple-choice questions when interacting with

Pinecone after finishing creating and connecting to the index.

4.3. Process adding new questions

Figure 19. Website homepage with Manager account

Overall, the homepage (Figure 19) contains all information of question bank include total

questions, the number of multiple-choice questions containing images, and the accessed subject.

When adding a new question to the database, the lecture follows the second case of FPT university

and replaces the manual keyword searching with the proposed comparison method. Each teacher

prepares a document file containing the multiple-choice questions based on their assigned sub-

category. The docx file will be stored in the same folder with the images belonging to the MCQs.

In order to understand the scope and reduce the likelihood of producing duplicate questions, the

teachers can view and search questions in the question bank since Pinecone optimises searching by

using a vector database. However, the teacher can only access the subjects they are accepted by the

manager. The manager sums up all the prepared materials including the images and a word file

following the template illustrated in figure 20 and imports them to the website.

30

Figure 20. Folder import and template of a question in a word file (.docx)

Figure 21. List of duplication question pairs

After uploading the required materials, the web application encodes the uploaded questions using

OCR and SBERT. The encoded results are compared to each uploaded encoded question in the

Pinecone question bank. Cosine similarity is used in the comparison phase because it better supports

the Pinecone vector database. If the similarity score exceeds the threshold of 0.7, the question pairs

are considered duplicates. The list of duplication pairs is listed for the manager to decide whether

report back the uploaded question or add it to the question bank (Figure 21). If the imported

questions are unique, the import questions are stored in a PostgreSQL database, and the question

encodes are preserved in Pinecone for use in future searching and retrieval operations.

31

5. Conclusion and Future Work

This study focuses on enhancing the administration of the question bank at FPT University

by addressing the issue of question duplication and aiming for a new approach for lectures to add a

new question to the question bank. An end-to-end machine learning architecture is fine-tuned for

representing questions in text or image form into a vector. The model takes advantage of OCR to

extract information from images and vectorize the combination of data in images and text using

SBERT. Various similarity measures were examined on the collected data set and in the end, the

Spearman measure was the best with an F1 score of 0.95. The model is deployed on a web

application using the Django framework applied role permissions, PostgreSQL as a database, and

Pinecone vector database as a search engine. The result of a model and an application show that the

proposed method can effectively support question bank management at FPT University which

makes the process of adding questions more efficient by reducing the rate of duplicate multiple-

choice questions.

Currently, due to the constraint on time and the limitation of human and finance resource, the

constructed test bank just covers a small portion of the questions which are written only in English.

Additionally, the question pairs having a similarity score between 0.7 and 0.9 cause a huge

confusion for lecturers because two different questions share the same context might be still

considered as duplication. In future work, we aim to tackle the problem of question duplication on

an actual question bank of FPT University with different languages such as Vietnamese, Chinese,

and Japanese. The presence of audio-based multiple-choice questions and the mentioned issue of

similarity score are also taken into more consideration.

32

References

1. FPT Education. Retrieved from https://fpt.com.vn/en/business/education.

2. Purohit, V.K., Kumar, A., Jabeen, A., Srivastava, S., Goudar, R.H., Shivanagowda., Rao,

S.: Design of adaptive question bank development and management system. In: 2nd IEEE

International Conference on Parallel, Distributed and Grid Computing, Solan, India, pp.

256-261 (2012).

3. Mia, M.R., Latiful Hoque, A.S.M.: Question Bank Similarity Searching System (QB3S)

Using NLP and Information Retrieval Technique. In: 1st International Conference on

Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka,

Bangladesh, pp. 1-7 (2019).

4. Wang, L., Zhang, L., Jiang, J.: Duplicate Question Detection With Deep Learning in Stack

Overflow. In IEEE Access, vol. 8, pp. 25964-25975 (2020)

5. Li, Y., Yao, L., Du, N., Gao, J., Li, Q., Meng, C., Zhang, C., Fan W.: Finding Similar

Medical Questions from Question Answering Websites. arXiv.1810.05983 (2018).

6. Liao, M., Shi, B., Bai, X., Wang, X., Liu W.: TextBoxes: A Fast Text Detector with a Single

Deep Neural Network. arXiv:1611.06779 (2016).

7. Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang J.: EAST: An Efficient and

Accurate Scene Text Detector. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, pp. 2642-2651 (2017).

8. Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character Region Awareness for Text

Detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Long Beach, CA, USA, pp. 9357-9366 (2019).

9. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading Text in the Wild with

Convolutional Neural Networks. arXiv:1412.1842 (2014).

10. Shi, B., Bai, X., Yao, C.: An End-to-End Trainable Neural Network for Image-Based

Sequence Recognition and Its Application to Scene Text Recognition. arXiv:1507.05717

(2015).

11. Gokul, P.P, Akhil, B.K., Shiva, K.K.M.: Sentence similarity detection in Malayalam

language using cosine similarity. In: 2017 2nd IEEE International Conference on Recent

Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore,

India, pp. 221-225 (2017).

12. Dhar, A., Dash, N.S., Roy, K.: Application of TF-IDF Feature for Categorizing Documents

of Online Bangla Web Text Corpus. In: Bhateja, V., Coello Coello, C., Satapathy, S.,

Pattnaik, P. (eds) Intelligent Engineering Informatics Advances in Intelligent Systems and

Computing, vol 695. Springer, Singapore (2018).

13. Devlin, J., Chang, M.W., Lee, K., Toutanova K.: BERT: Pre-Training of Deep Bidirectional

Transformers for Language Understanding. arXiv:1810.04805 (2018).

14. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence Embeddings Using Siamese BERT-

Networks. arXiv: 1908.10084 (2019).

15. Ghojogh, B., Sikaroudi, M., Shafiei, S., Tizhoosh, H, R., Karray, F., Crowley, M.: Fisher

Discriminant Triplet and Contrastive Losses for Training Siamese Networks. In:

International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, pp. 1-7 (2020).

16. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 Task 1: Semantic

Textual Similarity - Multilingual and Cross-Lingual Focused Evaluation.

arXiv:1708.00055 (2017).

17. Thanh, T.N., Nha, N.K., Hieu, N.K., Anh, N.K., Khoat, T.Q.: Utilizing SBERT For Finding

Similar Questions in Community Question Answering. In: 13th International Conference

on Knowledge and Systems Engineering (KSE), Bangkok, Thailand, 2021, pp. 1-6 (2021).

33

18. GitHub - JaidedAI/EasyOCR: Ready-to-use OCR with 80+ supported languages and all

popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

[online] Available at: https://github.com/JaidedAI/EasyOCR.

19. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on

immersion simulations. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 13, no. 6, pp. 583-598 (1991).

20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, N, A., Kaiser, L.,

Polosukhin, I.: Attention Is All You Need. arXiv:1706.03762 (2017).

21. Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler.:

Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies

and Reading Books. In IEEE International Conference on Computer Vision (ICCV),

Santiago, Chile, pp. 19-27 (2015).

22. Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., Artzi, Y.: BERTScore: Evaluating Text

Generation with BERT. arXiv:1904.09675 (2019).

23. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality Reduction by Learning an Invariant

Mapping. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR'06), New York, NY, USA, pp. 1735-1742 (2006).

24. Henderson, M., Strope, B., Sung, Y., Lukacs, L., Guo, R., Kumar, S., Miklos, B., Kurzweil,

R.: Efficient Natural Language Response Suggestion for Smart Reply. arXiv:1705.00652

(2017).

25. Pretrained Models — Sentence-Transformers documentation. [online] Available at:

https://www.sbert.net/docs/pretrained_models.html.

