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ABSTRACT 

A question bank is a database of questions in a variety of formats, used as a central repository for 

building tests. Question banks are the core tool for innovative testing and assessment of learners' 

learning outcomes. It can be built and added over time, from many sources, and many people. So 

creating new questions may result in duplicate questions and deciding whether to include that 

question in the real database will take time to manually search across data files. This study proposes 

an end-to-end machine learning architecture to combine the information from the text data and the 

data from the image in question through optical character recognition into an encoded vector. From 

there, the system can query to find similar questions based on similarity ranking. The machine 

learning model was evaluated on a part of the question bank of FPT University, a university of 

information technology in Vietnam. The obtained F1 score of 0.95 proves that the model can be 

used for intelligently managing the question bank of the FPT education system as well as of other 

educational institutions.  
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1. Project Introduction 

1.1. Problem & Motivation 

Multiple choice (MC) objective response or multiple-choice questions (MCQs) was created 

in the early 20th century by E. L. Thorndike and B. D. Wood. It became widely used after almost 

fifty years. Nowadays, multiple-choice questions are one of the most commonly used in exam 

construction and popular survey question types. A multiple-choice question is a form of inquiry 

where the respondent must select one or more items from a constrained list of options. The 

component of multiple-choice questions is the question text, answer options, and correct answers. 

The question text describes the issues with closed-ended questions or an incomplete statement to 

be finished to make up the complete statement. The correct answer is a single choice or a list of 

choices in multiple response question type. Multiple choice format is superior to other testing 

formats since the cost-effective advantage when the outcome is usually checked using scanners and 

data processing devices, elimination of examiner bias. The set of multiple-choice questions with 

the same subject is stored and can be repeatedly called question banks. Making a question bank 

reduces cheating since the pool of questions are large and diverse. The identical questions appear 

in different sets and in a random order for the students. In recent years, with the high demand for 

examination, multiple-choice questions have been utilised universally throughout all educational 

testing, market research, and elections when a person chooses between multiple candidates, parties, 

or policies. Many international examinations evaluate candidates using a multiple-choice style such 

as: the Scholastic Aptitude Test (SAT), Test of English for International Communication (TOEIC), 

International English Language Testing System (IELTS), etc.  

 
Figure 1. EOS exam software interface 

In FPT university [1], the exam online system named EOS (Figure 1) has been used to generate 

exams for student evaluation. The EOS system takes multiple-choice questions form the question 

bank which is the main database for storing questions. There are two methods for adding new 

questions to the question bank at FPT university. In case one (Figure 2), the creation of the question 

bank is the responsibility of one teacher, and the question bank is generated into a word file and 

makes all information in the databases accessible. The instructor manually identifies duplicate 

questions before adding a new question to the database. The created questions must be eliminated 

if their contents are similar; else, new questions are imported into the question bank. Because the 

databases are completely accessible, it causes a risk of revealing question information and the 

import process is costly. In case two (Figure 3), the subject's primary lecturer divides the curriculum 

into many sub-categories for instructors to create new questions. Due to the variety in the question's 
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substance and content relationships between subcategories, many teachers may generate similar 

questions. Additionally, teachers are incapable of engaging with question bank databases, hence 

they are unable to determine whether or not questions are present in the databases. The head of the 

department is responsible for grouping all the doc files and manually checking duplicate questions. 

If the generated questions have similar contents, they must be reported back to the subject's primary 

lecturer to change or remove duplicate questions before it added to the question bank. In both two 

approaches, duplicate questions are identified through keyword manual searches, making the 

identification process difficult and time-consuming. This difficulty is exacerbated when some 

questions are stored as images, which further complicates the search process. 

 
Figure 2. Case one: Adding a new question to the question bank 

Figure 3. Case two: Adding a new question to the question bank 

In general, as the number of questions in the question bank increases, it becomes more difficult to 

manage their content and impossible to avoid question duplication. Current research on multiple-

choice tests solely concentrates on generating exam questions from the available question bank; 

still, it ignores the necessity of making sure that the questions' substance is unique across question 

bank. This can cause a massive consequence since it negatively affects the evaluated quality of the 

overall exam, for instance, two similar multiple-choice questions can appear in the same test. Along 

with this rising issue, due to the distinctive nature of the multiple-choice question format, the 

problem of MCQs content duplication is still a significant barrier. Aside from the difficulty of 
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multiple-choice question structure, due to the security concern and the limitation in exam 

application, questions are frequently stored in several formats, including a form of a document, an 

image, and a combination of text and image. Consequently, storing formats is one of the main issues 

needed to tackle during retrieving and comparing questions. In order to determine how similar the 

questions are, an additional pre-processing question to extract valuable text from the image must 

be added before extracting and comparing. With the development of computer vision, especially 

optical character recognition (OCR) models have been employed for extracting documents from 

images. The goal of this thesis is to address the issue of difficulties when adding a new question to 

the question bank. We conducted research on building a model for comparing image and text 

multiple-choice questions and deployed it on a web application, which made the enlarging question 

bank task more efficient.  

1.2. Related Work 

1.2.1. Question bank management  

In the scope of question bank management, much research focuses on the creation, and 

assessment of question bank management systems for different areas of education, including 

medicine, computer science, engineering, and online learning environments. These studies 

emphasise the importance of efficient and effective question bank management systems for 

assistance in the evaluation of student learning outcomes. Purohit et al. [2] implemented an adaptive 

question bank management system that queries wisely from an extensive question database and 

generates a question paper based on the course curriculum by using the Concept Map tool. 

However, the redundancy of duplicate questions in the question bank typically has a significant 

effect on the system. Mia et al. [3] employed NLP technologies to construct a system that is suitable 

for storing and pre-processing multiple-choice questions in the Bangla language. For instance, 

questions stored in the database are categorised into three classes: cognitive class contains the title 

and four options; analytical class provides three or more options, and the candidate must choose 

one of the combinations of these options; higher ability class is a group of multiple-choice questions 

containing two or three cognitive class or analytical class questions. All questions are stored in a 

B+ tree to optimise the data access time, the key of the tree is constructed based on the question 

class and question number. After the pre-processing stage consists of stop-word removal, 

stemming, and tokenization the term frequency and inverse document frequency (TF-IDF) will be 

calculated. The term frequency value determines how often a phrase appears in a document, and 

the inverse document frequency value determines the significance of a word. The vector of a 

question is constructed based on a vector space model (VSM) which uses TF-IDF weights to 

calculate the word weighting for each text feature component. Finally, cosine similarity is applied 

to measure the similarity and the result is the ranking of similar scores. However, it is inappropriate 

to compare two questions that share the same content but different keywords by building a vector 

using the TF-IDF weights.  

In the field of managing and optimising large-scale question datasets, Wang et al. [4] presented a 

question-answering model for Stack Overflow, a well-known community-based question-answer 

(CQA) platform. The model utilised Word2Vec to embed questions and applied deep learning 

techniques such as convolutional neural network (CNN), recurrent neural network (RNN), and long 

short-term memory (LSTM) to identify duplicate questions, the evaluation results indicated that the 

use of CNN and LSTM produced significant improvements compared to traditional machine 

learning approaches. Particularly, the outcome of the word-vector long short-term memory (WV-

LSTM) model outperformed all other models. Li et al. [5] put forth an end-to-end system that can 

instantly locate questions that are similar to unanswered medical questions. The system initially 

collects certain metadata from a new question when it is uploaded on the website, like the question's 

intention and category. Such metadata is useful for highlighting the key phrases in the unsolved 
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question. Then, the system pulls out a select group of possible questions from the current question 

corpus using the key terms that are determined as important. Otherwise, the new question will be 

compared with every solved question in the corpus, which is time-consuming or even impossible 

when the size of the question corpus is large. The proposed system's effectiveness can be greatly 

increased by taking this step. The similarity score of the unsolved question with each question in 

the candidate set will be calculated based on question vector representations produced by a trained 

LSTM. All candidate questions are then ordered according to their corresponding similarity scores, 

and the top candidates with similarity scores greater than a predetermined threshold are taken into 

consideration as similar medical questions for the unanswered question. Nevertheless, these 

keyword-based algorithms have the drawback of just considering the information in the keywords 

and ignoring the comprehensive information.  

1.2.2. Optical Character Recognition (OCR) 

 OCR refers to the process of automatically recognizing and converting written or typed text 

in an image or scanned document into machine-readable text. Related work in this field has been 

extensive, with numerous research studies and commercial solutions developed over the years. A 

critical area of related work in the OCR field has been the development of textual detection models.  

One popular model is TextBoxes proposed by Liao et al. [6], which integrates text region proposal 

and text classification into a single CNN and trains the network on various picture scales to handle 

texts of varying sizes, demonstrating fast and efficient results on SynthText, IC11, and IC13 

datasets. Zhou et al. [7] present a method for scene text detection called Efficient and Accurate 

Scene Text detection (EAST) that uses a fully-convolutional neural network adapted for dense word 

or text line predictions at the pixel level. In 2019, Baek et al. [8] presented a highly efficient text 

detection model called Character-Region Awareness For Text detection (CRAFT) that is suitable 

for real-time applications and able to detect text in complex or low contrast backgrounds. The 

CRAFT method has been shown to be highly efficient, making it suitable for real-time text detection 

applications. In experiments, the result showed superior performance to other popular text detection 

methods, including EAST and TextBoxes, on the ICDAR 2013 and ICDAR 2015 datasets. Another 

important component of OCR is the text recognition model. Jaderberget et al. [9] present the model 

using a CNN to recognize text in images. The model has shown to outperform existing state-of-the-

art text recognition algorithms in terms of accuracy and robustness. In 2015, an end-to-end trainable 

deep neural network to minimise the recognition error proposed by Shi et al [10], the convolutional 

recurrent neural network (CRNN) architecture has been used for the model consisting of multiple 

convolutional, recurrent layers, and transcription layers from bottom to top. This architecture is 

trained in an end-to-end manner, where the parameters of both the CNN and RNN components are 

learned simultaneously from the input images and their corresponding text annotations. The model 

has been demonstrated to attain high accuracy on the IC 2013 and IIIT 5K-Words datasets by 

combining convolutional and recurrent layers. Overall, it can be stated that the capabilities of OCR 

have greatly advanced and can now successfully recognise text in various font styles, orientations, 

and languages, even in complex scenes with noise and low resolution. OCR can serve as a 

preliminary processing stage where it can transform image-based sentences into a text format for 

further processing and comparison. 

1.2.3. Two-sentence comparison 

 Related to the evaluation of two-sentence comparison, Gokul et al. [11] propose a method 

utilising cosine similarity to find the similarity score between two Malayalam sentences and 

determine whether two input sentences are two paraphrases or not. First, the input sentence is split 

into separate words like 𝑆1 = {𝑊1, 𝑊2,𝑊3, … ,𝑊𝑛} where 𝑊𝑛 represents the last word of the input 

sentence. Then, the study apply Malayalam WordNet and POS tagging (Part-of-Speech tagging) 

for determining the functions of each word to choose a standard set of tags (N, V, Prep, Det, Adj,...). 

After that, cosine similarity is employed to calculate similarity scores and determine whether they 
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have the same meaning or not.  The study obtained an accuracy of 0.8 in test data of 900 sentence 

pairs of FIRE 2016 Malayalam corpus. In 2018, Dhar et al. [12] suggested using TF-IDF to 

represent the text as a collection of word frequency vectors and computing text similarity using 

cosine similarity. The study based on Bangla text documents is normalised and utilised as the 

experiment's inputs after being received from various online web sources. However, this approach 

disregards the semantic details connected to the text's phrases. 

Devlin [13] introduced Bidirectional Encoder Representations from Transformers (BERT) 

employing a cross-encoder: The transformer network receives two sentences, and it predicts the 

target value. Due to a large number of combinations, this approach is unsuitable for many pair 

regression tasks. This led to the time of searching similar questions issue when this process is time-

consuming and inappropriate for a large question bank. To address the time-consuming issue of 

BERT, Reimers [14] introduced Sentence-BERT (SBERT) which adds one of three pooling 

strategies such as CLS-token, MAX-strategy, and MEAN-strategy to the output of BERT. After 

that, the study employed a siamese network structure [15] to fine-tune and construct semantically 

meaningful sentence embeddings for the STS (semantic textual similarity) [16] task. Then, applying 

a similarity measure method such as cosine similarity or Euclidean distance to calculate the 

semantic textual similarity between two sentence embeddings. These similarity measures can be 

performed extremely efficiently on modern hardware, allowing SBERT to be used for semantic 

similarity search and clustering. The study also emphasised that SBERT uses siamese network 

structures that share their weights and uses optimised index structures, so the number of operations 

decreased significantly compared to BERT. Thanh et al. [17] conducted research on different 

SBERT strategies for STS and they suggested that the triplet loss function is the most effective 

function for training and fine-tuning SBERT. Therefore, SBERT should be used to identify similar 

questions in order to increase the effectiveness of managing multiple-choice questions in question 

bank. 

1.3. Contribution   

This study aims to improve question bank management at FPT University by addressing 

the problem of question duplication and purpose a new method for lecturers when enlarging the 

question bank. In this thesis, we primarily focus on theoretical research to improve the effectiveness 

of a model that can identify duplicate questions, whether they are in text or image form. The 

research improves the accuracy and the time consumption of similarity question search by using 

SBERT for encoding the question. Then, similarity score will be calculated using the similarity 

measurement method. For questions containing images, the OCR model which contains two 

components: CRAFT to identify and locate text regions, and CRNN for text recognition. That 

framework will be applied to extract text from images and then concatenate them with the questions. 

By combining SBERT and OCR, our goal is to build an end-to-end machine learning architecture 

that represents questions in text or image form into a vector to detect duplicate multiple-choice 

questions in the question bank containing images in minimal time. A new dataset has been built for 

the purpose of model evaluation, which will be covered in the following section. According to the 

architecture's pipeline, the model processes both the question and the image by first converting the 

image into text and then combining it with the text part. This combined input runs through the 

SBERT model to obtain embeddings and compare the similarity with existing questions in the 

database. Finally, for the practical perspective, we utilise Django as a framework to deploy the 

model on a question bank web application. The website allows the storage of numerous questions 

in image and text format, along with two specific role permissions (manager, teacher), making the 

process of import questions and managing question bank in the FPT University more efficient. 
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2. Methodology 

2.1. Overview pipeline  

 

Figure 4. Question bank architecture 

To provide a clearer explanation of the proposed system, a high-level overview is 

introduced. Figure 4 describes the flow of the whole architecture that is designed to detect 

duplicates of multiple-choice questions. When a new question is added, the presence of images is 

checked, and then the OCR model is applied to extract relevant information. Then the model joins 

the extracted information with the textual question. In many cases, the image questions also include 

options, so the text part and options will be merged to improve accuracy. Finally, all the compared 

questions will be sorted in descending order according to similarity scores, and all the top questions 

that exceed the threshold are marked as duplicate questions. The detail about each component is 

described in the following sections. 

2.2. OCR  

The OCR model used to extract information from images is the EasyOCR [18] framework. 

It is designed to highly accurate and, easy to use even for low-quality images. The OCR task is 

divided into several stages, including image pre-processing for noise reduction, character 

segmentation, and character recognition. The detection model - CRAFT, which is introduced by 

Baek et al. [8], is applied to localize each individual character in the image. After detecting the 

character region, the result is the input of the recognition model which is a CRNN model proposed 
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by Shi et al. [10]. CRNN is an end-to-end trainable neural network, takes advantage of CNN and 

RNN to achieve high performance on image-based sequence recognition.  

 

2.2.1. Text detection with CRAFT 

 
Figure 5. CRAFT architecture [8] 

Scene text detection is a task to detect text regions in the complex background and mark 

them with bounding boxes. The main objective of CRAFT is to localize the character region in the 

image and group detected characters to a text instance. The backbone of CRAFT's design is a fully 

convolutional network architecture based on VGG-16. CRAFT architecture primarily uses VGG-

16 to extract features from the input of the network and encode them into a specific feature 

representation. The decoding segment of the CRAFT network is similar to UNet which skips 

connections that aggregate low-level features (Figure 5). Moreover, to surmount the missing 

character-level annotations datasets, the CRAFT model is trained using the weakly supervised 

learning method. The result of the models is two scores for each character: the region score which 

represents the probability that the given pixel is the centre of the character and the affinity score 

represents the centre probability of the space between adjacent characters.  
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 Figure 6. Training stream in CRAFT [8] 

CRAFT employed Gaussian heatmap representation to learn both the region score and the affinity 

score. Typically, perspective projections deform the character bounding boxes on an image so three 

steps have been deployed to approximate and generate the ground truth for the region score and the 

affinity score: 1) prepare a 2-dimensional isotropic Gaussian map; 2) compute perspective 

transform between the Gaussian map region and each character box; 3) warp the Gaussian map to 

the box area [8]. For the affinity score, the model draws diagonal lines connecting opposite vertices 

of the character box, creating 2 triangles - upper and lower, and the affinity box is created with the 

vertex central point of four triangles from two adjacent character boxes. Unlike synthetic datasets 

that have character-level annotations, real images usually have word-level annotations. So, the 

CRAFT creates a character box from each word box. When a real image with word-level 

annotations is provided, the transient model (under training) will predict the character region score 

of the words that have been clipped to create character-level bounding boxes. The steps for training 

real images: first cut the word boxes, then use the temporary model to predict the region score (heat 

map), next the watershed [19] algorithm is applied to separate the characters to create the character 

bounding box, finally the character boxes' coordinates are changed back into the original image 

coordinates. Figure 6 illustrates the training phase of CRAFT for both real images and synthetic 

images in a weakly-supervised style. 

2.2.2.  Scene Text Recognition   

After detecting text by using CRAFT, the input for CRNN is the bounding boxes and the 

objective is to recognise the letter inside the bounding boxes. From bottom to top, the network 

architecture of CRNN is made up of three parts: convolutional layers, recurrent layers, and a 

transcription layer (Figure 7). The convolutional layer of CRNN is based on taking convolutional 

and max-pooling layers from a standard CNN model and the fully-connected layer is removed. So, 

a sequential feature representation is extracted from an input picture using such a component. 

Before being fed into the network, the images are scaled to have the same height. After that, the 

component of convolutional layers extracts the sequence of feature vectors from the feature maps. 

The feature vectors are generated by taking a column of feature maps from left to right, the width 

of each column is a single pixel. Therefore, each column of the feature map, which is called the 

receptive field of the original image, corresponds to a rectangle region. 

Next, the feature sequence which is made up of feature vectors is the input of the recurrent layer. 

The recurrent layer has the advantage of capturing contextual information within a sequence. RNN 

uses backward propagation enabling the model to train the convolutional and recurrent layers 

together in a single network. Using RNN, the input sequence can have a flexible length, but the 

recurrent layer suffers from a vanishing gradient and causes the issue of limiting the range of 
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context it can store. So, the study employed a bidirectional LSTM consisting of two components, 

one forward and one backward. Each part is made up of three multiplicative gates: the input, output, 

and forget gates. Compared to a one-directional LSTM structure, the bi-directional allows for more 

levels of abstraction and has significantly improved performance. 

 
Figure 7. The CRNN network architecture [10] 

Transcription is the process of converting frame predictions made by the RNN to a label sequence. 

Mathematically, the goal of transcription is to identify the label sequence that has the highest 

probability given the per-frame predictions. Two types of transcription used in practice are lexicon-

free and lexicon-based transcriptions. A lexicon is a collection of label sequences to which 

prediction is limited, such as a dictionary used for spell checking. By using the lexicon-free mode, 

predictions are made without any lexicon. But in the lexicon-based mode, the highest probability 

label sequence is used to make predictions. For the training phase, in the formular (1) the CRNN 

minimizes the negative log-likelihood of the conditional probability of ground truth: 

 𝐿 =  − ∑ log𝑝(𝑙𝑖|𝑦𝑖)

𝐼𝑖,𝑙𝑖𝜖 𝜒

, (1) 

where 𝜒 = {𝐼𝑖 , 𝑙𝑖}𝑖 denotes the training dataset, 𝐼𝑖 denotes the training images, 𝑙𝑖 denotes the ground 

truth label sequence, and 𝑦𝑖 is the sequence produced by the recurrent and convolutional layers 

from image 𝐼𝑖. 
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2.3. BERT 

BERT stands for Bidirectional Encoder Representation from Transformer and is 

constructed to pre-trained deep bidirectional vector representations from the unlabeled text by 

combining left and right context of a sentence. BERT has the unique ability to balance the context 

in both the left and right directions in a sentence based on the transformer technique. BERT model 

architecture is a multi-layer bidirectional transformer based on the encoding process of the 

transformer. BERT stacks the encoder to produce word embeddings. Let L denote the number of 

stacked encoders, H denotes the number of hidden sizes, A is the number of self-attention heads, 

there are two main models, which are 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 with the parameter L = 12, H = 768, A = 12, the 

total parameter = 110 million and 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 with the parameter, L = 24, H = 1024, A = 16, the 

total parameter = 340 million (Figure 8). Natural processing tasks are neural machine translation, 

question answering, sentiment analysis, and question answering necessary comprehension of 

human language. So BERT has two phases, pre-training for understanding language and then fine-

tuning depending on a specific task.  

 
Figure 8. BERT architecture 

2.3.1. Transformer in BERT  

BERT uses a stack of 12 identical encoder layers [13] for 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 and 24 encoder layers 

for 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸, each layer made-up of two sub-layers which are multi-head self-attention and 

position-wise fully connected feedforward layers. The residual connections are employed around 

two sublayers followed by a normalization layer. The output of each layer has a dimension of 512, 

which can be defined in the formular (2):  

 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)), (2) 

 

where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚() is layer normalisation, 𝑥 is the input matrix, 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) is multi-head self-

attention or feed-forward layer of matrix 𝑥. 

First, the input embedding in the transformer works as a look-up table to convert a word to a vector 

representation. The embedding layer produces an embedding vector for each word in the sentence. 

For example, the word “I” can be represented in the formular (3):  

 𝐼 =  [0.1;  0.54;  0.29. . . ]𝑇, (3) 
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Next, the positional encoding injects positional information of a word into word embeddings so 

that the model can use the order of sequence. The progress of positional encoding is applied after 

the input embedding at the encoder stacks. Let 𝑡 be the desired position in an input sentence  

𝑝𝑡⃗⃗  ⃗ 𝜖 𝑅
𝑑 be its corresponding encoding and 𝑑 be the dimensions of the model. The formular (4) 

defined the function of positional encoding: 

 
{

𝑝𝑡⃗⃗  ⃗
(𝑖)

 = sin(𝑤𝑘 . 𝑡) 𝑖𝑓 𝑖 =  2𝑘

        𝑝𝑡⃗⃗  ⃗
(𝑖)

 = cos(𝑤𝑘 . 𝑡) 𝑖𝑓 𝑖 =  2𝑘 + 1
 𝑤ℎ𝑒𝑟𝑒 𝑤𝑘 =  1/100002𝑖/𝑑, 

 

(4) 

 

 
Figure 9. Self-attention 

Self-attention (Figure 9) allows a model to associate and adjust the weights of each individual word 

to other words in the input. After the input embedding and positional encoding, the input of the 

attention layer is a matrix that has a size of 𝑚 ×  𝑛, where m is the length of sentences and n is the 

dimension of the word embedding vector. The input matrix is multiplied with three weight matrixes 

𝑊𝑘, 𝑊𝑞, and 𝑊𝑣 which are learned through the training process. Three results are called key, query, 

and value. The attention score of each word pair (𝑤𝑖, 𝑤𝑗) is calculated by using the dot-product of 

the query and the key divided by √𝑑𝑘 where 𝑑𝑘 is the dimension of the vector key. The higher 

attention score is, the more the association of the word 𝑤𝑖 and the word 𝑤𝑗 is. After that, the 

attention score has to go through the softmax operation to be normalised to be in the range of [0; 

1]. Then, the attention score with softmax is multiplied by the value vector to obtain the final result.  

The goal of multiplying with a value vector is to preserve the value of the important word while 

fading out the irrelevant word by multiplying them with a small number. In actual implementation, 

the embedding vector of an individual word is stacked together to create one matrix for each 

sentence. The query, key, and value vectors of each word are also stacked to create three matrixes 

Q, K, and V and the attention score is calculated in the formular (5): 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝐾𝑇

√𝑑𝑘

)𝑉,  
(5) 
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In the transformer architecture, to expand the ability to focus on different positions, the study 

employed multi-head attention [20] (Figure 10). The calculation is similar to self-attention, but in 

the multi-head attention layer, the model does self-attention many times with different weight 

matrices 𝑊𝑘, 𝑊𝑞, and 𝑊𝑣. Then it concatenates eight matrixes and multiplies by an additional 

weight matrix 𝑊𝑜 to return the final matrix having the same dimension as the input matrix. The 

formula of multi-head attention (6) can be expressed as:  

 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ℎ𝑒𝑎𝑑0, ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜 

where ℎ𝑒𝑎𝑑𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖 , 𝑉𝑖) 
(6) 

 

 
Figure 10. Multi-head attention 

Finally, the fully connected feed-forward is a position-wise transformation that consists of two 

linear transformations and a ReLU activation function. The purpose is to process the output from 

one attention layer in a way to better fit the input for the next attention layer. 

2.3.2. Pre-trained BERT  

The goal of pretraining is to make BERT understand language and context. BERT is trained 

on the Wikipedia dataset with 2.5 billion words and Google’s BooksCorpus with 800 million words 

[21]. Two unsupervised tasks for simultaneous training are the masked language model and next-

sentence prediction.The masked language model enables BERT to bidirectionally learn from text. 

The task is hiding a word (masking) in a sentence and forcing BERT to use the words on either side 

of the sentence to predict the masked word. A random of 15% tokenized words is hidden during 

the training phase. NSP (Next Sentence Prediction) is used to help BERT learn about relationships 

between sentences by predicting whether a given sentence follows the previous sentence. For 

constructing input for pre-training, the beginning of the sentence will be denoted with the token 

[CLS] and separated by the pair sentence with the token [SEP]. For example, the pair “[CLS] I 

worked at the library. [SEP] I borrowed a new book” is related to each other and has the label 

“IsNext”. In contrast, the pair “I worked at the library. The coffee tastes like earth” has the label 

“NotNext”. In the training phase, 50% of related sentence pairs are mixed with 50% of random 

sentence pairs to increase the BERT accuracy.  
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2.3.3. Fine-tuning 

After pre-training, BERT can be fine-tuned for a specific task. At the input, the data of the 

task simply feed into BERT and fine-tune all the parameters. The input during fine-tuning can be 

sentence pairs in paraphrasing, question-passage pairs in question answering, and a degenerate text 

pair in text classification or sequence tagging. The [CLS] representation is fed into an output layer 

for classification, such as entailment or sentiment analysis, while the token representations are fed 

into an output layer for token-level tasks, such as sequence tagging or question answering. 

2.4. SBERT   

 
Figure 11. SBERT architecture 

Most of the previous research in STS (semantic textual similarity) is not appropriate for a 

massive range of pair regression tasks. The drawbacks of BERT are independent sentence 

embeddings cannot be computed directly so it is challenging to derive sentence embeddings from 

BERT. One typical way to get around this problem is to push single sentences through BERT, and 

then create a fixed-sized vector by averaging the results (much like average word embeddings), or 

by utilizing the result of the first token (the CLS (classification)] token) [22]. However, the 

produced sentence embeddings are quite bad and cause high computational costs and time-

consuming search time. To bypass this issue, we used SBERT (Figure 11), which adds a pooling 

layer to the BERT model's output to create fixed-sized sentence embeddings. Three pooling layers 

can be used as CLS-token, computing the mean of all output vectors (MEAN-strategy) and 

computing a max of the output vectors (MAX-strategy). To construct semantically relevant phrase 

embeddings and to update the weights, a siamese network is applied to fine-tuned in SBERT. There 

are several loss functions that can be used, and this study focuses on three loss functions: triplet 

loss, cross-entropy loss, and multiple negative loss functions. The approach is efficient in terms of 

search time while preserving the accuracy of BERT on STS tasks [17]. 
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2.4.1. SBERT with triplet loss function 

 
Figure 12. SBERT with triplet loss function (a), cross-entropy loss function (b) [14] 

The triplet loss function [23] in SBERT (Figure 12(a)) employs the anchor question, the 

positive question, and the negative question. The triplet loss function tries to reduce the distance of 

the anchor question with positive question embedding and increase the distance with negative 

question embedding simultaneously. The desired embedding is obtained when the distance of the 

anchor-positive gets longer than the anchor-negative equals a margin 𝑚. The loss function can be 

defined in the formular (7): 

 𝐿 =  ∑max (||𝑠𝑎 − 𝑠𝑝|| − ||𝑠𝑎 − 𝑠𝑛|| + 𝑚, 0) ,

𝑁

𝑖=1

 (7) 

with 𝑠𝑎 , 𝑠𝑝, 𝑠𝑛 are the sentence embeddings for anchor, positive, and negative questions 

respectively; ||. . . || represents the distance metric; margin 𝑚 ensures that 𝑠𝑝 is closer to 𝑠𝑎 than 𝑠𝑛. 

2.4.2. SBERT with cross-entropy loss function 

The cross-entropy loss function is applied by adding a softmax layer and a cross-entropy 

loss to learn weight and directly predict a label. The structure of SBERT with cross-entropy loss 

function [14] is shown in figure 12(b). After two sentence embeddings 𝑢 and 𝑣 is obtained, the 

architecture concatenates two sentences embedding with the element wise difference |𝑢 − 𝑣| then 

multiply with the trainable weight 𝑊𝑡  ∈  ℝ3𝑛×𝑘 where 𝑘 is number of labels and 𝑛 is the dimension 

of the sentence embeddings (formular (8)): 

 𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑡(𝑢, 𝑣, |𝑢 − 𝑣|)), (8) 

2.4.3. SBERT with multiple negatives loss function 

SBERT utilising a multiple negatives loss function [24] (Figure 13) is used when the 

training set only has positive pairs. The function focuses on balancing the distance of a positive 

question over multiple negative questions simultaneously. The loss function defined in the formular 

(9): 

 𝐿  =  −
1

𝐾
∑[𝑆(𝑥𝑖, 𝑦𝑖) −  𝑙𝑜𝑔 ∑𝑒𝑆(𝑥𝑖,𝑦𝑗)

𝐾

𝑗=1

]

𝐾

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 (𝑖 ≠  𝑗) (9) 

where (𝑥𝑖 , 𝑦𝑖) represent the pair of anchor question and positive questions, (𝑥𝑖 , 𝑦𝑗) represent the 

pair of anchor question and negative question and 𝑖 ≠  𝑗.  𝑆(𝑥𝑖 , 𝑦𝑖) is a distance of two questions. 
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Figure 13. SBERT with multiple-negatives loss function [17] 

2.5. Similarity measurement method 

We utilise similarity measurement methods to determine the similarity score between each 

vector representation of the input question computed by SBERT and each encoded question from 

the database. Three proposed methods are Cosine-similarity, Euclid distance, and Spearman rank 

correlation coefficient. 

2.5.1. Cosine-similarity 

Cosine similarity is a metric for calculating the similarity of two non-zero vectors specified 

in an inner product space. In other words, it is the dot product of the vectors divided by the product 

of their lengths. Cosine similarity is the cosine of the angle between two vectors and the result is 

constrained to the range [0, 1]. The formula of cosine-similarity (10) can be defined as: 

 𝑠𝑖𝑚(𝐴 , �⃗� )  =  𝑐𝑜𝑠(𝜃)  =  
𝐴.𝐵

||𝐴||.||𝐵||
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖 = 1

√∑ 𝐴𝑖
2𝑛

𝑖 = 1  √∑ 𝐵𝑖
2𝑛

𝑖 = 1

    (10) 

where 𝐴  and �⃗�  are two sentence embedding vectors for multiple-choice questions A and B 

respectively. 

2.5.2. Euclid distance 

Euclidean distance (formular (11)) is the square root of the sum of squared differences 

between corresponding elements of the two vectors. In a multidimensional space, the closer two-

word vectors are to one another, the more probable it is that their meanings are similar: 

 𝑠𝑖𝑚(𝐴 , �⃗� ) =  𝑑(𝐴 , �⃗� )  =  √∑ (𝐴𝑖  −  𝐵𝑖)
2𝑛

𝑖 = 1  (11) 

2.5.3. Spearman’s rank correlation coefficient 

The Spearman's rank correlation coefficient is a nonparametric measurement method of 

the correlation between two variables. The value is constrained in the range of [-1,1] which means 

the closer a value is to 1, the more similar the two variables are. The formula (12) represents the 

similarity score between vectors 𝐴   and �⃗�  using Spearman's rank correlation coefficient: 
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 𝑠𝑖𝑚(𝐴 , �⃗� ) = 𝜌 =  1 −  
6∑ (𝐴𝑖  −  𝐵𝑖)

2𝑛
𝑖 = 1

𝑛(𝑛 − 1)2
 (12) 

where 𝐴𝑖, 𝐵𝑖 is the value of two sentence embedding vectors 𝐴  and �⃗� . 

2.6. Evaluation metric 

 

Figure 14. The confusion matrix 

The F1 score is a machine learning assessment statistic that focuses on a model's 

performance inside each class rather than its overall performance to evaluate a model's predictive 

ability. F1 score combines two competing metric precision, and recall scores of a model. Precision 

and recall are constructed based on a confusion matrix consisting of four parts (Figure 14): the 

number of samples that were correctly predicted as "positive" (true positives; TP), the number of 

samples that were incorrectly predicted as "positive" (false positives; FP), the number of samples 

that were correctly predicted as "negative" (true negatives; TN), and the number of samples that 

were incorrectly predicted as "negative" (false positives; FN) (Figure 14). F1 score is useful when 

the classes are imbalanced, especially in finding duplicate question cases, when the number of 

samples duplicates class is significantly smaller than non-duplicates ones. The formula (13) and 

(14) represent precision, recall, and F1 score: 

 
𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  and 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 
(13) 

 𝐹1 =  
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 
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3. Experiment 

3.1. Data collection 

Table 1. Data statistic 

Information Value 

Corpus size 312811 

Vocabulary size 10306 

Average length of question 252 

 
We collected data from 1242 multiple-choice questions based on the FPT university 

question bank, the datasets include two types: English which indicates the questions refer to 

studying skills, and common situations in university; Math implies that the problems are probability 

and statistics, function definitions, etc. The number of English questions and Math questions are 

682 and 560 respectively. Table 1 shows the general information of the data statistics. 398 Math 

questions are in the form of an image or a combination of text and images where the images 

represent figures, functions, and special characters. Figure 15 shows an illustration of a few 

multiple-choice questions from the dataset. 

 
Figure 15. Examples of the MCQs in the database 

To better understand the question domain, we use nltk (Natural Language Toolkit) to display word 

frequency that appears commonly in the dataset. Tables 2 and 3 represent the top 5 common words 

for each question type. In the English type, the domain of words is mostly based on the request for 
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candidates to choose an option when answering the multiple-choice questions, while the domain in 

the Math type represents the words in the probability and statistics fields. 

Table 2. Word frequency for English 

question types 

 Table 3. Word frequency for Math 

question types 

Word Value Word Value 

group 244 probability 216 

following 143 random 193 

members 132 none 187 

check 107 distribution 180 

option 99 mean 176 

 

3.2. Implementation 

Machine learning is implemented in PyTorch. The experiments were conducted on a GPU 

Nvidia Tesla T4 15Gb GPU. The encoding model uses two pre-trained sentence transformations 

models SBERT. The all-mpnet-base-v2 model is trained on a 1 billion sentence pairs dataset with 

a sequence length limited to 128 tokens, batch size of 1024, and learning rate of 2e−5 with 100,000 

steps. The multi-qa-mpnet-base-dot-v1 model is concatenated from total 215 million question-

answer pairs dataset to trained and fine-tuned. We fine-tuned SBERT for detecting duplicate 

multiple-choice questions on our datasets with multiple-negative loss function, 5 epochs, and batch 

size of 8. The fine-tuned SBERT was compared with other models with different similarity 

measurement methods. For deciding whether the pair multiple choices are duplicated or not, we set 

a threshold after calculating the similarity score. If the score crosses the threshold the pair is 

considered a duplicate.  

3.3. Result & Analysis 

We apply two pre-trained models SBERT [25] multi-qa-mpnet-base-dot-v1, all-mpnet-

base-v2 before and after fine-tuning, with softmax loss function, triplet loss function, and multiple-

negative loss function following by using three measurement methods for computing similarity 

score. The result is listed in table 4. In three loss functions, both multi-qa-mpnet-base-dot-v1 and 

all-mpnet-base-v2 models perform well on the Cosine and Spearman method, but when it comes to 

the Euclidean distance method, the multi-qa-mpnet-base-dot-v1 model yields poor results. After 

fine-tuning with softmax loss and triplet loss, the obtained result is significantly lower than pre-

trained models. In the first experiment with softmax loss, we obtained an F1 score of around 0.77 

for two models and 0.44 for multi-qa-mpnet-base-dot-v1 model with the Euclid measurement 

method. The F1 score is significantly improved by around 0.7 for both models with triplet loss 

function since it required anchor question, positive question, and negative question for training 

simultaneously so the models better understand the context of multiple-choice questions. When 

applied multiple negative loss function, both models achieved outstanding F1 scores around 0.94, 

and the all-mpnet-base-v2 model with Spearman measurement methods achieved the highest result 

with a 0.95 F1 score. In our dataset, the number of positive questions is lower than the number of 

negative questions, SBERT with a multi-negative loss function outperforms other approaches in 

terms of F1 score because it better manages skewed data. 
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Table 4. SBERT with F1 Score 

Model Cosine  Spearman Euclid 

multi-qa-mpnet-base-dot-v1 0.89 0.9 0.12 

all-mpnet-base-v2 0.89 0.9 0.9 

multi-qa-mpnet-base-dot-v1 fine-tune 

softmax loss 

0.77 0.77 0.44 

all-mpnet-base-v2 fine-tune softmax 

loss 

0.75 0.76 0.76 

multi-qa-mpnet-base-dot-v1 fine-tune 

triplet loss 

0.88 0.89 0.25 

all-mpnet-base-v2 fine-tune triplet 

loss 

0.80 0.80 0.80 

multi-qa-mpnet-base-dot-v1 fine-tune 

multiple negative loss 

0.94 0.92 0.15 

all-mpnet-base-v2 fine-tune multiple 

negative loss 

0.94 0.95 0.93 
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4. Web Application Deployment 

Based on the result after the experiment phase, to tackle the problem of time-consuming 

and improve the effectiveness when enlarging the question bank, we propose a web-based called 

Queslet. The web application has a user-friendly application that uses the Django framework to 

manage the question bank and supports the professor in the adding question phase. The architecture 

applied Pinecone and PostgreSQL as a database for retrieving and storing multiple-choice 

questions.  

4.1. Overall question bank architecture 

4.1.1. Database ERD 

 

Figure 16. The schema in PostgreSQL 

Overall, to better manage the question bank, the tables auth_group and auth_user_group 

divide users into two main groups with different roles including teacher and manager. The table 

auth_user contains data of all users with the unique filed username for them to login to the system. 

Each user must be assigned to access the subject by the manager and store it in the 

questionbank_subjectaccess table to interact with specific subject in the question bank. The 

information of the subject is stored in the table questionbank_subject, currently there are two main 

subjects which are Math and English corresponding to the dataset that built for the SBERT model. 
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The question is designed based on multiple-choice questions in FPT university that contains 

question, options, answer, and image with a corresponding subject (Figure 16). 

4.1.2. Use case specifications 

The first role is the manager which represents the head of the subject. The manager has 

permission to import, delete, view, search, update, and export questions in the database. The 

manager can view all subjects that exist in the question bank. Also, they can appoint teachers to 

access appropriate subjects (Figure 17 (b)). The second group is the teacher who can view and 

search assigned subjects (Figure 17 (a)).  

 

Figure 17. Use case of teacher role (a), Use case of manager role (b) 

4.2. Pinecone 

 

Figure 18. Workflow in Pinecone 
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To tackle the problem of retrieving and searching questions for comparison in the large 

question bank, the Pinecone vector database is employed to store encoded questions. Pinecone is a 

vector database, which has features like CRUD operations, metadata filtering, horizontal scaling, 

indexes, and saves vector embeddings for fast retrieval and similarity searches. Pinecone performs 

semantic search as opposed to employing keyword lookups, focusing on the meaning of the search 

question. The meaning of a specific word, sentence, paragraph, or lengthy document can be 

effectively encoded into a data structure by applied vector embedding using pre-trained neural 

networks on vast collections of text data. Semantic search better comprehends the content and 

context of multiple-choice questions in order to produce more precise search results. Furthermore, 

to better assist the searching operation, Pinecone enables image similarity search which transforms 

image data into vector embeddings and allows users to search images through keywords. 

The workflow of Pinecone is illustrated in Figure 18. First, a Pinecone API key, the name of an 

index, and the number of dimensions for each vector are needed in order to create a Pinecone Index. 

In this study, a 768-dimensional vector for maps of each piece of text is employed. When 

connecting to the index, the Pinecone vector database requires vector embeddings so we use the 

trained SBERT model as a method for embedding multiple-choice questions when interacting with 

Pinecone after finishing creating and connecting to the index. 

4.3. Process adding new questions  

 
Figure 19. Website homepage with Manager account 

Overall, the homepage (Figure 19) contains all information of question bank include total 

questions, the number of multiple-choice questions containing images, and the accessed subject. 

When adding a new question to the database, the lecture follows the second case of FPT university 

and replaces the manual keyword searching with the proposed comparison method. Each teacher 

prepares a document file containing the multiple-choice questions based on their assigned sub-

category. The docx file will be stored in the same folder with the images belonging to the MCQs. 

In order to understand the scope and reduce the likelihood of producing duplicate questions, the 

teachers can view and search questions in the question bank since Pinecone optimises searching by 

using a vector database. However, the teacher can only access the subjects they are accepted by the 

manager. The manager sums up all the prepared materials including the images and a word file 

following the template illustrated in figure 20 and imports them to the website.  
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Figure 20. Folder import and template of a question in a word file (.docx) 

 
Figure 21. List of duplication question pairs 

After uploading the required materials, the web application encodes the uploaded questions using 

OCR and SBERT. The encoded results are compared to each uploaded encoded question in the 

Pinecone question bank. Cosine similarity is used in the comparison phase because it better supports 

the Pinecone vector database. If the similarity score exceeds the threshold of 0.7, the question pairs 

are considered duplicates. The list of duplication pairs is listed for the manager to decide whether 

report back the uploaded question or add it to the question bank (Figure 21). If the imported 

questions are unique, the import questions are stored in a PostgreSQL database, and the question 

encodes are preserved in Pinecone for use in future searching and retrieval operations. 
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5. Conclusion and Future Work 

This study focuses on enhancing the administration of the question bank at FPT University 

by addressing the issue of question duplication and aiming for a new approach for lectures to add a 

new question to the question bank. An end-to-end machine learning architecture is fine-tuned for 

representing questions in text or image form into a vector. The model takes advantage of OCR to 

extract information from images and vectorize the combination of data in images and text using 

SBERT. Various similarity measures were examined on the collected data set and in the end, the 

Spearman measure was the best with an F1 score of 0.95. The model is deployed on a web 

application using the Django framework applied role permissions, PostgreSQL as a database, and 

Pinecone vector database as a search engine. The result of a model and an application show that the 

proposed method can effectively support question bank management at FPT University which 

makes the process of adding questions more efficient by reducing the rate of duplicate multiple-

choice questions.  

Currently, due to the constraint on time and the limitation of human and finance resource, the 

constructed test bank just covers a small portion of the questions which are written only in English. 

Additionally, the question pairs having a similarity score between 0.7 and 0.9 cause a huge 

confusion for lecturers because two different questions share the same context might be still 

considered as duplication. In future work, we aim to tackle the problem of question duplication on 

an actual question bank of FPT University with different languages such as Vietnamese, Chinese, 

and Japanese. The presence of audio-based multiple-choice questions and the mentioned issue of 

similarity score are also taken into more consideration.  
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