Car Damage Detection and Evaluation

Capstone Project

Our Team

Supervisor

Msc. Do Thai Giang

Pham Viet Duong

Do Huu Dai

Table of Contents

Introduction

An introduction about current state of car insurance and motivation of our project

Overview

Overview about method of this Project.

Dataset and Preprocessing

Prepare data and preprocessing for training

Methodology

Theory and Model for this project

Result Result of our Experiment

Conclusion & QA Conclusion, Future work and Q&A

O1 Introduction

Introduction

PROBLEM AND MOTIVATION

PROBLEM AND MOTIVATION

Insurance processing takes a lot of time and effort to handle. For example:

- Step 1: Notify relevant parties in the event of an accident.
- Step 2: Assessment of damages and losses.
- Step 3: Conducting car insurance compensation appraisal
- Step 4: Processing car insurance compensation

=> The work process takes a lot of time and effort from everyone involved.

PROBLEM AND MOTIVATION

Recognizing car parts and detecting damages will decrease the steps in the insurance claim processing.

Benefits:

- Identifying the location, evaluation the damaged and classifying them.
- Quickly identify vehicle information

=> This can quickly capture information, accelerate the processing of insurance claims, and provide highly accurate information.

Overview

How to solve this problem ?

Image Segmentation

Image segmentation reduces the complexity of a digital image by dividing it into subgroups, or image segments, for further processing or analysis.

Two type of Image Segmentation:

- Semantic Segmentation
- Instance Segmentation

Semantic Segmentation

- Label each pixel in the image with its respective category.
- Ignore distinctions between instances and only consider pixels.

Instance Segmentation

- Instance Segmentation creates segment maps of each category and each instance of a class, making image inferences more meaningful.
- Instance Segmentation can be referred as a combination of semantic segmentation and object detection.

03 Dataset and Preprocessing

- Crawl data from multi-source
- Export data from company

- Clean data
- Labeling car-part
- Export data with annotations

• Crawl Data

Using Selenium and BS4 to crawl data from Google and various websites, specifically car dealership websites: bonbanh, chotot,...

drive your dreams b@nbanh.c@m Trang chủ Tìm mua ô tô Salon Ôtô Bán ô tô Giá xe ô tô Cần mua ? My BonBanh Tim theo hãng xe Tin bán ô tô Tin mua ô tô Đăng nhập Tìm kiếm Audi bonbanh.com Bentley Đăng ký BMW Toàn quốc Hà Nôi TP HCM Chon tỉnh thành khác 💌 Chevrolet Đăng tin bán xe ô tổ MUA BÁN Ô TÔ Tống : 41,571 tin Đăng tin mua xe ô tô Daewoo Ford Lexus RX 350 - 2020 3 Tỷ 99 Tr. Hà Nôi Xe cũ Tîm xe đăng bán 🖊 Honda 2020 Salon ôtô Tìm người mua xe Hyundai *Xe nhập khẩu, màu đen, máy xăng LH: Hùng Số 8 Trần Đăng Ninh, Cầu Giấy số tự động, đã đi 15,000 km Thành viên cao cấp Isuzu Hướng dẫn sử dụng Xe có sẵn giao ngay Jeep ET: 0914 868 698 #Lexus RX350 model 2021 Kia Đen/Nâu cực mới √ Odo : 1.5v km Mã: 4956487 thì đã LandRover Vip ShowRoom - Salon Ô tô Lexus Ford Territory Titanium X - 2023 Hà Nôi Xe mới 894 Triêu Manh Phong Auto [Hải Dương] 2023 Mazda Chuyên mua bán trao đổi ô tô mới cũ, chất lượng *Xe lắp ráp trong nước, màu trắng, LH: Minh Đức Mercedes Benz máy xăng , số tư đông ... Hà Nội cao MG Ford Territory Titanium X 1.5 AT Salon Ô tô Siu Hùng [TPHCM] ĐT: 0961 097 708 2023 Territory Thế Hệ Mới được Mini Mua bán, trao đổi các dòng xe cao cấp trang bì gói công . Mitsubishi Mã: 4956484 UNUN Car I TRUCH

• Labeling Data

To represent and serve the training process effectively, we use the Coco Annotations format and labels are annotated using polygons.

Overview Dataset

25,606 images Total image of dataset

Train-set (90%)

Test-set (10%) 🔵

Overview Dataset

- - **25,606 images** Total image of dataset

- Scratched (63,8%)
- Dent, flatten (thumb)(22,6%)
- Broken, punctured, torn(9,9%) 😑
 - Cracked(2,1%)
 - Shed(1,6%) –

Training Pipeline

Test pipeline

04 Methodology

1. Swin Transformer

- a. Transformer Architecture
- b. Vision Transformer
- c. Swin Transformer

2. Cascade Mask R-CNN

- a. Mask R-CNN
- b. Cascade Mask R-CNN

3. Method

Transformer Architecture

The Transformer architecture is based on the self-attention mechanism, which allows the model to make predictions by selectively focusing on different parts of the input sequence.

A Transformer Block contains an encoder block and an decoder block:

- An encoder consists of Multi-Head Attention (MSA), Feed Forward and Add & Norm.
- An decoder consists of Masked MSA, MSA, Feed Forward and Add & Norm.

Positional Embedding

Positional encoding describes the location or position of an entity in a sequence by assigning a unique representation to each position.

Positional embedding formula:

 $\begin{aligned} &\text{PE}_{(pos,2i)} = \sin(\text{pos}/10000^{2i/d_{model}}) \\ &\text{PE}_{(pos,2i+1)} = \cos(\text{pos}/10000^{2i/d_{model}}) \end{aligned}$

pos: is the position of the word in the sentence
i : is used for mapping column indices 0 ≤ i < d/2
d_model : is the dimension of the output embedding space

Multi Head Attention

Scaled Dot-Product Attention

Scaled Dot-Product Attention:

Attention(Q, K, V) = softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)$$
 V

Multi-Head Attention:

MultiHead(Q, K, V) = Concat($head_1, ..., head_h$) W^O where $head_i$ = Attention(QW_i^Q, KW_i^K, VW_i^V)

Vision Transformer

An image is divided into fixed-size patches, linearly embedded, and position embedded. The vector sequence is fed to a standard Transformer encoder. The Norm layers are applied before the MSA and MLP blocks. Residual connection is still used after every sub-layer.

Swin Transformer

- Swin-T: C = 96, layer numbers ={2, 2, 6, 2}.
- Swin-S: C = 96, layer numbers ={2, 2, 18, 2}.
- Swin-B: C = 128, layer numbers ={2, 2, 18, 2}.
- Swin-L: C = 192, layer numbers ={2, 2, 18, 2}.

C is the channel number of the hidden layers in the first stage.

Patch Merging

The Patch-Merging layer merges four patches. So with every merge, both height and width of the image are further reduced by a factor of 2.

Stage-1, the input resolution is (H/4, W/4).

Stage-2, after patch merging, the resolution will change to (H/8, W/8).

Stage-3 the input resolution would be (H/16, W/16).

Stage-4, the input resolution would be (H/32, W/32).

Swin Block

Swin Transformer blocks are calculated as follows:

$$\begin{split} \hat{\mathbf{z}}^{l} &= \text{W-MSA} \left(\text{LN} \left(\mathbf{z}^{l-1} \right) \right) + \mathbf{z}^{l-1}, \\ \mathbf{z}^{l} &= \text{MLP} \left(\text{LN} \left(\hat{\mathbf{z}}^{l} \right) \right) + \hat{\mathbf{z}}^{l}, \\ \hat{\mathbf{z}}^{l+1} &= \text{SW-MSA} \left(\text{LN} \left(\mathbf{z}^{l} \right) \right) + \mathbf{z}^{l}, \\ \mathbf{z}^{l+1} &= \text{MLP} \left(\text{LN} \left(\hat{\mathbf{z}}^{l+1} \right) \right) + \hat{\mathbf{z}}^{l+1}, \end{split}$$

Shifted Window

Shift the window by a factor M/2, where M is window size.

Swin Transformer uses cyclic shift to reduce computation heavy.

Mask R-CNN

Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.

Mask

Region Proposal Network

At each position, the window slides into, multiple anchors will be generated with different scales and ratios

RPN uses a sliding window to run across the feature map to generate proposal anchors.

Anchors will be passed into two convolutional layers to be processed:

- Bounding Box Classifier layer(cls): determine which anchor contains object.
- Bounding Box Regressor layer: finding properly coordinates of anchors.

ROI output of RPN will be put into ROI align to resize into same size.

Mask Branch

Cascade Mask R-CNN

Fig. 6: Architectures of the Mask R-CNN (a) and three Cascade Mask R-CNN strategies for instance segmentation (b)-(d). Beyond the definitions of Fig. 3, "S" denotes a segmentation branch. Note that segmentations branches do not necessarily share heads with the detection branch.

Method

• Cascade Mask R-CNN with Swin B Transformer as back bone

• Swin B Transformer integrates Feature Pyramid Network for different scales of objects

• Cascade architecture for improving higher accuracy of segmentation.

Model Implementation

MMDetection is an object detection toolbox that contains a rich set of object detection, instance segmentation, and panoptic segmentation methods.

MMDetection is built on Pytorch.

LOSS FUNCTION

Classification Loss

 $\mathcal{L}_{ ext{cls}}(p_i,p_i^*) = -p_i^*\log p_i - (1-p_i^*)\log(1-p_i)$

Bounding box Loss

$$\mathcal{L}_{ ext{box}}(t^u,v) = \sum_{i \in \{x,y,w,h\}} L_1^{ ext{smooth}}(t^u_i - v_i)$$

 $L_1^{\mathrm{smooth}}(x) = egin{cases} 0.5x^2 & ext{if} \ |x| < 1 \ |x| = 0.5 & ext{otherwise} \end{cases}$

Mask Loss

$$\mathcal{L}_{ ext{mask}} = -rac{1}{m^2} \sum_{1 \leq i,j \leq m} \left[y_{ij} \log \hat{y}^k_{ij} + (1-y_{ij}) \log(1-\hat{y}^k_{ij})
ight]$$

Total Loss

$$\mathcal{L} = \mathcal{L}_{ ext{cls}} + \mathcal{L}_{ ext{box}} + \mathcal{L}_{ ext{mask}}$$

Evaluation metrics

Intersection of Union:

$$IoU = \frac{area(B_p \cap B_{gt})}{area(B_p \cup B_{gt})}$$

Precision and Recall:

$$Precision = \frac{TP}{TP + FP}$$
$$Recall = \frac{TP}{TP + FN}$$

Mean Average Precision:

$$mAP = \frac{1}{N} \sum_{i=2}^{N} (r_i - r_{i-1}) \frac{p_{i-1} - p_i}{2}$$

Result

Training

- CPU: AMD Ryzen 7 5700G
- GPU: Radeon Graphics NVIDIA RTX A4000

Loss during training

(c) Class loss

(d) Mask loss

28 31

----- bounding box loss

stage 1 bounding box loss

----- mask loss stage 1

-mask loss stage 3

34 37 40

stage 2

Loss over epochs for SwinB-Cascade Mask RCNN

Total loss of model

Result of Damage detection

Result				
Damaged name	Recall	mAP		
Dent, flatten (thumb)	0.586	0.421		
Cracked	0.740	0.547		
Broken, punctured, torn	0.415	0.117		
Scratched	0.584	0.380		
Shed	0.282	0.083		

Models Comparison

Comparision between Models					
Model	bbox mAP 50	bbox mAP 75	seg mAP 50	seg mAP 75	
Resnext101CascadeMaskRCNN	0.817	0.721	0.797	0.650	
Resnext101 HTC	0.838	0.724	0.805	0.656	
Swin-T Cascade Mask RCNN	0.817	0.699	0.801	0.661	
Swin-B Cascade Mask RCNN	0.836	0.771	0.817	0.705	

Conclusion

- The effective use of segmentation of detecting parts into the insurance will be extremely beneficial for companies.
- By using Artificial Intelligence, the project achieves high accuracy in recognizing and distinguishing car parts such as doors, wheels, glass, etc...
- Reduce the time and effort required for claim processing by providing faster and more efficient service to customers.

FUTURE WORK

- Extend model training data.
- Improved damage accuracy.
- Application in real-life and some insurance company.
- Developing mobile applications to increase popularity among users.

THANK YOU

