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ABSTRACT

Federated Learning has been emerged as a promising for modern Machine Learning tech-
niques. Classical manner of operating in a centralize dataset come up against critical privacy
issues. Beside that real data reacted with real user’s behavior is beneficial to tasks which in-
volve model to be trained on practical data. For example, language model can be leveraged by
playing on user data emitted while they text for speech recognition or next word prediction
tasks. We could also utilize images on end devices to improve image classification models. Two
current state-of-the-art methods when dealing with federated system are FedAvg and FedProx.
While FedAvg proposed a heuristic algorithm that is quite robust about independent and
identically distributed distribution (IID), the latter further upgrade upon the local loss setting
for stability with respect to the non-IID distribution. There are two main nature challenges
within the task as indicated in FedProx work: system heterogeneity and statistical heterogene-
ity. One more difficulty: the lack of a systematic hyperparameters tuning as well as model se-
lection approach. FedAvg and FedProx mostly work with canonical datasets and their synthe-
sis variants like MNIST, CIFAR-10. In this work, we employ the Federated Learning ap-
proaches to unusual dataset to observe the capabilities of generalizing when handling do-
main-specific tasks. Concretely, we adopt FedAvg and FedProx on: (1) a brain tumor dataset
with 3064 512x512 T1-weight images and (2) a VNPlant-200 dataset which includes 20,000 im-
ages of 200 unique medicinal plants. Following the work in FedAvg and FedProx, two algo-
rithms are applied with a careful hyperparameter tuning and inspect the effect of federated
setting on the decentralized environment. The work empirically demonstrates the impact of
federated learning on distinct domains. In addition, the experiments provide a heuristic scheme
for hyperparameter controlling in other similar tasks or data, in this case, distributed model

training and brain tumor or medicinal plant datasets.

Keywords: Federated Learning; Fed Avg; FedProx; Distributed Training; Brain Tumor; Medic-
inal Plant; VGG16; ResNet50; ConvNext; MaxViT
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1. INTRODUCTION

1.1 Modern Artificial Intelligence Technologies and Big Data Era

The growth of Artificial Intelligence (AI) applications has been progressively supported by vast
amounts of data [1], [2]. Conventionally, Al-related applications often fall into ordinary cate-
gories like computer vision (CV), natural processing language (NLP), speech recognition (SR).
Those are also the most important appliances of Al in real world. Sometimes, the model can
outperform human performance. For example, Deep Learning-based face recognition can
achieve exceptional levels of performance given millions of training samples [3], [4]. These
systems obviously require huge a bunch of data to gain satisfying levels of results due to the

complexity of the model’s architecture.

Generally, the big data system demands special methods in gathering and processing because
data regularly comes on a small scale. In addition, data diversity mostly appears as a critical
adversity to confront with. Missing values, missing labels, disparity distribution largely expect
big effort from domain experts to repairing. In fact, benchmark datasets used within standard
tasks usually require an enormous work in selectively gathering, processing and thus need to
be done in a proper and comprehensive research than the work evaluate on it [5]-[7]. Some
demands raised in the context of narrower domains now show that it is hungry for data, pre-

cisely large-scale data to come up with training.

End user’s data turns out to be a great source of data for ML tasks. This kind of data holds a
very important nature: it is the real data that is eventually assessed and consumed by the final
trained model. The modern world currently has serious concerns regarding data privacy and
data ownership: which org has the ability and the rights to use data for building AI technolo-
gies. Some university labs or specific firms developing their Al research or products adopt their
own business data or data that they created by themselves which is in this situation they have
the full ownership over this data. But things get complicated in certain fields: data exists in

various forms, generated by different parties and the naive approach would be transfer data
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into one central location and perform plenty of ML techniques. However, this method is no
longer valid today. Owners of data are aware of their privacy rights, and they do not want their

private information to be used illegally for commercial or political purposes.

Strict controls on data collection and data usage have likewise been imposed by law makers.
General Data Protection Regulation (GDPR) issued by European Union in 2018 is a concrete
example. Under this restrictive landscape, gathering and sharing data among separate organi-

zations is becoming more and more difficult.

Even when we have a valid procedure dedicated to passing sensitive data around silos for
training AI models, there are two more challenges. First, the benefit of data collaboration is not
clear, or at least it is hard to measure if the procedure follows a super rigid manner, e.g., en-
crypting and shuffling all the data before entering the training phase. The fear of losing control
over data and the lack of transparency make the crucial trade-off consideration from the own-
er’s perspective. Second, some data have severe sensitive nature that cannot be moved from the
owner’s location, e.g., medical records and financial transactions, hence prohibit free data cir-

culation.

How to solve this privacy problem is mandatory as the rules will progressively more rigorous.
AI community has been witnessed tremendous of notable breakthroughs in ten years since
2012 due to the development hardware strengths and large-scale training datasets. An Al

winter is going to happen if this situation is not sufficiently addressed.
1.2 Federated Learning as an enhanced solution

Federated Learning (FL) relies on a pure idea that lets the model being trained in-place at the
data location, which we refer as local data or device’s data. Then the information about trained
model (weights or gradients) is the quantity that moving around for assembling the
well-behaved application. The detailed explanation would be data reside at its own location,
and some variable amount of update, i.e., training and validation, are executed. Convention-
ally, the method works like server-client architecture where there is a global model located at

the server device and each client carries its dataset. Proper confidentiality plays an integral role
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on securing the inner content or sometimes the inherent nature of data being transferred. Fur-
thermore, the communication process also differs among several leading implementation

which affects different desired optimal goals in different ways.
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Figure 1. An example of FL algorithm

FL concepts first evolve in a decent form in 2016 in [8], namely FedAvg. The authors proposed
an iterative approach for jointly updating the global model throughout communication rounds.
As described above, in this federated scheme does not compel a whole centralize dataset at one
place, as well as data at each device to be sent back-and-forth. To be more detailed, for several
updates, under encryption, clients send local model parameters which then be used to incor-
porate into a new stateful global model representing current trained model given a passed

number of rounds. Note that this is a repetitive training design. One thing can be theoretically
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assured from a particular client view: its data is not revealed or examined common patterns

with other clients or the server.

Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL) are roughly two
fundamental categories of FL. In HFL, the system has common feature spaces in each regional
dataset (parties may have their business market in the same domain) but distinct data samples.
Conversely, sample spaces contain overlapping data samples in VFL, but they differ in data
features. Two settings are derived from actual corporate situations in generating data, which in
turn satisfy unique demands. Federated Transfer Learning (FTL) applies a unique direction
and is suitable when the party’s data is highly heterogeneous. In general, federated algorithms
can be expanded according to how data is partitioned among clients and the basis nature of the

data.
1.3 Technique Limitations and the objective of this work

Researchers have been improving the algorithmic mechanism for distributed learning over

many computational sites in recent years.

In [8], the authors came up with a practical framework that help federated learning by model
averaging. The results show a potential ability for adopting FL in other environments. How-
ever, the work left plenty of questions involving convergence guarantee and generalization
performance. From the data perspective, the method further imposes the same amount of
training workload with respect to each edge device, which raises uncertainty when deploying
with actual data in unconventional domain. The algorithm also does not provide a clear and

formal solution when tackling non-IID data, which is quite happened frequently.

FedProx [9] resolved mentioned cons thoroughly, and beyond that suggest a mathematical
proof for their technique. They put up front a convergence analysis as well as local dissimilarity
formulas for supporting convergence guarantee. The experiments showing the robustness un-
der extremely heterogeneous setting are likewise presented. They allow some clients lazily
perform fewer number of epochs and integrate a proximal term into local losses to penalizing

the weights from being far away from the global model.
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Nevertheless, almost all the state-of-the-art improvements mainly focus advancing security and
statistical challenges. We realized an unhealthy assumption about hyperparameter selection,
comes from the usages of canonical datasets. In this work, we simulate two algorithms FedAvg
and FedProx two datasets which fit into two separate domains: (1) a brain tumor dataset with
3064 512x512 T1-weight images and (2) a VNPlant-200 dataset which includes 20,000 images of
200 unique medicinal plants. Firstly, we follow the stated process of training to obtain valuable
observations, finding the optimal value for each hyperparameter. We adopt several
CNN-based models like VGG16, ResNet50, ConvNext, MaxViT for comprehensive compari-
son. The number of communication rounds, i.e., the total communication cost until reaching a

reasonable performance is our main metrics.

This work can be considered as a helpful reference for those who are interested in federated

learning system or who currently being working with related fields.

2. RELATED WORKS

Many directions have significantly received attention during the decades. In the shape of fed-
erated optimization, the communication cost as well as the privacy effectiveness can be con-
sidered. Some works studied the statistical property of data, devices, and local gradients up-

date.

In [10], iterative parameter mixing on structured perceptron is used to reduce the complexity
given the availability the computing clusters. [11] utilize a format of elastic averaging: the
asynchronous variant is also proposed. These works in general do not exam the non-IID nor
the unbalance of datasets, which is a very principal for our upcoming settings. Remember that
in a realistic scenario, the number of clients could be much larger than the number of data ob-
servations per client. In the convex setting,[12], [13] addressed some key concepts about feder-
ated framework: they particularly look at the privacy aspect during communicating, the upper

and lower bound runtime and the quantity of used samples.
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There are many publications that worked on minimizing communication cost [14], [15]. This
approach decreases the overall runtime and jointly increases privacy performance. Opposed
to iterative training approach, one endpoint of the distributed family is one-shot algorithm,
which is the method that makes no overhead on communication cost at all. The final model is
produced after all sub training processes finish, where in each sub process, a local client tries to
solve the loss of its local data until reaching several epochs. The combine scheme could be
model averaging. However, this method shows no better performance over minimizing on a

single client [16], [17].

We have addressed earlier the importance of studying extensively the statistical property im-
posed on the nature of data and computing clusters. [18], [19] allow inexact local updating to
balance computational cost and communication cost. This idea quite inspires for the systematic
heterogeneity examination. Here we formalize some typical characteristics of federated learn-
ing problems: (1) local dataset will not be representative for the population distribution
(non-IID), (2) unbalance data among devices, (3) the number of clients participating in learning
could dominate the local dataset’s size, (4) number of devices can be unavailable sometimes, (5)
clients do not have the same computational strength, (6) updates could be lost during commu-

nication due to network issues.

We need to explore a more general framework that can handle heterogeneity introduced by
characteristics mentioned above. The work in [20], [21]allowing data to be shared between cli-
ents and server for analyzing statistical feature lied in local data. This approach could help the
server (or the coordinator) to inspect suitable solver use each round per client. Hence, the
broader technique can be developed robustly to tackle highly non-IID and/or unbalanced da-
taset. Nonetheless, this puts a huge burden on network bandwidth (which is normally re-
stricted in terms of hand-held devices or in case of non-physical connection). More seriously,
the action of exchanging data violates the key aspect of privacy in a realistic federated envi-

ronment: confidentiality.

One solution that comes naturally first in mind when dealing with device strength inequality is

to abandon uncomplete training process or to use the result model weights regardless of a de-
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vice finish its desired number of epochs or not. The same set of devices are likely to be ex-
hausted more periodically all the time, thus, can bring bias to our model. Moreover, divergence
could occur when profitable data in a particular device cannot maximize its productivity be-
cause of repudiation. [9] demonstrated that instability growths when we embrace some strag-
glers into chosen clients per round of communication. By adding proximal term to local loss
function, [9]report several benefits in terms of communications cost and the stability of con-
vergence. The randomized Kaczmarz method [22], [23] for solving linear systems of equations

serves as an inspiration for the dissimilarity characterization analysis the authors offer.

Recent works adopting federated system in image tasks primarily use standard databases for
experiments, such as MNIST, CIFAR-10, and their variations. This is advantageous because it
expedites the experimentation of a vast number of parameter combinations, thereby facilitating
the exploration and evaluation of more efficient algorithms. Few academics conduct federated
learning on their domain-specific datasets. However, it has been observed that there is no es-
tablished method of parameter optimization for dataset that is not specific to any domain. We
would like to commence with utilizing the hyperparameter selection technique. Some key hy-
perparameters are: (1) the number of clients join in training each round, (2) the mini-batch size,
(3) the number of epochs each round, (4) the phyperparameter of the proximal term, (5) the
initial learning rate and rate decay algorithm. We wish to ascertain the influence of these pa-
rameters on new datasets to demonstrate the consistency of ultimate outcomes obtained at the
end of the training procedure. Despite ensuring convergence, [9] still implies certain charac-
teristics of [8], thus necessitating the requirement for an automated process for selecting pa-

rameters.

3. PROJECT MANAGEMENT PLAN

Table 1. Project Plan

Task name  Priority Owner Start date  End date Status Issues
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Seek out re- High K.L.H. 4/1/2023 29/1/2023

search studies Completed

Setting up da- High K.LD.V. 4/1/2023 25/2/2023

Completed
tasets

Establish the High K.LH. 30/1/2023 15/2/2023 Completed
FedAvg code
environment.

Establish the High K.LH. 16/2/2023 15/3/2023 Completed
FedProx code
environment.

Run experi- High K.LLD.V. 16/2/2023 10/3/2023 Completed
ments on Brain
Tumor Data

Run experi- High K.L.D.V. 11/3/2023 10/4/2023 Completed
ments on

VNPlant-200
datasets

Review related Low K.LH. 16/3/2023 22/3/2023 Completed
papers for fur-
ther improve-

ments

Write report High K.L.H. 23/3/2023 10/4/2023 Completed

High K.L.D.V.and 10/4/2023 17/4/2023 Completed

Revision KLH.

4. THEORETICAL FRAMEWORK

4.1 Stochastic Gradient Descent

SGD is commonly used as an optimization technique in contemporary works due to its ease of
use. In addition, we cannot presume any bias at the beginning of the learning procedure;
therefore, employing more complex algorithms could result in wasted effort without observing

the actual effect of the FL setting.
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SGD is an iterative method for optimizing an objective function by calculating the gradients for
several samples, whereas GD utilizes the entire dataset to update the weights. Consider the

scenario of minimizing the following loss function.

1 m
Lw) = — > Liw) (1)

where w is the parameter being estimated and m is the number of data samples.

When using standard GD, an iteration of optimization strategy would be:

wi=w— %Z VL;(w) (2)

Clearly, a is the learning rate. In classical statistics, this kind of sum-minimizing problem arises
in least-squares (like linear regression) or in maximum-likelihood estimation. In simple form of
loss objectives, step to global (or local) minimum is assured quickly. As a result of the intricacy
of each local loss or the amount of the dataset, gradient calculation may be prohibitively costly
in many situations. Performing each step on a subset of samples is preferable and is beneficial

in large-scale ML.
w:=w —aVl; 3)
This time i represents the chosen training examples. The algorithms sweep through the entire

dataset cause the loss functions to approach the optimum. The full process of learning by SGD

for simple regression application can be roughly illustrated below.
Algorithm 1. Stochastic Gradient Descent
(1) Initialize weighs w and pick an initial learning rate
(2) For each epoch (repeat until desired optimal value is achieved):
e Randomly shuffle data points in the dataset.
e Fori=123.. m:

A

e Determine the local loss L; = l(y — J)
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o w:=w-—aVl;

Given the capabilities of modern GPUs for parallel processing, the simple form of SGD is uti-
lized infrequently due to its inefficient performance. The convergence of stochastic gradient
descent has been widely investigated; particularly, given an acceptable learning rate, SGD will
almost certainly cause the loss to reach its global minimum (convex case); otherwise, it will

cause the loss to reach its local minimum.

Alternately, modifying the model's parameters now occurs in the form of a batch (called
mini-batch stochastic gradient descent). The result of decreasing the mini-batch size could lead
to more learning ability; said differently, this technique in fact allows the model converges

faster than considering the whole dataset.
Algorithm 2. Mini-batch Stochastic Gradient Descent
(1) Initialize weighs w and pick an initial learning rate
(2) For each epoch (repeat until desired optimal value is achieved):
a. Randomly shuffle data points in the dataset.
b. For each batch:
i. Determine the local loss L = Y2, I(y; — 9;)

ii. w:=w —aVL

4.2 Federated Learning Algorithm

4.2.1 FedAvg Algorithm

FedAvg is built upon SGD, i.e., the local optimizer is typically SGD. In this subsection, we ex-
plore this approach in depth, formulate algorithms, and examine some of the original publica-

tion's results [8].

The combination of synchronous SGD (one partition must wait other partitions to finish

computing gradients) and multi-batch updater yields best result. Consider K clients for whom
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data is partitioned among, the hyper-parameter C controls the fraction of clients being chose

per round. € = 0 means one client is chosen.

Each client k obtains dj = VL, (w,) at completion of a training turn, then the server aggregates

these gradients by:

Wit1 —Wt_az_dk (4)

where t denote the current communication round, and m; represents the number of samples

at client k.

The equivalent form can be achieved by alternating the derivatives at each local by its model’s

weights. This property is derived from:

Wl = we — ady (5)
K
my mk
Wip1 = Wt+1 =W — _dk (6)
k=1

One important design must be carefully considered when dealing with non-convex objectives.
Independent initialization of a distributed model may result in poor performance. Averaging
from different conditions shows no advantages over taking single evaluating in each model
(the weight of mixing equals to 0 or 1). Conversely, when starting multiple models from a same

random seed, averaging parameters works well.
Algorithm 3. FedAvg Algorithm

Kis the number of clients. C is the fraction of clients selected per round. B is the local mini-batch

size. E is the number of epochs each device must iterate through.
Server-side computation:

e initialize w,

e foreachround t =1,2,3,..

o from C, select a random S; subset from K clients
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o foreach clientkin S;
* compute wf,; by performing a client-side computation.

o My « Yres, Nk (The total number of data points involving into this training
phase)

m k

k
) Wit

O Wryp € Xk €St 1.

Client-side computation:
e for each local epoch i =1,2,3,...,E
o for each batch b in the local dataset of this client
* wew—aVL(w,b)
ereturn wi ,

It is experimentally essential to properly tune the hyper parameter. B and E control the number
of updates per round, which are quite similar in effectiveness. As previously indicated, in a
federated system, communication costs are likely to outweigh computational costs, however in
a centralized setting, communication costs are insignificant. In the meanwhile, C determines
the global batch size, with the general assumption that in both IID and non-IID distributions,
bigger C tends to reflect a larger proportion of data samples, resulting in better models for the
current round. If we wish to add additional computing every round, we may either (1) increase
parallelism (which has no negative effects if true parallelism is employed) or (2) increase

computation at each client.
4.2.2 FedProx Algorithm

FedProx [9] can be perceived as a re-parameterization variant of FedAvg in which the authors
introduce heterogeneous struggles. The study offers both empirical and theoretical investiga-

tions addressing the convergence of the approach.

As previously mentioned, more local computation can significantly help reduce communica-

tion costs. This amount is affected by the number of local epochs and the size of the local mini
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batch. Besides that, more work of updating on each local landscape may cause each local model
to converge toward its local optimum, hence, make convergence unpredictable. Some clients
also cannot perform the desired number of updates due to hardware constraints. In practice, it
is impossible to automatically determine in advance the suitable epoch for each client while the
local epoch must satisfy the benefit of cutting communication cost. Therefore, to balance out the
initial setting, FedProx fixes the number of epochs used for each round of communication and
tfinds a more robust way to manage gradients received at the end. The proposed framework has

two key characteristics.

Allow truncated work. Forcing all devices to implement the same effort of training is not quite
realistic. FedAvg employs a basic approach: drop the uncomplete weights. This technique has
been shown to produce bad models given a fixed number of rounds. The implementation
specifies a new hyper parameter controls which clients completely participate in the result pa-
rameters and which does not. Inclusive experiments reveal the effectiveness of stability:

throughout the learning procedure, loss tends to decrease consistency.

Proximal term. To prevent the weights from being far away from the global minimum, FedProx

adjust the local solver to be more constrained:
H 2
L(w;wo) = Fw) + = llwo — wi (7

where F(w) is the original distance with respect to local batch b and wj is the global weight at
the beginning of the round. The additional term is beneficial both in: (1) overcome the hetero-
geneity in data distribution and (2) help for incorporating variable amounts of work from all

clients.
Algorithm 4. FedProx Algorithm

Kis the number of clients. C is the fraction of clients selected per round. B is the local mini-batch

size. E is the number of epochs each device must iterate through. T is the number of stragglers.
Server-side computation:

e initialize w,
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e foreachround t =1,2,3, ..
o from C, select a random S; subset from K clients.
o from T, select which client in S; must perform full workload.
o foreach clientkin S;

* compute wf,; by performing a client-side computation (with assigned

workload)

o My « Yres, Ntk (The total number of data points involving into this training

phase)

m k

O Wey1 < 2k est;’;Wtﬂ
Client-side computation:
e for eachlocal epoch i =1,2,3,...,E
o for each batch b in the local dataset of this client
* wew—aVLl (w,b), where L'(w,b) = L(w,b) + % llwg — w||?

ereturn wf,,

The optimizer is still stochastic gradient descent and fixed learning rate. Some works have been
focused on employing other modern optimization algorithms as well as the automated manner

to choosing learning rate.
4.3 Model’s Architecture

In this section, we briefly introduce some architecture used in our experiments. The model de-

cision is derived from related works in terms of commonly manipulating over used datasets.
4.3.1 VGGNet [24]

One remarkable exploration in this type of architecture is the adoption of a very deep CNN
network combining with small receptive field. Particularly, 3 x 3 filters are used to replicate the

effect of larger stride window while maintaining the reasonable size. This choice of design
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shows a more accurate performance when we steadily append more convolutional layers to the

model.
Generally, the family of architecture shares some settings:

e 224 x 224 RGB input image. The image is passed through a stack of conv layers with 3 x 3

filters.

e Stride is 1, same padding. That's why the very small receptive size is chosen: 3 x 3 is the

smallest size that can capture the spatial information in the image.
e Five 2 x 2 max-pooling layers are used after some conv layers to reduce spatial dimension.

e Three fully connected layers at the end. The first two have 4096 units, while the last one’s

size depends on the label space’s length.
e ReLU activation.
Detail configuration is showed in Table 2 below:

Table 2. VGGNet configuration

VGGNet Configuration
VGG11 VGG11-LRN* VGG13 VGG16 VGG16 VGG19
224 x 224 RGB image

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
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conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-L**

softmax layer

Note that: (*) LRN stands for local responses normalization and (**) represents the number of

labels in the label space.

4.3.2 ResNet [25]

ResNet leverages the neural network’s depth to a higher level. Stacking more layers makes it

difficult to train due to vanishing/exploding gradients. Simply put, this issue can be addressed
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by adding normalization. However, the result tends to degradation while training loss does not
guarantee to be decreased, i.e., overfit is not the case. This phenomenon indicates that there is a
problem with deep layer that makes it harder to learn more fine-grained features, which is the

key principle in deep learning. ResNet introduces residual blocks to cope with this dilemma.

X
weight layer
F(x) l relu <
weight layer identity

Figure 2. Residual Block (image from original paper [25])

The identity short-connection quantity helps to optimize the desired function easier because
now if the eventual performance of the identity mapping is optimum, learning process just

needs to push residual term to zero.

Comprehensive experiments on ImageNet [26] showed that: (1) deeper networks indeed result
higher accuracy and (2) networks with residual block are easier to train compared to plain

counterpart. Table 3 lists the structure of different depth ResNet.

Table 3. ResNet’s architecture (L denotes the label space length, square brackets denote resid-

ual blocks)
layer
18-layer 34-layer 50-layer 101-layer 152-layer
type
conv 7 x 7, 64 channels, stride 2
1x1,64
conv )
[3X3;64’] 3 % 3. 64 1x1,64 1x1,64 3 X 3,64
3X3647 | 277" x3 3x3,64x3 3x3,64|x3
3 % 3 64 1x 1,256
X 2 ’ 1x1,256 1x1,256 3
X
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1x1,128
conv B3X3128 1 g 1x1,128 1x1,128 3% 3,128
3 x 3,128 5120 xa [3><3,128]><4 [3><3,128] X 4 1% 1,512
X 2 ’ 1x1,512 1x1,512 o
X
1x1,256
COMV 1 13x3,256 "1 1,256 ] 1x 1,256
[ 561 | (3x3,256 3 x 3,256
3 X 3,256 35 3 g¢l X6 | [3%3,256|x6 3%3,256 [x23 | |1x1 1024
x 3,256 :
X 2 ’ 1 x 1,1024] 1x1,1024
X 36
conv 3x 3,512, | 3%3,512 1% 1,512 ] 1x1,512 1x1,512
[ 11 1 x3
3x3,512 | '3%x3,512 3x3,512 [x3 3x3,512 | x 3 3% 3,512
2 1 % 1,2048] 1x1,2048 1x1,2048
X 3
pool-
avgpooling
ing
tully
con- L-dim fc
nected
activa-
softmax layer
tion

4.3.3 ConvNext [27]

As the introduction of Vision Transformers (ViT) in 2020, the computer vision landscape is not

limited to network architecture design. ViT surprisingly show potential results on image clas-

sification tasks given the ability to scaling. Nonetheless, computer vision also contains other

difficult duties involving in image-specific inductive bias to maximize spatial information.

Without ConvNet, a vanilla ViT model may confront a few challenges in dealing with object

detection or semantic segmentation.

Many advancements have been made to bring back ConvNet to form a hybrid approach [28].

The sliding window method shows their role as being intrinsic to visual processing. However,

these works have some costly components, which could cause the design to be more complex
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or be unreasonable to scale. ConvNext, a pure ConvNet model is built gradually by embracing
some minor design modifications. This process aims to mimic the way a hybrid transformer

model like Swin Transformer [28] process digital images.

Swin Transformer Block

96-d
LN

Y
[ 1x1, 96x3 ]

+rel. pos. Yy win. shift ReSNet BIOCk ConVNeXt BIOCk
[MSA, W77, H=3]

256-d 96-d
v \4 Y
= [ txtea ] | [ d7x7.96 |
BN, RelLU LN
Y
N Y Y
> [ 3x3, 64 ] { 1x1, 384 }
96-d
BN, ReLU GELU
LN \ 4 Y
Y
[ P ] [ 1x1, 256 ] [ 1x1, 96 ]
BN
GELU B %
4 L U
[ 1x1, 96 J yReLy \}

) 4
>

y
Figure 3. Comparison of a basis block design in Swin Transformer, ResNet and ConvNext
(image from original paper [27])

Training Technique. Increase the number of epochs from 90 to 300. AdamW Optimizer is
adopted. Various augmentation techniques like Mixup, CutMix, RandAugment, RandomEr-

asing. Stochastic Depth and Label Smoothing are used for regularization.

ResNext-ify. Depthwise Convolution is used to group convolution filters.
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Inverted Bottleneck. The idea is that we could adopt inverted bottleneck in ResNet. The hid-

den dimension within a layer block is now 4 times bigger than input dimension.

Large Kernel Size. To examine the behavior of large size kernel, ConvNext moves up the po-
sition of the depthwise conv layer. (However, this violates a typical standard of using small
receptive field to replicate the effect of larger kernel size to gain parallel computing of modern
GPU). ConvNext also experiment also kernel size include 3, 5, 7, 9, 11. The performance satu-

rates when the number reaches 7.

Micro Design. RelLU is replaced by GELU. Some activation positions are also eliminated.
Truncate batch normalization and some are altered with layer normalization. Separate

downsampling layers.

4.3.4 MaxViT [29]

Added multi-axis attention helps form an efficient attention model to cope with scalability.
There are two novel ideas in this work: blocked local and dilated global attention. The proposed

model called MaxViT serves as a powerful vision backbone for visual processing.

S0: Stem S1:repeat x L1 S2:repeat x L2 S3: repeat x L3 S4: repeat x L4 Head
(112x112) (56 x56) (28x28) (14x14) (7x7) (1x1)

MaxViT MaxViT MaxViT MaxViT
Block Block Block Block

oF |
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Figure 4. MaxViT architecture (image from original paper [29])
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5. MATERIALS AND METHODS

5.1 Resources

All presented works in the scope of this report are performed on Google Collaboratory Pro+.

Hardware specifications vary over time. Typical details are:

Table 4. Hardware specs

Standard Premium
Cru Intel(R) Xeon(R) CPU @ 2.20 GHz Intel(R) Xeon(R) CPU @ 2.20 GHz
RAM 12 GB 84 GB
GPU NVIDIA Tesla T4 16 GB VRAM NVIDIA A100 40 GB VRAM

5.2 Datasets and Implementation Details

We use the brain tumor dataset composed by Cheng et al. [30] in the first class of experiments.
The dataset consists of 3064 T1-weighted pictures collected from 233 patients with three labels
of brain malignancies: 708 images of meningioma, 1426 images of glioma, and 930 images of
pituitary tumor. Figure 5 illustrates some sample images taken in [30]. The images have digital

resolution of 512 x 512 with pixel size of 0.49 X 0.49 mm?.

We split the datasets into 80% training and 20% test. Test set is resided at the aggregation
server, while training samples are partitioned into 10 clients. Partition manners are discussed
later. For image pre-processing, Contrast Limited Adaptive Histogram Equalization (CLAHE)

technique is adopted. The image is then resized to 224 x 224.
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(a) (b) (0
Figure 5. Three types of brain tumor: (a) meningioma; (b) glioma; and (c) pituitary tumor.

With second class of experiment, an herbal plant dataset which consists of plants found in Vi-
etnam are used. The photographs were captured within a natural setting with the intention of
depicting the intricacy of classifying images within real world environments. The dataset
comprises of plant images captured from varying angles, brightness levels, environmental
conditions, viewpoints, and other related factors. Thus, it serves as a suitable model for a prac-

tical plant recognition task. Figure 6 demonstrates some samples.

Figure 6. VNPlant-200 sample images.
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After resizing to 224 X 224, we implement some data augmentation like random rotation or
random flip. We use 8000 images for testing, 2000 images for validation, and the rest for train-

ing. This time the number of devices jointly learning the federated model is 100.

Table 5. VNPlant-200 characteristics

Number of species 200
Number of images for each specie 100
Image resolution 256 x 256 and 512 x 512
Angle Entire plant with realistic noise
Environment Real world

Data distribution approach. To study federated performance on heterogeneity setting, we ex-
plore two ways to partition data. In IID way, the data is randomly shuffled and distributed
over K clients, i.e., each client theoretically represents the whole population. Non-IID manner
involves sorting the data points by labels first, then populate each client with an equal number
of samples so that each client contains at most 2 labels. This way we could benchmark both

algorithms on specific domain non-IID data for generalization.

Regarding learning rates used in SGD, we tune for the best value achieved by each combina-
tion of hyper parameters, i.e., all numbers shown in tables or figures are training on the best
learning rate. One critical point: for fair competition, we fix the randomly selected clients, the
order of mini batch per client across training rounds. We also apply plain FedAvg algorithm
while dropping the testing of stragglers in FedProx. That means we do not incorporate variable

works on those devices, instead we force all chose devices to perform the same amount of work.

6. RESULTS and DISCUSSION
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6.1 Brain Tumor classification task

6.1.1 Comprehensive summarization on FedAvg scheme

Partial parallelism. We first play with client fraction C. Table 6 shows the results of varying C
over Brain tumor dataset. VGG16 is used as the initial baseline. We adopt a slightly different
methodology here: instead of evaluating the cost of communication until satisfying desired
levels of accuracy, we record the test-set accuracy obtained when finishing given numbers of
rounds. Here, the approach functions effectively in an IID setting that provides positive out-
comes with just small communication rounds. Undoubtedly, greater C produces better out-
comes, particularly in non-IID settings when client data do not reflect the whole distribution.
The performance of non-IID data improves with time more slowly than IID data, indicating
that communication cost is substantial in non-IID scenarios. Comparing our results to those of
the original study, in which the authors conducted tests on MNIST using two basic neural
networks, we detect a comparable impact. Table Al in the appendix section illustrates this ef-
fect in the original paper. Figure A1, A2 in the appendix section gives a clearer view regarding

the speed of convergence over rounds of communication.

Table 6. Impact of varying C on the Brain tumor dataset using FedAvg algorithm on VGG16

model. E = 5,B = 10. Each entry represents the test-set accuracy received at given rounds of

communication.
C IID Non-IID
10 20 50 100 10 20 50 100
0.1 92.48 95.26 97.38 98.20 47.39 47.39 63.40 72.22
0.2 94.12 96.41 98.04 98.53 47.39 79.08 87.09 90.69
0.3 95.26 96.24 97.55 98.37 77.29 77.29 91.12 94.12

0.5 95.45 97.55 98.04 98.20 83.49 88.56 93.62 95.59
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For consistent insights and balance out the computational weight of training due to limited

hardware constraints, we fix € = 0.2 for further testing.

Local computation examination. This time, the influence of extra local computation is inves-
tigated. Adding extra updates every round to each client does not significantly increase per-
formance. We attempt to raise E from 1 to 5, while altering the mini-batch size to the values 4,
10, and 16. Nonetheless, we discover a very intriguing property: a mini-batch size of 16 yields a
pretty good result in a non-IID context. In some instances, the performance suffers when the
mini batch size is increased while the number of epochs is maintained, indicating that too many
updates might lead averaging to give inferior results. The counterpart diagram of Table 7 is

placed at Figure A3, A4 at appendix, in which we visualize the effect we have done here.

Table 7. Various cases when device’s amount of update is altered. Model is VGG16. C = 0.2

E B IID Non-IID

10 20 50 100 10 20 50 100
1 10 86.11 93.30 96.08 96.57 55.72 55.72 79.08 89.38
2 10 93.46 94.93 97.55 98.37 66.01 66.67 80.39 90.69
5 4 95.26 96.70 98.04 98.04 55.88 77.94 87.58 90.85
5 10 94.12 96.41 98.04 98.53 47.39 79.08 87.09 90.69
5 16 93.95 96.41 97.71 97.88 67.32 67.32 80.23 93.30

So far, the documented experiments have demonstrated a reliable set of hyper parameter val-
ues for our task. We study further the impact of several classifiers on federated learning.
Comparing ResNet50, ConvNext, and MaxViT with the VGG16 baseline, we employ several
cutting-edge deep learning architectures. Table 8 displays the experimental states. In this series
of studies, E=5, B=16, and C=0.2 are used for non-IID data whereas E=5, B=10, and C=0.2 are
used for IID data.

Table 8. Comparison of some state-of-the-art deep learning models with federated learning on
Brain Tumor dataset. E=5, B=16, and C=0.2 for non-IID data and E=5, B=10, and C= 0.2 for IID

data.
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Rounds of com. 10
VGGle6 94.12
ConvNext 95.52
ResNet50 91.83
MaxVit 94.93

20

96.41

96.57

95.59

96.57

IID

50

98.04

98.04

96.73

97.56

100

98.53

98.69

98.03

98.69

10

67.32

75.65

49.51

56.86

Non-IID
20 50
67.32  80.23
75.65  80.88
71.24 82.52
75.82  85.95

100

93.30

92.16

86.76

90.36

Evidently, ConvNext and MaxViT give superior outcomes while processing IID data. On the

other hand, despite the fact that ConvNext is the best model during the first 50 rounds of

communications, it cannot exceed the peak performance of VGG16. Consequently, VGG16,

with 93,3% accuracy, may be the best reliable classifier for non-IID Brain Tumor image data.

Figure A5, A6 in the appendix provides more visualization details.

6.1.2 Comprehensive summarization on FedProx scheme

Following the preceding section's work, we examine if the proximal term in FedProx aids in

handling non-IID situations. We have found that B=16 and E=5 produce decent results in

non-IID contexts, thus we will continue to use these parameters in the subsequent tests.

ConvNext and VGG16, which produced the greatest results on the Brain Tumor dataset in the

previous section, are also reused. In this effort, we tweak the p hyper parameter from a limited

candidate set of {0,0.001,0.01,0.1,1} to determine its effect on test-set accuracy convergence

after 10, 20, 50, and 100 rounds of communications. Tables 9 and 10 show the respective out-

comes of ConvNext and VGG16.

Table 9. Test-set accuracies of FedProx federated algorithm with various g on Brain Tumor

dataset. The classifier is ConvNext, B=16, E=5.
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u Non-IID
10 20 50 100
0 75.65 75.65 80.88 92.16
1 79.08 79.08 85.29 92.48
0.1 80.23 80.23 83.82 92.65
0.01 76.31 76.31 83.99 92.65
0.001 78.59 78.59 86.11 92.48

Table 10. Test-set accuracies of FedProx federated algorithm with various u on Brain Tumor

dataset. The classifier is VGG16, B=16, E=5.

Non-IID
B 10 20 50 100
0 67.32 67.32 80.23 93.30
1 60.94 62.58 83.33 93.30
0.1 48.04 72.06 83.01 89.05
0.01 60.29 67.97 83.17 91.83
0.001 71.90 80.39 80.39 81.21

We can see that, given an appropriate value of u, the learning process tends to be condensed
into fewer iterations and assured to converge steadily over time. With ConvNext, the optimal
value of u is 0.1, allowing the accuracy to surpass 80% in only 10 communication rounds. In
case of VGG16, the optimal value of u for fast convergence is 0.001. With VGG16, however,
there is a little trade-off: the faster convergence comes at the expense of a lower peak accuracy,

in this instance 81.21% as opposed to 93.3%. This conduct has no impact on ConvNext.

The heterogeneity breaking behavior of FedProx over FedAvg will be described in the next
section. However, we would like to stress a vital point: it is essential to choose a suitable

number for u; otherwise, the performance might decrease and become unstable over time.

6.1.3 Heterogeneity advantages study on FedProx

In figure 7, we see that FedProx yields quite humble results compared to FedAvg. Although the

convergence property is assured, it does not seem reliable in terms of stability, early conver-
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gence, or peak performance. The candidate set of proximal term parameter p taken from orig-

inal work. Here we can conclude that the disparity tackling effect of FedProx is not remarkable.

Results of FedProx on Non-IID data with: VGG16, C=0.2, B=16, E=5
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Figure 7. Results comparison between FedAvg and FedProx with various p values on Brain

Tumor dataset. (ConvNext)
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Test Accuracy

Results of FedProx on Non-IID data with: ConvNext, C=0.2, B=16, E=5
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Figure 8. Results comparison between FedAvg and FedProx with various p values on Brain

Tumor dataset. (VGG16)

6.2 Medicinal Plant classification task

We follow the same methodology of model evaluation here. The conclusions are quite like

those obtained above, so we will only stress important points as we progress our experiments.

6.2.1 Comprehensive summarization on FedAvg scheme

Table 11. Impact of varying C on the VNPlant-200 dataset using FedAvg algorithm on VGG16

model. E = 5,B = 10. Each entry represents the test-set accuracy received at given rounds of

communication.
C 11D Non-lID
10 20 50 100 10 20 50 100
0.1 68.34 77.84 84.95 85.56 10.44 12.81 20.00 31.80
0.2 77.08 82.90 86.80 88.56 33.39 41.35 60.19 67.81
0.3 80.34 85.15 88.04 89.24 38.13 53.61 70.65 74.68
0.5 81.71 86.76 89.09 89.09 51.73 66.40 77.71 81.28
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In this family of experiments in Table 11, we could see large differences in performance re-
garding both data distribution case or the cardinality of clients per round. This observation can
be derived from the fact that the harder identification task is involved. We see C = 0.1 produce
poor results on non-IID setting and increase C extremely mitigating this problem. Convergence

speed analysis can be conducted here. Figure A7, A8 show more illustrative insights.

Table 12. Different local computational imposed on each client per round under C = 0.2 using

VGG16 model. FedAvg is used. VNPlant-200 is under investigation.

E B IID Non-IID

10 20 50 100 10 20 50 100
5 10 77.08 82.9 86.8 88.56 33.39 41.35 60.19 67.81
5 16 78.48 83.41 87.59 88.93 31.61 41.59 58.60 68.76
5 32 79.38 84.13 86.69 88.28 31.51 44 .14 57.39 66.66
1 10 55.60 70.00 81.20 85.71 21.49 36.04 48.56 63.11
2 10 65.03 78.36 84.75 88.64 26.96 38.33 58.53 67.34

Again, in Table 12, we see there are no significant differences between those cases. This implies
the stated arguments in the original paper are not universal. Hence, putting effort in tuning this
kind of parameter needs to be studied more extensively. Table 13 experiments model choice

effect. Other intuitive plots are resided in appendix, Figure A9, A10, A11, A12.

Table 13. The effect of various classifiers regarding the VNPlant-200 dataset. FedAvg is the

algorithm. The mini batch size, the number of local epochs, the client fraction are 16, 5, and 0.2,

respectively.
Model IID Non-lID
10 20 50 100 10 20 50 100
VGG16 78.48 83.41 87.59 88.93 31.61 41.59 58.6 68.76
ConvNext 86.40 91.29 93.59 94.51 30.86 48.15 68.11 73.09
ResNet50 82.73 87.93 91.94 93.10 34.51 48.15 72.85 82.65

MaxVit 79.41 88.64 92.65 94.01 36.76 43.08 69.79 76.33
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6.2.2 Comprehensive summarization on FedProx scheme

Follow up previous sections, we conduct similar operations with the same observations on
FedProx technique over VNPlant-200 dataset. Since ResNet50 brings best results on former
experiments, we keep using this deep network on current class of expriments. Mini batch size is
16, and number of local epochs is 5 (since dozens of our works reveal that the variant in terms
of the amount of local update does not impact so much on the ultimate performance). Again,
we tune the proximal term weight from predefined set of candidates. The results is showed in

Table 14.

Table 14. Experiments upon the weight of proximal quantity on VNPlant-200 dataset. B =
16,E = 5,C = 0.2. The classifier is ResNet50.

1] Non-lID
10 20 50 100
0 34.51 48.15 72.85 82.65
1 35.48 50.00 73.23 82.95
0.1 34.76 48.48 73.13 82.37
0.01 34.34 50.93 73.10 82.71
0.001 35.24 49.60 73.81 82.41

As we can see, the numbers are quite clear. Adding more constrain into the local losses tends to
slightly increase our test-set accuracy. We have not tested with larger p, but in the publised

paper, the authors indicates that huge pu would cause the learning process to be very low.
6.2.3 Heterogeneity advantages study on FedProx

The visualization of Table 14 is shown in Figure 8. The improvement is quite small, but it is still
there. Futher inspectation is required to understand the behavior of this hyper parameter.
However, adding the proximal term will always guarantee convergence, as proven by the ap-

proach’s authors.
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Results of FedProx on Non-IID data with: ResNet50 C=0.2, B=16, E=5
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— p=0.001
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Number of communication rounds
Figure 9. Results comparison between FedAvg and FedProx with various p values in

VNPlant-200 dataset.

7. CONCLUSIONS AND PERSPECTIVES

Federated Learning is truly a novel and intriguing approach for data scientists. Its approach is
both similar and different from other decentralized learning methods that have appeared
before: the burden of communication costs must be considered, and some effort is required in
encoding to ensure data privacy and integrity. If this optimization is done well, we can
efficiently leverage the abundant data sources worldwide from end-users, especially as data
privacy laws are increasingly tightened and the artificial intelligence industry is reaching
saturation due to the lack of increased data sources as before.

In this work, we employed two federated learning methods, FedAvg and FedProx, on two
datasets to examine their efficacy. We tuned the parameters based on the guidance provided in
the original paper. Each dataset was split into two portions: a training set and a test set. The

training set was distributed among a set of clients, while the test set was used by the server to
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evaluate the results. We utilized simple preprocessing and data augmentation techniques to
test the experimental viability of federated learning. Two data allocation methods were
employed: IID and non-IID. The classifiers utilized in this study were well-known and classic
deep learning models. We derived the following conclusions:

(1) The averaging of model parameters is truly effective, especially in the case of IID. In the
case of non-IID, the results are also promising, even without any significant data
augmentation methods and only using simple optimization methods.

(2) The higher the number of clients participating in each round of communication, the
higher the model performance. Of course, ensuring accuracy at the beginning of each
round depends on practical conditions, network connectivity, and device availability.
However, in general, the more data coming from different sources each round allows
the model to converge closer to the optimal point.

(3) Adjusting the local update quantity per client per round does not significantly improve
performance. As long as this update quantity balances computational and
communication costs and is not updated excessively in one round, the model's
convergence is ensured.

(4) The choice of classifier for each problem depends on relevant studies and the nature of
the problem and data, rather than the federated learning method itself. Of course, the
model must be selected to be suitable for the hardware capabilities and data quantity at
each client.

(5) Non-IID remains a significant challenge: experiments consistently show a sharp decline
in accuracy in the non-IID setting, and even converge to a saturation point of average
accuracy despite increasing rounds of communication. FedProx seems to fall short of
achieving the maximum attainable accuracy that can be compared to the IID setting
(and even worse than the centralized training setting). Nevertheless, FedProx with
appropriate parameters still provides a slight improvement. One thing to clarify is that
we did not apply the approach of discarding clients that cannot complete the assigned

training task. It is possible that we will integrate this in future studies.
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(6) Federated Learning results can vary significantly when the difficulty level of the task
changes, and the impact of hyperparameters also varies accordingly. However, there is
still a safe range for the parameters that determine the computation load per round at
each client. As for the trend of the client fraction parameter, it remains unchanged.

We have observed a significant aspect worth investigating: defining the parameters of the
optimization solver. More advanced methods such as RMSProp, GD with momentum, and

AdamW can be used. Learning rate decay can also be considered.

CONFLICTS OF INTEREST: The authors declare no conflict of interest.
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9. Appendix

Before starting this section, we are glad to announce that our work on this report has been ac-
cepted by IEEE Zooming Innovation in Consumer Technologies International Conference
(ZINC) 2023, a place for both industry and academic field. The conference is included in the
ZINC 2023 events, which is sponsored by IEEE Serbia and Montenegro Section — Consumer
Technology Chapter; the University of Novi Sad, Faculty of Technical Sciences, Computer En-
gineering and Computer Communications Group and RT-RK Institute for Computer-Based

Systems. For more information, please visit: https://www.gozinc.org/ . Below are the accept

email from the organizing committee and our first-version draft of our paper.

[ZINC 2023] Paper status changed for 1570890908 (‘MRI Brain Tumor Classification Based on Federated & &
Deep Learning') nbox x

zinc=nit-ins...@edas.info Mon, 27 Mar, 16:48 (8 days ago) o
to Khanh, me, Trung, Vinh «

Dear Mr. Khanh Le Dinh Viet

Congratulations! Your paper 1570890908: 'MRI Brain Tumor Classification Based on Federated Deep Learning' has been accepted for presentation at the conference ZINC 2023. The review
committee believes that the paper copes well with topics of ZINC 2023, and that it could be interesting for the audience, and for the ideas exchange. You will be assigned a slot in the
conference program - please stay tuned for more information at our website http://www gozinc.org/

This year's ZINC conference runs in a hybrid form. By default, presentations are allocated to live sessions in Novi Sad. If you are not able to travel to Novi Sad and you would like to present
online, please contact us directly

Additionally, your paper is a candidate to be submitted to IEEEXplore and to be assigned a DOI. However, the reviewers indicate that minor revisions are required for the final acceptance by
the committee and the submission to IEEEXplore. Please attend to all review comments carefully and submit a full article for review. You can find review comments below. If you have any
doubts, please correspond with the conference organizing team

Please make sure you perform the following actions through EDAS with your final submission:

2. Fill'in the IEEE electronic copyright form
3. Register for the conference (will be available beginning of April): https:/edas.info/r30365

Please also fill in the missing metadata in EDAS and upload the presentation when it is completed (until the deadline)

Congrats once again and we are happy to have you for ZINC 202311l
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Abstract—~The proliferation of artificial intelligence (Al) has
the potential to revolutionize many industries, but its application
is hindered by the shortage of large-scale data. Data in various
domains often exist in isolated silos, necessituting privacy and
security. In the meantime, the lack of access to medical privacy
prevented the development of trustworthy systems for diagnosing
deadly malignancies like brain tumors. In this nudy. we lpply
a federated learning algorithm k as Fed
(FedAvg) to train a brain tumer classification system uing
decentralized data without requesting the exchange of sensitive
data. The pnpoud framework’s h)-pa'panndm are adjusted
to enh, its effecti on both i d and identically
(IID) and non-independently and idal)uly distributed data
(Non-1ID). Additionally, we leverage four cutting-edge deep learn-
ing models, namely, VGG16, ResNet50, ConyNeXt, and MaxViT,
to optimize classification accuracy. The proposed framework
achieves a classification accuracy of 98.69% on IID data and
over 93% on Non-1ID data.

Index Terms—Federated learning: VGG16; ResNet50; Con-
vNeXt: MaxViT; Brain Tumor

I. INTRODUCTION

Artificial intelligence (Al) systems' supremacy has recently
been demonstrated by their robust applications across prac-
tically all industries, including object detection, face recog-
nition, and recommendation systems, etc [1). More complex
machine learning (ML) models as well as the availability of a
large amount of data are supporting this rapid expansion. The
most crucial element in the future era of this technology is
anticipated to be big data-driven in order to disseminate the
effects of Al [2). However, data only exists in the form of
isolated islands, making it expensive to transfer enough data
to build trustworthy Al models. Additionally, data leaks are
occasionally impossible due to privacy and security concerns
in a number of specific businesses, like banking and the
medical field. As a result, the most likely way to implement Al
applications in the actual world is no longer data centralization.
Federated learning was proposed [3] as a technique to handle
isolated data islands without any requests for data transmission
or leakage. Federated leaming, in overview, is a training
technique that enables to guide models based on data that is
distributed across multiple devices or data centers without the
need to transfer data to a central location [2]. This method has
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Fig. 1: The illustration of Federated leaming system.

shown promise in addressing privacy and scalability issues in
real-world Al applications, particularly in the medical industry.

Some dangerous illnesses, such as brain malignancies,
which can drastically reduce life expectancy, are nevertheless
discovered by manual diagnostic imaging. Due to their re-
liance on radiologists' expertise, these conventional practices
could have a number of drawbacks. Therefore, integrating
deep learning models into computer-aided diagnosis (CAD)
systems will inevitably become popular in order to increase the
accuracy of diagnoses made using medical pictures. However,
because patient information is private, it seems impossible to
gather enough image samples to create a trustworthy diagnosis
system. In these siwations, using a decentralized training
method like federated leaming could be a great way to handle
the issues.



Final Capstone Project

52 of 70

In this project, a federated leaming algorithm called as
FedAvg [4] is applied to some state-of-the-art deep learning
frameworks to conduct a brain tumor classification system
without the need of centralizing data samples. The following
are the primary contributions of this study

« The dataset is distributed to ten clients to simulate the
way that data is organized in the industry.

« Fine-tuning the federated leaming algorithm to figure out
the most suitable hyperparameters for use with a specific
brain tumor dataset.

« Integrating cutting-edge deep learning architectures into
the classification framework and measuring their effec-
tiveness.

The remainder of this article is organized as follows: In
Section II, we discuss relevant prior work in the field. Section
II describes the organization of the dataset and the approach
used in this study. The results of our experiments are then
presented in Section IV, while Section V concludes the paper.

II. RELATED WORKS

In recent years, there has been a growing interest in the use
of federated leaming for various medical applications, owing
to its advantages in preserving the privacy of isolated data.
One of the earliest use of federated learning in medicine is the
study of Sheller et al. [5), who demonstrated the effectiveness
of federated learning in the task of brain tumor segmentation.
In their strategy, numerous institutions worked together to train
a common deep neural network, where each client provided
its own patient data without revealing it to others. Although
achieves high performance, Sheller’s framework relies on a
central server, which could result in an unstable and unreliable
system. In order to deal with this issue, Roy et al. [6) suggest
an alternative federated learning algorithm known as BrainTor-
reat to deploy the training process in a peer-to-peer manner.
The performance of this framework proved to be better than
the traditional server-based method on a similar problem of
brain tumor segmentation. In 2021, chest CT images from
seven global clinical centers were gathered by Qi Dou et
al [7] to assess the viability of a federated leaming system
for COVID-19 illness detection. According to the study's
conclusions, federated learning might be a useful technigue
for quickly creating CAD systems across organizations and
nations to counter the pandemic without having to worry about
sensitive information becoming out to the public.

A unique data-driven strategy to automatically aggregate
model weights based on data distributions across the training
process was recently developed by Xia Y. et al. [8]. The
authors then went on to show how well this technique worked
when it came to segmenting COVID-19 lesions in chest CT
and pancreas in abdominal CT. When working with unknown
samples, Tian C. X. et al. [9] employed a specific gradient
alignment loss to maintain the model stable throughout train-
ing. The authors also set up some tests to demonstrate the
viability of the suggested framework in two different medical
image classification tasks.

Fig. 2: Three types of brain tumor.

III. METHODS

A. Dara Preparation

In this study, the dataset [10]), which consists of 3064 MRI
T1i-weight brain tumor images, is used to demonstrate the ef-
fectiveness of the federated leaming algorithm for classifying
medical images. Figure 2 shows an illustration of each beain
tumor type. This original data then was split into training set
and testing set followed by the ratio of 8:2, respectively. In
order to simulate the isolated form of data in the real world,
the sample images of three types of brain tumors in training
set, namely, meningioma, glioma, and pituitary tumor, are
randomly distributed into 10 independent clieats. However, the
data from a particular client sometimes might not represent
the identified distribution of the global data, which causes
statistical heterogeneity challenges to prevent the convergence
of the classification model. Thus, the dataset is additionally
distributed to clients as a non independently and identically
distributed version (Non-IID) by sorting the labels of medical
images, instead of a sequence of naive randoms.

B. The Classification Framework

The classification framework used for training decentralized
data commonly includes two key factors. The first one is
the classifier model for categorizing input images, while the
second one is the aggregation algorithm for synthesizing the
best global model parameter from local information. In this
work, 4 cutting-edge deep leamning-based designs such as
VGG16 [11], ResNet50 [12], ConvNeXt [13], and MaxViT
[14], are integrated into the federated leaming to figure out
their classification performance in an isolated data situation
of the medical industry.

Meanwhile, FedAvg, a federated learning technique pro-
posed by Google [4], is adapted to aggregate useful infor-
mation for the central classifier model. In the deployment
of FedAvg, at each communication round, a fraction of total
clients (') is permitted to prioritize optimizing the local model
based on & given batch size (B) and a number of epochs (E).
After receiving the updated local weights of communicated
clients, the central server applies a simple mechanism of
averaging these weights and then loading them for the global
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TABLE I: Baseline results with VGG16, batch size B = TABLE III: The comparison of some state-of-the-art deep
and number of epochs £ = 5. learning models with the brain tumor dataset
H R —m——m—m—m——rm——m——w"—”—m—m T |
s e | e s s e [ aw e Si2¢ of 4, these adjusted results still could not overcome the
S [ 16 | 93.05 | 9641 | 93.71 | 9738 | 67.32 | 6732 | #02) | 9330 | previous results with E = 5.
; :: 5 Ll — fg %TF%TTQ{:! T""‘,ﬂ_a’__"g So far, the experiments are shown in Tsble I and Table
T o oo Toor Tssor [ T s T Tsoas] Il already figured out the optimal configuration for handling
both 11D d Non-11D d: The further fine-tunes
TABLE II: Model performance when fixing € = 0.2, and it mix], NOR P e, mucly e

the classification system evaluating more state-of-the-art
changing B and E. deep leaming deu?ns. nyymly. ResNgﬂSO. ConvNeXt, and
MaxViT. The results of these works are presented in Table
1II. Compared with the baseline model of VGGL6, the best
accuracy of ConvNeXt and MaxViT architectures at particular
communication rounds significantly outperform the original
results on 11D data. After 100 rounds, ConvNeXt would be the
best model for handling the task of brain tumor classification
IV. EXPERIMENTAL RESULTS when dealing with IID data, with 98.69% accuracy. With Non-
1ID data, although the best accuracy of ConvNeXt is better

In order to optimize the classification accuracy afler a gy, YGG1G afier first SO rounds, it still cannot overcome the
fixed Pm ofcommmuanm.\ ounds, many exporiments peak of VGG16 when ending up the training process of 100
organized to figure out the optimal hyperparameter as well as 3. Thoe VGGG, with 93.30% socuracy, might be the
the best classifier model for this brain tumor dataset. All of most possible classifer to tackle Non-IID data.
the experiments are implemented and run on Google Colab
Pro Plus, which consumes more than 600 computing units V. CONCLUSIONS
equivalent to 300 hours of training. The federated learning ) ) o
algorithm is conducted by Python scripts without the support For the purpose of developing a brain tumor classification
from any federated learning frameworks. system without centralizing data samples, the efficacy of a fed-

The baseline results firstly are conducted by choosing Crated learning algorithm known as FedAvg is being examined
VGGI16 as the classifier, a batch size of 10, and E = 5. The 0 this study. As a simulation of industrial forms, the dataset
outcomes, which are shown in Table I, prove that increasing 5 disseminated to 10 clients in two different methods (1ID
the number of clieats wained in each round surely leads 1o #nd Non-lID). Based on that, the system’s hyperapameters
the improvement of the final performance. Additionally, when ~7¢ modified to improve classification accuracy. Thus, the
dealing with then Non-TID data, the system with a small value federated leaning system with ConvNeXt as the classifier
of C might suffer to achieve convergence. Due to the clear idea  2chieves remarkable performance on classifying three types
that a high number of clients helps to achieve high accuracy, of brain tumors, with 98.69% accuracy on IID data, while the
the rest experiments in this study would fix the value of C  00¢ of VGGI6 peaks at 93.30% accuracy on Non-1ID data.
as 0.2 for reducing the burden of computing, and finding the The difficulties associated with statistic heterogeneity as non-
optimal value of another hyperparameter such as a number of independent and indivisible data, however, have not yet been
epochs E ot batch size B. Table II presents how E and B fully resolved, making the convergence process unstable and
could affect to the training results of the federated learning  Susceptible to "unseen” data. As a result, there is greater room
framework. When increasing the value of B from 10 to 16, fof this federated leaming system to be improved by more
the best accuracy on IID data at a particular communication effectively addressing the problems with Non-1ID data.
round is significantly reduced, while that change helps robust

model. Finally, these new parameters will be synchronized for
all of the clients in the system, and then a new communication
round could be started again. Figure | demonstrate the design
of the studied framework.
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Abstract

Over the years, scientists have discovered bioactive chemicals in many of the plants that have been traditionally utilized as medicinal
medicines. However, identifying plant species based on their physical characteristics can be difficult, and misidentification can have
severe consequences, such as the use of the incorrect plant as a medicine. With the advent of machine learning techniques such as
deep leamning and federated learning, it is now possible to develop automated systems for the precise image-based classification of
medicinal plants. Nevertheless, medicinal plant classification using deep learning techniques typically requires a large amount of
data, which can be challenging to acquire and manage due to privacy concerns, data ownership, and geographic reasons. Federated
learning provides a solution to this issue by enabling the training of a shared model on multiple devices without requiring centralized
data storage. In this work, we assess and optimize the federared learning framework using two federated learning approaches,
FedAvg and FedProx, and four state-of-the-art deep learning networks for the job of categorizing medicinal plants by distributing
the original training set into two forms, IID and Non-IID. Ultimately, the accuracy of the optimal federated learning system is
improved by 5.65% and 14.84% over the baseline on IID data and Non-IID data, respectively. Furthermore, the study brings up a
new difficult arena for the task of classifying medicinal plants using Non-IID training data.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Seventh Information Systems International Conference.

Keywords: Medicinal Plants; Federated Learning; Classification; Deep Learning

1. Introduction

Since ancient times, medicinal plants have been utilized to treat a wide range of ailments and diseases. Although
the use of medicinal plants has decreased as modern medicine has developed, their significance in traditional and
alternative medicine has not diminished. The identification and use of medicinal plants in traditional medicine, as
well as their preservation and protection in the wild, depend on their classification. However, manual observation and
study of plant traits used in conventional methods of classification can be time-consuming and prone to inaccuracy.

The accuracy and speed of medicinal plant classification have recently showed significant promise thanks to recent
developments in machine learning, particularly deep learning. However, the availability and caliber of training data
have a significant impact on how well machine learning models perform. Given that these plants are frequently found
in secluded and difficult-to-reach places, gathering big and diverse datasets for the classification of medicinal plants
can be a considerable difficulty.

1877-0509 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (hitp://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Seventh Information Systems International Conference.
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Client Client Client

— w— w— Server sends global weights when a round starts

Client their local trained back for

Fig. 1: The illustration of federated leaming system.

A new machine learning paradigm called federated learning [21] tackles the difficulties associated with training
models on distributed and decentralized data. Without sharing their data with a central server, several clients, each
with their own dataset, work together to build a shared machine learning model in federated learning. This method
provides various benefits, including higher scalability, improved data privacy, and less communication expenses.

In this study, we investigate the use of federated learning in the identification of medicinal plants. By utilizing two
federated learning algorithms, FedAvg [10] and FedProx [7], we specifically study the efficacy of federated learning
in training deep learning models on decentralized and distributed datasets of medicinal plant photos. In a restricted
number of communication rounds, we also assess the effects of several model architectures and hyper-parameters
on the accuracy of classification results and compare how well federated learning performs on two data distribution
methodologies.

The remainder of the essay is structured as follows. In Section 2, we examine relevant research on federated
learning and the classification of medicinal plants. We outline our federated learning algorithm and the used dataset
for classifying medicinal plants in Section 3 of this paper. We give experimental findings and contrast the effectiveness
of federated learning with different models and hyper-parameters in Section 4. We wrap up the ramifications of our
findings in Section 5 and suggest ideas for new research trajectories.

2. Related Works

We employ federated machine learning algorithms to a medicinal plant dataset in order to observe the resulting
effect. In almost previous research, the majority of works in federated learning utilize canonical datasets such as
MNIST, CIFAR-10, and their variants, which contributes to a negative bias. In particular, this lack of generalization can
prevent external individuals or organizations from utilizing federated learning in their products or service solutions,
as they lack solid evidence that all research conclusions are independent of domain data or classifier architectures.

Since the early 2000s, a number of concepts regarding the partitioning of computing tasks have been explored.
On structured perceptron, iterative parameter mixing implements the concept that most closely resembles how the
federated learning technique is constructed [9]. In addition, some publications investigate distributed optimization
methods [2, 24]. These works focus solely on reducing complexity and maximizing available hardware resources in
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order to accelerate the learning process (data is gathered at one location). Federated Learning is the result of integrating
previous works in response to the need for a model that enables the security and use of massive data on end devices
[10]. In this new context, there are inherent challenges (we follow these challenges in directing our experiments,
which will be presented in greater detail in subsequent sections): (1) privacy concerns; (2) the disparity in client
data regarding size, feature space, and data distribution; (3) different hardware specifications:; and (4) convergence
assurance when compared to a centralized situation.

FedAvg [10] illustrates that client diversity is the most critical factor affecting our performance. Some recent in-
vestigations have attempted to address this issue, but they are not exhaustive. In spite of the fact that FedAvg is an
empirical technique that functions well in specific contexts under the condition that hyper-parameters are properly
tuned, more recent theoretical works support the robustness of this method [22, 23]. However, the authors presume
that every device participates in each round of the process and that the used solver is typically predefined (either SGD
or GD). Exposing a client’s data to other clients or to the coordinator is a strategy for addressing the heterogeneous
issue. Nonetheless, this imposes a significant stress on network bandwidth (especially in environments with expensive
network connections) and simultaneously violates privacy standards. FedProx [7] provides a more comprehensive
theoretical framework for handling heterogeneous data than previous works. Through a mechanism that permits some
clients to submit their truncated parameters, the authors also accommodate for the disparity in computational capabil-
ities between clients.

Fig. 2: The demonstration of VNPlant-200 dataset.

Numerous researchers are drawn to the identification of medicinal plants due to its widespread applications in both
the medicinal community and industry. Regarding datasets, the majority of works rely on their own self-collected
datasets, which typically offer distinct properties because each nation has a unique biologic ecosystem. This com-
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plicates the process of comparing attained results for the purpose of leveraging existing models, as collectors utilize
various lighting, perspectives, sizes, and backgrounds when taking photographs. Currently employed leaf recognition
datasets include Flavia [20], Swedish Leaf [16], ICL [19], Leafsnap [5]. The majority of the images were captured in
controlled environments, and each represents a distinct group of plants. Evidently, identifying a single leaf in indoor
conditions is a far away from identifying a plant in an outdoor setting captured by a handheld device. Several papers
on medicinal plants from India and Southeast Asia have been proposed with different datasets [14, 6, 1, 18, 11]. Leaf
detection could be utilized to improve overall performance; it requires image preprocessing, image enhancement, or
even localization and segmentation. Gao and Lin [3] employ OTSU, an effective segmentation algorithm, to increase
their accuracy to 99.9%. Typical feature extractors include HOG, LBP, the transform technique, and deep learning
models.

VNPlant-200 [13] is regarded as the first publicly available actual dataset on Vietnamese herbs. The dataset includes
20,000 images of 200 species, with 12,000 used for training and the remainder for testing. The images are quite
challenging due to the fact that it stimulates outdoor perspective with a variety of noise objects and varying points of
view. Using SIFT and SURF feature extractors in conjunction with Random Forest classifier yields modest results as
a baseline [13]. In [12], the author adopted multiple CNN classifiers, including VGG, Inception V3, MobileNetv2,
Resnet50, DenseNet, and Xception, which significantly improves accuracy. Another group extends their experiments
to numerous state-of-the-art classification backbone models and provides a tuning framework for hyper parameter. In
addition, they conduct time-efficient comparisons in their task.

3. Methods
3.1. Dataset

The VNPlant-200 dataset [13] is utilized in this study to examine how well the federated learning architecture
performs when classifying medicinal plants. Figure 2 demonstrates several medicinal plant samples of VNPlant-200.
With a percentage of 50%, 10%, and 40%, respectively, the original dataset is separated into training, validation, and
testing sets. Following that, the training images are dispersed to 10 clients using either the independent and identical
distribution (IID) method or the non-independent and identical distribution (Non-IID) method. In the IID technique,
clients are randomly assigned training data, resulting in data that is distributed similarly across all clients. Instead,
the Non-IID technique sorts medicinal plants according to their labels before seeding the data into clients in the ap-
propriate sequence. When using federated learning, the second strategy might reflect a heterogeneous property of
decentralize data in the real world. The process of identifying medicinal plants would be more difficult than earlier
similar efforts due to the diversity distribution among each client, and this would provide a new avenue for classifica-
tion optimization.

3.2. Federated Learning Frameworks For Classification

The suggested medicinal plant identification frameworks utilizing federated learning include two key components:
classifiers and federated learning algorithms. The demonstration of our federated learning systems is shown in Figure
xx. Four contemporary deep learning architectures, namely VGG16 [15], ResNet50 [4], ConvNext [8], and MaxVit
[17], are incorporated into the framework to enhance identification performance for the classification models. In the
context of federated learning, at each round of communication, the classifier parameters of trained clients are sent to
the central server, which then employs federated algorithms as an aggregation method for handling clients’ parameters
in order to update the global model. Figure 1 illustrates how a federated learning system works.

FedAvg [10] is based on a basic but effective concept. A C portion of clients would participate in the training
procedure during each communication round. The located data would be looped through E epochs and B batch size
for each client. After local tasks have been completed, the weights of each classifier will be averaged to update
all client models. However, arbitrarily averaging the model weights could result in an unstable training process if
the difference between training data from each communication round is significant. The FedProx [7] algorithm may
improve classification performance through a more stable coverage process by incorporating proximal terms into loss
functions in order to solve this issue.



Final Capstone Project 60 of 70

Khanh Le Dinh Viet et al. [ Procedia Computer Science 00 (2023) 000-000 5

4. Experimental Results

Many experiments are conducted to optimize federated learning framework for the best medicinal plants clas-
sification performance in a fixed number of communication rounds. To optimize federated learning framework for
medicinal plant categorization in a fixed number of communication rounds, many experiments are done. All of the
experiments are executed on Google Colab and require 1000 computing units, which is equivalent to 500 hours of
training.

In the initial phase, the objective of tuning experiments is to determine appropriate values for C, B, and E using the
baseline framework of VGG 16 and FedAVg as a classifier and federated learning algorithm, respectively. Table 1 and
Figure 3 displays the framework's medicinal plant identification using VGG16 and FedAvg with B = 10, E = 5, and
increasing C values after 10, 20, 50, and 100 communication cycles. hen more clients are involved in each training
round at once, the categorization performance improves. In addition, the extent of influence between IID and Non-IID
data differs. Specifically, on Non-IID data, the classification results improve more than IID data on each increment
value of C, which can be explained by the unique data distribution of each Non-IID client, but the data distribution of
IID clients is similar to the worldwide distribution. For the sake of computation, subsequent experiments fix C to 0.2
and tune additional variables such as B, E, and the classifier.

Table 2 and Figure 4 demonstrates the classification performance of the proposed framework with varying values
of B and E. When increasing the batch size from B = 10 to B = 16, the highest accuracy for inspected rounds also
improves substantially. Following 100 rounds, the accuracy of IID data grew by 0.37%, from 88.56% to 88.93%, while
the accuracy of Non-IID data climbed by 0.95%, from 67.81% to 68.76%. However, consistently increasing B to 32
does not result in a significant improvement comparable to B = 16. Thus, B = 16 would be an optimal value of B
in the federated learning framework for medicinal plant classification. To avoid over-fitting of the local model during
training progress, small values of epoch E are used in the experiments. For E = 1 and E = 2, there is no improvement
in the training stage for either IID or Non-IID data, so the optimal number of epochs is E = 5.

After determining the most suitable hyper-parameters for the framework, a number of contemporary deep learning
networks are used as classifiers to determine which could yield the highest accuracy. These experimental outcomes are
displayed in Table 3 and Figure 5. Using ConvNext as a classification model considerably increases the final accuracy
of IID results from 88.93% to 94.51%. In the meantime, after 100 communication cycles, ResNet50 is the best model
for classifying Non-IID medicinal plant data with 82.65% accuracy, a 13.92% improvement over VGG16's 68.76%
accuracy. Despite the suggested framework achieves excellent performance with FedAvg on IID data, with a peak of

C 11D Non-IID

10 20 50 100 10 20 50 100
0.1 | 68.34 | 77.84 | 84.95 | 85.56 | 10.44 | 12.81 | 20.00 | 31.80
0.2 | 77.08 | 82.90 | 86.80 | 88.56 | 33.39 | 41.35 | 60.19 | 67.81
0.3 | 80.34 | 85.15 | 88.04 | 89.24 | 38.13 | 53.61 | 70.65 | 74.68
0.5 | 81.71 | 86.76 | 89.09 | 89.09 | 51.73 | 66.40 | 77.71 | 81.28

Table 1: Classification results of VGG 16, FedAvg with B = 10, E = 5 and different C

1ID Non-1ID
10 20 50 100 10 20 50 100
10 | 77.08 | 82.90 | 86.80 | 88.56 | 33.39 | 41.35 | 60.19 | 67.81
16 | 78.48 | 83.41 | 87.59 | 88.93 | 31.61 | 41.59 | 58.60 | 68.76
32 | 79.38 | 84.13 | 86.69 | 88.28 | 31.51 | 44.14 | 57.39 | 66.66
10 | 55.60 | 70.00 | 81.20 | 85.71 | 21.49 | 36.04 | 48.56 | 63.11
10 | 65.03 | 78.36 | 84.75 | 88.64 | 26.96 | 38.33 | 58.53 | 67.34

B || thln|a| M

Table 2: Tuning results of VGGI16 and FedAvg with C = 0.2

94.51% after 100 communication rounds, the task of classifying Non-IID remains difficult, with a final accuracy of just
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1ID Non-IID
Model 10 20 50 100 10 20 50 100
VGGI16 78.48 | 83.41 | 87.59 | 88.93 | 31.61 | 41.59 | 58.60 | 68.76
ConvNext | 86.40 | 91.29 | 93.59 | 94.51 | 30.86 | 48.15 | 68.11 | 73.09
ResNet50 | 82.73 | 87.93 | 91.94 | 93.10 | 34.51 | 48.15 | 72.85 | 82.65
Max Vit 79.41 | 88.64 | 92.65 | 94.01 | 36.76 | 43.08 | 69.79 | 76.33

Table 3: Classification results on different models using FedAvg with C =02, B=16,and E =5

Ny Non-1ID
10 20 50 100
0 3451 | 48.15 | 72.85 | 82.65
1 3548 | 50.00 | 73.23 | 82.95
0.1 3476 | 48.48 | 73.13 | 82.37
0.01 | 3434 | 50.93 | 73.10 | 82.71
0.001 | 35.24 | 49.60 | 73.81 | 82.41

Table 4: Medical plants classification results with FedProx, ResNet50,C = 0.2, B= 16,and E = 5

82.65%. Individual clients’ disparate data distributions slow down the convergence of classification models and hinder
global models from correctly representing the distribution of data. FedProx is therefore anticipated to maintain the
training process’ stability by including a proximal term in the loss function, which may be managed by changing the
value of . The results of the federated learning framework utilizing ResNet50 and FedProx with diverse y values are
presented in Table 4 and Figure 6. In comparison to the findings of FedAvg (¢=0), all FedProx tests produce superior
results, reaching a peak at 4 = 1 with 0.38% improved accuracy after 50 rounds and 0.30% improved accuracy after
100 rounds.

Resuts of FedAvg on Non- /D data with £-5. B~10
20 23S e

Results of FedAvg on ||D data with: E=5 8-10

— g ~ Cm0.}
3 - Cub2
FE C=0 3
B — C=05
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— C=0.1

=02
—— C=03
— DY

e

20 '

0 10 20 30 40 50 €0 70 80 90 100 o 10 0 30 a0 50 &0 70 80 90 100

Numkber of communicat on munes Numbes of communization murds

(a) IID data (b) Non-IID data

Fig. 3: Classification results of VGG 16, FedAvg with B = 10, E = 5 and different C

5. Conclusion

In this work, the usefulness of federated learning for medicinal plant classification was investigated utilizing both
IID and Non-IID data. FedAvg and FedProx algorithms were utilized to train a deep learning classifier on a large
dataset of medicinal plant images that were distributed across multiple participating devices without the need to
share data. The performance of our federated learning system was enhanced by adjusting hyper-parameters including
the batch size B, number of epochs E, classifier model, and control value of proximal term mu. Additionally, we
have shown how FedProx outperforms FedAvg in terms of accelerating convergence and strengthening the training
process, especially apparent for Non-IID data. In the end, after 100 communication rounds, the fantastic performance
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Fig. 6: Medical plants classification results with FedProx, ResNet50,C = 0.2, B= 16,and E =5

of the ideal framework helped enhance 5.95% accuracy on IID data and 14.84% accuracy on Non-IID data compared
to the baseline design. Moreover, we discovered that the efficacy of our federated learning system with Non-IID data
was inferior to that with IID data. The performance of the federated learning approach may suffer as a result of the

dissemination of Non-IID data, according to this.

Overall, the findings of this study indicate that federated learning is a promising approach for the classification of
medicinal plants and other applications where privacy and data security are crucial. Nonetheless, the efficacy of the
federated learning approach may be impacted by the data distribution, particularly when Non-IID data are involved.
Future research could investigate the use of other, more complex federated leaming algorithms and further hyper-
parameter optimization to enhance the system’s efficacy on Non-IID data.
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Table A1. Original results from proposed work when evaluating MNIST with E =1 on 2NN

and E =1 on CNN. Each cell represents the communication cost needed to a respective model

to achieve desired test-set accuracy. (99% with CNN and 97% with 2NN). Five attempts did not

convergence in time.

1D NON-IID
C B = B =10 B = B =10
2NN
0.0 1455 316 4278 3275
0.1 1474 87 1796 664
0.2 1658 77 1528 619
0.5 _ 75 _ 443
1.0 _ 70 _ 380
CNN
0.0 387 50 1181 956
0.1 339 18 1100 206
0.2 337 18 978 200
0.5 164 18 1067 261
1.0 246 16 _ 97
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Results of FedAvg on IID data with: E=5, B=10
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Figure A1l. Plots on test-set accuracy over time on IID Brain Tumor Dataset with different client

fraction hyper parameter. The figure only shows the FedAvg scores.

Results of FedAvg on Non-IID data with: E=5, B=10
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Figure A2. Plots on test-set accuracy over time on non-IID Brain Tumor Dataset with different

client fraction hyper parameter. The figure only shows the FedAvg scores.
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Results of FedAvg on IID data with: C=0.2
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Figure A3. The effect of different local computing works on each entry with FedAvg. Here we

fix C=0.2. The IID version of Brain Tumor dataset is used.

Results of FedAvg on Non-IID data with: C=0.2
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Figure A4. The effect of different local computing works on each entry with FedAvg. Here we

fix C=0.2. The non-IID version of Brain Tumor dataset is used.
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Results of FedAvg on IID data with: C=0.2, B=10, E=5
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Figure A5. The classifier selection impact is inspected here with IID Brain Tumor dataset.

Results of FedAvg on Non-IID data with: C=0.2, B=16, E=5
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Figure A6. The classifier selection impact is inspected here with non-IID Brain Tumor dataset.
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Results of FedAvg on IID data with: E=5, B=10
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Figure A7. FedAvg on the IID version of VNPlant-200 dataset using VGG16 classifier.

Results of FedAvg on Non-IID data with: E=5, B=10
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Figure A8. FedAvg on the non-IID version of VNPlant-200 dataset using VGG16 classifier.
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Results of FedAvg on |ID data with: C=0.2
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Figure A9. The effect of different local computing works on each entry with FedAvg. Here we

fix C=0.2. The IID version of VNPlant-200 dataset is used. (VGG16 classifier)

Results of FedAvg on Non-IID data with: C=0.2
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Figure A10. The effect of different local computing works on each entry with FedAvg. Here we

fix C=0.2. The IID version of VNPlant-200 dataset is used. (VGG16 classifier)
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Results of FedAvg on IID data with: C=0.2, B=16, E=5
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Figure A11. The classifier selection impact is inspected here with IID VNPlant-200 dataset.

Results of FedAvg on Non-IID data with: C=0.2, B=16, E=5
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Figure A12. The classifier selection impact is inspected here with non-IID VNPlant-200 dataset.



