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ABSTRACT 

Federated Learning has been emerged as a promising for modern Machine Learning tech-

niques. Classical manner of operating in a centralize dataset come up against critical privacy 

issues. Beside that real data reacted with real user’s behavior is beneficial to tasks which in-

volve model to be trained on practical data. For example, language model can be leveraged by 

playing on user data emitted while they text for speech recognition or next word prediction 

tasks. We could also utilize images on end devices to improve image classification models. Two 

current state-of-the-art methods when dealing with federated system are FedAvg and FedProx. 

While FedAvg proposed a heuristic algorithm that is quite robust about independent and 

identically distributed distribution (IID), the latter further upgrade upon the local loss setting 

for stability with respect to the non-IID distribution. There are two main nature challenges 

within the task as indicated in FedProx work: system heterogeneity and statistical heterogene-

ity. One more difficulty: the lack of a systematic hyperparameters tuning as well as model se-

lection approach. FedAvg and FedProx mostly work with canonical datasets and their synthe-

sis variants like MNIST, CIFAR-10. In this work, we employ the Federated Learning ap-

proaches to unusual dataset to observe the capabilities of generalizing when handling do-

main-specific tasks. Concretely, we adopt FedAvg and FedProx on: (1) a brain tumor dataset 

with 3064 512×512 T1-weight images and (2) a VNPlant-200 dataset which includes 20,000 im-

ages of 200 unique medicinal plants. Following the work in FedAvg and FedProx, two algo-

rithms are applied with a careful hyperparameter tuning and inspect the effect of federated 

setting on the decentralized environment. The work empirically demonstrates the impact of 

federated learning on distinct domains. In addition, the experiments provide a heuristic scheme 

for hyperparameter controlling in other similar tasks or data, in this case, distributed model 

training and brain tumor or medicinal plant datasets.  

Keywords: Federated Learning; FedAvg; FedProx; Distributed Training; Brain Tumor; Medic-

inal Plant; VGG16; ResNet50; ConvNext; MaxViT  
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1. INTRODUCTION 

1.1 Modern Artificial Intelligence Technologies and Big Data Era 

The growth of Artificial Intelligence (AI) applications has been progressively supported by vast 

amounts of data [1], [2]. Conventionally, AI-related applications often fall into ordinary cate-

gories like computer vision (CV), natural processing language (NLP), speech recognition (SR). 

Those are also the most important appliances of AI in real world. Sometimes, the model can 

outperform human performance. For example, Deep Learning-based face recognition can 

achieve exceptional levels of performance given millions of training samples [3], [4]. These 

systems obviously require huge a bunch of data to gain satisfying levels of results due to the 

complexity of the model’s architecture.  

Generally, the big data system demands special methods in gathering and processing because 

data regularly comes on a small scale. In addition, data diversity mostly appears as a critical 

adversity to confront with. Missing values, missing labels, disparity distribution largely expect 

big effort from domain experts to repairing. In fact, benchmark datasets used within standard 

tasks usually require an enormous work in selectively gathering, processing and thus need to 

be done in a proper and comprehensive research than the work evaluate on it [5]–[7]. Some 

demands raised in the context of narrower domains now show that it is hungry for data, pre-

cisely large-scale data to come up with training.  

End user’s data turns out to be a great source of data for ML tasks. This kind of data holds a 

very important nature: it is the real data that is eventually assessed and consumed by the final 

trained model. The modern world currently has serious concerns regarding data privacy and 

data ownership: which org has the ability and the rights to use data for building AI technolo-

gies. Some university labs or specific firms developing their AI research or products adopt their 

own business data or data that they created by themselves which is in this situation they have 

the full ownership over this data. But things get complicated in certain fields: data exists in 

various forms, generated by different parties and the naïve approach would be transfer data 
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into one central location and perform plenty of ML techniques. However, this method is no 

longer valid today. Owners of data are aware of their privacy rights, and they do not want their 

private information to be used illegally for commercial or political purposes.  

Strict controls on data collection and data usage have likewise been imposed by law makers. 

General Data Protection Regulation (GDPR) issued by European Union in 2018 is a concrete 

example. Under this restrictive landscape, gathering and sharing data among separate organi-

zations is becoming more and more difficult.  

Even when we have a valid procedure dedicated to passing sensitive data around silos for 

training AI models, there are two more challenges. First, the benefit of data collaboration is not 

clear, or at least it is hard to measure if the procedure follows a super rigid manner, e.g., en-

crypting and shuffling all the data before entering the training phase. The fear of losing control 

over data and the lack of transparency make the crucial trade-off consideration from the own-

er’s perspective. Second, some data have severe sensitive nature that cannot be moved from the 

owner’s location, e.g., medical records and financial transactions, hence prohibit free data cir-

culation. 

How to solve this privacy problem is mandatory as the rules will progressively more rigorous. 

AI community has been witnessed tremendous of notable breakthroughs in ten years since 

2012 due to the development hardware strengths and large-scale training datasets. An AI 

winter is going to happen if this situation is not sufficiently addressed.  

1.2 Federated Learning as an enhanced solution  

Federated Learning (FL) relies on a pure idea that lets the model being trained in-place at the 

data location, which we refer as local data or device’s data. Then the information about trained 

model (weights or gradients) is the quantity that moving around for assembling the 

well-behaved application. The detailed explanation would be data reside at its own location, 

and some variable amount of update, i.e., training and validation, are executed. Convention-

ally, the method works like server-client architecture where there is a global model located at 

the server device and each client carries its dataset. Proper confidentiality plays an integral role 
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on securing the inner content or sometimes the inherent nature of data being transferred. Fur-

thermore, the communication process also differs among several leading implementation 

which affects different desired optimal goals in different ways.  

Figure 1. An example of FL algorithm 

FL concepts first evolve in a decent form in 2016 in [8], namely FedAvg. The authors proposed 

an iterative approach for jointly updating the global model throughout communication rounds. 

As described above, in this federated scheme does not compel a whole centralize dataset at one 

place, as well as data at each device to be sent back-and-forth. To be more detailed, for several 

updates, under encryption, clients send local model parameters which then be used to incor-

porate into a new stateful global model representing current trained model given a passed 

number of rounds. Note that this is a repetitive training design. One thing can be theoretically 
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assured from a particular client view: its data is not revealed or examined common patterns 

with other clients or the server. 

Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL) are roughly two 

fundamental categories of FL. In HFL, the system has common feature spaces in each regional 

dataset (parties may have their business market in the same domain) but distinct data samples. 

Conversely, sample spaces contain overlapping data samples in VFL, but they differ in data 

features. Two settings are derived from actual corporate situations in generating data, which in 

turn satisfy unique demands. Federated Transfer Learning (FTL) applies a unique direction 

and is suitable when the party’s data is highly heterogeneous. In general, federated algorithms 

can be expanded according to how data is partitioned among clients and the basis nature of the 

data.  

1.3 Technique Limitations and the objective of this work  

Researchers have been improving the algorithmic mechanism for distributed learning over 

many computational sites in recent years.  

In [8], the authors came up with a practical framework that help federated learning by model 

averaging. The results show a potential ability for adopting FL in other environments. How-

ever, the work left plenty of questions involving convergence guarantee and generalization 

performance. From the data perspective, the method further imposes the same amount of 

training workload with respect to each edge device, which raises uncertainty when deploying 

with actual data in unconventional domain. The algorithm also does not provide a clear and 

formal solution when tackling non-IID data, which is quite happened frequently.  

FedProx [9] resolved mentioned cons thoroughly, and beyond that suggest a mathematical 

proof for their technique. They put up front a convergence analysis as well as local dissimilarity 

formulas for supporting convergence guarantee. The experiments showing the robustness un-

der extremely heterogeneous setting are likewise presented. They allow some clients lazily 

perform fewer number of epochs and integrate a proximal term into local losses to penalizing 

the weights from being far away from the global model. 
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Nevertheless, almost all the state-of-the-art improvements mainly focus advancing security and 

statistical challenges. We realized an unhealthy assumption about hyperparameter selection, 

comes from the usages of canonical datasets. In this work, we simulate two algorithms FedAvg 

and FedProx two datasets which fit into two separate domains: (1) a brain tumor dataset with 

3064 512×512 T1-weight images and (2) a VNPlant-200 dataset which includes 20,000 images of 

200 unique medicinal plants. Firstly, we follow the stated process of training to obtain valuable 

observations, finding the optimal value for each hyperparameter. We adopt several 

CNN-based models like VGG16, ResNet50, ConvNext, MaxViT for comprehensive compari-

son. The number of communication rounds, i.e., the total communication cost until reaching a 

reasonable performance is our main metrics.  

This work can be considered as a helpful reference for those who are interested in federated 

learning system or who currently being working with related fields.  

2. RELATED WORKS 

 
Many directions have significantly received attention during the decades. In the shape of fed-

erated optimization, the communication cost as well as the privacy effectiveness can be con-

sidered. Some works studied the statistical property of data, devices, and local gradients up-

date. 

In [10], iterative parameter mixing on structured perceptron is used to reduce the complexity 

given the availability the computing clusters. [11] utilize a format of elastic averaging: the 

asynchronous variant is also proposed. These works in general do not exam the non-IID nor 

the unbalance of datasets, which is a very principal for our upcoming settings. Remember that 

in a realistic scenario, the number of clients could be much larger than the number of data ob-

servations per client. In the convex setting,[12], [13] addressed some key concepts about feder-

ated framework: they particularly look at the privacy aspect during communicating, the upper 

and lower bound runtime and the quantity of used samples.  
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There are many publications that worked on minimizing communication cost [14], [15]. This 

approach decreases the overall runtime and jointly increases privacy performance.  Opposed 

to iterative training approach, one endpoint of the distributed family is one-shot algorithm, 

which is the method that makes no overhead on communication cost at all. The final model is 

produced after all sub training processes finish, where in each sub process, a local client tries to 

solve the loss of its local data until reaching several epochs. The combine scheme could be 

model averaging. However, this method shows no better performance over minimizing on a 

single client [16], [17].  

We have addressed earlier the importance of studying extensively the statistical property im-

posed on the nature of data and computing clusters. [18], [19] allow inexact local updating to 

balance computational cost and communication cost. This idea quite inspires for the systematic 

heterogeneity examination. Here we formalize some typical characteristics of federated learn-

ing problems: (1) local dataset will not be representative for the population distribution 

(non-IID), (2) unbalance data among devices, (3) the number of clients participating in learning 

could dominate the local dataset’s size, (4) number of devices can be unavailable sometimes, (5) 

clients do not have the same computational strength, (6) updates could be lost during commu-

nication due to network issues.  

We need to explore a more general framework that can handle heterogeneity introduced by 

characteristics mentioned above. The work in [20], [21]allowing data to be shared between cli-

ents and server for analyzing statistical feature lied in local data. This approach could help the 

server (or the coordinator) to inspect suitable solver use each round per client. Hence, the 

broader technique can be developed robustly to tackle highly non-IID and/or unbalanced da-

taset. Nonetheless, this puts a huge burden on network bandwidth (which is normally re-

stricted in terms of hand-held devices or in case of non-physical connection). More seriously, 

the action of exchanging data violates the key aspect of privacy in a realistic federated envi-

ronment: confidentiality.  

One solution that comes naturally first in mind when dealing with device strength inequality is 

to abandon uncomplete training process or to use the result model weights regardless of a de-
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vice finish its desired number of epochs or not. The same set of devices are likely to be ex-

hausted more periodically all the time, thus, can bring bias to our model. Moreover, divergence 

could occur when profitable data in a particular device cannot maximize its productivity be-

cause of repudiation. [9] demonstrated that instability growths when we embrace some strag-

glers into chosen clients per round of communication. By adding proximal term to local loss 

function, [9]report several benefits in terms of communications cost and the stability of con-

vergence. The randomized Kaczmarz method [22], [23] for solving linear systems of equations 

serves as an inspiration for the dissimilarity characterization analysis the authors offer. 

Recent works adopting federated system in image tasks primarily use standard databases for 

experiments, such as MNIST, CIFAR-10, and their variations. This is advantageous because it 

expedites the experimentation of a vast number of parameter combinations, thereby facilitating 

the exploration and evaluation of more efficient algorithms. Few academics conduct federated 

learning on their domain-specific datasets. However, it has been observed that there is no es-

tablished method of parameter optimization for dataset that is not specific to any domain. We 

would like to commence with utilizing the hyperparameter selection technique. Some key hy-

perparameters are: (1) the number of clients join in training each round, (2) the mini-batch size, 

(3) the number of epochs each round, (4) the 𝜇	hyperparameter of the proximal term, (5) the 

initial learning rate and rate decay algorithm. We wish to ascertain the influence of these pa-

rameters on new datasets to demonstrate the consistency of ultimate outcomes obtained at the 

end of the training procedure. Despite ensuring convergence, [9] still implies certain charac-

teristics of [8], thus necessitating the requirement for an automated process for selecting pa-

rameters. 

3. PROJECT MANAGEMENT PLAN 

Table 1. Project Plan 

Task name Priority Owner Start date End date Status Issues 
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Seek out re-
search studies 

High K.L.H. 4/1/2023 29/1/2023 Completed … 

Setting up da-
tasets 

High K.L.D.V. 4/1/2023 25/2/2023 Completed … 

Establish the 
FedAvg code 
environment. 

High K.L.H. 

 

30/1/2023 15/2/2023 Completed … 

Establish the 
FedProx code 
environment. 

High K.L.H. 16/2/2023 15/3/2023 Completed … 

Run experi-
ments on Brain 

Tumor Data 

High K.L.D.V. 16/2/2023 10/3/2023 Completed … 

Run experi-
ments on 

VNPlant-200 
datasets 

High K.L.D.V. 11/3/2023 10/4/2023 Completed … 

Review related 
papers for fur-
ther improve-

ments  

Low K.L.H. 16/3/2023 22/3/2023 Completed … 

Write report High K.L.H. 23/3/2023 10/4/2023 Completed … 

Revision  High  K.L.D.V. and 
K.L.H. 

10/4/2023 17/4/2023 Completed ... 

4. THEORETICAL FRAMEWORK 

4.1 Stochastic Gradient Descent  

SGD is commonly used as an optimization technique in contemporary works due to its ease of 

use. In addition, we cannot presume any bias at the beginning of the learning procedure; 

therefore, employing more complex algorithms could result in wasted effort without observing 

the actual effect of the FL setting. 
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SGD is an iterative method for optimizing an objective function by calculating the gradients for 

several samples, whereas GD utilizes the entire dataset to update the weights. Consider the 

scenario of minimizing the following loss function. 

𝐿(𝑤) =
1
𝑚	9𝐿!(𝑤)																																																																									(1)

"

!#$

 

where w is the parameter being estimated and m is the number of data samples. 

When using standard GD, an iteration of optimization strategy would be: 

𝑤 ≔ 𝑤 −
𝛼
𝑚9∇𝐿!(𝑤)																																																																		(2)

"

!#$

 

Clearly, α is the learning rate. In classical statistics, this kind of sum-minimizing problem arises 

in least-squares (like linear regression) or in maximum-likelihood estimation. In simple form of 

loss objectives, step to global (or local) minimum is assured quickly. As a result of the intricacy 

of each local loss or the amount of the dataset, gradient calculation may be prohibitively costly 

in many situations. Performing each step on a subset of samples is preferable and is beneficial 

in large-scale ML.  

𝑤 ≔ 𝑤 − 𝛼∇𝐿! 																																																																																		(3) 

This time i represents the chosen training examples. The algorithms sweep through the entire 

dataset cause the loss functions to approach the optimum. The full process of learning by SGD 

for simple regression application can be roughly illustrated below. 

Algorithm 1. Stochastic Gradient Descent 

(1) Initialize weighs w and pick an initial learning rate α 

(2) For each epoch (repeat until desired optimal value is achieved): 

• Randomly shuffle data points in the dataset. 

• For 𝑖 = 1,2,3, … ,𝑚: 

• Determine the local loss 𝐿! = 𝑙(𝑦 − 𝑦D) 
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• 𝑤 ≔ 𝑤 − 𝛼∇𝐿! 		 

Given the capabilities of modern GPUs for parallel processing, the simple form of SGD is uti-

lized infrequently due to its inefficient performance. The convergence of stochastic gradient 

descent has been widely investigated; particularly, given an acceptable learning rate, SGD will 

almost certainly cause the loss to reach its global minimum (convex case); otherwise, it will 

cause the loss to reach its local minimum.  

Alternately, modifying the model's parameters now occurs in the form of a batch (called 

mini-batch stochastic gradient descent). The result of decreasing the mini-batch size could lead 

to more learning ability; said differently, this technique in fact allows the model converges 

faster than considering the whole dataset.  

Algorithm 2. Mini-batch Stochastic Gradient Descent 

(1) Initialize weighs w and pick an initial learning rate α  

(2) For each epoch (repeat until desired optimal value is achieved): 

a. Randomly shuffle data points in the dataset. 

b. For each batch: 

i. Determine the local loss 𝐿 = ∑ 𝑙(𝑦! − 𝑦D!)%
!#$  

ii. 𝑤 ≔ 𝑤 − 𝛼∇𝐿		 

 

4.2 Federated Learning Algorithm 

4.2.1 FedAvg Algorithm 

FedAvg is built upon SGD, i.e., the local optimizer is typically SGD. In this subsection, we ex-

plore this approach in depth, formulate algorithms, and examine some of the original publica-

tion's results [8]. 

The combination of synchronous SGD (one partition must wait other partitions to finish 

computing gradients) and multi-batch updater yields best result. Consider K clients for whom 
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data is partitioned among, the hyper-parameter C controls the fraction of clients being chose 

per round. 𝐶 = 0 means one client is chosen.  

Each client k obtains 𝑑& = ∇𝐿&(𝑤') at completion of a training turn, then the server aggregates 

these gradients by: 

𝑤'($ = 𝑤' − 𝛼9
𝑚&

𝑚 𝑑& 																																																																(4)
)

&#$

 

where 𝑡 denote the current communication round, and 𝑚& represents the number of samples 

at client k. 

The equivalent form can be achieved by alternating the derivatives at each local by its model’s 

weights. This property is derived from:  

        𝑤'($& = 𝑤' − 𝛼𝑑& 																																																																																(5)			 

𝑤'($ =9
𝑚&

𝑚

)

&#$

𝑤'($& = 𝑤' − 𝛼9
𝑚&

𝑚

)

&#$

𝑑&																																						(6) 

One important design must be carefully considered when dealing with non-convex objectives. 

Independent initialization of a distributed model may result in poor performance. Averaging 

from different conditions shows no advantages over taking single evaluating in each model 

(the weight of mixing equals to 0 or 1). Conversely, when starting multiple models from a same 

random seed, averaging parameters works well. 

Algorithm 3. FedAvg Algorithm 

K is the number of clients. C is the fraction of clients selected per round. B is the local mini-batch 

size. E is the number of epochs each device must iterate through.  

Server-side computation:  

•  initialize 𝑤+ 

•  for each round 𝑡 = 1,2,3, …	 

o from C, select a random 𝑆' subset from K clients 
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o for each client k in 𝑆' 

§ compute 𝑤'($&  by performing a client-side computation. 

o 𝑚' ← ∑ 𝑛&&	∈-!	  (The total number of data points involving into this training 

phase) 

o 𝑤'($ ← ∑ ""
"!
𝑤'($&

&	∈-!  

Client-side computation: 

•  for each local epoch 𝑖 = 1,2,3, … , 𝐸 

o for each batch b in the local dataset of this client 

§ 𝑤 ← 𝑤 − 𝛼∇𝐿(𝑤, 𝑏) 

• return 𝑤'($&  

It is experimentally essential to properly tune the hyper parameter. B and E control the number 

of updates per round, which are quite similar in effectiveness. As previously indicated, in a 

federated system, communication costs are likely to outweigh computational costs, however in 

a centralized setting, communication costs are insignificant. In the meanwhile, C determines 

the global batch size, with the general assumption that in both IID and non-IID distributions, 

bigger C tends to reflect a larger proportion of data samples, resulting in better models for the 

current round. If we wish to add additional computing every round, we may either (1) increase 

parallelism (which has no negative effects if true parallelism is employed) or (2) increase 

computation at each client. 

4.2.2 FedProx Algorithm 

FedProx [9] can be perceived as a re-parameterization variant of FedAvg in which the authors 

introduce heterogeneous struggles. The study offers both empirical and theoretical investiga-

tions addressing the convergence of the approach.  

As previously mentioned, more local computation can significantly help reduce communica-

tion costs. This amount is affected by the number of local epochs and the size of the local mini 
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batch. Besides that, more work of updating on each local landscape may cause each local model 

to converge toward its local optimum, hence, make convergence unpredictable. Some clients 

also cannot perform the desired number of updates due to hardware constraints. In practice, it 

is impossible to automatically determine in advance the suitable epoch for each client while the 

local epoch must satisfy the benefit of cutting communication cost. Therefore, to balance out the 

initial setting, FedProx fixes the number of epochs used for each round of communication and 

finds a more robust way to manage gradients received at the end. The proposed framework has 

two key characteristics.  

Allow truncated work. Forcing all devices to implement the same effort of training is not quite 

realistic. FedAvg employs a basic approach: drop the uncomplete weights. This technique has 

been shown to produce bad models given a fixed number of rounds. The implementation 

specifies a new hyper parameter controls which clients completely participate in the result pa-

rameters and which does not. Inclusive experiments reveal the effectiveness of stability: 

throughout the learning procedure, loss tends to decrease consistency.  

Proximal term. To prevent the weights from being far away from the global minimum, FedProx 

adjust the local solver to be more constrained: 

𝐿(𝑤;𝑤+) = 𝐹(𝑤) +
𝜇
2
‖𝑤+ −𝑤‖.																																																	(7) 

where 𝐹(𝑤) is the original distance with respect to local batch b and 𝑤+ is the global weight at 

the beginning of the round. The additional term is beneficial both in: (1) overcome the hetero-

geneity in data distribution and (2) help for incorporating variable amounts of work from all 

clients.  

Algorithm 4. FedProx Algorithm 

K is the number of clients. C is the fraction of clients selected per round. B is the local mini-batch 

size. E is the number of epochs each device must iterate through. T is the number of stragglers. 

Server-side computation:  

•  initialize 𝑤+ 
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•  for each round 𝑡 = 1,2,3, …	 

o from C, select a random 𝑆' subset from K clients. 

o from T, select which client in 𝑆' must perform full workload. 

o for each client k in 𝑆' 

§ compute 𝑤'($&  by performing a client-side computation (with assigned 

workload) 

o 𝑚' ← ∑ 𝑛&&	∈-!	  (The total number of data points involving into this training 

phase) 

o 𝑤'($ ← ∑ ""
"!
𝑤'($&

&	∈-!  

Client-side computation: 

•  for each local epoch 𝑖 = 1,2,3, … , 𝐸 

o for each batch b in the local dataset of this client 

§ 𝑤 ← 𝑤 − 𝛼∇𝐿/(𝑤, 𝑏), where 𝐿/(𝑤, 𝑏) = 𝐿(𝑤, 𝑏) + 0
.
‖𝑤+ −𝑤‖. 

• return 𝑤'($&  

The optimizer is still stochastic gradient descent and fixed learning rate. Some works have been 

focused on employing other modern optimization algorithms as well as the automated manner 

to choosing learning rate.  

4.3 Model’s Architecture 

In this section, we briefly introduce some architecture used in our experiments. The model de-

cision is derived from related works in terms of commonly manipulating over used datasets.  

4.3.1 VGGNet [24] 

One remarkable exploration in this type of architecture is the adoption of a very deep CNN 

network combining with small receptive field. Particularly, 3 x 3 filters are used to replicate the 

effect of larger stride window while maintaining the reasonable size. This choice of design 
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shows a more accurate performance when we steadily append more convolutional layers to the 

model.  

Generally, the family of architecture shares some settings: 

•  224 x 224 RGB input image. The image is passed through a stack of conv layers with 3 x 3 

filters. 

•  Stride is 1, same padding. That’s why the very small receptive size is chosen: 3 x 3 is the 

smallest size that can capture the spatial information in the image. 

•  Five 2 x 2 max-pooling layers are used after some conv layers to reduce spatial dimension. 

•  Three fully connected layers at the end. The first two have 4096 units, while the last one’s 

size depends on the label space’s length. 

•  ReLU activation. 

Detail configuration is showed in Table 2 below: 

Table 2. VGGNet configuration 

VGGNet Configuration 

VGG11 VGG11-LRN* VGG13 VGG16 VGG16 VGG19 

224 x 224 RGB image 

conv3-64 conv3-64 

LRN 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

maxpool 

conv3-128 conv3-128 conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

maxpool 

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 
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conv3-256 conv3-256 conv3-256 conv3-256 

conv1-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

maxpool 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv1-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

maxpool 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv1-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

maxpool 

FC-4096 

FC-4096 

FC-L** 

softmax layer 

Note that: (*) LRN stands for local responses normalization and (**) represents the number of 

labels in the label space.  

4.3.2 ResNet [25] 

ResNet leverages the neural network’s depth to a higher level. Stacking more layers makes it 

difficult to train due to vanishing/exploding gradients. Simply put, this issue can be addressed 
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by adding normalization. However, the result tends to degradation while training loss does not 

guarantee to be decreased, i.e., overfit is not the case. This phenomenon indicates that there is a 

problem with deep layer that makes it harder to learn more fine-grained features, which is the 

key principle in deep learning. ResNet introduces residual blocks to cope with this dilemma. 

 Figure 2. Residual Block (image from original paper [25]) 

The identity short-connection quantity helps to optimize the desired function easier because 

now if the eventual performance of the identity mapping is optimum, learning process just 

needs to push residual term to zero. 

Comprehensive experiments on ImageNet [26] showed that: (1) deeper networks indeed result 

higher accuracy and (2) networks with residual block are easier to train compared to plain 

counterpart. Table 3 lists the structure of different depth ResNet. 

Table 3. ResNet’s architecture (L denotes the label space length, square brackets denote resid-

ual blocks) 

layer 

type 
18-layer 34-layer 50-layer 101-layer 152-layer 

conv 7 x 7, 64 channels, stride 2 

conv 
[3 × 3, 643 × 3,64] 	

× 2 
[3 × 3, 643 × 3,64] 	× 3 W

1 × 1, 64
3 × 3, 64
1 × 1, 256

X × 3 W
1 × 1, 64
3 × 3, 64
1 × 1, 256

X × 3 
W
1 × 1, 64
3 × 3, 64
1 × 1, 256

X

× 3 
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conv 
[3 × 3, 1283 × 3,128] 	

× 2 
[3 × 3, 1283 × 3,128] 	× 4 W

1 × 1, 128
3 × 3, 128
1 × 1, 512

X × 4 W
1 × 1, 128
3 × 3, 128
1 × 1, 512

X × 4 
W
1 × 1, 128
3 × 3, 128
1 × 1, 512

X

× 8 

conv 
[3 × 3, 2563 × 3,256] 	

× 2 
[3 × 3, 2563 × 3, 256] 	× 6 W

1 × 1, 256
3 × 3, 256
1 × 1, 1024

X × 6 W
1 × 1, 256
3 × 3, 256
1 × 1, 1024

X × 23 
W
1 × 1, 256
3 × 3, 256
1 × 1, 1024

X

× 36 

conv [3 × 3, 5123 × 3,512] 	

× 2 

[3 × 3, 5123 × 3,512] 	× 3 W
1 × 1, 512
3 × 3, 512
1 × 1, 2048

X × 3 W
1 × 1, 512
3 × 3, 512
1 × 1, 2048

X × 3 W
1 × 1, 512
3 × 3, 512
1 × 1, 2048

X

× 3 

pool-

ing 
avgpooling 

fully 

con-

nected 

L-dim fc 

activa-

tion 
softmax layer 

 

4.3.3 ConvNext [27] 

As the introduction of Vision Transformers (ViT) in 2020, the computer vision landscape is not 

limited to network architecture design. ViT surprisingly show potential results on image clas-

sification tasks given the ability to scaling. Nonetheless, computer vision also contains other 

difficult duties involving in image-specific inductive bias to maximize spatial information. 

Without ConvNet, a vanilla ViT model may confront a few challenges in dealing with object 

detection or semantic segmentation. 

Many advancements have been made to bring back ConvNet to form a hybrid approach [28]. 

The sliding window method shows their role as being intrinsic to visual processing. However, 

these works have some costly components, which could cause the design to be more complex 
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or be unreasonable to scale. ConvNext, a pure ConvNet model is built gradually by embracing 

some minor design modifications. This process aims to mimic the way a hybrid transformer 

model like Swin Transformer [28] process digital images. 

Figure 3. Comparison of a basis block design in Swin Transformer, ResNet and ConvNext 

(image from original paper [27]) 

Training Technique. Increase the number of epochs from 90 to 300. AdamW Optimizer is 

adopted. Various augmentation techniques like Mixup, CutMix, RandAugment, RandomEr-

asing. Stochastic Depth and Label Smoothing are used for regularization.  

ResNext-ify. Depthwise Convolution is used to group convolution filters. 
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Inverted Bottleneck. The idea is that we could adopt inverted bottleneck in ResNet. The hid-

den dimension within a layer block is now 4 times bigger than input dimension. 

Large Kernel Size. To examine the behavior of large size kernel, ConvNext moves up the po-

sition of the depthwise conv layer. (However, this violates a typical standard of using small 

receptive field to replicate the effect of larger kernel size to gain parallel computing of modern 

GPU). ConvNext also experiment also kernel size include 3, 5, 7, 9, 11. The performance satu-

rates when the number reaches 7.  

Micro Design. ReLU is replaced by GELU. Some activation positions are also eliminated. 

Truncate batch normalization and some are altered with layer normalization. Separate 

downsampling layers. 

4.3.4 MaxViT [29] 

 Added multi-axis attention helps form an efficient attention model to cope with scalability. 

There are two novel ideas in this work: blocked local and dilated global attention. The proposed 

model called MaxViT serves as a powerful vision backbone for visual processing.  

Figure 4. MaxViT architecture (image from original paper [29]) 
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5. MATERIALS AND METHODS 

5.1 Resources 

All presented works in the scope of this report are performed on Google Collaboratory Pro+. 

Hardware specifications vary over time. Typical details are: 

Table 4. Hardware specs 

 Standard Premium 

CPU Intel(R) Xeon(R) CPU @ 2.20 GHz Intel(R) Xeon(R) CPU @ 2.20 GHz 

RAM 12 GB 84 GB 

GPU NVIDIA Tesla T4 16 GB VRAM NVIDIA A100 40 GB VRAM 

 

5.2 Datasets and Implementation Details 

We use the brain tumor dataset composed by Cheng et al. [30] in the first class of experiments. 

The dataset consists of 3064 T1-weighted pictures collected from 233 patients with three labels 

of brain malignancies: 708 images of meningioma, 1426 images of glioma, and 930 images of 

pituitary tumor. Figure 5 illustrates some sample images taken in [30]. The images have digital 

resolution of 512 × 512 with pixel size of 0.49 × 0.49 mm2.  

We split the datasets into 80% training and 20% test. Test set is resided at the aggregation 

server, while training samples are partitioned into 10 clients. Partition manners are discussed 

later. For image pre-processing, Contrast Limited Adaptive Histogram Equalization (CLAHE) 

technique is adopted. The image is then resized to 224 × 224.  
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(a)                            (b)                           (c) 

Figure 5. Three types of brain tumor: (a) meningioma; (b) glioma; and (c) pituitary tumor. 

With second class of experiment, an herbal plant dataset which consists of plants found in Vi-

etnam are used. The photographs were captured within a natural setting with the intention of 

depicting the intricacy of classifying images within real world environments. The dataset 

comprises of plant images captured from varying angles, brightness levels, environmental 

conditions, viewpoints, and other related factors. Thus, it serves as a suitable model for a prac-

tical plant recognition task. Figure 6 demonstrates some samples.  

 
Figure 6. VNPlant-200 sample images. 
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After resizing to 224 × 224, we implement some data augmentation like random rotation or 

random flip. We use 8000 images for testing, 2000 images for validation, and the rest for train-

ing. This time the number of devices jointly learning the federated model is 100. 

  
Table 5. VNPlant-200 characteristics 

Number of species 200 

Number of images for each specie 100 

Image resolution 256 × 256 and 512 × 512 

Angle Entire plant with realistic noise 

Environment Real world 

 

Data distribution approach. To study federated performance on heterogeneity setting, we ex-

plore two ways to partition data. In IID way, the data is randomly shuffled and distributed 

over K clients, i.e., each client theoretically represents the whole population. Non-IID manner 

involves sorting the data points by labels first, then populate each client with an equal number 

of samples so that each client contains at most 2 labels. This way we could benchmark both 

algorithms on specific domain non-IID data for generalization.  

Regarding learning rates used in SGD, we tune for the best value achieved by each combina-

tion of hyper parameters, i.e., all numbers shown in tables or figures are training on the best 

learning rate. One critical point: for fair competition, we fix the randomly selected clients, the 

order of mini batch per client across training rounds. We also apply plain FedAvg algorithm 

while dropping the testing of stragglers in FedProx. That means we do not incorporate variable 

works on those devices, instead we force all chose devices to perform the same amount of work.  

 
 

6. RESULTS and DISCUSSION 
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6.1 Brain Tumor classification task 

6.1.1 Comprehensive summarization on FedAvg scheme  

Partial parallelism. We first play with client fraction C. Table 6 shows the results of varying C 

over Brain tumor dataset. VGG16 is used as the initial baseline. We adopt a slightly different 

methodology here: instead of evaluating the cost of communication until satisfying desired 

levels of accuracy, we record the test-set accuracy obtained when finishing given numbers of 

rounds. Here, the approach functions effectively in an IID setting that provides positive out-

comes with just small communication rounds. Undoubtedly, greater C produces better out-

comes, particularly in non-IID settings when client data do not reflect the whole distribution. 

The performance of non-IID data improves with time more slowly than IID data, indicating 

that communication cost is substantial in non-IID scenarios. Comparing our results to those of 

the original study, in which the authors conducted tests on MNIST using two basic neural 

networks, we detect a comparable impact. Table A1 in the appendix section illustrates this ef-

fect in the original paper. Figure A1, A2 in the appendix section gives a clearer view regarding 

the speed of convergence over rounds of communication.  

Table 6. Impact of varying C on the Brain tumor dataset using FedAvg algorithm on VGG16 

model. 𝐸 = 5, 𝐵 = 10. Each entry represents the test-set accuracy received at given rounds of 

communication.   

C IID Non-IID 
10 20 50 100 10 20 50 100 

0.1 92.48 95.26 97.38 98.20 47.39 47.39 63.40 72.22 
0.2 94.12 96.41 98.04 98.53 47.39 79.08 87.09 90.69 
0.3 95.26 96.24 97.55 98.37 77.29 77.29 91.12 94.12 
0.5 95.45 97.55 98.04 98.20 83.49 88.56 93.62 95.59 
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For consistent insights and balance out the computational weight of training due to limited 

hardware constraints, we fix 𝑪 = 𝟎. 𝟐 for further testing.  

Local computation examination. This time, the influence of extra local computation is inves-

tigated. Adding extra updates every round to each client does not significantly increase per-

formance. We attempt to raise E from 1 to 5, while altering the mini-batch size to the values 4, 

10, and 16. Nonetheless, we discover a very intriguing property: a mini-batch size of 16 yields a 

pretty good result in a non-IID context. In some instances, the performance suffers when the 

mini batch size is increased while the number of epochs is maintained, indicating that too many 

updates might lead averaging to give inferior results. The counterpart diagram of Table 7 is 

placed at Figure A3, A4 at appendix, in which we visualize the effect we have done here.  

Table 7. Various cases when device’s amount of update is altered. Model is VGG16. 𝑪 = 𝟎. 𝟐   

E B IID Non-IID 
10 20 50 100 10 20 50 100 

1 10 86.11 93.30 96.08 96.57 55.72 55.72 79.08 89.38 
2 10 93.46 94.93 97.55 98.37 66.01 66.67 80.39 90.69 
5 4 95.26 96.70 98.04 98.04 55.88 77.94 87.58 90.85 
5 10 94.12 96.41 98.04 98.53 47.39 79.08 87.09 90.69 
5 16 93.95 96.41 97.71 97.88 67.32 67.32 80.23 93.30 

 

So far, the documented experiments have demonstrated a reliable set of hyper parameter val-

ues for our task. We study further the impact of several classifiers on federated learning. 

Comparing ResNet50, ConvNext, and MaxViT with the VGG16 baseline, we employ several 

cutting-edge deep learning architectures. Table 8 displays the experimental states. In this series 

of studies, E=5, B=16, and C=0.2 are used for non-IID data whereas E=5, B=10, and C=0.2 are 

used for IID data. 

Table 8. Comparison of some state-of-the-art deep learning models with federated learning on 

Brain Tumor dataset. E=5, B=16, and C=0.2 for non-IID data and E=5, B=10, and C= 0.2 for IID 

data. 
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 IID Non-IID 

Rounds of com. 10 20 50 100 10 20 50 100 

VGG16 94.12 96.41 98.04 98.53 67.32 67.32 80.23 93.30 

ConvNext 95.52 96.57 98.04 98.69 75.65 75.65 80.88 92.16 

ResNet50 91.83 95.59 96.73 98.03 49.51 71.24 82.52 86.76 

MaxVit 94.93 96.57 97.56 98.69 56.86 75.82 85.95 90.36 

 

Evidently, ConvNext and MaxViT give superior outcomes while processing IID data. On the 

other hand, despite the fact that ConvNext is the best model during the first 50 rounds of 

communications, it cannot exceed the peak performance of VGG16. Consequently, VGG16, 

with 93,3% accuracy, may be the best reliable classifier for non-IID Brain Tumor image data. 

Figure A5, A6 in the appendix provides more visualization details. 

 

6.1.2 Comprehensive summarization on FedProx scheme  

Following the preceding section's work, we examine if the proximal term in FedProx aids in 

handling non-IID situations. We have found that B=16 and E=5 produce decent results in 

non-IID contexts, thus we will continue to use these parameters in the subsequent tests. 

ConvNext and VGG16, which produced the greatest results on the Brain Tumor dataset in the 

previous section, are also reused. In this effort, we tweak the 𝝁 hyper parameter from a limited 

candidate set of {𝟎, 𝟎. 𝟎𝟎𝟏, 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟏} to determine its effect on test-set accuracy convergence 

after 10, 20, 50, and 100 rounds of communications. Tables 9 and 10 show the respective out-

comes of ConvNext and VGG16.  

Table 9. Test-set accuracies of FedProx federated algorithm with various 𝝁 on Brain Tumor 

dataset. The classifier is ConvNext, B=16, E=5. 
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𝝁 Non-IID 
10 20 50 100 

0 75.65 75.65 80.88 92.16 
1 79.08 79.08 85.29 92.48 
0.1 80.23 80.23 83.82 92.65 
0.01 76.31 76.31 83.99 92.65 
0.001 78.59 78.59 86.11 92.48 

 

Table 10. Test-set accuracies of FedProx federated algorithm with various 𝝁 on Brain Tumor 

dataset. The classifier is VGG16, B=16, E=5. 

𝝁 
Non-IID 

10 20 50 100 
0 67.32 67.32 80.23 93.30 
1 60.94 62.58 83.33 93.30 
0.1 48.04 72.06 83.01 89.05 
0.01 60.29 67.97 83.17 91.83 
0.001 71.90 80.39 80.39 81.21 

 

We can see that, given an appropriate value of 𝝁, the learning process tends to be condensed 

into fewer iterations and assured to converge steadily over time. With ConvNext, the optimal 

value of 𝝁 is 0.1, allowing the accuracy to surpass 80% in only 10 communication rounds. In 

case of VGG16, the optimal value of 𝝁 for fast convergence is 0.001. With VGG16, however, 

there is a little trade-off: the faster convergence comes at the expense of a lower peak accuracy, 

in this instance 81.21% as opposed to 93.3%. This conduct has no impact on ConvNext. 

The heterogeneity breaking behavior of FedProx over FedAvg will be described in the next 

section. However, we would like to stress a vital point: it is essential to choose a suitable 

number for 𝝁; otherwise, the performance might decrease and become unstable over time. 

6.1.3 Heterogeneity advantages study on FedProx  

In figure 7, we see that FedProx yields quite humble results compared to FedAvg. Although the 

convergence property is assured, it does not seem reliable in terms of stability, early conver-
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gence, or peak performance. The candidate set of proximal term parameter µ taken from orig-

inal work. Here we can conclude that the disparity tackling effect of FedProx is not remarkable. 

 

Figure 7. Results comparison between FedAvg and FedProx with various µ values on Brain 

Tumor dataset. (ConvNext) 
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Figure 8. Results comparison between FedAvg and FedProx with various µ values on Brain 

Tumor dataset. (VGG16) 

6.2 Medicinal Plant classification task 

We follow the same methodology of model evaluation here. The conclusions are quite like 

those obtained above, so we will only stress important points as we progress our experiments.  

6.2.1 Comprehensive summarization on FedAvg scheme  

Table 11. Impact of varying C on the VNPlant-200 dataset using FedAvg algorithm on VGG16 

model. 𝐸 = 5, 𝐵 = 10. Each entry represents the test-set accuracy received at given rounds of 

communication. 

C IID Non-IID 
10 20 50 100 10 20 50 100 

0.1 68.34 77.84 84.95 85.56 10.44 12.81 20.00 31.80 
0.2 77.08 82.90 86.80 88.56 33.39 41.35 60.19 67.81 
0.3 80.34 85.15 88.04 89.24 38.13 53.61 70.65 74.68 
0.5 81.71 86.76 89.09 89.09 51.73 66.40 77.71 81.28 
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In this family of experiments in Table 11, we could see large differences in performance re-

garding both data distribution case or the cardinality of clients per round. This observation can 

be derived from the fact that the harder identification task is involved. We see C = 0.1 produce 

poor results on non-IID setting and increase C extremely mitigating this problem. Convergence 

speed analysis can be conducted here. Figure A7, A8 show more illustrative insights.  

Table 12. Different local computational imposed on each client per round under C = 0.2 using 

VGG16 model. FedAvg is used. VNPlant-200 is under investigation. 

E B IID Non-IID 
10 20 50 100 10 20 50 100 

5 10 77.08 82.9 86.8 88.56 33.39 41.35 60.19 67.81 
5 16 78.48 83.41 87.59 88.93 31.61 41.59 58.60 68.76 
5 32 79.38 84.13 86.69 88.28 31.51 44.14 57.39 66.66 
1 10 55.60 70.00 81.20 85.71 21.49 36.04 48.56 63.11 
2 10 65.03 78.36 84.75 88.64 26.96 38.33 58.53 67.34 

 

Again, in Table 12, we see there are no significant differences between those cases. This implies 

the stated arguments in the original paper are not universal. Hence, putting effort in tuning this 

kind of parameter needs to be studied more extensively. Table 13 experiments model choice 

effect. Other intuitive plots are resided in appendix, Figure A9, A10, A11, A12. 

Table 13. The effect of various classifiers regarding the VNPlant-200 dataset. FedAvg is the 

algorithm. The mini batch size, the number of local epochs, the client fraction are 16, 5, and 0.2, 

respectively. 

Model IID Non-IID 
10 20 50 100 10 20 50 100 

VGG16 78.48 83.41 87.59 88.93 31.61 41.59 58.6 68.76 
ConvNext 86.40 91.29 93.59 94.51 30.86 48.15 68.11 73.09 
ResNet50 82.73 87.93 91.94 93.10 34.51 48.15 72.85 82.65 

MaxVit 79.41 88.64 92.65 94.01 36.76 43.08 69.79 76.33 
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6.2.2 Comprehensive summarization on FedProx scheme  

Follow up previous sections, we conduct similar operations with the same observations on 

FedProx technique over VNPlant-200 dataset. Since ResNet50 brings best results on former 

experiments, we keep using this deep network on current class of expriments. Mini batch size is 

16, and number of local epochs is 5 (since dozens of our works reveal that the variant in terms 

of the amount of local update does not impact so much on the ultimate performance). Again, 

we tune the proximal term weight from predefined set of candidates. The results is showed in 

Table 14. 

Table 14. Experiments upon the weight of proximal quantity on VNPlant-200 dataset. 𝑩 =

𝟏𝟔, 𝑬 = 𝟓, 𝑪 = 𝟎. 𝟐. The classifier is ResNet50. 

µ Non-IID 
10 20 50 100 

0 34.51 48.15 72.85 82.65 
1 35.48 50.00 73.23 82.95 
0.1 34.76 48.48 73.13 82.37 
0.01 34.34 50.93 73.10 82.71 
0.001 35.24 49.60 73.81 82.41 

 

As we can see, the numbers are quite clear. Adding more constrain into the local losses tends to 

slightly increase our test-set accuracy. We have not tested with larger µ, but in the publised 

paper, the authors indicates that huge µ would cause the learning process to be very low.  

6.2.3 Heterogeneity advantages study on FedProx  

The visualization of Table 14 is shown in Figure 8. The improvement is quite small, but it is still 

there. Futher inspectation is required to understand the behavior of this hyper parameter. 

However, adding the proximal term will always guarantee convergence, as proven by the ap-

proach’s authors.  
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Figure 9. Results comparison between FedAvg and FedProx with various µ values in 

VNPlant-200 dataset. 

7. CONCLUSIONS AND PERSPECTIVES 

Federated Learning is truly a novel and intriguing approach for data scientists. Its approach is 

both similar and different from other decentralized learning methods that have appeared 

before: the burden of communication costs must be considered, and some effort is required in 

encoding to ensure data privacy and integrity. If this optimization is done well, we can 

efficiently leverage the abundant data sources worldwide from end-users, especially as data 

privacy laws are increasingly tightened and the artificial intelligence industry is reaching 

saturation due to the lack of increased data sources as before. 

In this work, we employed two federated learning methods, FedAvg and FedProx, on two 

datasets to examine their efficacy. We tuned the parameters based on the guidance provided in 

the original paper. Each dataset was split into two portions: a training set and a test set. The 

training set was distributed among a set of clients, while the test set was used by the server to 
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evaluate the results. We utilized simple preprocessing and data augmentation techniques to 

test the experimental viability of federated learning. Two data allocation methods were 

employed: IID and non-IID. The classifiers utilized in this study were well-known and classic 

deep learning models. We derived the following conclusions: 

(1) The averaging of model parameters is truly effective, especially in the case of IID. In the 

case of non-IID, the results are also promising, even without any significant data 

augmentation methods and only using simple optimization methods. 

(2) The higher the number of clients participating in each round of communication, the 

higher the model performance. Of course, ensuring accuracy at the beginning of each 

round depends on practical conditions, network connectivity, and device availability. 

However, in general, the more data coming from different sources each round allows 

the model to converge closer to the optimal point. 

(3) Adjusting the local update quantity per client per round does not significantly improve 

performance. As long as this update quantity balances computational and 

communication costs and is not updated excessively in one round, the model's 

convergence is ensured. 

(4) The choice of classifier for each problem depends on relevant studies and the nature of 

the problem and data, rather than the federated learning method itself. Of course, the 

model must be selected to be suitable for the hardware capabilities and data quantity at 

each client. 

(5) Non-IID remains a significant challenge: experiments consistently show a sharp decline 

in accuracy in the non-IID setting, and even converge to a saturation point of average 

accuracy despite increasing rounds of communication. FedProx seems to fall short of 

achieving the maximum attainable accuracy that can be compared to the IID setting 

(and even worse than the centralized training setting). Nevertheless, FedProx with 

appropriate parameters still provides a slight improvement. One thing to clarify is that 

we did not apply the approach of discarding clients that cannot complete the assigned 

training task. It is possible that we will integrate this in future studies. 
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(6) Federated Learning results can vary significantly when the difficulty level of the task 

changes, and the impact of hyperparameters also varies accordingly. However, there is 

still a safe range for the parameters that determine the computation load per round at 

each client. As for the trend of the client fraction parameter, it remains unchanged. 

We have observed a significant aspect worth investigating: defining the parameters of the 

optimization solver. More advanced methods such as RMSProp, GD with momentum, and 

AdamW can be used. Learning rate decay can also be considered. 

 

CONFLICTS OF INTEREST: The authors declare no conflict of interest. 
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9. Appendix  

Before starting this section, we are glad to announce that our work on this report has been ac-

cepted by IEEE Zooming Innovation in Consumer Technologies International Conference 

(ZINC) 2023, a place for both industry and academic field. The conference is included in the 

ZINC 2023 events, which is sponsored by IEEE Serbia and Montenegro Section – Consumer 

Technology Chapter; the University of Novi Sad, Faculty of Technical Sciences, Computer En-

gineering and Computer Communications Group and RT-RK Institute for Computer-Based 

Systems. For more information, please visit: https://www.gozinc.org/ . Below are the accept 

email from the organizing committee and our first-version draft of our paper. 
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We also conduct to write another paper to sumit at Information Systems International 

Conference (ISICO) 2023. This event is held by Department of Information Systems, Institut 

Teknologi Sepuluh Nopember (ITS). The seventh ISICO 2023 title is “Breakthrough 

Information Systems Innovations Toward Digital Resilience, Reinvention, and 

Transformation”. This year, the conference is in a hybrid plafform: held virtually and on-site 

(Prama Sanur Beach) in Sanur, Bali, Indonesia on 26-28 July, 2023. For more information, 

please visit: https://isico.info 
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Table A1. Original results from proposed work when evaluating MNIST with 𝑬 = 𝟏 on 2NN 

and 𝑬 = 𝟏 on CNN. Each cell represents the communication cost needed to a respective model 

to achieve desired test-set accuracy. (99% with CNN and 97% with 2NN). Five attempts did not 

convergence in time.  

 IID NON-IID 

C 𝑩 = ∞ 𝑩 = 𝟏𝟎 𝑩 = ∞ 𝑩 = 𝟏𝟎 

 2NN 

0.0 1455 316 4278 3275 

0.1 1474 87 1796 664 

0.2 1658 77 1528 619 

0.5 __ 75 __ 443 

1.0 __ 70 __ 380 

 CNN 

0.0 387 50 1181 956 

0.1 339 18 1100 206 

0.2 337 18 978 200 

0.5 164 18 1067 261 

1.0 246 16 __ 97 
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Figure A1. Plots on test-set accuracy over time on IID Brain Tumor Dataset with different client 

fraction hyper parameter. The figure only shows the FedAvg scores. 

 

Figure A2. Plots on test-set accuracy over time on non-IID Brain Tumor Dataset with different 

client fraction hyper parameter. The figure only shows the FedAvg scores. 
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Figure A3. The effect of different local computing works on each entry with FedAvg. Here we 

fix C=0.2. The IID version of Brain Tumor dataset is used.  

 

Figure A4. The effect of different local computing works on each entry with FedAvg. Here we 

fix C=0.2. The non-IID version of Brain Tumor dataset is used.   
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Figure A5. The classifier selection impact is inspected here with IID Brain Tumor dataset.  

 

Figure A6. The classifier selection impact is inspected here with non-IID Brain Tumor dataset.  
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Figure A7. FedAvg on the IID version of VNPlant-200 dataset using VGG16 classifier.  

 

Figure A8. FedAvg on the non-IID version of VNPlant-200 dataset using VGG16 classifier. 
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Figure A9. The effect of different local computing works on each entry with FedAvg. Here we 

fix C=0.2. The IID version of VNPlant-200 dataset is used. (VGG16 classifier) 

 
Figure A10. The effect of different local computing works on each entry with FedAvg. Here we 

fix C=0.2. The IID version of VNPlant-200 dataset is used. (VGG16 classifier)  
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Figure A11. The classifier selection impact is inspected here with IID VNPlant-200 dataset.  

 

Figure A12. The classifier selection impact is inspected here with non-IID VNPlant-200 dataset.  


