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ABSTRACT
Federated Learning has been emerged as a promising for modern Machine Learning techniques. Classical manner of operating in a centralize dataset come up against critical privacy issues. Beside that real data reacted with real user’s behavior is beneficial to tasks which involve model to be trained on practical data. For example, language model can be leveraged by playing on user data emitted while they text for speech recognition or next word prediction tasks. We could also utilize images on end devices to improve image classification models. Two current state-of-the-art methods when dealing with federated system are FedAvg and FedProx. While FedAvg proposed a heuristic algorithm that is quite robust about independent and identically distributed distribution (IID), the latter further upgrade upon the local loss setting for stability with respect to the non-IID distribution. There are two main nature challenges within the task as indicated in FedProx work: system heterogeneity and statistical heterogeneity. One more difficulty: the lack of a systematic hyperparameters tuning as well as model selection approach. FedAvg and FedProx mostly work with canonical datasets and their synthesis variants like MNIST, CIFAR-10. In this work, we employ the Federated Learning approaches to unusual dataset to observe the capabilities of generalizing when handling domain-specific tasks. Concretely, we adopt FedAvg and FedProx on: (1) a brain tumor dataset with 3064 512×512 T1-weight images and (2) a VNPlant-200 dataset which includes 20,000 images of 200 unique medicinal plants. Following the work in FedAvg and FedProx, two algorithms are applied with a careful hyperparameter tuning and inspect the effect of federated setting on the decentralized environment. The work empirically demonstrates the impact of federated learning on distinct domains. In addition, the experiments provide a heuristic scheme for hyperparameter controlling in other similar tasks or data, in this case, distributed model training and brain tumor or medicinal plant datasets. 
Keywords: Federated Learning; FedAvg; FedProx; Distributed Training; Brain Tumor; Medicinal Plant; VGG16; ResNet50; ConvNext; MaxViT
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1. INTRODUCTION
1.1 Modern Artificial Intelligence Technologies and Big Data Era
The growth of Artificial Intelligence (AI) applications has been progressively supported by vast amounts of data [1], [2]. Conventionally, AI-related applications often fall into ordinary categories like computer vision (CV), natural processing language (NLP), speech recognition (SR). Those are also the most important appliances of AI in real world. Sometimes, the model can outperform human performance. For example, Deep Learning-based face recognition can achieve exceptional levels of performance given millions of training samples [3], [4]. These systems obviously require huge a bunch of data to gain satisfying levels of results due to the complexity of the model’s architecture. 
Generally, the big data system demands special methods in gathering and processing because data regularly comes on a small scale. In addition, data diversity mostly appears as a critical adversity to confront with. Missing values, missing labels, disparity distribution largely expect big effort from domain experts to repairing. In fact, benchmark datasets used within standard tasks usually require an enormous work in selectively gathering, processing and thus need to be done in a proper and comprehensive research than the work evaluate on it [5]–[7]. Some demands raised in the context of narrower domains now show that it is hungry for data, precisely large-scale data to come up with training. 
End user’s data turns out to be a great source of data for ML tasks. This kind of data holds a very important nature: it is the real data that is eventually assessed and consumed by the final trained model. The modern world currently has serious concerns regarding data privacy and data ownership: which org has the ability and the rights to use data for building AI technologies. Some university labs or specific firms developing their AI research or products adopt their own business data or data that they created by themselves which is in this situation they have the full ownership over this data. But things get complicated in certain fields: data exists in various forms, generated by different parties and the naïve approach would be transfer data into one central location and perform plenty of ML techniques. However, this method is no longer valid today. Owners of data are aware of their privacy rights, and they do not want their private information to be used illegally for commercial or political purposes. 
Strict controls on data collection and data usage have likewise been imposed by law makers. General Data Protection Regulation (GDPR) issued by European Union in 2018 is a concrete example. Under this restrictive landscape, gathering and sharing data among separate organizations is becoming more and more difficult. 
Even when we have a valid procedure dedicated to passing sensitive data around silos for training AI models, there are two more challenges. First, the benefit of data collaboration is not clear, or at least it is hard to measure if the procedure follows a super rigid manner, e.g., encrypting and shuffling all the data before entering the training phase. The fear of losing control over data and the lack of transparency make the crucial trade-off consideration from the owner’s perspective. Second, some data have severe sensitive nature that cannot be moved from the owner’s location, e.g., medical records and financial transactions, hence prohibit free data circulation.
How to solve this privacy problem is mandatory as the rules will progressively more rigorous. AI community has been witnessed tremendous of notable breakthroughs in ten years since 2012 due to the development hardware strengths and large-scale training datasets. An AI winter is going to happen if this situation is not sufficiently addressed. 
1.2 Federated Learning as an enhanced solution 
Federated Learning (FL) relies on a pure idea that lets the model being trained in-place at the data location, which we refer as local data or device’s data. Then the information about trained model (weights or gradients) is the quantity that moving around for assembling the well-behaved application. The detailed explanation would be data reside at its own location, and some variable amount of update, i.e., training and validation, are executed. Conventionally, the method works like server-client architecture where there is a global model located at the server device and each client carries its dataset. Proper confidentiality plays an integral role on securing the inner content or sometimes the inherent nature of data being transferred. Furthermore, the communication process also differs among several leading implementation which [image: Diagram

Description automatically generated]affects different desired optimal goals in different ways. 
Figure 1. An example of FL algorithm
FL concepts first evolve in a decent form in 2016 in [8], namely FedAvg. The authors proposed an iterative approach for jointly updating the global model throughout communication rounds. As described above, in this federated scheme does not compel a whole centralize dataset at one place, as well as data at each device to be sent back-and-forth. To be more detailed, for several updates, under encryption, clients send local model parameters which then be used to incorporate into a new stateful global model representing current trained model given a passed number of rounds. Note that this is a repetitive training design. One thing can be theoretically assured from a particular client view: its data is not revealed or examined common patterns with other clients or the server.
Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL) are roughly two fundamental categories of FL. In HFL, the system has common feature spaces in each regional dataset (parties may have their business market in the same domain) but distinct data samples. Conversely, sample spaces contain overlapping data samples in VFL, but they differ in data features. Two settings are derived from actual corporate situations in generating data, which in turn satisfy unique demands. Federated Transfer Learning (FTL) applies a unique direction and is suitable when the party’s data is highly heterogeneous. In general, federated algorithms can be expanded according to how data is partitioned among clients and the basis nature of the data. 
1.3 Technique Limitations and the objective of this work 
Researchers have been improving the algorithmic mechanism for distributed learning over many computational sites in recent years. 
In [8], the authors came up with a practical framework that help federated learning by model averaging. The results show a potential ability for adopting FL in other environments. However, the work left plenty of questions involving convergence guarantee and generalization performance. From the data perspective, the method further imposes the same amount of training workload with respect to each edge device, which raises uncertainty when deploying with actual data in unconventional domain. The algorithm also does not provide a clear and formal solution when tackling non-IID data, which is quite happened frequently. 
FedProx [9] resolved mentioned cons thoroughly, and beyond that suggest a mathematical proof for their technique. They put up front a convergence analysis as well as local dissimilarity formulas for supporting convergence guarantee. The experiments showing the robustness under extremely heterogeneous setting are likewise presented. They allow some clients lazily perform fewer number of epochs and integrate a proximal term into local losses to penalizing the weights from being far away from the global model.
Nevertheless, almost all the state-of-the-art improvements mainly focus advancing security and statistical challenges. We realized an unhealthy assumption about hyperparameter selection, comes from the usages of canonical datasets. In this work, we simulate two algorithms FedAvg and FedProx two datasets which fit into two separate domains: (1) a brain tumor dataset with 3064 512×512 T1-weight images and (2) a VNPlant-200 dataset which includes 20,000 images of 200 unique medicinal plants. Firstly, we follow the stated process of training to obtain valuable observations, finding the optimal value for each hyperparameter. We adopt several CNN-based models like VGG16, ResNet50, ConvNext, MaxViT for comprehensive comparison. The number of communication rounds, i.e., the total communication cost until reaching a reasonable performance is our main metrics. 
This work can be considered as a helpful reference for those who are interested in federated learning system or who currently being working with related fields. 
2. RELATED WORKS

Many directions have significantly received attention during the decades. In the shape of federated optimization, the communication cost as well as the privacy effectiveness can be considered. Some works studied the statistical property of data, devices, and local gradients update.
In [10], iterative parameter mixing on structured perceptron is used to reduce the complexity given the availability the computing clusters. [11] utilize a format of elastic averaging: the asynchronous variant is also proposed. These works in general do not exam the non-IID nor the unbalance of datasets, which is a very principal for our upcoming settings. Remember that in a realistic scenario, the number of clients could be much larger than the number of data observations per client. In the convex setting,[12], [13] addressed some key concepts about federated framework: they particularly look at the privacy aspect during communicating, the upper and lower bound runtime and the quantity of used samples. 
There are many publications that worked on minimizing communication cost [14], [15]. This approach decreases the overall runtime and jointly increases privacy performance.  Opposed to iterative training approach, one endpoint of the distributed family is one-shot algorithm, which is the method that makes no overhead on communication cost at all. The final model is produced after all sub training processes finish, where in each sub process, a local client tries to solve the loss of its local data until reaching several epochs. The combine scheme could be model averaging. However, this method shows no better performance over minimizing on a single client [16], [17]. 
We have addressed earlier the importance of studying extensively the statistical property imposed on the nature of data and computing clusters. [18], [19] allow inexact local updating to balance computational cost and communication cost. This idea quite inspires for the systematic heterogeneity examination. Here we formalize some typical characteristics of federated learning problems: (1) local dataset will not be representative for the population distribution (non-IID), (2) unbalance data among devices, (3) the number of clients participating in learning could dominate the local dataset’s size, (4) number of devices can be unavailable sometimes, (5) clients do not have the same computational strength, (6) updates could be lost during communication due to network issues. 
We need to explore a more general framework that can handle heterogeneity introduced by characteristics mentioned above. The work in [20], [21]allowing data to be shared between clients and server for analyzing statistical feature lied in local data. This approach could help the server (or the coordinator) to inspect suitable solver use each round per client. Hence, the broader technique can be developed robustly to tackle highly non-IID and/or unbalanced dataset. Nonetheless, this puts a huge burden on network bandwidth (which is normally restricted in terms of hand-held devices or in case of non-physical connection). More seriously, the action of exchanging data violates the key aspect of privacy in a realistic federated environment: confidentiality. 
One solution that comes naturally first in mind when dealing with device strength inequality is to abandon uncomplete training process or to use the result model weights regardless of a device finish its desired number of epochs or not. The same set of devices are likely to be exhausted more periodically all the time, thus, can bring bias to our model. Moreover, divergence could occur when profitable data in a particular device cannot maximize its productivity because of repudiation. [9] demonstrated that instability growths when we embrace some stragglers into chosen clients per round of communication. By adding proximal term to local loss function, [9]report several benefits in terms of communications cost and the stability of convergence. The randomized Kaczmarz method [22], [23] for solving linear systems of equations serves as an inspiration for the dissimilarity characterization analysis the authors offer.
Recent works adopting federated system in image tasks primarily use standard databases for experiments, such as MNIST, CIFAR-10, and their variations. This is advantageous because it expedites the experimentation of a vast number of parameter combinations, thereby facilitating the exploration and evaluation of more efficient algorithms. Few academics conduct federated learning on their domain-specific datasets. However, it has been observed that there is no established method of parameter optimization for dataset that is not specific to any domain. We would like to commence with utilizing the hyperparameter selection technique. Some key hyperparameters are: (1) the number of clients join in training each round, (2) the mini-batch size, (3) the number of epochs each round, (4) the hyperparameter of the proximal term, (5) the initial learning rate and rate decay algorithm. We wish to ascertain the influence of these parameters on new datasets to demonstrate the consistency of ultimate outcomes obtained at the end of the training procedure. Despite ensuring convergence, [9] still implies certain characteristics of [8], thus necessitating the requirement for an automated process for selecting parameters.
3. PROJECT MANAGEMENT PLAN
Table 1. Project Plan
	Task name
	Priority
	Owner
	Start date
	End date
	Status
	Issues

	Seek out research studies
	High
	K.L.H.
	4/1/2023
	29/1/2023
	Completed
	…

	Setting up datasets
	High
	K.L.D.V.
	4/1/2023
	25/2/2023
	Completed
	…

	Establish the FedAvg code environment.
	High
	K.L.H.

	30/1/2023
	15/2/2023
	Completed
	…

	Establish the FedProx code environment.
	High
	K.L.H.
	16/2/2023
	15/3/2023
	Completed
	…

	Run experiments on Brain Tumor Data
	High
	K.L.D.V.
	16/2/2023
	10/3/2023
	Completed
	…

	Run experiments on VNPlant-200 datasets
	High
	K.L.D.V.
	11/3/2023
	10/4/2023
	Completed
	…

	Review related papers for further improvements 
	Low
	K.L.H.
	16/3/2023
	22/3/2023
	Completed
	…

	Write report
	High
	K.L.H.
	23/3/2023
	10/4/2023
	Completed
	…

	Revision 
	High 
	K.L.D.V. and K.L.H.
	10/4/2023
	17/4/2023
	Completed
	...


4. THEORETICAL FRAMEWORK
4.1 Stochastic Gradient Descent 
SGD is commonly used as an optimization technique in contemporary works due to its ease of use. In addition, we cannot presume any bias at the beginning of the learning procedure; therefore, employing more complex algorithms could result in wasted effort without observing the actual effect of the FL setting.
SGD is an iterative method for optimizing an objective function by calculating the gradients for several samples, whereas GD utilizes the entire dataset to update the weights. Consider the scenario of minimizing the following loss function.

where w is the parameter being estimated and m is the number of data samples.
When using standard GD, an iteration of optimization strategy would be:

Clearly, α is the learning rate. In classical statistics, this kind of sum-minimizing problem arises in least-squares (like linear regression) or in maximum-likelihood estimation. In simple form of loss objectives, step to global (or local) minimum is assured quickly. As a result of the intricacy of each local loss or the amount of the dataset, gradient calculation may be prohibitively costly in many situations. Performing each step on a subset of samples is preferable and is beneficial in large-scale ML. 

This time i represents the chosen training examples. The algorithms sweep through the entire dataset cause the loss functions to approach the optimum. The full process of learning by SGD for simple regression application can be roughly illustrated below.
Algorithm 1. Stochastic Gradient Descent
(1) Initialize weighs w and pick an initial learning rate α
(2) For each epoch (repeat until desired optimal value is achieved):
· Randomly shuffle data points in the dataset.
· For :
· Determine the local loss 
· 
Given the capabilities of modern GPUs for parallel processing, the simple form of SGD is utilized infrequently due to its inefficient performance. The convergence of stochastic gradient descent has been widely investigated; particularly, given an acceptable learning rate, SGD will almost certainly cause the loss to reach its global minimum (convex case); otherwise, it will cause the loss to reach its local minimum. 
Alternately, modifying the model's parameters now occurs in the form of a batch (called mini-batch stochastic gradient descent). The result of decreasing the mini-batch size could lead to more learning ability; said differently, this technique in fact allows the model converges faster than considering the whole dataset. 
Algorithm 2. Mini-batch Stochastic Gradient Descent
(1) Initialize weighs w and pick an initial learning rate α 
(2) For each epoch (repeat until desired optimal value is achieved):
a. Randomly shuffle data points in the dataset.
b. For each batch:
i. Determine the local loss 
ii. 

4.2 Federated Learning Algorithm
4.2.1 FedAvg Algorithm
FedAvg is built upon SGD, i.e., the local optimizer is typically SGD. In this subsection, we explore this approach in depth, formulate algorithms, and examine some of the original publication's results [8].
The combination of synchronous SGD (one partition must wait other partitions to finish computing gradients) and multi-batch updater yields best result. Consider K clients for whom data is partitioned among, the hyper-parameter C controls the fraction of clients being chose per round.  means one client is chosen. 
Each client k obtains  at completion of a training turn, then the server aggregates these gradients by:

where  denote the current communication round, and  represents the number of samples at client k.
The equivalent form can be achieved by alternating the derivatives at each local by its model’s weights. This property is derived from: 
								

One important design must be carefully considered when dealing with non-convex objectives. Independent initialization of a distributed model may result in poor performance. Averaging from different conditions shows no advantages over taking single evaluating in each model (the weight of mixing equals to 0 or 1). Conversely, when starting multiple models from a same random seed, averaging parameters works well.
Algorithm 3. FedAvg Algorithm
K is the number of clients. C is the fraction of clients selected per round. B is the local mini-batch size. E is the number of epochs each device must iterate through. 
Server-side computation: 
·  initialize 
·  for each round 
· from C, select a random  subset from K clients
· for each client k in 
· compute  by performing a client-side computation.
·  (The total number of data points involving into this training phase)
· 
Client-side computation:
·  for each local epoch 
· for each batch b in the local dataset of this client
· 
· return 
It is experimentally essential to properly tune the hyper parameter. B and E control the number of updates per round, which are quite similar in effectiveness. As previously indicated, in a federated system, communication costs are likely to outweigh computational costs, however in a centralized setting, communication costs are insignificant. In the meanwhile, C determines the global batch size, with the general assumption that in both IID and non-IID distributions, bigger C tends to reflect a larger proportion of data samples, resulting in better models for the current round. If we wish to add additional computing every round, we may either (1) increase parallelism (which has no negative effects if true parallelism is employed) or (2) increase computation at each client.
4.2.2 FedProx Algorithm
FedProx [9] can be perceived as a re-parameterization variant of FedAvg in which the authors introduce heterogeneous struggles. The study offers both empirical and theoretical investigations addressing the convergence of the approach. 
As previously mentioned, more local computation can significantly help reduce communication costs. This amount is affected by the number of local epochs and the size of the local mini batch. Besides that, more work of updating on each local landscape may cause each local model to converge toward its local optimum, hence, make convergence unpredictable. Some clients also cannot perform the desired number of updates due to hardware constraints. In practice, it is impossible to automatically determine in advance the suitable epoch for each client while the local epoch must satisfy the benefit of cutting communication cost. Therefore, to balance out the initial setting, FedProx fixes the number of epochs used for each round of communication and finds a more robust way to manage gradients received at the end. The proposed framework has two key characteristics. 
Allow truncated work. Forcing all devices to implement the same effort of training is not quite realistic. FedAvg employs a basic approach: drop the uncomplete weights. This technique has been shown to produce bad models given a fixed number of rounds. The implementation specifies a new hyper parameter controls which clients completely participate in the result parameters and which does not. Inclusive experiments reveal the effectiveness of stability: throughout the learning procedure, loss tends to decrease consistency. 
Proximal term. To prevent the weights from being far away from the global minimum, FedProx adjust the local solver to be more constrained:

where  is the original distance with respect to local batch b and  is the global weight at the beginning of the round. The additional term is beneficial both in: (1) overcome the heterogeneity in data distribution and (2) help for incorporating variable amounts of work from all clients. 
Algorithm 4. FedProx Algorithm
K is the number of clients. C is the fraction of clients selected per round. B is the local mini-batch size. E is the number of epochs each device must iterate through. T is the number of stragglers.
Server-side computation: 
·  initialize 
·  for each round 
· from C, select a random  subset from K clients.
· from T, select which client in  must perform full workload.
· for each client k in 
· compute  by performing a client-side computation (with assigned workload)
·  (The total number of data points involving into this training phase)
· 
Client-side computation:
·  for each local epoch 
· for each batch b in the local dataset of this client
· , where 
· return 
The optimizer is still stochastic gradient descent and fixed learning rate. Some works have been focused on employing other modern optimization algorithms as well as the automated manner to choosing learning rate. 
4.3 Model’s Architecture
In this section, we briefly introduce some architecture used in our experiments. The model decision is derived from related works in terms of commonly manipulating over used datasets. 
4.3.1 VGGNet [24]
One remarkable exploration in this type of architecture is the adoption of a very deep CNN network combining with small receptive field. Particularly, 3 x 3 filters are used to replicate the effect of larger stride window while maintaining the reasonable size. This choice of design shows a more accurate performance when we steadily append more convolutional layers to the model. 
Generally, the family of architecture shares some settings:
·  224 x 224 RGB input image. The image is passed through a stack of conv layers with 3 x 3 filters.
·  Stride is 1, same padding. That’s why the very small receptive size is chosen: 3 x 3 is the smallest size that can capture the spatial information in the image.
·  Five 2 x 2 max-pooling layers are used after some conv layers to reduce spatial dimension.
·  Three fully connected layers at the end. The first two have 4096 units, while the last one’s size depends on the label space’s length.
·  ReLU activation.
Detail configuration is showed in Table 2 below:
Table 2. VGGNet configuration
	VGGNet Configuration

	VGG11
	VGG11-LRN*
	VGG13
	VGG16
	VGG16
	VGG19

	224 x 224 RGB image

	conv3-64
	conv3-64
LRN
	conv3-64
conv3-64
	conv3-64
conv3-64
	conv3-64
conv3-64
	conv3-64
conv3-64

	maxpool

	conv3-128
	conv3-128
	conv3-128
conv3-128
	conv3-128
conv3-128
	conv3-128
conv3-128
	conv3-128
conv3-128

	maxpool

	conv3-256
conv3-256
	conv3-256
conv3-256
	conv3-256
conv3-256
	conv3-256
conv3-256
conv1-256
	conv3-256
conv3-256
conv3-256
	conv3-256
conv3-256
conv3-256
conv3-256

	maxpool

	conv3-512
conv3-512
	conv3-512
conv3-512
	conv3-512
conv3-512
	conv3-512
conv3-512
conv1-512
	conv3-512
conv3-512
conv3-512
	conv3-512
conv3-512
conv3-512
conv3-512

	maxpool

	conv3-512
conv3-512
	conv3-512
conv3-512
	conv3-512
conv3-512
	conv3-512
conv3-512
conv1-512
	conv3-512
conv3-512
conv3-512
	conv3-512
conv3-512
conv3-512
conv3-512

	maxpool

	FC-4096

	FC-4096

	FC-L**

	softmax layer


Note that: (*) LRN stands for local responses normalization and (**) represents the number of labels in the label space. 
4.3.2 ResNet [25]
ResNet leverages the neural network’s depth to a higher level. Stacking more layers makes it difficult to train due to vanishing/exploding gradients. Simply put, this issue can be addressed by adding normalization. However, the result tends to degradation while training loss does not guarantee to be decreased, i.e., overfit is not the case. This phenomenon indicates that there is a problem with deep layer that makes it harder to learn more fine-grained features, which is the [image: ]key principle in deep learning. ResNet introduces residual blocks to cope with this dilemma.
 Figure 2. Residual Block (image from original paper [25])
The identity short-connection quantity helps to optimize the desired function easier because now if the eventual performance of the identity mapping is optimum, learning process just needs to push residual term to zero.
Comprehensive experiments on ImageNet [26] showed that: (1) deeper networks indeed result higher accuracy and (2) networks with residual block are easier to train compared to plain counterpart. Table 3 lists the structure of different depth ResNet.
Table 3. ResNet’s architecture (L denotes the label space length, square brackets denote residual blocks)
	layer type
	18-layer
	34-layer
	50-layer
	101-layer
	152-layer

	conv
	7 x 7, 64 channels, stride 2

	conv
	
	
	
	
	

	conv
	
	
	
	
	

	conv
	
	
	
	
	

	conv
	
	
	
	
	

	pooling
	avgpooling

	fully connected
	L-dim fc

	activation
	softmax layer



4.3.3 ConvNext [27]
As the introduction of Vision Transformers (ViT) in 2020, the computer vision landscape is not limited to network architecture design. ViT surprisingly show potential results on image classification tasks given the ability to scaling. Nonetheless, computer vision also contains other difficult duties involving in image-specific inductive bias to maximize spatial information. Without ConvNet, a vanilla ViT model may confront a few challenges in dealing with object detection or semantic segmentation.
Many advancements have been made to bring back ConvNet to form a hybrid approach [28]. The sliding window method shows their role as being intrinsic to visual processing. However, these works have some costly components, which could cause the design to be more complex or be unreasonable to scale. ConvNext, a pure ConvNet model is built gradually by embracing some minor design modifications. This process aims to mimic the way a hybrid transformer model [image: Diagram

Description automatically generated]like Swin Transformer [28] process digital images.
Figure 3. Comparison of a basis block design in Swin Transformer, ResNet and ConvNext (image from original paper [27])
Training Technique. Increase the number of epochs from 90 to 300. AdamW Optimizer is adopted. Various augmentation techniques like Mixup, CutMix, RandAugment, RandomErasing. Stochastic Depth and Label Smoothing are used for regularization. 
ResNext-ify. Depthwise Convolution is used to group convolution filters.
Inverted Bottleneck. The idea is that we could adopt inverted bottleneck in ResNet. The hidden dimension within a layer block is now 4 times bigger than input dimension.
Large Kernel Size. To examine the behavior of large size kernel, ConvNext moves up the position of the depthwise conv layer. (However, this violates a typical standard of using small receptive field to replicate the effect of larger kernel size to gain parallel computing of modern GPU). ConvNext also experiment also kernel size include 3, 5, 7, 9, 11. The performance saturates when the number reaches 7. 
Micro Design. ReLU is replaced by GELU. Some activation positions are also eliminated. Truncate batch normalization and some are altered with layer normalization. Separate downsampling layers.
4.3.4 MaxViT [29]
[image: ] Added multi-axis attention helps form an efficient attention model to cope with scalability. There are two novel ideas in this work: blocked local and dilated global attention. The proposed model called MaxViT serves as a powerful vision backbone for visual processing. 
Figure 4. MaxViT architecture (image from original paper [29])
		
5. MATERIALS AND METHODS
5.1 Resources
All presented works in the scope of this report are performed on Google Collaboratory Pro+. Hardware specifications vary over time. Typical details are:
Table 4. Hardware specs
	
	Standard
	Premium

	CPU
	Intel(R) Xeon(R) CPU @ 2.20 GHz
	Intel(R) Xeon(R) CPU @ 2.20 GHz

	RAM
	12 GB
	84 GB

	GPU
	NVIDIA Tesla T4 16 GB VRAM
	NVIDIA A100 40 GB VRAM



5.2 Datasets and Implementation Details
We use the brain tumor dataset composed by Cheng et al. [30] in the first class of experiments. The dataset consists of 3064 T1-weighted pictures collected from 233 patients with three labels of brain malignancies: 708 images of meningioma, 1426 images of glioma, and 930 images of pituitary tumor. Figure 5 illustrates some sample images taken in [30]. The images have digital resolution of 512  512 with pixel size of 0.49  0.49 mm2. 
We split the datasets into 80% training and 20% test. Test set is resided at the aggregation server, while training samples are partitioned into 10 clients. Partition manners are discussed later. For image pre-processing, Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is adopted. The image is then resized to 224  224. 
[image: A picture containing text, spectacles

Description automatically generated][image: A picture containing text, watch, different

Description automatically generated][image: A picture containing text

Description automatically generated]  
(a)                            (b)                           (c)
Figure 5. Three types of brain tumor: (a) meningioma; (b) glioma; and (c) pituitary tumor.
With second class of experiment, an herbal plant dataset which consists of plants found in Vietnam are used. The photographs were captured within a natural setting with the intention of depicting the intricacy of classifying images within real world environments. The dataset comprises of plant images captured from varying angles, brightness levels, environmental conditions, viewpoints, and other related factors. Thus, it serves as a suitable model for a practical plant recognition task. Figure 6 demonstrates some samples. 
[image: A picture containing outdoor, plant, grass

Description automatically generated]
Figure 6. VNPlant-200 sample images.
After resizing to 224  224, we implement some data augmentation like random rotation or random flip. We use 8000 images for testing, 2000 images for validation, and the rest for training. This time the number of devices jointly learning the federated model is 100.
 
Table 5. VNPlant-200 characteristics
	Number of species
	200

	Number of images for each specie
	100

	Image resolution
	256  256 and 512  512

	Angle
	Entire plant with realistic noise

	Environment
	Real world



Data distribution approach. To study federated performance on heterogeneity setting, we explore two ways to partition data. In IID way, the data is randomly shuffled and distributed over K clients, i.e., each client theoretically represents the whole population. Non-IID manner involves sorting the data points by labels first, then populate each client with an equal number of samples so that each client contains at most 2 labels. This way we could benchmark both algorithms on specific domain non-IID data for generalization. 
Regarding learning rates used in SGD, we tune for the best value achieved by each combination of hyper parameters, i.e., all numbers shown in tables or figures are training on the best learning rate. One critical point: for fair competition, we fix the randomly selected clients, the order of mini batch per client across training rounds. We also apply plain FedAvg algorithm while dropping the testing of stragglers in FedProx. That means we do not incorporate variable works on those devices, instead we force all chose devices to perform the same amount of work. 


6. RESULTS and DISCUSSION
6.1 Brain Tumor classification task
6.1.1 Comprehensive summarization on FedAvg scheme 
Partial parallelism. We first play with client fraction C. Table 6 shows the results of varying C over Brain tumor dataset. VGG16 is used as the initial baseline. We adopt a slightly different methodology here: instead of evaluating the cost of communication until satisfying desired levels of accuracy, we record the test-set accuracy obtained when finishing given numbers of rounds. Here, the approach functions effectively in an IID setting that provides positive outcomes with just small communication rounds. Undoubtedly, greater C produces better outcomes, particularly in non-IID settings when client data do not reflect the whole distribution. The performance of non-IID data improves with time more slowly than IID data, indicating that communication cost is substantial in non-IID scenarios. Comparing our results to those of the original study, in which the authors conducted tests on MNIST using two basic neural networks, we detect a comparable impact. Table A1 in the appendix section illustrates this effect in the original paper. Figure A1, A2 in the appendix section gives a clearer view regarding the speed of convergence over rounds of communication. 
Table 6. Impact of varying C on the Brain tumor dataset using FedAvg algorithm on VGG16 model. . Each entry represents the test-set accuracy received at given rounds of communication.  
	C
	IID
	Non-IID

	
	10
	20
	50
	100
	10
	20
	50
	100

	0.1
	92.48
	95.26
	97.38
	98.20
	47.39
	47.39
	63.40
	72.22

	0.2
	94.12
	96.41
	98.04
	98.53
	47.39
	79.08
	87.09
	90.69

	0.3
	95.26
	96.24
	97.55
	98.37
	77.29
	77.29
	91.12
	94.12

	0.5
	95.45
	97.55
	98.04
	98.20
	83.49
	88.56
	93.62
	95.59





For consistent insights and balance out the computational weight of training due to limited hardware constraints, we fix  for further testing. 
Local computation examination. This time, the influence of extra local computation is investigated. Adding extra updates every round to each client does not significantly increase performance. We attempt to raise E from 1 to 5, while altering the mini-batch size to the values 4, 10, and 16. Nonetheless, we discover a very intriguing property: a mini-batch size of 16 yields a pretty good result in a non-IID context. In some instances, the performance suffers when the mini batch size is increased while the number of epochs is maintained, indicating that too many updates might lead averaging to give inferior results. The counterpart diagram of Table 7 is placed at Figure A3, A4 at appendix, in which we visualize the effect we have done here. 
Table 7. Various cases when device’s amount of update is altered. Model is VGG16.   
	E
	B
	IID
	Non-IID

	
	
	10
	20
	50
	100
	10
	20
	50
	100

	1
	10
	86.11
	93.30
	96.08
	96.57
	55.72
	55.72
	79.08
	89.38

	2
	10
	93.46
	94.93
	97.55
	98.37
	66.01
	66.67
	80.39
	90.69

	5
	4
	95.26
	96.70
	98.04
	98.04
	55.88
	77.94
	87.58
	90.85

	5
	10
	94.12
	96.41
	98.04
	98.53
	47.39
	79.08
	87.09
	90.69

	5
	16
	93.95
	96.41
	97.71
	97.88
	67.32
	67.32
	80.23
	93.30



So far, the documented experiments have demonstrated a reliable set of hyper parameter values for our task. We study further the impact of several classifiers on federated learning. Comparing ResNet50, ConvNext, and MaxViT with the VGG16 baseline, we employ several cutting-edge deep learning architectures. Table 8 displays the experimental states. In this series of studies, E=5, B=16, and C=0.2 are used for non-IID data whereas E=5, B=10, and C=0.2 are used for IID data.
Table 8. Comparison of some state-of-the-art deep learning models with federated learning on Brain Tumor dataset. E=5, B=16, and C=0.2 for non-IID data and E=5, B=10, and C= 0.2 for IID data.
	
	IID
	Non-IID

	Rounds of com.
	10
	20
	50
	100
	10
	20
	50
	100

	VGG16
	94.12
	96.41
	98.04
	98.53
	67.32
	67.32
	80.23
	93.30

	ConvNext
	95.52
	96.57
	98.04
	98.69
	75.65
	75.65
	80.88
	92.16

	ResNet50
	91.83
	95.59
	96.73
	98.03
	49.51
	71.24
	82.52
	86.76

	MaxVit
	94.93
	96.57
	97.56
	98.69
	56.86
	75.82
	85.95
	90.36



Evidently, ConvNext and MaxViT give superior outcomes while processing IID data. On the other hand, despite the fact that ConvNext is the best model during the first 50 rounds of communications, it cannot exceed the peak performance of VGG16. Consequently, VGG16, with 93,3% accuracy, may be the best reliable classifier for non-IID Brain Tumor image data. Figure A5, A6 in the appendix provides more visualization details.

6.1.2 Comprehensive summarization on FedProx scheme 
Following the preceding section's work, we examine if the proximal term in FedProx aids in handling non-IID situations. We have found that B=16 and E=5 produce decent results in non-IID contexts, thus we will continue to use these parameters in the subsequent tests. ConvNext and VGG16, which produced the greatest results on the Brain Tumor dataset in the previous section, are also reused. In this effort, we tweak the  hyper parameter from a limited candidate set of  to determine its effect on test-set accuracy convergence after 10, 20, 50, and 100 rounds of communications. Tables 9 and 10 show the respective outcomes of ConvNext and VGG16. 
Table 9. Test-set accuracies of FedProx federated algorithm with various  on Brain Tumor dataset. The classifier is ConvNext, B=16, E=5.
	
	Non-IID

	
	10
	20
	50
	100

	0
	75.65
	75.65
	80.88
	92.16

	1
	79.08
	79.08
	85.29
	92.48

	0.1
	80.23
	80.23
	83.82
	92.65

	0.01
	76.31
	76.31
	83.99
	92.65

	0.001
	78.59
	78.59
	86.11
	92.48



Table 10. Test-set accuracies of FedProx federated algorithm with various  on Brain Tumor dataset. The classifier is VGG16, B=16, E=5.
	
	Non-IID

	
	10
	20
	50
	100

	0
	67.32
	67.32
	80.23
	93.30

	1
	60.94
	62.58
	83.33
	93.30

	0.1
	48.04
	72.06
	83.01
	89.05

	0.01
	60.29
	67.97
	83.17
	91.83

	0.001
	71.90
	80.39
	80.39
	81.21



We can see that, given an appropriate value of , the learning process tends to be condensed into fewer iterations and assured to converge steadily over time. With ConvNext, the optimal value of  is 0.1, allowing the accuracy to surpass 80% in only 10 communication rounds. In case of VGG16, the optimal value of  for fast convergence is 0.001. With VGG16, however, there is a little trade-off: the faster convergence comes at the expense of a lower peak accuracy, in this instance 81.21% as opposed to 93.3%. This conduct has no impact on ConvNext.
The heterogeneity breaking behavior of FedProx over FedAvg will be described in the next section. However, we would like to stress a vital point: it is essential to choose a suitable number for ; otherwise, the performance might decrease and become unstable over time.
6.1.3 Heterogeneity advantages study on FedProx 
In figure 7, we see that FedProx yields quite humble results compared to FedAvg. Although the convergence property is assured, it does not seem reliable in terms of stability, early convergence, or peak performance. The candidate set of proximal term parameter µ taken from original work. Here we can conclude that the disparity tackling effect of FedProx is not remarkable.
[image: Chart
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Figure 7. Results comparison between FedAvg and FedProx with various µ values on Brain Tumor dataset. (ConvNext)
[image: Graphical user interface, chart
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Figure 8. Results comparison between FedAvg and FedProx with various µ values on Brain Tumor dataset. (VGG16)
6.2 Medicinal Plant classification task
We follow the same methodology of model evaluation here. The conclusions are quite like those obtained above, so we will only stress important points as we progress our experiments. 
6.2.1 Comprehensive summarization on FedAvg scheme 
Table 11. Impact of varying C on the VNPlant-200 dataset using FedAvg algorithm on VGG16 model. . Each entry represents the test-set accuracy received at given rounds of communication.
	C
	IID
	Non-IID

	
	10
	20
	50
	100
	10
	20
	50
	100

	0.1
	68.34
	77.84
	84.95
	85.56
	10.44
	12.81
	20.00
	31.80

	0.2
	77.08
	82.90
	86.80
	88.56
	33.39
	41.35
	60.19
	67.81

	0.3
	80.34
	85.15
	88.04
	89.24
	38.13
	53.61
	70.65
	74.68

	0.5
	81.71
	86.76
	89.09
	89.09
	51.73
	66.40
	77.71
	81.28



In this family of experiments in Table 11, we could see large differences in performance regarding both data distribution case or the cardinality of clients per round. This observation can be derived from the fact that the harder identification task is involved. We see C = 0.1 produce poor results on non-IID setting and increase C extremely mitigating this problem. Convergence speed analysis can be conducted here. Figure A7, A8 show more illustrative insights. 
Table 12. Different local computational imposed on each client per round under C = 0.2 using VGG16 model. FedAvg is used. VNPlant-200 is under investigation.
	E
	B
	IID
	Non-IID

	
	
	10
	20
	50
	100
	10
	20
	50
	100

	5
	10
	77.08
	82.9
	86.8
	88.56
	33.39
	41.35
	60.19
	67.81

	5
	16
	78.48
	83.41
	87.59
	88.93
	31.61
	41.59
	58.60
	68.76

	5
	32
	79.38
	84.13
	86.69
	88.28
	31.51
	44.14
	57.39
	66.66

	1
	10
	55.60
	70.00
	81.20
	85.71
	21.49
	36.04
	48.56
	63.11

	2
	10
	65.03
	78.36
	84.75
	88.64
	26.96
	38.33
	58.53
	67.34



Again, in Table 12, we see there are no significant differences between those cases. This implies the stated arguments in the original paper are not universal. Hence, putting effort in tuning this kind of parameter needs to be studied more extensively. Table 13 experiments model choice effect. Other intuitive plots are resided in appendix, Figure A9, A10, A11, A12.
Table 13. The effect of various classifiers regarding the VNPlant-200 dataset. FedAvg is the algorithm. The mini batch size, the number of local epochs, the client fraction are 16, 5, and 0.2, respectively.
	Model
	IID
	Non-IID

	
	10
	20
	50
	100
	10
	20
	50
	100

	VGG16
	78.48
	83.41
	87.59
	88.93
	31.61
	41.59
	58.6
	68.76

	ConvNext
	86.40
	91.29
	93.59
	94.51
	30.86
	48.15
	68.11
	73.09

	ResNet50
	82.73
	87.93
	91.94
	93.10
	34.51
	48.15
	72.85
	82.65

	MaxVit
	79.41
	88.64
	92.65
	94.01
	36.76
	43.08
	69.79
	76.33



6.2.2 Comprehensive summarization on FedProx scheme 
Follow up previous sections, we conduct similar operations with the same observations on FedProx technique over VNPlant-200 dataset. Since ResNet50 brings best results on former experiments, we keep using this deep network on current class of expriments. Mini batch size is 16, and number of local epochs is 5 (since dozens of our works reveal that the variant in terms of the amount of local update does not impact so much on the ultimate performance). Again, we tune the proximal term weight from predefined set of candidates. The results is showed in Table 14.
Table 14. Experiments upon the weight of proximal quantity on VNPlant-200 dataset. . The classifier is ResNet50.
	µ
	Non-IID

	
	10
	20
	50
	100

	0
	34.51
	48.15
	72.85
	82.65

	1
	35.48
	50.00
	73.23
	82.95

	0.1
	34.76
	48.48
	73.13
	82.37

	0.01
	34.34
	50.93
	73.10
	82.71

	0.001
	35.24
	49.60
	73.81
	82.41



As we can see, the numbers are quite clear. Adding more constrain into the local losses tends to slightly increase our test-set accuracy. We have not tested with larger µ, but in the publised paper, the authors indicates that huge µ would cause the learning process to be very low. 
6.2.3 Heterogeneity advantages study on FedProx 
The visualization of Table 14 is shown in Figure 8. The improvement is quite small, but it is still there. Futher inspectation is required to understand the behavior of this hyper parameter. However, adding the proximal term will always guarantee convergence, as proven by the approach’s authors. 
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Figure 9. Results comparison between FedAvg and FedProx with various µ values in VNPlant-200 dataset.
7. CONCLUSIONS AND PERSPECTIVES
Federated Learning is truly a novel and intriguing approach for data scientists. Its approach is both similar and different from other decentralized learning methods that have appeared before: the burden of communication costs must be considered, and some effort is required in encoding to ensure data privacy and integrity. If this optimization is done well, we can efficiently leverage the abundant data sources worldwide from end-users, especially as data privacy laws are increasingly tightened and the artificial intelligence industry is reaching saturation due to the lack of increased data sources as before.
In this work, we employed two federated learning methods, FedAvg and FedProx, on two datasets to examine their efficacy. We tuned the parameters based on the guidance provided in the original paper. Each dataset was split into two portions: a training set and a test set. The training set was distributed among a set of clients, while the test set was used by the server to evaluate the results. We utilized simple preprocessing and data augmentation techniques to test the experimental viability of federated learning. Two data allocation methods were employed: IID and non-IID. The classifiers utilized in this study were well-known and classic deep learning models. We derived the following conclusions:
(1) The averaging of model parameters is truly effective, especially in the case of IID. In the case of non-IID, the results are also promising, even without any significant data augmentation methods and only using simple optimization methods.
(2) The higher the number of clients participating in each round of communication, the higher the model performance. Of course, ensuring accuracy at the beginning of each round depends on practical conditions, network connectivity, and device availability. However, in general, the more data coming from different sources each round allows the model to converge closer to the optimal point.
(3) Adjusting the local update quantity per client per round does not significantly improve performance. As long as this update quantity balances computational and communication costs and is not updated excessively in one round, the model's convergence is ensured.
(4) The choice of classifier for each problem depends on relevant studies and the nature of the problem and data, rather than the federated learning method itself. Of course, the model must be selected to be suitable for the hardware capabilities and data quantity at each client.
(5) Non-IID remains a significant challenge: experiments consistently show a sharp decline in accuracy in the non-IID setting, and even converge to a saturation point of average accuracy despite increasing rounds of communication. FedProx seems to fall short of achieving the maximum attainable accuracy that can be compared to the IID setting (and even worse than the centralized training setting). Nevertheless, FedProx with appropriate parameters still provides a slight improvement. One thing to clarify is that we did not apply the approach of discarding clients that cannot complete the assigned training task. It is possible that we will integrate this in future studies.
(6) Federated Learning results can vary significantly when the difficulty level of the task changes, and the impact of hyperparameters also varies accordingly. However, there is still a safe range for the parameters that determine the computation load per round at each client. As for the trend of the client fraction parameter, it remains unchanged.
We have observed a significant aspect worth investigating: defining the parameters of the optimization solver. More advanced methods such as RMSProp, GD with momentum, and AdamW can be used. Learning rate decay can also be considered.
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Before starting this section, we are glad to announce that our work on this report has been accepted by IEEE Zooming Innovation in Consumer Technologies International Conference (ZINC) 2023, a place for both industry and academic field. The conference is included in the ZINC 2023 events, which is sponsored by IEEE Serbia and Montenegro Section – Consumer Technology Chapter; the University of Novi Sad, Faculty of Technical Sciences, Computer Engineering and Computer Communications Group and RT-RK Institute for Computer-Based Systems. For more information, please visit: https://www.gozinc.org/ . Below are the accept email from the organizing committee and our first-version draft of our paper.
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Table A1. Original results from proposed work when evaluating MNIST with  on 2NN and  on CNN. Each cell represents the communication cost needed to a respective model to achieve desired test-set accuracy. (99% with CNN and 97% with 2NN). Five attempts did not convergence in time. 
	
	IID
	Non-IID

	C
	
	
	
	

	
	2NN

	0.0
	1455
	316
	4278
	3275

	0.1
	1474
	87
	1796
	664

	0.2
	1658
	77
	1528
	619

	0.5
	__
	75
	__
	443

	1.0
	__
	70
	__
	380

	
	CNN

	0.0
	387
	50
	1181
	956

	0.1
	339
	18
	1100
	206

	0.2
	337
	18
	978
	200

	0.5
	164
	18
	1067
	261

	1.0
	246
	16
	__
	97
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Figure A1. Plots on test-set accuracy over time on IID Brain Tumor Dataset with different client fraction hyper parameter. The figure only shows the FedAvg scores.
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Figure A2. Plots on test-set accuracy over time on non-IID Brain Tumor Dataset with different client fraction hyper parameter. The figure only shows the FedAvg scores.
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Figure A3. The effect of different local computing works on each entry with FedAvg. Here we fix C=0.2. The IID version of Brain Tumor dataset is used. 
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Figure A4. The effect of different local computing works on each entry with FedAvg. Here we fix C=0.2. The non-IID version of Brain Tumor dataset is used. 
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Figure A5. The classifier selection impact is inspected here with IID Brain Tumor dataset. 
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Figure A6. The classifier selection impact is inspected here with non-IID Brain Tumor dataset. 
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Figure A7. FedAvg on the IID version of VNPlant-200 dataset using VGG16 classifier. 
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Figure A8. FedAvg on the non-IID version of VNPlant-200 dataset using VGG16 classifier.
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Figure A9. The effect of different local computing works on each entry with FedAvg. Here we fix C=0.2. The IID version of VNPlant-200 dataset is used. (VGG16 classifier)
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Figure A10. The effect of different local computing works on each entry with FedAvg. Here we fix C=0.2. The IID version of VNPlant-200 dataset is used. (VGG16 classifier)
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Figure A11. The classifier selection impact is inspected here with IID VNPlant-200 dataset. 
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Figure A12. The classifier selection impact is inspected here with non-IID VNPlant-200 dataset. 
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Results of FedProx on Non-IID data with: VGG16, C=0.2, B=16, E=5
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Results of FedProx on Non-1ID data with: ConvNext, C=0.2, B=16, E=5
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Results of FedProx on Non-IID data with: ResNet50 C=0.2, B=16, E=5

Test Accuracy
£ u [«)} ~ [ee]
o o o o o

w
o

N
o

—— =0 (FedAvg)
— u=1

— p=0.1

— p=0.01

—— p=0.001

10

20 30 40 50 60 70 80 90 100
Number of communication rounds





image13.png
[ZINC 2023] Paper status changed for 1570890908 ('MRI Brain Tumor Classification Based on Federated & ©@
Deep Learning') inbox x

zinc=nit-ins...@edas.info Mon, 27 Mar, 16:48 (8 daysago) ¢ €\ H
to Khanh, me, Trung, Vinh +

Dear Mr. Khanh Le Dinh Viet,

Congratulations! Your paper 1570890908: 'MRI Brain Tumor Classification Based on Federated Deep Learning’ has been accepted for presentation at the conference ZINC 2023. The review
committee believes that the paper copes well with topics of ZINC 2023, and that it could be interesting for the audience, and for the ideas exchange. You will be assigned a slot in the
conference program - please stay tuned for more information at our website http://www gozinc oro/.

This year's ZINC conference runs in a hybrid form. By default, presentations are allocated to live sessions in Novi Sad. If you are not able to travel to Novi Sad and you would like to present
online, please contact us directly.

Additionally, your paper s a candidate to be submitted to IEEEXplore and to be assigned a DOI. However, the reviewers indicate that minor revisions are required for the final acceptance by
the committee and the submission to IEEEXplore. Please attend to all review comments carefully and submit a ful article for review. You can find review comments below. If you have any
doubts, please correspond with the conference organizing team

Please make sure you perform the following actions through EDAS with your final submission

1. Certify your paper with IEEE PDFXpress (https://ieee-pdf-express org/), use conference ID 58345X
2. Fill in the IEEE electronic copyright form
3. Register for the conference (will be available beginning of April): https://edas info/r30365

Please also fill in the missing metadata in EDAS and upload the presentation when it is completed (until the deadiine).

Congrats once again and we are happy to have you for ZINC 202311




image14.jpeg
MRI Brain Tumor Classification based on Federated
Deep Learning

Kk Le Dinh Vet Khiem Le Ha', Trung Nguyen Que. Vioh Trvon Hosng!
“Deputnet o Infornaton Techolgy, T Uneity, Ho Chi Miah iy, Vi
(Khnbihac1 50115, Kiemive 019, wmgoat) @t
“Fuculy o Ioraaion Techacioey
Ho Chi Mo Ciy Open Uiy, Vinam
Vi i

bt T prtfestion of el s (A) b
0yt o ettt e i bt s spphcion
o, he i, h ok f s 10 e ey
ried the acapos o rwori e ot et
i e he e umors. 3 i ey, v oy
etk o it . Ao e e i iy
o Toe prpor T’ bpepacemetes s e
(15 ety 208 sl At
o 10, Adhonaty, v vcrae o oo ce dcp e
g e, . V0T, ResuetS, oo, o NPT,

Al inelligece (AD sy’ supremacy s secnly
e demonsraid by thei robust spplicaons seoss o
ealy all indusis, inclding abjct detcin, fae e
ition, ad recommendation syses, (1. ore comiex
macioe leaming (ML) model s wel 3 the valbilty f
lage amount of s e suppoctiog his rapid espasion. The
mos crucial slment in th o e of this tachnlogy i
cipetd o be big duts v in e t0 disminae e
et of AL (2, Howerer, dis oy sxss in the o of
Holued slands, msking i xpensve 10 Ganste cnough dsa
10 buld stwory AT models. Addidonally,des eaks e
cccusionlly mpossble e 1 peivacy and secuity concers
in & oumiber of spcific bsinesss. ke bnking ad e
i feld, A sl st LkEy way i implment AL
plications i th sl work i o loger detacenralizato,
Fudertd leaning was propsed 3] 5 3 tochnie t bunde
ol data lands without any reguests o dta ransission
o ldkage. Federatod leamig, v overview is & taning
echnigue that enabes (0 uide models basd on data 3
e ceoss maldple devices o datscotrs without (b
e o anfe it o3 el location (2] his method s

Fi. 1: The ilusraion of Fedesed eming sysim.

Shown promise i aesin privy and sclsily isus i
resworkd Al spplications, partculaly nthe media ndusty:

Some.dungerous illeses, such s brin malignancos,
hich e drsicaly redhce e cxpocaney, s nverelest
discovred by manal disgnosic imaging. Due 1 theis 10
Hince on rdiologists” expertise, thes comentond] practces
could have o mumber of drawbscks, Thereor, igring
e esning mdes into compuier ided daghoss (CAD)
st will meuably becom papulr i ardee o crese e
accurucyof digooses made sing meical icues. Howeve,
because pten nformation i prvite, i seems impossile
e caoush image sumpls o rete  rustwory dinnosis
Sston. In thse skuatons, wsing & decenalzed tiing
method ke eraed eing coudbe  reat way 1o handle
he e,




image15.jpeg
In his projet, a fecrsted Ieming algritn calld s
Fedhvg 4] i spplied 1 some ste-ofhe ant decp lening
rameworks o conduct 3 brin tumor clasifeaion ysiem
Widhout (b need of contalizing data samples. The following
e th pimasy comebutions of thisstudy
© The et i distriboted 0 ten clients 0 sl the
way tht dat s ongnized i he induty:
© Fin tunin the adestd Ieamingalgockth o g cut
86 ot sutabe hyprparametns for s wih  specic
it et
© Ineprting cuting-dse docp eaming archictses ko
he slasincuion Tnmenork and éasuig thir o1
The remainder of i arice s oranied a5 fllows: I
Section 1, we discus et prior work in e eld Scton
descrbes the orgaizaton of the dtase and the spprench
s i s sty The resulls of o experiments ne hen
s inSection 1V, whie Sestion V concdes the papet:

L ReLATED WoRks

I recent years, there s e  growiog neest n e s
offedested eaing or vaious medical spplcatons, g
1 i dvantages i pesevin the prvacy o oltd dot
Onc of th et e of fedete lsrmin in mecdicine i the
sty of Sheler et l.[], who demonsztod he efectvencs
of fedrsted Larin i e sk f et sgmentation
T thei gy, numerous s werkedtogthr t i
 common deep neral netork, where ach cint provided
i own et dts withot seveling it 1o cters. Albough
achicws Nigh perfomance, Shele’s framenork elis on 4
Conal servr, which coud sl n 3 bl nd uelble
ystm. T et dsl with his s, Ry o L. (6] uggest
naliermative edrsed ain st Know 3 BranTor
1t 10 eploy the tining process in a per-pe manncr.
“The perfomnanc of this frmenrk proved 0 be bt thn
e iudional sever.based b o 4 Sl problem of
i umor sgmeotaon. o 2021, chest CT mages fom
cven lobal clnical cenes were gahred by Qi Dou ot
7] 1o assss e viabliy o 3 Tederted leaing sysem
for COVID19 llzcs detcton, Accontng 0 th sy’
conchsions, foderated leaning migh be 3 wsll echaiqoe
for uickly creting CAD systems scross orgaizatons and
tions o couter th padenic witkout having o worry sbout
Snsive nformation becoming out 1 e pubc

A unique dute-diven strsegy (0 stomsically sgpcgse
modsl weighs bsed o ot cstsbtions scrss the wiing
pocess was recatly devcloed by Xia Y. et al [5). The
othors he wen 0 how o well i echique werked
Whe it came 1o segmenting COVID-I9 lesons i shest CT
n pancrs i shdominal CT. When working vih unknown
samples. Tan C. X. et al. (9] employed  speitic srien
lgnment Joss 1o ot the mods bl oughou
ing, The auhors 50 st 0p some (0t demonste e
Vil ofthe suggstd frumework in two diffent sl
image Classifaion sk

Fig 2: Thuse types of besn tumoe.

1L Meriops
A Dasa Preparion

In s stady, he daser (10, which consistsof 3064 DRI
T-weght b tamor mages, s i to demonsct e <f-
focivenes o the fedrated eamiag lgorith o clusifying
medica images. Figure 2 shows a illstaion of each besn
Tamor type. Ths crginal data the was spt o iing et
and tetng st fllowed by he o of 52, respecely. In
order 0 Sttt solted form of i he el word,
the sample images of thre types of b tmors i trining
st namely. meniagiona, ghions, and piiary tmor, s
randonly disibted ot 10 ndependentclicts. Howerer e
ot rom o paricule clent sometimes might ot reprset
ihe idntifd dseion of he global dta, which cas
saisical eeropeneiy chalengs (0 prven he comvegence
of the clsifcation model. Thas, the dtaset i addioally
disibted to clens 4 3 o independenly and ideaically
bt version (Nou-ID) by sotin the abels o sl
mages, instad o & sequence of v randoms.

B. The Classifation Framenard.

L S —
e commonly inludes tho key facton, The fst one i3
the cussifier model for cotgorsng nput images, whle e
second oe s the agaregaon lgorihn o synbeszing e
bt gl model parametr fom oca nformaton. I i
ok 4 cuting-odge deep Teaming based desins such 35
VGGI6 (1], RexNetsd (12], ComNeXt (13],and MaxViT
[1], e gt o he ederted lemin o Ture out
ther lassifieation performance i an soited data Saton
of e medicl nduty:

Meanuhile, FolAvs, o edeaed leaming tchuique peo-
posed by Googl (4], is adapiod o aggroget el inor.
nsion for the cenil clasier model. 1 the deployment
of Fodavg, o cach communicaion rousd, 4 fracton of ol
clens (€) i permited 1 prcitiascpimizing the local model
basd on v bech iz (1) and e of cpcs ()
Afer ecivng th updted local weights of communiested
cllens, the cenal sever pples s simple mechanim of
eragng these weghs and then o them o e lobal




image16.jpeg
e e e e e
st e A T
el omin il i et St

[ rmm T TR rm] oo 4 e it s sl o o v o
STt [sear v T ra o e [ wia s - previous results with £ = 5.

e e e e e e o] ™ s e o i Tl Tl
T s E o] w i et o o ot i o i
T s N> i oty s s

Changing 5 and E.

el Fnal, hese new paramatees will e synchenized for-
llof the clinis in e sy, and e new commnicaton
found coudbe staned ain. Figore | demonsite e desin
of th suded framework.

IV, Exreniesas Resuirs

In oxdr 10 optimize the clasifcasion sccwcy alr
i e of comminication ounds, many sxperets e
cxpnized o e out he optial byperpiramete 5 el 13
e bt clssfir model fo i brin uno daast. All of
e experimets e mplncoted and 1o on Google Cald
Pro Pls, which consmes more Dan 600 compuig it
equivalnt 10300 howes of iing. The federted eaning
gt s conductd by Pyhon srps witho he support
from any fdertd lanin frmewoks

"The baseline st iy s conduced by chowsing
VGGI6 s the clasifie,a bath iz of 10, and £ =5, The
outcomes, which ae shovn in Tl . rove tha incresing
e umber of chiats tined in each round suely leads 1>
e improsment ofthe il perormance. Addiionlly, when
euing it th Non 1D dt, e syste, with sl vl
FC gt sl 1 schiev comvergace. Due 0 hecle da
a2 igh b of clens el 0 achice bigh accuicy,
e st experimarts in hs sty would 1 1 vale of C
4502 for reducin the burdn of oputing, and fnding e
optimal valu o anshe hyprpariete such s e of
cpochs E o bach sze 5. Tube 1 presents bow £ and
Could i 0 e eing sl of e Todered eaning
ramevork. When inccasing the vl of 5 rom 10 0 16,
e bt courcy on D dt o & panclar commuiction
tound i ignicandy reduced, whil ht hange helps robst
e secracy on Non-ID s from 90.69% 1 93.30% That
improsenct provs tha 3 bach iz of 16 might b more
v in e roces o deling with Non 11D dta. M
Wil the bt sz of 4l is employed o he expeiment
bt could o ke any remarkable caancements. Fo the
adjusunen of th mumber of epochs, £ = 1 and E = 2 e
funhe ppled e waining sysem, whie keepng all of e
therbypesparameer. Howeve, sinila 0 hecas of  batch

ihe clasicaon system by cvluaing more sue-of th-at
deep leming desigs, ramly, RsNeSD, ComNeXt, and
MAxVIT. T resls of these works st pesentd in Tble:
I Campared with he bseline ol of VGGI6, the best
accuscy of ComNeXt snd MaxVT wshitectures ot putclar
communicaion rounds sgnificanly oupetoem . orignd
st on 1D dte. After 100 rounds, ComNeXt would b e
et model fo handing the sk of bran tumor clsicaon
‘hen deain Wit 11D dot,wih 8 69% sceacy Witk None
D Gt ltough the best sccursy of ComNeXt s bt
han VGG aftr s 0 ounds, i il cant svecoms
pek of VGGG whea ending up e raiing process f 100
ounds. Thus, VGGI6, with 95.30% accuacy, migh be e
most pssibl clasfr 1 tackle Noa ID s

V. Coxcuusions

For he puapose of developing  brin o clsifcaion
st widoot coualzing data samples, he fficay of a6
oo leaingslorth known ss FedAvg i bein examiaed
in s stdy. As simulaon o indusial forms the dtaser
s diseminied 0 10 clicns i two diffeen mtbods (1D
and Noa D) Based o s, the systm's byprspametcss
e modifod o improve classifcaion securacy. T, e
foderted leaming system with ComNeXt 13 he clasiier
acicves remarkable peormance on classfing ree types
of brsi tumors,with 96,695 acursey on 1D dits, whie
one of VGGIG peaks t 9330% accuracy on NowIID daa
The difculies soisted wih sl heeogeney o non-
independent and ndiviile dte, bowever, have 2t et been
fully resolvd, making he comergence piocss unsible nd
uscopible o unseen” data, As & el e i et oom
for this fderied Iening sysem 1 be improved by more
llectvely addresing he problems with Now IID dats

RerRences

i s e
I





image17.jpeg
1 et i e s
e L
o o B e e
B
16) 080 o e Sy S, S Pl N N,
e
B
SRR e
St Ea e
e
P
w B e B
R
L
EnEnE i
S
N T ———
100) K Chog W Husg. Shsglane i K Yo, ot Yg. 2
iy
o
1 i et B .
P et iy Sy
I





image18.jpeg
Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

ELSEVIER ‘Procedia Computer

fence 00 (2023) 000-000

W elsevier comlocate/procedia

Seventh Information Systems International Conference (ISICO 2023)
Medicinal Plants Identification Using Federated Deep Learning
Khanh Le Dinh Viet*, Khiem Le Ha*, Trung Nguyen Quoc®, Vinh Truong Hoang®

“Depariment of Information Technology, FPT Univesit, Ho Chi Minhciy, Vietnam
“Faculty o nformation Technology: Ho Chi Min City Open Universiy, Viewam

Abstract

Overthe years,scientists have discovered bioactive chemicals in many of the plants that have been traditionally utlized as medicinal
‘medicines. However, identifying plant species based on their physical characteristics can be difficult, and misidentification can have.
severe consequences, such as the use of the incorrect plant as a medicine. With the advent of machine learning techniques such as
decp learning and federated learning, it is now possible to develop automated systems for the precise image-based classification of
medicinal plants. Nevertheless, medicinal plant classification using deep learning techniques typically requires a large amount of
data, which can be challenging to acquire and manage due to privacy concens, data ownership, and geographic reasons. Federated
learning provides a solution to thisissue by enabling the training of a shared model on multiple devices withoutrequiring centralized
data storage. In this work, we assess and optimize the federared leaming framework using two federated learning approaches,
FedAvg and FedProx, and four state-of-the-art deep learing networks for the job of categorizing medicinal plants by distributing
the original training set into two forms, IID and Non-1ID. Ultimately, the accuracy of the optimal federated learing system is
improved by 5.65% and 14.84% over the baseline on IID data and Non-IID data, respectively. Furthermore, the study brings up a
new difficult arena for the task of classifying medicinal plants using Non-ID training data.

©2023 The Authors. Published by Elsevier B..
“Thisis an open access article under the CC BY-NC-ND license (htp:/fcreativecommons orglicenses/by-ne-nd/4.0)
Peer-review under responsibility of the scientific committee of the Seventh Information Systems International Conference.

Keywords: Medicinal Plants; Federated Leaming; Clasification; Deep Learning

1. Introduction

Since ancient times, medicinal plants have been utilized to treat a wide range of ailments and diseases. Although
the use of medicinal plants has decreased as modem medicine has developed, their significance in traditional and
alternative medicine has not diminished. The identification and use of medicinal plants in traditional medicine, as
well as their preservation and protection in the wild, depend on their classification. However, manual observation and
study of plant traits used in conventional methods of classification can be time-consuming and prone to inaccuracy.

‘The accuracy and speed of medicinal plant classification have recently showed significant promise thanks to recent
developments in machine learning, particularly deep leaming. However, the availability and caliber of training data
have a significant impact on how well machine learning models perform. Given that these plants are frequently found
in secluded and difficult-to-reach places, gathering big and diverse datasets for the classification of medicinal plants
can be a considerable difficulty.

1877-0509 © 2023 The Authors. Published by Elsevier B.Y.
“This is an open access artcle under the CC BY-NC-ND license (htp:creatvecommons orgficenses/by-nc-nd/4.0))
Pect.review under responsibliy of the scientific commitie of the Seventh Information Systems International Conference.
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Fig. 1: The illustration of federated Iearning system.

A new machine learing paradigm called federated learning [21] tackles the difficulties associated with training
‘models on distributed and decentralized data. Without sharing their data with a central server, several clients, each
with their own dataset, work together to build a shared machine learning model in federated learning. This method
provides various benefits, including higher scalability, improved data privacy, and less communication expenses.

In this study, we investigate the use of federated learning in the identification of medicinal plants. By utilizing two
federated leaning algorithms, FedAvg [10] and FedProx [7], we specifically study the efficacy of federated leaning
in training deep leaming models on decentralized and distributed datasets of medicinal plant photos. In a restricted
‘number of communication rounds, we also assess the effects of several model architectures and hyper-parameters
on the accuracy of classification results and compare how well federated learning performs on two data distribution
‘methodologies.

The remainder of the essay is structured as follows. In Section 2, we examine relevant research on federated
leaming and the classification of medicinal plants. We outline our federated learning algorithm and the used dataset
for classifying medicinal plants in Section 3 of this paper. e give experimental findings and contrast the effectiveness
of federated learning with different models and hyper-parameters in Section 4. We wrap up the ramifications of our
findings in Section 5 and suggest ideas for new research trajectories.

2. Related Works

We employ federated machine learning algorithms to a medicinal plant dataset in order to observe the resulting
effect. In almost previous research, the majority of works in federated leaming utilize canonical datasets such as
MNIST, CIFAR-10, and their variants, which contributes to a negative bias. In particular,this lack of generalization can
prevent external individuals or organizations from utilizing federated learning in their products or service solutions,
as they lack solid evidence that all research conclusions are independent of domain data or classifier architectures.
Since the early 20005, a number of concepts regarding the partitioning of computing tasks have been explored.
On structured perceptron, iterative parameter mixing implements the concept that most closely resembles how the
federated learning technique is constructed [9]. In addition, some publications investigate distributed optimization
‘methods [2, 24]. These works focus solely on reducing complexity and maximizing available hardware resources in
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order to accelerate the learning process (datais gathered at one location). Federated Learning is the result of integrating
previous works in response to the need for a model that enables the security and use of massive data on end devices
[10]. In this new context, there are inherent challenges (we follow these challenges in directing our experiments,
which will be presented in greater detail in subsequent sections): (1) privacy concerns; (2) the disparity in client
data regarding size, feature space, and data distribution; (3) different hardware specifications; and (4) convergence
assurance when compared to a centralized situation.

FedAvg [10] illustrates that client diversity is the most critical factor affecting our performance. Some recent in-
vestigations have attempted to address this issue, but they are not exhaustive. In spite of the fact that FedAvg is an
empirical technique that functions well in specific contexts under the condition that hyper-parameters are properly
tuned, more recent theoretical works support the robustness of this method [22, 23]. However, the authors presume
that every device participates in each round of the process and that the used solver is typically predefined (either SGD
or GD). Exposing a client’s data to other clients or to the coordinator is a strategy for addressing the heterogeneous
issue. Nonetheless, this imposes a significant stress on network bandwidth (especially in enyironments with expensive
network connections) and simultancously violates privacy standards. FedProx [7] provides a more comprehensive
theoretical framework for handling heterogeneous data than previous works. Through a mechanism that permits some
clients to submit their truncated parameters, the authors also accommodate for the disparity in computational capabil-
ities between clients.

Fig. 2: The demonstration of VNPlant-200 dataset.

Numerous researchers are drawn to the identification of medicinal plants due to its widespread applications in both
the medicinal community and industry. Regarding datasets, the majority of works rely on their own self-collected
datasets, which typically offer distinct properties because each nation has a unique biologic ecosystem. This com-
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plicates the process of comparing attained results for the purpose of leveraging existing models, as collectors utilize
various lighting, perspectives, sizes, and backgrounds when taking photographs. Currently employed leaf recognition
datasets include Flavia [20], Swedish Leaf [16], ICL [19], Leafsnap [S]. The majority of the images were captured in
controlled environments, and each represents a distinct group of plants. Evidently, identifying a single leaf in indoor
conditions is a far away from identifying a plant in an outdoor setting captured by a handheld device. Several papers
on medicinal plants from India and Southeast Asia have been proposed with different datasets [14, 6, 1, 18, 11]. Leaf
detection could be utilized to improve overall performance; it requires image preprocessing, image enhancement, or
even localization and segmentation. Gao and Lin [3] employ OTSU, an effective segmentation algorithm, to increase
their accuracy to 99.9%. Typical feature extractors include HOG, LBP, the transform technique, and deep learning
‘models.

'VNPlant-200 [13] is regarded as the first publicly available actual dataset on Vietnamese herbs. The datasetincludes
20,000 images of 200 species, with 12,000 used for training and the remainder for testing. The images are quite
challenging due to the fact that it stimulates outdoor perspective with a variety of noise objects and varying points of
view. Using SIFT and SURF feature extractors in conjunction with Random Forest classifier yields modest results as
a baseline [13]. In [12], the author adopted multiple CNN classifiers, including VGG, Inception V3, MobileNetv2,
Resnet50, DenseNet, and Xception, which significantly improves accuracy. Another group extends their experiments
to numerous state-of-the-art classification backbone models and provides a tuning framework for hyper parameter. In
addition, they conduct time-efficient comparisons in their task.

Methods
3.1 Dataset

The VNPlant-200 dataset [13] is utilized in this study to examine how well the federated learning architecture
performs when classifying medicinal plants. Figure 2 demonstrates several medicinal plant samples of VNPlant-200.
‘With a percentage of 50%, 10%, and 40%, respectively, the original dataset is separated into training, validation, and
testing sets. Following that, the training images are dispersed to 10 clients using either the independent and identical
distribution (IID) method or the non-independent and identical distribution (Non-TID) method. In the IID technique,
clients are randomly assigned training data, resulting in data that is distributed similarly across all clients. Instead,
the Non-IID technique sorts medicinal plants according to their labels before seeding the data into clients in the ap-
propriate sequence. When using federated learning, the second strategy might reflect a heterogeneous property of
decentralize data in the real world. The process of identifying medicinal plants would be more difficult than earlier
similar efforts due to the diversity distribution among each client, and this would provide a new avenue for classifica-
tion optimization.

3.2. Federated Learning Frameworks For Classification

The suggested medicinal plant identification frameworks utilizing federated learning include two key components:
classifiers and federated learning algorithms. The demonstration of our federated learning systems is shown in Figure
xx. Four contemporary deep learing architectures, namely VGG16 [15], ResNets0 [4], ConvNext [8], and MaxVit
[17], are incorporated into the framework to enhance identification performance for the classification models. In the
context of federated learning, at each round of communication, the classifier parameters of trained clients are sent to
the central server, which then employs federated algorithms as an aggregation method for handling clients’ parameters
in order to update the global model. Figure 1 illustrates how a federated learning system works.

FedAvg [10] is based on a basic but effective concept. A C portion of clients would participate in the training
procedure during each communication round. The located data would be looped through E epochs and B batch size
for each client. After local tasks have been completed, the weights of each classifier will be averaged to update
all client models. However, arbitrarily averaging the model weights could result in an unstable training process if
the difference between training data from each communication round is significant. The FedProx [7] algorithm may
improve classification performance through a more stable coverage process by incorporating proximal terms into loss
functions in order to solve this issue.
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4. Experimental Results

Many experiments are conducted to optimize federated leaming framework for the best medicinal plants clas-
sification performance in a fixed number of communication rounds. To optimize federated learning framework for
‘medicinal plant categorization in a fixed number of communication rounds, many experiments are done. All of the
experiments are executed on Google Colab and require 1000 computing units, which is equivalent to 500 hours of
training,

In the initial phase, the objective of tuning experiments is to determine appropriate values for C, B, and E using the
baseline framework of VGG16 and FedAVg as a classifier and federated learning algorithm, respectively. Table 1 and
Figure 3 displays the framework's medicinal plant identification using VGG16 and FedAvg with B = 10, E = 5, and
increasing C values after 10, 20, 50, and 100 communication cycles. hen more clients are involved in each training
round at once, the categorization performance improves. In addition, the extent of influence between IID and Non-ITD
data differs. Specifically, on Non-ID data, the classification results improve more than IID data on each increment
value of C, which can be explained by the unique data distribution of each Non-TID client, but the data distribution of
TID clients is similar to the worldwide distribution. For the sake of computation, subsequent experiments fix C to 0.2
and tune additional variables such as B, E, and the classifier.

Table 2 and Figure 4 demonstrates the classification performance of the proposed framework with varying values
of B and E. When increasing the batch size from B = 10 to B = 16, the highest accuracy for inspected rounds also
improves substantially. Following 100 rounds, the accuracy of TID data grew by 0.37%, from 88.56% to 88.93%, while
the accuracy of Non-TID data climbed by 0.95%, from 67.81% to 68.76%. However, consistently increasing B to 32
does not result in a significant improvement comparable to B = 16. Thus, B = 16 would be an optimal value of B
in the federated learning framework for medicinal plant classification. To avoid over-fitting of the local model during
training progress, small values of epoch E are used in the experiments. For £ = 1 and E = 2, there is no improvement
in the training stage for either IID or Non-IID data, so the optimal number of epochs is E = 5.

After determining the most suitable hyper-parameters for the framework, a number of contemporary deep learning
networks are used as classifiers to determine which could yield the highest accuracy. These experimental outcomes are
displayed in Table 3 and Figure 5. Using ConvNext as a classification model considerably increases the final accuracy
Of TID results from 88.93% to 94.51%. In the meantime, after 100 communication cycles, ResNetS0 is the best model
for classifying Non-TID medicinal plant data with 82.65% accuracy, a 13.92% improvement over VGG16's 68.76%
accuracy. Despite the suggested framework achieves excellent performance with FedAvg on IID data, with a peak of

D Non-IID
10 | 20 [ 50 [ 100 | 10 | 20 [ 50 | 100
0.1 | 6834 | 77.84 | 84.95 | 85.56 | 1044 | 12.81 | 20.00 | 3180
82.90 | 86.80 | 88.56 | 33.39 | 4135 | 60.19 | 67.81
85.15 | 88.04 | 89.24 | 38.13 | 53.61 | 70.65 | T4.68 |
86.76 | 89.09 | 89.09 | 51.73 | 6640 | 77.71 | 8128

“Table 1: Clasification resuls of VGG16, FedAvg with B = 10, E = 5 and diffeent C

D Non-TID
T0] 20 50] 100 10] 20| 50] 100
10 | 77.08 | 82.90 | 86.80 | 88.56 | 33.39 | 41.35 | 60.19 | 67.81
16 | 78.48 | 83.41 | 87.50 | 88.93 | 31.61 | 41.59 | 58.60 | 68.76
32| 7938 | 84.13 | 86.69 | 88.28 | 31.51 | 44.14 | 5739 | 66.66
10 | 55.60 | 70.00 | 81.20 | 85.71 | 21.49 | 36.04 | 48.56 | 63.11
10 | 65.03 | 78.36 | 84.75 | 88.64 | 26.96 | 38.33 | 58.53 | 6734

O O A O 9N

“Table 2: Tuning resulls of VGGI6 and FedAv with € = 0.2

94.51% after 100 communication rounds, the task of classifying Non-TID remains difficult, with a final accuracy of just
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jin) Non-lID

Model T0] 20] 50 100 10] 20] 50 100
VGG16 | 7848 | 83.41 | 87.59 | 88.93 | 3161 | 41.59 | 58.60 | 68.76
ConvNext | 86.40 | 91.29 | 93.59 | 94.51 | 30.86 | 48.15 | 68.11 | 73.09
ResNet50 | 82.73 | 87.93 | 91.94 | 93.10 | 34.51 | 48.15 | 72.85 | 8265
MaxVit | 79.41 | 88.64 | 92.65 | 94.01 | 36.76 | 43.08 | 69.79 | 7633

Tuble 3 Classifcation esults o different models using FedAvg with C = 0.2, 5= 16,and E =5

May Non-IID
0] 20 50] 100

0 | 3451 | 48.15 | 7285 | 8265

1| 3548 | 50.00 | 73.23 | 8295
0.1 | 3476 | 48.48 | 73.13 | 82.37
001 | 3434 | 5093 | 73.10 | 8271
0.001 | 35.24 | 49.60 | 73.81 | 8241

“Tuble 4: Medical plants classfication resuls with FedProx, ResNetS0, € = 02, B = 16, and £ = 5

82.65%. Individual clients’ disparate data distributions slow down the convergence of classification models and hinder
global models from correctly representing the distribution of data. FedProx is therefore anticipated to maintain the
training process’ stability by including a proximal term in the loss function, which may be managed by changing the
value of . The results of the federated learning framework utilizing ResNet50 and FedProx with diverse ¢ values are
presented in Table 4 and Figure 6. In comparison to the findings of FedAvg (4=0), all FedProx tests produce superior
results, reaching a peak at 1 = 1 with 0.38% improved accuracy after 50 rounds and 0.30% improved accuracy after
100 rounds.

a | e G
@D ©)Non D daa

Fig. 3: Clasification resuls of VGG16, FedAve with B = 10, E = 5 and different C

5. Conclusion

In this work, the usefulness of federated learning for medicinal plant classification was investigated utilizing both
TID and Non-TID data. FedAvg and FedProx algorithms were utilized to train a deep learning classifier on a large
dataset of medicinal plant images that were distributed across multiple participating devices without the need to
share data. The performance of our federated learning system was enhanced by adjusting hyper-parameters including
the batch size B, number of epochs E, classifier model, and control value of proximal term mu. Additionally, we
have shown how FedProx outperforms FedAvg in terms of accelerating convergence and strengthening the training
process, especially apparent for Non-IID data. In the end, after 100 communication rounds, the fantastic performance
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Fig. 5 Classifcation results o different models using FedAvg with C = 0.2, 5 = 16, and E =

Fig. 6 Medical plants classifcation results with FedProx, ResNetS0, € = 02, B= 16,and E= 5

of the ideal framework helped enhance 5.95% accuracy on IID data and 14.84% accuracy on Non-IID data compared
to the baseline design. Moreover, we discovered that the efficacy of our federated learning system with Non-TID data
was inferior to that with TID data. The performance of the federated learning approach may suffer as a result of the
dissemination of Non-IID data, according to this.

Overall, the findings of this study indicate that federated learning is a promising approach for the classification of
‘medicinal plants and other applications where privacy and data security are crucial. Nonetheless, the efficacy of the

federated learning approach may be impacted by the data distribution, particularly when Non-TID data are involved.
Future research could investigate the use of other, more complex federated learning algorithms and further hyper-

parameter optimization to enhance the system’s efficacy on Non-IID data.
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