
VIETNAMESE LEGAL
TEXT RETRIEVAL

by

Nguyen Hoang Gia Khang; Nguyen Minh Nhat

THE FPT UNIVERSITY

HO CHI MINH CITY

VIETNAMESE LEGAL TEXT
RETRIEVAL

by

Nguyen Hoang Gia Khang; Nguyen Minh Nhat

Supervisor: Nguyen Quoc Trung

A final year capstone project submitted in partial fulfillment of the
requirement for the Degree of Bachelor of Artificial Intelligent in

Computer Science

DEPARTMENT OF ITS
THE FPT UNIVERSITY HO CHI MINH CITY

April 2023 (Month year)

Final Capstone Project 1

ACKNOWLEDGMENTS

In this section, we would like to acknowledge the following individuals and
organizations for their valuable contributions and support:

• Our supervisor, Nguyen Quoc Trung, for his guidance, expertise, and en-
couragement throughout this project.

• FPT Cloud for reducing fees GPU Server (A30) that greatly aided our
research.

• Mr. Kiet Nguyen, for his supporter about UIT-ViQuAD (version 1.0) - A
Vietnamese Dataset for Evaluating Machine Reading Comprehension.

• Our friends and family for their love and support throughout our academic
journey.

We are grateful to all those who have helped us in ways both big and small,
and without whom this project would not have been possible. Thank you all.

Final Capstone Project 2

AUTHOR CONTRIBUTIONS

Conceptualization, Gia Khang and Minh Nhat; methodology, Gia Khang; soft-
ware, Gia Khang; validation, Minh Nhat; formal analysis, Gia Khang and
Minh Nhat; investigation, Gia Khang; resources, Minh Nhat; data curation,
Gia Khang; writing—original draft preparation, Minh Nhat; writing—review
and editing, Gia Khang and Minh Nhat; visualization, Gia Khang and Minh
Nhat; supervision, Gia Khang; project administration. All authors have read
and agreed to the Final Capstone Project document.

Final Capstone Project 3

ABSTRACT

Vietnamese is a complex language with several nuances, making it challeng-
ing to develop effective text retrieval systems. The purpose of this capstone
project is to improve Vietnamese text retrieval using the Condenser architec-
ture and Phobert language model. Our objective is to enhance the accuracy
and efficiency of existing Vietnamese text retrieval systems, which can have
significant implications for search engines, chatbots, and virtual assistants.

We utilized the Condenser architecture and Phobert language model to pre-
process the text and extract meaningful features that capture the nuances of
the Vietnamese language. We evaluated the performance of our approach us-
ing various metrics, including precision, recall, and F2 score, on a Zalo Legal
dataset. The dataset contains over 3200 documents with laws.

Based on our results, we conclude that our system has the potential to
significantly improve legal research and decision-making, by providing faster
and more accurate access to relevant legal texts. Our approach can be adapted
to other domains and languages, and has potential applications in fields such as
policy analysis and compliance monitoring.

The Condenser architecture [1] combined with the Phobert language model
[2] provides a powerful tool for improving Vietnamese text retrieval systems.
The proposed approach has the potential to enhance the accuracy and efficiency
of text retrieval systems for Vietnamese, which can have significant implications
for a wide range of applications, including search engines, chatbots, and virtual
assistants. Future work could explore the scalability and generalization of the
proposed approach to other languages and domains.

Keywords: Vietnamese text retrieval; Condenser architecture; Phobert lan-
guage model; precision; recall; F2 score; natural language processing; informa-
tion retrieval; legal research.

Final Capstone Project 4

CONTENTS

ACKNOWLEDGMENTS 1

AUTHOR CONTRIBUTIONS 2

ABSTRACT 3

1 INTRODUCTION 8
1.1 Overview . 8

1.1.1 Question and Answer System 8
1.2 Main Topic . 8

1.2.1 Vietnamese Law . 9
1.2.2 Vietnamese Legal Text Retrieval 10

1.3 Specific Works . 11

2 RELATED WORKS 13
2.1 Transformer . 13

2.1.1 Introduction . 13
2.1.2 Attention Mechanism . 15
2.1.3 Encoder-Decoder Architecture 18
2.1.4 Transformer Components 20
2.1.5 Training and Inference . 24

2.2 Sparse Retrieval . 26
2.3 Dense Retrieval . 31
2.4 Cross-encoder approaches . 31
2.5 Dual-encoder approaches . 31
2.6 Sequence-to-Sequence (Seq2Seq) for question answering 31
2.7 Beam search . 32
2.8 Contrastive learning in Information Retrieval 32

2.8.1 Query-document matching 32
2.8.2 Learn a good representation for queries and documents . 33
2.8.3 Contrastive learning . 33
2.8.4 Distinguish between positive and negative pairs of text . . 34
2.8.5 Positive and negative pairs of text sampling 36

3 PROJECT MANAGEMENT PLAN 37
3.1 Overview . 37
3.2 Work Details . 37

Final Capstone Project 5

4 MATERIALS AND METHODS 41
4.1 Materials . 41

4.1.1 Dataset . 41
4.1.2 Framework and Libraries 43
4.1.3 Hardware . 44
4.1.4 Project Management Tool 47

4.2 Methods . 48
4.2.1 Processing data . 48
4.2.2 Pretrain Masked Language Model 49
4.2.3 Pretrain Condenser . 51
4.2.4 Pretrain CoCondenser . 53
4.2.5 Build Sentence Transformer 60
4.2.6 Question Answering . 62

5 EXPERIMENTS AND RESULTS 65
5.1 Dataset . 65
5.2 Processing data . 65
5.3 Pretrain Masked Language Model 66

5.3.1 Setting parameters of training model 67
5.3.2 Visualize Results . 68

5.4 Pretrain Condenser . 69
5.4.1 Setting parameters of training model 69
5.4.2 Visualize Results . 70

5.5 Pretrain Cocondenser . 71
5.5.1 Setting parameters of training model 71
5.5.2 Visualize Results . 71

5.6 Sentence Tranformer . 72
5.6.1 Evaluation methods and indicators 72
5.6.2 Setting parameters of training model 74
5.6.3 Visualize Results . 75

5.7 Final Results of Vietnamese Legal Text Retrieval 77
5.8 Final Results of Question Answering 79

6 DISCUSSIONS 83

7 CONCLUSIONS 84

8 REFERENCES 85

9 APPENDIX 89

Final Capstone Project 6

LIST OF FIGURES

List of Figures
1 Overview of their Legal Document Retrieval system in [3] 11
2 Their proposed pipeline for training in [4] 12
3 Crawled data information. 41
4 Example of in-domain data selection. 42
5 A sample in the dataset with highlighted parts in [5] 42
6 Training flow . 49
7 Masked Language Modeling examples 50
8 SBERT architecture with objective function 62
9 Overview about four versions in Vietnamese Legal Text Retrieval 66
10 Overview about training loss . 67
11 Overview about pretrain Masked Language Model 68
12 Overview about SB-Condenser-300MB 70
13 Overview about SB-Condenser-300MB 71
14 Overview about SB-Condenser-300MB-Full (Round 1) 75
15 Overview about SB-Condenser-300MB-Lite (Round 1) 76
16 Inference flow . 80

Final Capstone Project 7

LIST OF TABLES

1 Over about timeline . 38
2 Members’s work details . 39
3 Training parameters of Pretrain Masked Language Model. 67
4 Training parameters of Pretrain Condenser. 69
5 Training parameters of Pretrain Cocondenser. 71
6 Training parameters of Sentence Transformer. 74
7 Binary Accuracy Evaluation of Round 2 76
8 The results of legal text retrieval versions 77
9 Confusion matrix for binary classification 78
10 The F2 Score of legal text retrieval versions 79
11 The result of question answering version (Vqa-ViT5) 80
12 Vqa-ViT5 example result table 82

Final Capstone Project 8

1 INTRODUCTION

1.1 Overview
1.1.1 Question and Answer System

A Question and Answer (QA) system is a natural language processing (NLP)
technology designed to process and respond to user queries or questions in a con-
versational manner. This system has gained popularity in recent years with the
emergence of virtual assistants and chatbots that provide personalized customer
support and assistance. QA systems operate by using pre existing data sources
or knowledge bases to generate responses to user inquiries. The knowledge
base contains information relevant to the specific domain in which the system
operates. The system uses natural language processing (NLP) algorithms to
understand the question posed by the user and retrieve the most appropriate
response from the knowledge base.

The primary goal of a QA system is to provide accurate and relevant re-
sponses to user questions in a conversational manner, allowing users to interact
with the system in natural language. This technology is becoming increasingly
popular in the areas of customer service and support, where users can obtain
quick and accurate responses to their queries. QA systems can also be uti-
lized in educational and training applications, where users can ask questions
and receive immediate feedback. The system can also be trained to understand
multiple languages, making it possible to reach a wider audience.

One of the key challenges in developing QA systems is accurately interpret-
ing user queries or questions. Users may pose questions in a variety of ways and
use informal language that may not conform to standard grammatical rules.
The system must be able to identify the underlying intent of the question and
retrieve the appropriate response from the knowledge base. NLP algorithms
are used to analyze the language used by the user and identify the important
concepts in the question. The system then uses this information to generate
a response that is relevant and accurate. Besides, QA systems are a powerful
application of natural language processing technology. These systems have the
potential to revolutionize the way we interact with machines and access infor-
mation. By providing users with a conversational interface and the ability to
pose questions in natural language, QA systems are making it easier than ever
before to obtain accurate and relevant information. The continued development
of natural language processing technology is likely to result in even more sophis-
ticated QA systems in the future, enabling us to engage in increasingly complex
conversations with machines.

1.2 Main Topic
QA (Question and Answer) retrieval is a subfield of information retrieval that
focuses on finding answers to natural language questions from a large corpus
of documents. The goal of QA retrieval is to provide users with concise and
relevant answers to their questions, rather than a list of documents that may

Final Capstone Project 9

or may not contain the answer. QA retrieval techniques often involve natural
language processing and machine learning algorithms to analyze the question
and retrieve relevant information from the corpus of documents. QA retrieval
has numerous applications, such as virtual assistants, customer support, and
educational resources.

1.2.1 Vietnamese Law

The behavior of individuals, organizations, and the government in Vietnam is
regulated by a complete system known as Vietnamese law. Vietnam’s civil law
system is heavily influenced by French law and is the foundation of the country’s
legal system. However, Vietnam’s history and culture have also contributed to
the creation of its own distinctive legal system.

The Socialist Republic of Vietnam’s Constitution is the country’s highest
legal document and defines the legal system’s fundamental principles. The
Vietnamese people are the rulers of the country, according to the Constitu-
tion, and the state must serve their interests. The socialist-oriented market
economy, based on the idea of combining the private sector economy with the
state-owned economy, is also recognized by the Constitution.

There are four levels to Vietnam’s legal system: the Constitution, regula-
tions, statutes, and announcements. Ordinances and decrees are issued by the
government, while laws are passed by the National Assembly. Administrative
regulations are also characteristic of Vietnam’s legal system, which are issued
by government departments and agencies.

The Supreme People’s Court, the country’s highest court, and the lower
courts, which include the provincial and municipal courts, make up Vietnam’s
legal system. Vietnam’s legal system is in charge of interpreting and enforcing
the law. The lower courts’ decisions can be reviewed and overturned by the
Supreme People’s Court.

Civil law, criminal law, commercial law, and labor law are just a few of the
many areas covered by Vietnamese law. The relationships between individuals
and organizations, including marriage, inheritance, and property rights, are
governed by civil law. Crimes like murder, theft, and fraud are covered by
criminal law. Contracts, intellectual property rights, and bankruptcy are all
subjects of commercial law. The relationship between employers and employees
is governed by labor law.

The Vietnamese government has worked hard in recent years to reform the
legal system and make it easier to understand and use. The framework for
the drafting, promulgation, and implementation of laws and regulations was
established by the 2017 Law on Promulgation of Legal Documents. All legal
documents must be posted online and accessible to the public in accordance
with the law.

Additionally, in order to provide low-income individuals and families with
legal assistance, the government has established a number of legal aid centers.
People who can’t afford a lawyer can get free legal advice and representation
from these centers. To assist individuals in comprehending their legal rights and

Final Capstone Project 10

responsibilities, the government has also launched a number of legal education
programs.

In conclusion, Vietnam’s legal system is a complicated one that has changed
over time. The nation’s highest legal document, the Constitution lays out the
basic principles of the legal system. Civil law, criminal law, commercial law,
and labor law are all covered by the legal system. The legal system still faces
challenges, such as corruption and a lack of judicial independence, despite the
government’s efforts to improve transparency and accessibility.

1.2.2 Vietnamese Legal Text Retrieval

Vietnamese legal text retrieval as [6] is a rapidly evolving field that is gaining
increasing importance in Vietnam’s legal system. Legal text retrieval tools are
essential for legal professionals to find, retrieve, and analyze relevant legal doc-
uments, including laws, regulations, court decisions, and other legal documents.
However, this field presents several significant challenges that require specialized
techniques and algorithms to address.

The first major challenge in Vietnamese legal text retrieval is the complex-
ity of the Vietnamese language itself. Vietnamese is a tonal language with
a complex grammar structure that can be challenging for non-native speakers
to understand. Moreover, legal texts are written in a highly technical language
with specific legal terminology that adds another layer of complexity to the task
of retrieval. To overcome this challenge, researchers have developed specialized
techniques for analyzing Vietnamese legal text, such as natural language pro-
cessing and machine learning algorithms that can handle the complexity of the
language.

Another significant challenge in Vietnamese legal text retrieval is the lim-
ited availability of digital legal data. Although Vietnam has made significant
progress in digitizing legal documents, there is still a significant amount of legal
data that is not available in digital form. This can hinder legal profession-
als’ ability to search for and retrieve relevant legal documents, particularly in
cases that require quick access to important legal information. To address this
challenge, researchers are developing strategies for converting paper-based legal
documents into digital form, such as optical character recognition (OCR) and
document scanning technologies.

Despite these challenges, the use of Vietnamese legal text retrieval tools is
increasingly important in the fields of legal research and e-discovery. In legal
research, Vietnamese legal text retrieval tools allow legal professionals to quickly
search through vast amounts of legal data to find relevant information. This
can help inform legal strategies and decisions, enabling legal professionals to
provide better legal advice and representation. In e-discovery, Vietnamese legal
text retrieval tools can help identify, preserve, and collect electronic data for use
in legal proceedings.

One of the most promising techniques in Vietnamese legal text retrieval is
the use of machine learning algorithms. These algorithms can analyze large
amounts of legal text and identify patterns and relationships between legal con-

Final Capstone Project 11

Figure 1: Overview of their Legal Document Retrieval system in [3]

cepts, which can help improve the accuracy and efficiency of legal text retrieval.
However, the development of machine learning algorithms for Vietnamese legal
text retrieval requires significant resources and expertise.

Despite many challenges, researchers are developing specialized techniques
and algorithms for analyzing Vietnamese legal text and retrieving relevant docu-
ments. These tools play a crucial role in legal research and e-discovery, enabling
legal professionals to quickly search through vast amounts of legal data to find
the information they need. As the legal system in Vietnam continues to evolve,
the demand for efficient and effective legal text retrieval tools will only continue
to grow.

1.3 Specific Works
There are many approaches to approaching and building question-and-answer
systems, especially text retrieval systems for legal documents in Vietnamese as
deep learning approach [3]. In terms of this approach as the figure 1, The Legal
Document Retrieval job seeks to locate all contexts that are, if at all, relevant to
a given query given a set of several legal articles (contexts) and a legal inquiry.
To keep the most pertinent legal articles, the author used the BM25, a lexical
matching model. Their deep learning model can query relevant articles more
quickly and for less money thanks to this matching strategy. They also apply
this lexical matching technique to generate negative samples as the organizer
only offers positive examples. For the purpose of fine-tuning the Roberta model
for the text pair classification task, the output of this model is used to generate
training samples that include the pair of query sentences, legal articles, and
corresponding labels. They finetuned the RoBERTa model [7] by injecting legal
linguistic features into a general pre-trained language model in order to improve
its effectiveness in a particular domain. Besides, To improve the performance
of RoBERTa on the law domain, they finetuning it with 4GB of legal text data
which collect this data in two different methods: Gathered straightforwardly
from 2 sites "vbpl.vn" and "lawnet.vn". Secoundly, Concentrate sentences near
the legitimate point from the news corpus.

Final Capstone Project 12

Figure 2: Their proposed pipeline for training in [4]

Other approach as in papper " Multi-stage Information Retrieval for Viet-
namese Legal Texts" [4]. Our strategy aims to boost our system’s performance
by combining lexical matching and semantic searching. For lexical coordinating,
we involved BM25+ in bundle rank bm25. For semantic looking, we prepared
sentence-transformer models by contrastive learning. The negative sample is 0
and the label of the relevant article to query is 1 for each query in the training
dataset. We used the top-k highest ranking score from the previous training
round to obtain negative samples. The samples for each query then consisted of
positive (pos) and negative (neg) pairs of k+ (number of positive articles). The
sentence-transformer model was trained for three rounds using BM25+. Figure
2 depicts our training pipeline.

From both of these approaches, We will combine these two methods by
selecting the Phobert language model and crawling data from two reputable
legal websites such as "vbpl.vn" and "lawnet.vn". We will go through several
steps of data preprocessing to fine-tune the language model for the results of
these documents. In the next step, the Condenser architecture will be used to
determine the position of the sentence that needs to be queried. To implement
this architecture, we will go through four main parts: Finetuning the language
model, training the Condenser, training the CoCondenser, and transferring the
sentence.

Final Capstone Project 13

2 RELATED WORKS

2.1 Transformer
2.1.1 Introduction

Definition The Transformer is an architecture for natural language process-
ing tasks that was introduced in the paper "Attention is All You Need" [8]. It
is a type of neural network that is designed to process sequential data, such as
text, and has achieved state-of-the-art results in a variety of NLP tasks. The
Transformer architecture is based on the concept of attention, which allows the
network to selectively focus on certain parts of the input sequence when mak-
ing predictions. Unlike traditional sequence models, such as recurrent neural
networks (RNNs) and convolutional neural networks (CNNs), the Transformer
does not rely on recurrence or convolutions to process sequences, which makes
it more parallelizable and efficient. The Transformer consists of an encoder
and a decoder, each of which contains multiple layers of self-attention and feed-
forward neural networks. The encoder processes the input sequence, and the
decoder generates the output sequence. The self-attention mechanism allows
the Transformer to capture long-range dependencies and contextual informa-
tion in the input sequence, while the feedforward networks enable it to model
complex nonlinear relationships between the input and output. Overall, the
Transformer architecture has significantly improved the performance of NLP
models, especially in tasks that require understanding of long-range dependen-
cies and complex relationships between the input and output.

Importance The Transformer architecture is important because it has revo-
lutionized the field of natural language processing (NLP), enabling significant
advances in a wide range of NLP applications. Here are some of the key reasons
why the Transformer is important: Improved accuracy: the Transformer archi-
tecture has achieved state-of-the-art results in many NLP tasks, surpassing pre-
vious models that relied on recurrent neural networks (RNNs) and convolutional
neural networks (CNNs). This has led to significant improvements in machine
translation, language modeling, text classification, and other NLP applications;
better handling of long-range dependencies: The Transformer’s attention mech-
anism allows it to model long-range dependencies between words in a sentence,
which is critical for tasks like machine translation where context is important.
This is in contrast to RNNs, which have difficulty handling long-term depen-
dencies due to the vanishing gradient problem; more efficient computation: The
Transformer architecture is highly parallelizable, which makes it much faster
than RNNs and CNNs. This makes it possible to train larger models on larger
datasets, which has further improved its performance; flexibility and adaptabil-
ity: The Transformer architecture is highly modular, which makes it easy to
adapt to different tasks and datasets. Researchers have developed many vari-
ations of the Transformer architecture for different tasks, such as BERT [9],
GPT-2 [10], and T5 [11]

Final Capstone Project 14

Application Machine translation: The Transformer architecture has been
particularly successful in improving the accuracy of machine translation sys-
tems. It has enabled the development of models like Google’s Neural Machine
Translation (GNMT) system, which achieved significant improvements in trans-
lation quality. Language modeling: The Transformer architecture has also been
used for language modeling tasks, such as predicting the next word in a sen-
tence. Models like GPT-3 [12] have achieved impressive results in this area.
Text classification: The Transformer architecture has been used for text classi-
fication tasks, such as sentiment analysis and spam detection. It has enabled the
development of models that can accurately classify text in real-time. Question
answering: The Transformer architecture has been used to develop models that
can answer questions based on a given context, such as the Stanford Question
Answering Dataset (SQuAD) [13]. Overall, the Transformer architecture has
had a profound impact on the field of NLP, enabling significant improvements
in accuracy and efficiency in a wide range of applications.

Main components The Transformer architecture consists of several main
components, each of which plays a key role in processing sequential data, such
as text. Here’s a brief overview of the main components of the Transformer:

• Input Embedding: This component converts the input sequence into a
high-dimensional vector representation that can be processed by the neural
network. Typically, this involves mapping each word or character in the
input sequence to a vector using techniques such as word embeddings or
character embeddings.

• Positional Encoding: Because the Transformer does not rely on recur-
rence or convolution, it needs a way to capture the position of each word
or character in the input sequence. The positional encoding component
adds positional information to the input embeddings, allowing the neu-
ral network to differentiate between words or characters based on their
position in the sequence.

• Encoder: The encoder component of the Transformer is responsible for
processing the input sequence and producing a fixed-length vector repre-
sentation of the entire sequence. The encoder consists of multiple layers,
each of which contains a self-attention mechanism and a feedforward neu-
ral network.

• Decoder: The decoder component of the Transformer is responsible for
generating the output sequence based on the encoder’s fixed-length vector
representation of the input sequence. Like the encoder, the decoder con-
sists of multiple layers, each of which contains a self-attention mechanism
and a feedforward neural network.

• Self-Attention: The self-attention mechanism is a key component of the
Transformer architecture. It allows the neural network to selectively focus

Final Capstone Project 15

on certain parts of the input or output sequence when making predictions.
Self-attention is used in both the encoder and decoder components of the
Transformer.

• Multi-Head Attention: The multi-head attention mechanism is a varia-
tion of the self-attention mechanism that allows the network to attend to
multiple parts of the input or output sequence at the same time. This
improves the network’s ability to capture complex relationships between
different parts of the sequence.

• Output Layer: The output layer is the final component of the Transformer
and is responsible for producing the final output sequence based on the
fixed-length vector representation generated by the decoder.

Overall, the Transformer architecture’s main components work together to en-
able the network to process sequential data efficiently and accurately. By using
self-attention and multi-head attention mechanisms, the Transformer can cap-
ture long-range dependencies and complex relationships between different parts
of the input and output sequence, leading to significant improvements in NLP
tasks.

2.1.2 Attention Mechanism

Attention mechanism definition The attention mechanism is a key compo-
nent of modern neural networks that allows the network to selectively focus on
certain parts of the input when making predictions. Attention mechanisms were
first introduced in the context of machine translation to enable the network to
selectively focus on different parts of the source sentence when generating the
translation. The basic idea behind the attention mechanism is to compute a
set of weights that represent the importance of each input element for a given
output element. These weights are then used to compute a weighted sum of the
input elements, which is used to generate the output. The attention mechanism
can be thought of as a way of softening the alignment problem in sequence-to-
sequence tasks. Rather than relying on a hard alignment between input and
output sequences, the attention mechanism allows the network to learn a soft
alignment that can adapt to different input sequences. There are several differ-
ent types of attention mechanisms, including:

• Scaled Dot-Product Attention: This is a type of attention mechanism used
in the Transformer architecture. It computes the dot product of the query
vector and the key vectors for each input element, scales the result by the
square root of the dimension of the key vectors, and applies a softmax
function to compute the weights.

• Additive Attention: This is a type of attention mechanism that uses a
feedforward neural network to compute the weights. The input sequence
is first transformed using a linear transformation, and then a non-linear
function is applied to compute the weights.

Final Capstone Project 16

• Multiplicative Attention: This is a type of attention mechanism that uses
a dot product between the input sequence and a learned weight vector to
compute the weights. The dot product is then normalized using a softmax
function.

The attention mechanism is a powerful tool that enables neural networks to se-
lectively focus on important parts of the input when making predictions. This
has led to significant improvements in a wide range of natural language process-
ing tasks, including machine translation, language modeling, and text classifi-
cation.

How it works The attention mechanism is a key component of modern neural
networks that allows the network to selectively focus on certain parts of the input
when making predictions. Here’s a detailed explanation of how the attention
mechanism works, including its equations and advantages over other methods:
Let’s say we have an input sequence of length n and an output sequence of length
m. The attention mechanism works by computing a set of weights that represent
the importance of each input element for a given output element. These weights
are then used to compute a weighted sum of the input elements, which is used
to generate the output. The basic steps of the attention mechanism can be
summarized as follows:

• Compute the Query, Key, and Value vectors: The query, key, and value
vectors are computed for each element in the input and output sequences.
These vectors are used to compute the attention weights and the weighted
sum.Let x be the input sequence of length n, and y be the output sequence
of length m. We compute the query vector qi, key vector kj , and value
vector vj for each input element xi and output element yj as follows:

qi = Wq ∗ xi (1)

kj = Wk ∗ yj (2)

vj = Wv ∗ yj (3)

Here, Wq, Wk, and Wv are learned weight matrices.

• Compute the Attention Weights: The attention weights are computed by
applying a softmax function to the dot product of the query vector and
the key vector for each input element. The attention weights ai,j are
computed for each input element xi and output element yj as follows:

ai,j = sofmax(
qi ∗ kj√

dk
) (4)

where dk is the dimension of the key vectors

Final Capstone Project 17

• Compute the Weighted Sum: The weighted sum of the input elements is
computed by multiplying each input element by its corresponding atten-
tion weight and summing the results. The weighted sum cj of the input
elements is computed as follows:

cj =
∑
i

(ai,j ∗ vi) (5)

• Generate the Output: The weighted sum is used to generate the output
element. The output element yj is generated using the weighted sum cj :

yj = Wo ∗ [cj ; yj−1] (6)

where,
[cj ; yj−1]

is the concatenation of the weighted sum and the previous output element
yj−1, and Wo is a learned weight matrix.

Advantages of the Attention Mechanism over Other Methods: the attention
mechanism has several advantages over other methods for processing sequential
data, including: flexibility: The attention mechanism allows the network to se-
lectively focus on different parts of the input when making predictions. This
allows the network to adapt to different input sequences and capture complex
relationships between different parts of the sequence; efficiency: The attention
mechanism allows the network to process the input sequence in parallel, rather
than sequentially. This can lead to significant speedups in training and infer-
ence times; interpretability: The attention weights provide a measure of the
importance of each input element for a given output element. This can help to
explain the network’s predictions and provide insights into how it is processing
the input sequence.

Self-attention, multi-head attetion and cross-attention There are sev-
eral types of attention mechanisms that are commonly used in neural networks,
including self-attention and multi-head attention. Here’s a brief overview of
each type:

• Self-Attention: Self-attention is an attention mechanism that computes
the attention weights and the weighted sum using only the input sequence
itself. In other words, it allows each element in the input sequence to
attend to every other element in the sequence. Self-attention is particu-
larly useful for tasks that require capturing long-range dependencies be-
tween different parts of the sequence. In the Transformer architecture,
self-attention is used in the encoder and decoder layers to compute the
contextualized representation of each input and output element.

• Multi-Head Attention: Multi-head attention is an extension of self-attention
that allows the network to attend to different parts of the input sequence

Final Capstone Project 18

in parallel. In multi-head attention, the input sequence is split into several
smaller sequences, and self-attention is applied to each of these sequences
separately. The outputs of each self-attention module are then concate-
nated and passed through a linear layer to generate the final output. The
advantage of multi-head attention is that it allows the network to attend
to different aspects of the input sequence simultaneously. This can lead
to improved performance and faster convergence in training.

• Cross-Attention: Cross-attention is an attention mechanism that com-
putes the attention weights and the weighted sum using two different in-
put sequences. In the Transformer architecture, cross-attention is used in
the decoder layers to compute the contextualized representation of each
output element based on the input sequence. In cross-attention, the query
vectors are computed from the output sequence, while the key and value
vectors are computed from the input sequence. The attention weights are
then computed based on the dot product of the query and key vectors,
and the weighted sum is computed using the value vectors.

The different types of attention mechanisms offer different levels of flexibility
and computational efficiency, depending on the specific requirements of the task
at hand.

2.1.3 Encoder-Decoder Architecture

Definition The encoder-decoder architecture is a common neural network ar-
chitecture used for sequence-to-sequence (seq2seq) tasks, such as machine trans-
lation, text summarization, and speech recognition. In the traditional encoder-
decoder architecture, the input sequence is first fed into an encoder network,
which generates a fixed-length vector representation of the input sequence. This
vector representation, also known as the context vector, contains information
about the input sequence that is relevant for generating the output sequence.
The context vector is then fed into a decoder network, which generates the out-
put sequence one element at a time. In the early days of seq2seq modeling,
recurrent neural networks (RNNs) were commonly used as the encoder and de-
coder networks. In this case, the input sequence is fed into the encoder RNN,
which generates a sequence of hidden states that encode the information about
the input sequence. The final hidden state of the encoder RNN is then used as
the context vector for the decoder RNN, which generates the output sequence
one element at a time. However, RNNs suffer from the vanishing gradient prob-
lem and are slow to train, which limits their performance on long sequences.
More recently, the Transformer architecture has emerged as a popular alterna-
tive to RNNs for seq2seq tasks. The Transformer uses self-attention to compute
the context vector for the decoder, rather than relying on a fixed-length vector
generated by an encoder. The input sequence is first passed through an en-
coder stack of self-attention and feedforward layers to generate a sequence of
encoder outputs. The decoder stack then uses self-attention and cross-attention
over the encoder outputs to generate the output sequence. The self-attention

Final Capstone Project 19

mechanism allows the Transformer to capture long-range dependencies in the
input sequence without suffering from the vanishing gradient problem, and the
parallelizable nature of self-attention allows for faster training and inference.
The encoder-decoder architecture is a powerful tool for seq2seq tasks, and the
choice between RNN and Transformer architectures will depend on the specific
requirements of the task at hand.

How it works The encoder-decoder architecture works by first encoding an
input sequence into a fixed-length context vector using an encoder network, and
then decoding this context vector into an output sequence using a decoder net-
work. The encoder network takes as input a sequence of tokens (e.g., words,
characters, or phonemes) and generates a sequence of hidden states that repre-
sent the input sequence. Each hidden state is generated by passing the current
token and the previous hidden state through a non-linear activation function
(e.g., a hyperbolic tangent or a rectified linear unit). The final hidden state of
the encoder network is used as the context vector for the decoder network. The
decoder network takes as input the context vector and generates the output
sequence one token at a time. At each time step, the decoder network generates
a hidden state based on the current input token and the previous hidden state,
and then generates the output token based on this hidden state. This process
is repeated until an end-of-sequence token is generated or a maximum output
length is reached. In the traditional encoder-decoder architecture, the encoder
and decoder networks are typically implemented as recurrent neural networks
(RNNs), such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit
(GRU) networks. However, these networks can suffer from the vanishing gradi-
ent problem, which limits their performance on long sequences. To address this
issue, the Transformer architecture was introduced. The Transformer uses self-
attention instead of RNNs to encode and decode the sequences. Self-attention
allows the model to capture long-range dependencies between the tokens in the
sequence, while also being parallelizable and efficient. In the Transformer ar-
chitecture, the input sequence is first passed through a stack of encoder layers,
each of which applies self-attention and feedforward layers to the input sequence
to generate a sequence of encoder outputs. The decoder network then uses self-
attention and cross-attention over the encoder outputs to generate the output
sequence. The self-attention mechanism allows the Transformer to capture long-
range dependencies in the input sequence without suffering from the vanishing
gradient problem, and the parallelizable nature of self-attention allows for faster
training and inference. The encoder-decoder architecture is a powerful tool for
sequence-to-sequence tasks, and the choice of encoder and decoder architecture
will depend on the specific requirements of the task at hand.

How Transformer generates prediction The Transformer architecture
uses the encoder-decoder architecture to generate predictions for a variety of
sequence-to-sequence tasks, such as machine translation, text summarization,
and question answering. In the Transformer, the input sequence is first passed

Final Capstone Project 20

through a stack of encoder layers, each of which applies self-attention and feed-
forward layers to the input sequence to generate a sequence of encoder outputs.
These encoder outputs contain information about the input sequence that is
relevant for generating the output sequence. The output sequence is then gen-
erated by the decoder network, which also consists of a stack of decoder layers.
At each time step, the decoder takes the previously generated tokens (or the
start-of-sequence token for the first time step) and the context vector generated
by the encoder as input, and generates the next token in the output sequence.
The context vector is generated by performing attention over the encoder out-
puts, weighted by the current state of the decoder. The attention mechanism
used in the Transformer allows the model to focus on different parts of the input
sequence at each time step, based on the current state of the decoder. This en-
ables the model to capture long-range dependencies and generate accurate pre-
dictions for a variety of sequence-to-sequence tasks. During training, the model
is typically trained to minimize a loss function that measures the difference be-
tween the predicted output sequence and the ground truth output sequence.
The model parameters are updated using gradient descent, which iteratively
adjusts the model parameters to minimize the loss function. The Transformer
architecture uses the encoder-decoder architecture to generate predictions for
sequence-to-sequence tasks, with the attention mechanism enabling the model
to capture long-range dependencies and generate accurate predictions.

2.1.4 Transformer Components

Input Embedding The Input Embedding layer in the Transformer architec-
ture is responsible for mapping the input tokens (e.g., words, characters, or
phonemes) into continuous vector representations, also known as embeddings.
These embeddings capture the semantic meaning of the tokens and allow the
model to operate on a continuous vector space. In the Transformer, the input
embeddings are first multiplied by a learned weight matrix, and then position-
ally encoded to capture the order of the tokens in the sequence. The position
encoding is added to the embeddings and serves as a way for the model to dis-
tinguish between tokens based on their position in the sequence. The equation
for the Input Embedding layer in the Transformer is:

Einput = Embedding(x) ∗
√
dmodel + PE (7)

where,

• x is the input token

• Embedding is a function that maps the input token to its embedding
vector

•
√
dmodel is a scaling factor used to prevent the embeddings from becoming

too small or too large

• PE is the positional encoding vector for the input token

Final Capstone Project 21

• Einput is the final input embedding vector for the input token

The dimensionality of the embedding vector is typically a hyperparameter that
is set based on the size of the input vocabulary and the complexity of the
task. In the Transformer architecture, the embedding dimensionality is often
set to be the same as the hidden layer dimensionality, dmodel, which is also a
hyperparameter.

Positional Encoding Positional Encoding is used in the Transformer archi-
tecture to add information about the position of each token in the sequence
to the input embeddings. This allows the model to distinguish between tokens
based on their position in the sequence, even if the same token appears multiple
times in different positions. The Positional Encoding function is defined as:

PE(pos,2i) = sin(pos/100002i/dmodel) (8)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (9)

where,

• pos is the position of the token in the sequence

• i is the index of the dimension of the embedding vector

• dmodel is the dimensionality of the embedding vector

The positional encoding is added to the input embeddings using element-wise
addition. The choice of the positional encoding function is based on the in-
tuition that low-frequency components represent global positional information,
while high-frequency components represent local positional information. The
use of sine and cosine functions with varying frequencies allows the model to
capture different levels of positional information. The exact function and hy-
perparameters used for positional encoding can be tuned based on the task and
dataset.

Encoder The Transformer Encoder component is responsible for encoding
the input sequence into a sequence of hidden representations, which are then
passed to the Transformer Decoder for generating the output sequence. The
Transformer Encoder consists of a stack of N identical layers, each of which has
two sub-layers: a Multi-Head Attention layer and a Positionwise Feedforward
layer. The input sequence is first passed through an Input Embedding layer,
which maps the tokens to their continuous vector representations. Then, the
Positional Encoding is added to the input embeddings to capture the order of
the tokens in the sequence. The Multi-Head Attention layer in the Encoder has
three inputs: the Query matrix, the Key matrix, and the Value matrix. These
matrices are generated from the input embeddings by linear transformations,
and are used to calculate the attention scores between the input tokens. The
output of the Multi-Head Attention layer is a weighted sum of the Value matrix,

Final Capstone Project 22

where the weights are determined by the attention scores. The Multi-Head
Attention layer can be expressed mathematically as:

MultiHead(Q,K, V) = Concat(head1, head2, ..., headh)W
O (10)

where,

• Q is the Query matrix

• K is the Key matrix

• V is the Value matrix

• headi = Attention(QWQ
i ,KWK

i , V WV
i) is the attention output for the

i-th attention head

• WQ
i ,WK

i ,WV
i are learnable weight matrices for the i-th attention head.

These are hav been briefly introduced before in Eq. 1, Eq. 2 and Eq. 3

• WO is a learnable weight matrix used to combine the outputs of the at-
tention heads

• Concat is a function that concatenates the outputs of the attention heads
along the last dimension

• h is the number of attention heads

• Attention(Q,K, V) = softmax(QKT

√
dk

)V is the attention mechanism be-
tween the Query, Key, and Value matrices

The Positionwise Feedforward layer in the Encoder applies two linear trans-
formations with a ReLU activation function to each position independently and
identically. The non-linear dependencies between the hidden states that the
Positionwise Feedforward layer is designed to capture refer to the complex re-
lationships between the embedded tokens in the sequence. Each token in the
sequence is initially represented as an embedding vector, and these embeddings
are then transformed through the multiple layers of the Transformer architec-
ture to produce a final output sequence. The Positionwise Feedforward layer
is an essential component of the Transformer architecture because it allows the
model to capture non-linear relationships between the embedded tokens in the
sequence. This is important because natural language is inherently complex,
and the relationships between tokens in a sentence can be highly non-linear and
difficult to model using linear techniques. By introducing non-linearity into the
model through the use of the ReLU activation function, and by allowing the
model to learn a non-linear mapping between the input and output sequences
through the use of the two linear transformations, the Positionwise Feedfor-
ward layer enables the Transformer architecture to capture complex patterns in
the data and achieve state-of-the-art performance on a wide range of natural
language processing tasks.It can be expressed mathematically as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (11)

Final Capstone Project 23

where,

• x is the input vector

• W1, b1,W2, b2 are learnable weight matrices and biases

The output of each layer in the Encoder is passed as input to the next layer
in the stack, allowing for the encoding of increasingly complex and abstract
representations of the input sequence. The equations for the Encoder can be
summarized as:

H0 = Einput (12)

Hi = MultiHead(Hi−1W
Q
i , Hi−1W

K
i , Hi−1W

V
i) +Hi−1 (13)

Hi = FFN(Hi) +Hi (14)

where,

• Einput is the input sequence after the Input Embedding and Positional
Encoding layers

• Hi is the output of the i-th layer in the Encoder

• WQ
i ,WK

i ,WV
i and the learnable parameters of the Feedforward layers in

the i-th layer

• The output of the Encoder is the final hidden representation sequence,
HN

Decoder The Transformer Decoder component is responsible for generating
the output sequence, based on the encoded input sequence and the previously
generated tokens. The Transformer Decoder also consists of a stack of N identi-
cal layers, each of which has three sub-layers: a Masked Multi-Head Attention
layer, a Multi-Head Attention layer, and a Positionwise Feedforward layer. How-
ever, unlike the Encoder, the Decoder also has an additional Input Embedding
layer for embedding the target sequence. The Masked Multi-Head Attention
layer in the Decoder is similar to the Multi-Head Attention layer in the En-
coder, but with a mask applied to prevent attending to future tokens. The
Query, Key, and Value matrices in the Masked Multi-Head Attention layer are
all generated from the previously generated tokens, up to the current time step.
The Multi-Head Attention layer in the Decoder also attends to the Encoder
output, in addition to the Masked Multi-Head Attention. The Query matrix in
this case is generated from the previous layer in the Decoder, while the Key and
Value matrices are generated from the Encoder output. This allows the Decoder
to attend to relevant parts of the input sequence while generating the output
sequence. The Positionwise Feedforward layer in the Decoder is the same as the
one in the Encoder, see Eq. 11. The Input Embedding layer in the Encoder
is responsible for embedding the tokens of the source sequence into a continu-
ous vector space, where each token is represented as a dense vector. This layer

Final Capstone Project 24

learns the embeddings of the source tokens during training. In contrast, the De-
coder has to generate tokens in the target language, which are also represented
as a sequence of embeddings. Therefore, the Decoder also has an additional
Input Embedding layer that is responsible for embedding the tokens of the tar-
get sequence into a continuous vector space, where each token is represented
as a dense vector. This layer also learns the embeddings of the target tokens
during training. The embeddings of the target tokens generated by the Input
Embedding layer are then fed into the subsequent layers of the Decoder, such
as the Masked Multi-Head Attention layer, the Multi-Head Attention layer, and
the Positionwise Feedforward layer, to generate the output sequence.

Output Layer The output layer is the final layer in the Transformer archi-
tecture and is responsible for producing the final output sequence. The out-
put layer takes as input the final hidden state of the decoder, which has been
processed through the multiple layers of the Transformer architecture, and pro-
duces a probability distribution over the vocabulary of the target language.
The output layer typically consists of a linear transformation followed by a soft-
max activation function. The linear transformation projects the final hidden
state of the decoder onto a high-dimensional space, and the softmax function
normalizes the resulting vector to produce a probability distribution over the
vocabulary. The output layer is designed to produce a probability distribution
over the vocabulary of the target language, which allows the model to generate
predictions for each token in the output sequence. During training, the model
is typically trained to maximize the log-likelihood of the target sequence given
the input sequence, which involves minimizing the cross-entropy loss between
the predicted distribution and the true distribution over the target vocabulary.
In summary, the output layer is an essential component of the Transformer ar-
chitecture because it enables the model to generate predictions for each token
in the output sequence by producing a probability distribution over the target
vocabulary. The output layer is typically implemented using a linear transfor-
mation followed by a softmax activation function and is trained to maximize
the log-likelihood of the target sequence given the input sequence.

2.1.5 Training and Inference

Backpropagation The Transformer is trained using backpropagation and
gradient descent, which involves computing the gradients of the loss function
with respect to the model parameters and updating the parameters in the di-
rection of the negative gradient to minimize the loss.

The training process for the Transformer typically involves the following
steps:

• Forward Pass: During the forward pass, the input sequence is fed into the
encoder, and the output sequence is generated by the decoder. The output
sequence is then compared to the target sequence using a loss function,
such as cross-entropy loss.

Final Capstone Project 25

• Backward Pass: During the backward pass, the gradients of the loss with
respect to the model parameters are computed using the chain rule of
calculus. The gradients are then backpropagated through the layers of
the Transformer architecture, from the output layer to the input layer.

• Parameter Update: After computing the gradients, the model parameters
are updated in the direction of the negative gradient using an optimization
algorithm, such as stochastic gradient descent (SGD), Adam, or Adagrad.
The learning rate hyperparameter determines the step size of the param-
eter update.

• Repeat: Steps 1-3 are repeated for multiple epochs, until the model con-
verges to a satisfactory solution.

During training, the gradients are typically computed using a technique called
teacher forcing, in which the decoder is fed the true target sequence as input
at each time step, rather than the predicted sequence from the previous time
step. Teacher forcing can speed up convergence during training, but can lead
to suboptimal performance at inference time when the model is required to
generate sequences without access to the true target sequence.

The loss function of the Transformer is typically the cross-entropy loss, which
measures the dissimilarity between the predicted probability distribution over
the target vocabulary and the true probability distribution over the target vo-
cabulary. The cross-entropy loss is defined as:

L = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (15)

where N is the number of training examples, M is the size of the target vocab-
ulary, yij is the true probability of the j-th token in the i-th target sequence,
and pij is the predicted probability of the j-th token in the i-th target sequence.
During training, the goal is to minimize the cross-entropy loss with respect to
the model parameters, which can be achieved using backpropagation and gradi-
ent descent. The gradients of the loss with respect to the model parameters can
be computed using the chain rule of calculus and are backpropagated through
the layers of the Transformer architecture to update the model parameters. The
cross-entropy loss is a commonly used loss function in natural language process-
ing (NLP) tasks, such as machine translation, text classification, and language
modeling. It is well-suited for these tasks because it provides a measure of the
dissimilarity between the predicted and true probability distributions over the
target vocabulary, which is the main objective of NLP tasks.

The update equation for a parameter θ at iteration t is:

θt+1 = θt − η · gt (16)

where η is the learning rate, and gt is the gradient of the loss with respect
to θ at iteration t. The learning rate determines how quickly the parameters

Final Capstone Project 26

are updated in response to the gradients. A high learning rate can result in
large updates that overshoot the optimal parameter values, while a low learning
rate can result in slow convergence and getting stuck in local minima. By
iteratively repeating these steps on a large dataset of input-target pairs, the
model gradually learns to produce accurate translations.

Inference Inference refers to the process of using a trained Transformer model
to generate predictions on new, unseen data. Here is a brief overview of how
the Transformer generates predictions during inference:

• Encoder: We first feed the input sequence into the Transformer encoder
to obtain the encoded representation of the input sequence.

• Start token: We start with a special token (e.g., <s> or [START]) as the
first token in the target sequence.

• Decoder: We feed the encoded representation and the current target se-
quence into the Transformer decoder to obtain the predicted probability
distribution over the target vocabulary for the next token in the sequence.

• Sampling: We sample a token from the predicted probability distribution
using a sampling strategy such as greedy search, beam search or top-K
sampling. This sampled token becomes the next token in the sequence.

• Repeat: We repeat steps 3 and 4 until we reach a special end-of-sequence
token (e.g., </s> or [END]) or a predefined maximum length.

During inference, the Transformer uses the same encoder and decoder architec-
ture as during training, but with a few key differences. First, during inference,
we do not use teacher forcing, which means we do not feed the ground truth
target sequence as input to the decoder at each time step. Instead, we use
the previously generated token as the input to the decoder at each time step.
This means that errors can accumulate as the model generates longer sequences.
Second, during inference, we do not update the parameters of the model using
gradient descent. Instead, we use the fixed parameters learned during training
to generate predictions. Finally, during inference, we use techniques such as
beam search or sampling to generate multiple possible predictions, which we
can then rank and select the best one based on some evaluation metric such as
BLEU score.

2.2 Sparse Retrieval
A sparse representation is a high-dimensional vector where most of the values
are zero or very small. This is often the case with traditional weighting schemes
like TF-IDF [14] or BM25 [15] or BM25+ [16], which consider only the presence
or absence of individual terms in a document or query. The resulting vectors are
sparse because only a small subset of the available terms will be present in each
document or query, and the values for those terms will be non-zero or relatively

Final Capstone Project 27

high. Sparse representations are generally more efficient to store and process
than dense representations, especially when the number of dimensions is very
large, as is often the case with text data. However, they may not capture the
full complexity of the data and may not perform as well as dense representations
on certain tasks, such as natural language understanding and text generation.

Sparse retrieval methods are mainly based on relevant, similarity between
two documents, or between a query and documents based on keywords that
appear in both. Sparse Retrieval is famous for its classic algorithms including
algorithms like BM25 , TFIDF , of which is the best algorithm in this approach.
The biggest disadvantage of Sparse Retrieval is that the representation of the
vocabulary will directly and significantly affect the performance of the algo-
rithms, namely lexical mismatching. For example, “Civil law” and “civil law”
have the same meaning but are two different strings because the "c" charac-
ter is capital. In addition, to use these algorithms, the input string must be
processed by removing stopwords, which means that the grammatical structure
of the sentence will not be considered, a very important part of the semantic
representation. of the sentence. Especially, for Vietnamese, compound words in
Vietnamese show different meanings if we separate two compound words into
separate words. Depending on the language, the sparse retrieval approach must
have a specific treatment in each language.

TF-IDF TF-IDF stands for "Term Frequency-Inverse Document Frequency"
and is a commonly used technique in natural language processing (NLP) for
text data preprocessing. It is a statistical method that is used to evaluate the
importance of a term within a document or corpus.

TF-IDF considers two factors for each term in a document or corpus:

• Term Frequency (TF): This measures the frequency of a term within a
document or corpus. It is calculated as the number of times a term appears
in a document divided by the total number of terms in the document.

• Inverse Document Frequency (IDF): This measures the rarity of a term
across the entire corpus. It is calculated as the logarithm of the total
number of documents in the corpus divided by the number of documents
containing the term.

The formula for calculating TF-IDF is as follows:

TF-IDF(t, d,N) = TF(t, d) ∗ IDF(t,N) (17)

where

TF (t, d) =
number of times term t appears in document d

total number of terms in document d
(18)

IDF (t,N) = ln(
N

nt
) (19)

where, N is the total number of documents in the corpus, and nt is the number
of documents that contain the term t.

Final Capstone Project 28

TF-IDF can be used to encode each document in a corpus into a vector
representation, often referred to as a document embedding. The TF-IDF scores
for each term in a document can be combined to form a vector that represents
the document in a high-dimensional space. This vector can then be used as
input for various machine learning models or for similarity calculations between
documents.

To create a document embedding using TF-IDF, we first need to build a
vocabulary of all the unique terms in the corpus. Then, we can calculate the TF-
IDF score for each term in each document, as shown in the example I provided
earlier. Finally, we can represent each document as a vector where each element
corresponds to the TF-IDF score of a term in the vocabulary.

BM25 BM25 (Best Match 25) is a ranking function used in information re-
trieval that is a variant of the TF-IDF weighting scheme. It is often used in
search engines to rank the relevance of documents to a particular search query.
Like TF-IDF, BM25 calculates a score for each document in a corpus based on
the frequency of its query terms in the document, but it also takes into account
document length and term frequency saturation. The formula for BM25 score
is given by:

BM25(q, d) =
|q|∑
i=1

IDF(qi) ·
f(qi, d) · (k + 1)

f(qi, d) + k · (1− b+ b · |d|
avgdl)

(20)

where

• q is the query

• d is a document in the corpus

• |q| is the length of the query

• IDF(qi) is the IDF of the i-th query term qi

• f(qi, d) is the frequency of the i-th query term qi in document d

• k and b are tunable parameters

• |d| is the length of the document d

• avgdl is the average document length in the corpus

The BM25 formula differs from TF-IDF in several ways. Firstly, it uses a non-
linear function to calculate term frequency weights, where the weight increases
logarithmically with the frequency of the term. Secondly, it incorporates docu-
ment length normalization through the term (1 − b + b |d|

avgdl), which decreases
the weight of terms that occur frequently in long documents. Finally, the pa-
rameters k and b can be tuned to adjust the importance of term frequency and

Final Capstone Project 29

document length normalization in the calculation. Overall, BM25 is a more ad-
vanced weighting scheme than simple TF-IDF and has been shown to produce
better results in many information retrieval tasks.

Document length can affect the score in information retrieval because longer
documents tend to have more occurrences of any given term simply due to their
greater length. This can lead to longer documents being ranked higher than
shorter documents even if they contain less relevant information for a given
query. To address this issue, the BM25 formula incorporates document length
normalization through the term (1−b+b |d|

avgdl). This term decreases the weight
of terms that occur frequently in long documents, and thus helps to mitigate
the impact of document length on the score. By doing so, it allows shorter
documents to compete more fairly with longer documents in the ranking.

The value of the b parameter in the BM25 formula controls the strength
of the document length normalization. When b is set to 0, there is no length
normalization and document length has no effect on the score. When b is set to
1, the length normalization is fully applied and longer documents are penalized
relative to shorter documents. Intermediate values of b provide varying degrees
of length normalization. Overall, document length normalization is an impor-
tant aspect of information retrieval ranking algorithms like BM25, as it helps
to ensure that documents are ranked based on their true relevance to a given
query, rather than simply their length.

BM25+ BM25+ (also known as BM25F) is an extension of the BM25 algo-
rithm that takes into account document fields, which are different sections of
a document that may have different importance for a given query. In BM25+,
each term in the query is assigned a weight based on its frequency in the query
and the inverse document frequency (IDF) of the term in the corpus. The
weights are then combined to produce a score for each document. However, in
addition to the term weights, BM25+ also assigns weights to document fields
based on their importance for the query. Here’s a high-level overview of how
BM25+ works:

• Document fields: Each document is divided into fields, which can be things
like the title, author, or body of the document.

• Field weights: A weight is assigned to each field based on its importance
for the query. For example, the title field might be given a higher weight
than the body field if the query is expected to match more often in the
title.

• Query processing: The query is processed as in the basic BM25 algorithm,
with weights assigned to each term based on its frequency in the query
and the IDF of the term in the corpus.

• Scoring: The weights for each term and field are combined to produce a
score for each document. The score is a weighted sum of the term weights,

Final Capstone Project 30

where the weight for each term is multiplied by the weight of the field it
appears in.

• Ranking: The documents are ranked in descending order based on their
scores, and the top-ranked documents are returned as the search results.

BM25+ can be a more effective ranking algorithm than basic BM25 when docu-
ments contain multiple fields, since it takes into account the varying importance
of each field for the query. However, BM25+ also has more tunable parame-
ters than basic BM25, since weights must be assigned to each field. BM25+
combines the basic BM25 formula with field weights. Here’s the formula for
computing the BM25+ score for a document:

BM25+(q, d) =

|q|∑
i=1

IDF(qi) ·
wi · f(qi, d) · (k + 1)

f(qi, d) + k · (1− b+ b · |d|
avgdl)

(21)

where

• q is the query

• d is a document in the corpus

• |q| is the length of the query

• IDF(qi) is the IDF of the i-th query term qi

• f(qi, d) is the frequency of the i-th query term qi in document d

• k and b are tunable parameters

• |d| is the length of the document d

• avgdl is the average document length in the corpus

• wi is the weight assigned to the i-th query term qi

This equation represents the BM25+ ranking function, which is an extension
of the BM25 function that allows for query term weighting. The wi term rep-
resents the weight assigned to each query term, which can be used to adjust
the importance of different terms in the query. Using a pre-trained deep neu-
ral language model, it is possible to encode questions or supporting documents
into a continuous latent semantic embedding vector,allowing for more accurate
similarity matching and ranking of relevant passages. Dense passage retrieval is
helpful because it allows for the efficient retrieval of relevant passages or docu-
ments in response to a given query. However, dense passage retrieval uses deep
neural language models to encode queries and documents into continuous latent
semantic vectors, allowing for more accurate similarity matching and ranking
of relevant passages. The success in recent researches such as [17] [18] or [19] is
contributed by dense retrieval approaches.

Final Capstone Project 31

2.3 Dense Retrieval
Using a pre-trained deep neural language model, it is possible to encode ques-
tions or supporting documents into a continuous latent semantic embedding
vector,allowing for more accurate similarity matching and ranking of relevant
passages. Dense passage retrieval is helpful because it allows for the efficient re-
trieval of relevant passages or documents in response to a given query. However,
dense passage retrieval uses deep neural language models to encode queries and
documents into continuous latent semantic vectors, allowing for more accurate
similarity matching and ranking of relevant passages. The success in recent
researches such as [17] [18] or [19] is contributed by dense retrieval approaches.

2.4 Cross-encoder approaches
The cross-encoder consists of a backbone language model, which can be BERT
[20], RoBERTa [7], or any other transformer encoder model. It is able to cap-
ture global interactions between a query and a document [21][22]. The input
consists of a pair of a query and a document, which are passed through the
backbone language model to generate a joint representation that captures the
relationship between the two inputs. However, the cross-encoder approach also
has some drawbacks, such as higher computational complexity and longer train-
ing times compared to the dual-encoder approach. Nevertheless, its advantages
in capturing global interactions between inputs make it a powerful approach for
dense retrieval in information retrieval and related fields.

2.5 Dual-encoder approaches
The dual-encoder approach involves two backbone language models, typically
also transformer encoder models. One model is trained to encode queries, while
the other is trained to encode documents. The dual-encoder approach maps
input queries and output targets to a shared vector space, where the inner
products of the query and target vectors can be used as a reliable similarity
function. In practice, dual encoders accomplish the ability to scale to a large
number of targets through two mechanisms: sharing weights among targets by
means of a parametric encoder, and employing a scoring function based on inner
products that is efficient. Therefore, it is a potential research topic of [23],[24]

2.6 Sequence-to-Sequence (Seq2Seq) for question answer-
ing

In an extractive question answering task, the goal is to identify the answer span
within a given context that best answers a question. While encoder models are
currently the preferred choice for extractive question answering, sequence-to-
sequence (Seq2Seq) is also proved its great performance in extractive question
answering via [11] [25] [26]. Recently, a novel method for applying Transformer
models to extractive question answering tasks has been proposed [27]

Final Capstone Project 32

2.7 Beam search
Beam search is a popular decoding algorithm used in natural language process-
ing for generating text. It works by iteratively generating the most probable
next token based on a language model, while keeping track of a fixed number
(k) of most probable sequences (i.e., "beams") at each time step. Here is the
mathematical equation that describes how Beam search works:

At each time step t:

• Initialize the set of k most probable sequences: H
(0)
t = ∅

• For each sequence h
(i)
t−1 ∈ H

(i)
t−1, generate the top k most probable next to-

kens and append them to the sequence to form k new candidate sequences:
H

(i)
t = h

(i)
t−1 + y : y ∈ topk(P (y|h(i)

t−1))

• Sort the k * k candidate sequences by their probability based on the lan-
guage model score and keep only the top k: H

(i)
t = topk(H

(i)
t)

• Repeat steps 2-3 for each sequence in H
(i)
t−1 to obtain H

(i+1)
t

• Terminate the search if the end-of-sequence token is generated or the max-
imum length is reached. Otherwise, go to step 2 for the next time step.

• Return the most probable sequence among all sequences in Ht at the final
time step.

In the above equation, H(i)
t represents the set of the i-th most probable sequences

at time step t, P (y|h(i)
t−1) represents the conditional probability of token y given

the previous sequence h
(i)
t−1, and topk(S) represents the top k elements in set S

based on a score or ranking function.

2.8 Contrastive learning in Information Retrieval
2.8.1 Query-document matching

Information retrieval is the task of retrieving relevant documents from a large
corpus in response to a user query. The goal of information retrieval is to
match the user’s information need as expressed in the query with the relevant
documents in the corpus.

In an information retrieval system, the user submits a query, which is typi-
cally a short piece of text describing their information need. The system then
searches a large corpus of documents, such as a collection of web pages, news
articles, or scientific papers, to find the documents that are most relevant to the
query.

The relevance of a document to a query is typically assessed using some
relevance criteria, such as keyword overlap, term frequency, or other statistical
measures. The documents that are most relevant to the query are then returned
to the user as the search results.

Final Capstone Project 33

Information retrieval has a wide range of applications, including web search,
document search, patent search, legal search, and many others. The goal of
information retrieval is to help users find the information they need quickly and
efficiently, by matching their queries with the most relevant documents in the
corpus.

2.8.2 Learn a good representation for queries and documents

One way to improve information retrieval is to learn a good representation of
documents and queries that captures their similarity or relevance. The idea is to
transform the raw text of documents and queries into a numerical representation
that can be used by machine learning algorithms to model the similarity or
relevance between them.

The representation should ideally capture the underlying semantics and
meaning of the text, rather than just its surface features. For example, two
documents that are about the same topic but use different words or phrases to
describe it should be represented as similar in the representation space.

Learning a good representation of documents and queries can be done using
various techniques, such as:

• Vector space models: This approach represents documents and queries as
vectors in a high-dimensional space, where each dimension corresponds
to a different term or word. The similarity between two documents or
queries is then computed using various distance measures, such as cosine
similarity or Euclidean distance.

• Topic models: This approach represents documents as mixtures of latent
topics, where each topic is a probability distribution over the words in
the vocabulary. The similarity between two documents is then computed
based on their overlap in topic distributions.

• Neural network-based models: This approach uses neural networks to
learn a non-linear mapping from the raw text of documents and queries
to a continuous vector space. The network is typically trained using a su-
pervised or unsupervised learning objective, such as maximum likelihood
or contrastive learning.

By learning a good representation of documents and queries, we can improve
the performance of information retrieval systems by better capturing the seman-
tic and contextual information in the text, and by enabling more sophisticated
ranking and retrieval algorithms that take into account the similarity or rele-
vance between the query and the documents in the corpus.

2.8.3 Contrastive learning

Contrastive learning is a popular unsupervised learning (most of cases) approach
for learning representations because it can learn useful representations without

Final Capstone Project 34

the need for explicit supervision or labeled data. Contrastive learning is a self-
supervised learning method that learns representations by contrasting similar
and dissimilar pairs of data.

In contrastive learning, we start by creating pairs of similar and dissimilar
data points. For example, we can create a pair of similar data points by tak-
ing two different augmentations of the same image, or we can create a pair of
dissimilar data points by taking an image and a completely different image.

The idea is to learn a representation that maps similar data points close
together in the embedding space and dissimilar data points far apart. This is
achieved by optimizing a contrastive loss function that encourages the model to
minimize the distance between similar data points while maximizing the distance
between dissimilar data points.

Contrastive learning has shown to be effective in a variety of tasks, includ-
ing image classification, object detection, and natural language processing. It
has also been shown to be effective in learning representations for information
retrieval tasks, such as dense passage retrieval.

One reason why contrastive learning is popular is because it does not require
labeled data, which can be expensive and time-consuming to obtain. Instead,
it can use unlabeled data, which is typically abundant and easy to obtain.
Additionally, contrastive learning can leverage the vast amounts of unlabeled
data available on the internet to learn general-purpose representations that can
be fine-tuned on specific tasks. This makes contrastive learning an attractive
approach for learning representations for a wide range of applications, including
information retrieval.

2.8.4 Distinguish between positive and negative pairs of text

Contrastive learning works by learning a representation that maps similar data
points close together in the embedding space and dissimilar data points far
apart. This is achieved by optimizing a contrastive loss function that encour-
ages the model to minimize the distance between similar data points while max-
imizing the distance between dissimilar data points. In the context of learning
representations for information retrieval, the data points can be queries and
documents, and the goal is to learn a representation that maps relevant queries
and documents close together and irrelevant queries and documents far apart.

Formally, let’s assume we have a set of queries Q and a set of documents
D, and we want to learn a representation function f(.) that maps queries and
documents to a common embedding space, i.e., f(Q) and f(D) are embeddings
of the queries and documents, respectively. We start by creating pairs of positive
and negative examples, where a positive pair consists of a query and a document
that are relevant, and a negative pair consists of a query and a document that
are irrelevant. For each positive pair (q,d), we create a negative pair (q,d’),
where d’ is a document that is not relevant to the query q. The contrastive loss
function is defined in Eq. 36.

The metric which is used in the loss function, similarity score is usually
cosin similarity. However, it is possible to replace cosine similarity with other

Final Capstone Project 35

similarity scores in the contrastive loss function. The choice of similarity score
depends on the nature of the data and the task at hand. Cosine similarity is a
commonly used similarity score in contrastive learning because it is a robust and
efficient way to measure the similarity between two vectors in high-dimensional
spaces. It is particularly effective when the data is sparse, and the magnitude of
the vectors is not important. However, depending on the task, other similarity
scores can be used. For example, in image retrieval, the Euclidean distance
or the Manhattan distance can be used instead of cosine similarity. In text
retrieval, the Jaccard similarity or the Dice similarity can be used instead of
cosine similarity. The choice of similarity score can be problem-specific and
may require experimentation to find the best option. In general, the similarity
score should be chosen based on its ability to capture the semantic similarity
between the data points and its compatibility with the chosen representation
function.

The loss function encourages the model to minimize the distance between the
embeddings of the query and relevant document while maximizing the distance
between the embeddings of the query and irrelevant documents. In other words,
it tries to pull the embeddings of positive pairs closer together while pushing the
embeddings of negative pairs farther apart. During training, the model learns
to distinguish between positive and negative pairs by optimizing the contrastive
loss function using stochastic gradient descent or other optimization algorithms.
The learned representation can then be used for dense passage retrieval by
computing the similarity between the query and all documents in the corpus
using the learned embeddings.

Based on contrastive loss function in Eq. 36. qpos represents a positive
query, dpos represents a positive document that is relevant to the query, and
Dneg represents a set of negative documents that are irrelevant to the query.
The function f is a scoring function that takes as input a query-document pair
and outputs a relevance score. The loss function is computed as the negative
logarithm of the fraction ef(qpos,dpos)

ef(qpos,dpos)+
∑

dneg∈Dneg
ef(qpos,dneg) . The numerator

ef(qpos,dpos) is the exponential of the relevance score between the positive query
and the positive document, while the denominator

∑
dneg∈Dneg

ef(qpos,dneg) is the
sum of the exponentials of the relevance scores between the positive query and all
negative documents. The contrastive loss function penalizes negative samples by
making the denominator in the fraction large. The denominator sums over the
similarity scores between the query and all negative documents, which are chosen
to be dissimilar to the query. When the similarity score between the query and
a negative document is low, the corresponding term in the sum becomes a small
positive number. However, when summed over all negative documents, these
terms can add up to a large number, making the denominator in the fraction
large. As a result, the value of the fraction approaches 0, and the log of the
fraction approaches a large negative number. This large negative value is then
multiplied by -1 to give a positive loss for the negative pair. By minimizing
this positive loss, the model is encouraged to learn representations that push
dissimilar documents or queries apart in the representation space.

Final Capstone Project 36

2.8.5 Positive and negative pairs of text sampling

To sample positive and negative pairs as training data for contrastive learning
in information retrieval, we need to have a set of queries and their relevant
documents. One common approach is to use labeled data, where the relevance
of each document to a query is provided as a label. Here is a general approach
to sample positive and negative pairs:

• For each query, create a set of documents that are labeled as relevant to
the query.

• Create a set of negative documents for each query by sampling a fixed
number of documents from the corpus that are not labeled as relevant to
the query.

• For each query and its relevant document, create a positive pair (question,
relevant document).

• For each query and negative document, create a negative pair (question,
irrelevant document).

• Repeat steps 3 and 4 for all queries q and their relevant and negative
documents.

The number of negative documents sampled for each query can be tuned
depending on the dataset size and the difficulty of the task. In general, a
larger number of negative documents can make the training more challenging
but also more effective. It is important to note that this approach assumes
the availability of labeled data, which is not always the case in information
retrieval. In such cases, unsupervised methods such as clustering or density-
based sampling can be used to generate positive and negative pairs based on
the similarity of the queries and documents in the corpus.

Final Capstone Project 37

3 PROJECT MANAGEMENT PLAN

3.1 Overview
Looking at Figure , we can see the work that our team has done in the past 14
weeks:

• In the first few weeks, the main tasks were searching for literature and
studying methods from related articles to gain different perspectives and
details.

• In weeks 2 and 3, the team’s main task was collecting appropriate datasets
for the topic "Vietnamese legal document retrieval" specifically Zalo Legal
2021 dataset and also collecting data from reputable legal websites. The
data was then processed by filtering noise and rearranging to fit the next
training phase.

• From week 3 to 7, the team focused on analyzing query architectures and
evaluating their effectiveness such as DPR or Condenser. Additionally,
three experiments from versions V.0.1, V.0.2, and V.1.0 were completed to
gain a comprehensive overview of the chosen model which was Condenser
due to feasibility and efficiency on the Vietnamese language.

• From week 8 to 11, our work was to find hardware solutions such as renting
and setting up GPUs to ensure progress in our training. We also created
a small demo product for our project. Finally, we developed a "Question
Answering" system to increase efficiency and provide better visualization
of the results from previous models.

• In the remaining weeks, we evaluated the results and summarized our
report, as well as wrote a paper for the scientific conference in Indonesia,
ISICO 2023.

3.2 Work Details
Look at Figure . Based on the plans outlined for all weeks, we will assign
tasks equally to both members. The agreed-upon tasks will be consistently
implemented to ensure that both members can complete their work well while
also understanding how the other person’s work operates.

• In the early weeks, research work will be conducted in parallel by both
members, and they can agree on the optimal method and approach for
developing or training the model.

• Regarding data processing, Nhat will be primarily responsible for ensuring
that the data is suitable and optimized for model training. However,
data research and exploration from websites will be carried out by both
members, and agreements will be made on how to handle the data.

Final Capstone Project 38

Table 1: Over about timeline

Timeline

Week 1 0. Literature review, including approaches to the
topic, relevant articles, and data for the project.

Week 2 1.1 Data processing: Find relevant data sources and
collect data from legal websites.

Week 3 1.2 Data processing: Standardize the data for train-
ing the models.

Week 4 2.1 Research on models and architectures for "Viet-
namese legal text retrieval" such as DPR, Condenser.

Week 5 2.2 Feasibility study of different approaches and se-
lection of the most suitable and effective model for
the "Legal Text Retrieval" step.

Week 6 2.3 Model training: Create the test table V.0.1.

Week 7 2.4 Create a web demo..

Week 8 3. Find ways to improve the model and re-plan for
the remaining part of the project.

Week 9 4.1 Model training and creation of the V.0.2 im-
proved version.

Week 10 4.2 Rent a GPU server and install the server.

Week 11 4.3 Model training and creation of the V.1.0 im-
proved version. Research and train for QA model

Week 12 5.1 Write the project report, summarize the best re-
sults to write the report for the scientific conference..

Week 13 5.2 Refine the report and create slides for the final
project defense.

Week 14 5.3 Prepare the project report.

• Regarding the query model, Khang will be the main responsible person.
However, we will still study two query structures, DPR and Condenser.

Final Capstone Project 39

Table 2: Members’s work details

STT Nguyen Hoang
Gia Khang
(SE150829)

Nguyen
Minh Nhat
(SE150958)

Week 1 Research litera-
ture, including
approaches to the
topic, relevant
articles, and data
for the project

Research liter-
ature including
approaches, pa-
pers on the topic,
and data for the
topic

Week 2 Collect data from
"vbpl.vn"

Collect data from
"lawnet.vn"

Week 3 Aggregate and
process collected
data

Preprocess data
for training mod-
els

Week 4 Research Con-
denser

Research DPR

Week 5 Run Condenser
tests for legal
queries in Viet-
namese (feasible)

Run DPR ex-
periment for
legal query in
Vietnamese (not
feasible)

Week 6 Create a V.0.1 ver-
sion

Research Con-
denser

Week 7 Create a web page
to run the product

Prepare metrics
for evaluating the
model

Week 8-9 Research and eval-
uate methods to
improve the model

Train and create
the V.0.2 improve-
ment version

Week 10-11 Research and train
for QA model

Train and create
the V.1.0 improve-
ment version

Week 12-13-14 Prepare the pre-
sentation for the
conference

Prepare the report

Final Capstone Project 40

Khang will develop the first version, V.0.1, and hand it over to Nhat for
further development in subsequent versions, V.0.2 and V.1.0.

• For the remaining parts, we will focus on researching and training the
"Question Answering" model, writing a thesis report, writing articles for
scientific conferences, and creating a prototype to introduce the product.

Final Capstone Project 41

Figure 3: Crawled data information.

4 MATERIALS AND METHODS

4.1 Materials
4.1.1 Dataset

Overview With regard to " Answering Legal Questions by Learning Neural
Attentive Text Representation" papper [5] which they built two datasets: 1) the
legal document corpus, which contains Vietnamese legal documents; and 2) the
QA dataset, which contains a set of legal questions (queries) and a list of rele-
vant articles for each question. The raw legal documents were first crawled from
the official online sites "https://vbpl.vn", "https://thuvienphapluat.vn/". The
queries were collected from the legal advice websites as "https://hdpl.moj.gov.vn"
and "https://hethongphapluat.com/hoi-dap-phap-luat.html". At first, both the
title and the content are included in each query. They analyzed and discovered
that the content is frequently lengthy and ambiguous. As a result, they filtered
out content parts, rewrote informative titles, and kept only the good titles in the
dataset. The entire collection of Vietnamese legal documents, which includes
multiple versions of each law and regulation, is the raw data for the legal doc-
ument corpus. they sifted through the repetitive old renditions and just held
and planned the solutions to the as of now viable articles. With the assistance
of lawyers, this procedure was carried out. In the end, they got the legal doc-
ument corpus, which had 8,586 documents and 117,545 articles, and the query
dataset, which had 5,922 queries and the articles that were relevant to them.
The query dataset’s statistics are presented. Each query has 1.6 relevant articles
and averages 12.5 words (or 17.3 syllables).

Besides, The task of retrieval-based legal question answering at the arti-
cle level, which presents several challenges in comparison to the task at the
document level, is the focus of this paper. The number of legal documents is
significantly less than the number of articles. In addition, distinguishing articles
within the same document is extremely challenging due to the common vocabu-
lary and common focus. An example legal question and the expected response,
Article 651 from the 2015 Code of Civil Law of Vietnam, are shown in the fig-
ure 5. They discovered that only a few sentences in an answer article contain
relevant information and that only a few phrases in such sentences are matched
to the question by investigating legal questions and articles. They present a
neural attentive text representation technique based on attention mechanisms

Final Capstone Project 42

Figure 4: Example of in-domain data selection.

Figure 5: A sample in the dataset with highlighted parts in [5]

and convolutional neural networks to capture these properties. While the first
component is meant to extract important information from the input question
and legal documents, the second component is used to match and present the
most important parts.

Final Capstone Project 43

For the paper " Miko Team: Deep Learning Approach for Legal Question
Answering in ALQAC 2022" [3], They finetuned RoBERTa with 4GB of legal
text data to enhance its performance in the legal domain. They use two dis-
tinct approaches to gather this data: Collected directly from 2 websites and
Extract sentences close to the legal topic from the news corpus. Firstly, Table
I provides the collected data for the first method, which includes the number of
articles (articles) and sentences (sentences). This number represents the num-
ber of sentences that are retained following the selection process (for example.
removing redundant and non-Vietnamese sentences). Secondly, In order to ex-
tract legal documents from the news corpus using the second approach, which
is based on the work in [23], we first create a collection of legal documents
known as "in-domain" data. On this in-domain dataset, we then construct a
statistical language model (base language model). Select sentences in another
corpus whose perplexity score falls within the threshold by utilizing this model
to evaluate the score for each sentence. A popular metric for evaluating lan-
guage models is perplexity. We can determine how effective our language model
is in our data domain using the perplexity score. Since it was learned from
"in-domain" data, we assume that our base language model is adequate in this
instance.

Specific works In terms of our application, Data on law in general or Viet-
namese law in particular is still quite limited and rarely publicly available. Re-
garding the details of datasets for Vietnamese law, currently only Zalo Corpo-
ration’s dataset from the Zalo Legal 2021 competition is widely available. In
recent competitions on this topic, high-ranking teams often use this dataset to
finetune their language models such as VinAI’s Phobert, FPT’s viBert, or the
multilingual RoberTa model. However, when examining the highest-ranking
teams, we see that in addition to using the Zalo Legal dataset, they often crawl
data from reputable Vietnamese law websites such as "vbpl.vn" or "lawnet.vn"
which can reach up to 4GB of data in papper [3] and are preprocessed before
being used for model training.

However, with limited resources, we stopped collecting data when we reached
3GB of data from those websites. In addition to the main task of "Legal Query
in Vietnamese", we also developed another extension called "Question and An-
swer". As shown in some recent articles such as [4] and [5], they also collected
"Question and Answer" data from corresponding legal websites, but these data
involved participation and supervision from experienced lawyers or legal experts
who could evaluate in detail and remove unnecessary parts in the process of pre-
processing data for subsequent model training stages. Within our capacity, we
could also collect up to 12GB of data, but we do not have the resources to train
and have legal experts evaluate the quality of the collected data sets.

4.1.2 Framework and Libraries

Pytorch Originally created by Meta AI and now a part of the Linux Founda-
tion, PyTorch is a machine learning framework built on the Torch library and

Final Capstone Project 44

used for applications like computer vision and natural language processing. It
is open-source software that is available for free under a modified BSD license.
PyTorch features a C++ interface, even though the Python interface is more
refined and the main focus of development. Using PyTorch, a programmer can
easily create a sophisticated neural network because its primary data format,
Tensor, is a multi-dimensional array similar to Numpy arrays. Due to PyTorch’s
flexibility, speed, and ease of use, it is becoming more and more popular in both
the business world and among researchers. PyTorch is one of the best deep
learning tools. For a variety of reasons, PyTorch has emerged as one of the
top machine learning frameworks: Widely Available; accelerated model devel-
opment; Quick training periods; Support for High-Quality GPU Training and
robust ecosystem

Transformers Thousands of pretrained models are available in Transformers
to carry out tasks on several modalities, including text, vision, and audio. Text,
for tasks like text categorization, information extraction, question answering,
summarization, translation, and text synthesis in more than 100 languages are
all tasks that may be applied to these models; Audio for activities like speech
recognition and audio classification; images for activities like picture classifica-
tion, object detection, and segmentation. With the help of Transformers’ APIs,
you can utilize those pretrained models on a given text rapidly, hone them using
your own datasets, and then distribute the results to the community. In addi-
tion, each Python module specifying an architecture is completely independent
and can be changed to allow for quick research experiments. The three most
well-liked deep learning libraries, Jax, PyTorch, and TensorFlow, are supported
by Transformers and seamlessly integrate with one another. It is simple to build
your models with one and then load them with the other for inference.

Python Vietnamese Toolkit (pyvi)[28] A quick and accurate NLP an-
notation pipeline for Vietnamese, VnCoreNLP uses named entity recognition
(NER), dependency parsing, word segmentation, and POS tagging to provide
rich linguistic annotations. It’s not necessary for users to install external depen-
dencies. Both the command line and the API can be used by users to launch
processing pipelines. The following articles are relevant and detail the general
design and experimental outcomes of VnCoreNLP: [28], [29], [30].

4.1.3 Hardware

Cloud Service Free GPU-enabled platforms include Google Colab and Kag-
gle. However, there are still many limitations affecting the work progress.
Specifically, Google Colab with the regular version only allows the GPU to
be used in a certain amount of computing, for the Retriever module, it can only
be trained for a period of 4-5 hours. For the colab pro version, the gpu provided
is T4 or P100, one of the two GPUs will be randomly allocated. The amount
of compute using GPU in the pro version is significantly increased. Pretrain

Final Capstone Project 45

masked language modeling can last up to nearly 24 hours of continuous train-
ing. However, a limitation of google colab is that sessions will be interrupted
after 24 hours, which means that if you do not back up data and checkpoints
in time, all will be erased. Kaggle notebook also supports gpu like google colab
but interacting with files to edit the code inside is not as easy as colab. Kaggle
notebook regularly checks whether the user is still active on the notebook on a
random basis from 3 to 4 hours, this is a big limitation compared to the colab
pro version, the user must constantly interact with the kaggle notebook if you
don’t want to be interrupted. connect. Google Colab when disconnecting, if
reconnect in a short time, the data is not deleted, kaggle is not. Kaggle has a
GPU limit of 30 hours a week, Kaggle offers options such as 1 GPU P100 or
2 GPUs T4. Can be used to train models with multi-gpu techniques such as
distributed data, data parallel or model parallel.

Google Colaboratory Google Colaboratory or Google Colab is a free cloud-
based service provided by Google that allows users to run Jupyter notebooks
on virtual machines (VMs) with access to GPUs, TPUs, and other hardware
accelerators. It is designed to make machine learning and data science more
accessible to everyone, particularly students and researchers who may not have
access to high-end hardware or expensive software licenses. One of the main
benefits of using Google Colab is that it provides free access to powerful hard-
ware resources that can be used to train machine learning models and run data
analysis tasks. The service also allows users to easily share and collaborate on
Jupyter notebooks with others. However, there are some limitations to using
Google Colab that users should be aware of: Limited Runtime: Colab provides
virtual machines with a limited amount of computing resources. The free version
of Colab provides 12 hours of continuous usage per session, and the session is
automatically disconnected after 90 minutes of inactivity. If we let my program
running and does not interact with the site, Google Colab still shut down, in the
worst case, our checkpoints are thrown away, there is nothing left and we need
to start again. It is very risky and spend a lot of time. Limited GPU and TPU
Availability: While Colab does offer access to GPUs and TPUs, the number
of available resources is limited and they may not always be available. Users
may need to wait in a queue to access these resources. In order to train a high
capacity model, in our case, we need to train more than 5 models to complete
our projects, moreover, we need to re-build model for many experiments on
different hyper-parameters. It is possible when working with limited computing
units and runtime. We spend about 5.000.000 VND to buy more computing
unit and service). Limited Storage: Colab provides a limited amount of storage
space (approximately 68 GB) that is shared across all of a user’s notebooks.
Users may need to download and upload large datasets or model files between
their local machine and Colab. No Guaranteed Uptime: Since Colab is a free
service, there is no guarantee that it will be available or operational at all times.
Users should always save their work frequently and have a backup plan in case
the service becomes unavailable. Security: Colab is a shared environment, and

Final Capstone Project 46

it is important for users to be aware that their code and data may be accessi-
ble to other users who have access to the same virtual machine. If we use free
version, we are supplied 1x T4 GPU. For pro version, we also have 1x T4 GPU
but 24 hours runtime actively. For pro plus verion, we get 1x GPU A100 but
it is allowed to use a limited time until runing out of computing units, then
get back to NVIDIA T4. Despite these limitations, Google Colab is a powerful
and convenient tool for data scientists and machine learning practitioners. It
offers a way to access powerful hardware resources and collaborate with oth-
ers on Jupyter notebooks, all without requiring expensive hardware or software
licenses.

Kaggle Notebook Kaggle is an online platform that provides a community
for data science practitioners to collaborate, share ideas, and compete in ma-
chine learning competitions. Kaggle offers various features such as datasets,
kernels, discussions, and competitions to its community. Kaggle Notebooks is
one of the features that enables users to run Jupyter notebooks directly on the
Kaggle platform. Kaggle Notebooks offers the following benefits: Easy Collab-
oration: Users can easily share their notebooks with others, allowing for seam-
less collaboration and knowledge sharing within the Kaggle community. Free
Cloud-based Computing: Kaggle provides users with free cloud-based comput-
ing resources that include GPUs and TPUs, allowing for the training of complex
machine learning models. Pre-installed Libraries: Kaggle Notebooks come with
pre-installed libraries such as Pandas, Numpy, and Scikit-learn, making it easy
for users to start working on their projects without needing to install these li-
braries themselves. Version Control: Kaggle Notebooks have built-in version
control, allowing users to track and revert changes to their code. Reproducibil-
ity: Kaggle Notebooks allow users to easily reproduce their results by sharing
the code and data used in their analyses.However, there are also some limita-
tions to using Kaggle Notebooks: Limited Resources: Although Kaggle provides
free cloud-based computing resources, the resources are limited, and users may
need to compete for access during peak usage times. No Persistent Storage:
Kaggle Notebooks do not provide persistent storage, which means that users
may need to download and upload datasets and trained models between their
local machine and Kaggle. Security: Kaggle Notebooks are a shared environ-
ment, which means that users should take appropriate measures to protect their
data and code. In summary, Kaggle Notebooks is a powerful tool for data sci-
ence practitioners looking to collaborate, share ideas, and compete in machine
learning competitions. It provides free cloud-based computing resources, pre-
installed libraries, and version control, making it easy for users to get started
on their projects. However, users should be aware of the limitations of the plat-
form, including limited resources and the need to manage their data and code
carefully.

FPT Cloud FPT Smart Cloud (FCI) – a member of FPT Corporation, the
leading provider of Artificial Intelligence (AI) Cloud Computing (Cloud Com-

Final Capstone Project 47

puting) application solutions in Vietnam. FPT Smart Cloud was established
with the mission of turning every business into a technology enterprise, with
innovative breakthroughs in technology and products. FPT Smart Cloud aims
to be the leading provider of Cloud Computing and AI thanks to its solid tech-
nology foundation, diverse product ecosystem and global connectivity. We rent
a GPU server with 1x GPU A30, 300GB storage and 8x VCPU in order to
train our project. It takes us about 12.000.000 VND for a month. The cost
is shared by team members (two members). The NVIDIA A30 is a powerful
data center GPU designed for mainstream AI and high-performance computing
workloads. It is built on NVIDIA’s Ampere architecture, which is known for its
high performance and power efficiency. The A30 GPU is optimized for inference
workloads and can deliver up to 10X higher inference throughput than CPU-
only servers. Compared to the P100, which is based on the Pascal architecture,
the A30 delivers up to 2.5X higher inference throughput and up to 2X higher
memory bandwidth. The P100 was released in 2016 and is still widely used
in data centers for training and inference workloads. Compared to the A100,
which is NVIDIA’s flagship data center GPU also based on the Ampere archi-
tecture, the A30 has fewer Tensor Cores and less memory bandwidth. The A100
is optimized for both training and inference workloads and can deliver up to 6X
higher performance than the P100 for training workloads. Compared to the T4,
which is also optimized for inference workloads, the A30 has more Tensor Cores
and higher memory bandwidth. The T4 was released in 2018 and is popular for
inference workloads in data centers and edge devices. In summary, the NVIDIA
A30 is a powerful data center GPU optimized for inference workloads. It offers
higher performance and memory bandwidth than the P100 and T4, but has
fewer Tensor Cores and less memory bandwidth than the flagship A100 GPU.

4.1.4 Project Management Tool

Notion The Notion online application was created by Notion Labs Inc. and
is a freemium productivity and note-taking tool. It provides administrative ca-
pabilities including bookmarking, task management, project monitoring, to-do
lists, and more. Applications for desktop and mobile devices running Windows,
macOS, Android, and iOS provide additional offline features. Custom templates
can be made, movies and web content can be embedded, and real-time collabo-
ration is possible. Kanban boards, tasks, wikis, and databases are all integrated
into the collaboration platform Notion, which supports modified Markdown. For
taking notes, managing information and data, and managing projects and tasks,
it serves as a single workspace. Users can comment on ongoing projects, take
part in discussions, and get feedback using this file management tool’s single
workspace. Cross-platform applications and the majority of web browsers can
access it. A tool for "clipping" content from websites is included. It assists users
in organizing their work, managing files, setting reminders, keeping agendas, and
scheduling tasks. Equations can be written in block or inline form with the help
of LaTeX support. To utilize Notion, no specialized training is needed. With
the Notion AI functionality, users may produce and update content, summa-

Final Capstone Project 48

rize existing notes, conduct daily standups, change the tone, translate, or check
material. It also includes AI capabilities and a library of free and fee-based
templates. For their Business and Enterprise tiers, security features include sin-
gle sign-on with Security Assertion Markup Language and private team areas.
SaaS tools including GitHub, GitLab, Zoom, Lucid Software, Cisco Webex, and
Typeform are all integrated with Notion.

4.2 Methods
Vietnamese Legal Text Retrieval is developed mainly with Retriever module
with the input is a question in string representation. There is a knowledge
base, in this case, the knowledge base consists of legal documents. The ques-
tion will be converted to embedding vector representation and compared to all
of embeddings in knowledge base (each data text has its own corresponding
embedding as well) by compute similarity scores such as dot product, cosine
similarity, euclidean distance and so on. Relevant legal documents will be re-
turned with a long text or just a title of the circulars and decrees. In practice,
users need to lookup the legal answer in a convenient way, returning the ti-
tles is implicit and hard to be enjoyable, returning a full text of circulars and
decrees contains redundant information which is not necessary to answer the
user’s question. Therefore, a question answering model is created to extract
the main idea of the returned long circulars and decrees text. Figure 6 shows
that this project will focus on pretraining language model in in-domain with
masked language modeling due to lack of vietnamese legal text retrieval for
training model explained in 4.2.2 and in 4.2.1 will show how to initialize train-
ing dataset for training Retriever module. Instead of using bert-based models or
any transformer encoder-based models to build Sentence Transformers, which is
outstanding in semantic textual similarity task explained in 4.2.5. This project
will use Condenser and CoCondenser, which are explained in 4.2.3 and 4.2.4 to
improve the performance of any transformer encoder-based model.

4.2.1 Processing data

The search engine frequently uses the ranking algorithm BM25, a paradigm for
lexical matching to determine the degree to which a group of documents are
relevant to a given question. Using the search terms that show in each record,
it ranks the documents, creates negative sentence pairs for training Sentence
Transformer in 4.2.5, these negative training samples are the most relevant ar-
ticles to the query. In other words, although they are similar to the label, they
might be not correct label. Data is divided into positive and negative sample
in order to train Contrastive loss [31], which pull correct relevant sentence close
to a anchor and push wrong samples away. Positive sample is from the data
answer in the dataset (documents that match a given query). Negative sample
is created by using BM25 to extract 50 or 20 sentences close well to a given
query. Before being fed into the lexical matching algorithm, the data is pre-
processed. Preprocessing techniques include word segmentation with Pyvi and

Final Capstone Project 49

Legal corpus

PhoBERT

Condenser

coCondenser

SentenceBert

BM25+

Negative pairs
(round 1)

Negative pairs
(round 2)

Checkpoint from

Dataflow

Figure 6: Training flow

text conversion to uppercase. The Retriever module is trained with 2 rounds
based on [32]. Round one uses negative pairs extracted by using BM25 which
is explained earlier to train Sentence Transformer with Contrastive loss. Round
two uses Sentence Transformer trained in Round one in order to predict False
Negative samples and continue to train Contrastive loss again on new data.

4.2.2 Pretrain Masked Language Model

In Masked Language Modelling, a certain percentage of the words in a sentence
are typically hidden. These are masked by a special token, for example, [MASK],
and the model is then supposed to predict the hidden words based on the other
words in the sentence. In order to determine which word is filled up the masked
places, we need to understand the context by observing the word’s left and right
side. Model is expected to perform this action when being applied this training
approach, make the model bidirectional in nature. This can alternatively be
thought of as a problem statement with blanks to be filled in.

Figure 7 represents how masked language modeling works. Fifteen percent
of words in a sentence are chosen to be masked. Model needs to learn how to
choose a correct word to replace each masked token in the input sentence. When
being passed to several encoder block, the embedding vectors that represents for
masked token, after being refined by learning context bidirectionally, embedding
vector of each masked token is going through feed forward neural network and
softmax layer to determined which word in vocabulary is a good candidate
for this masked position based on probability. Given a set of N input token

Final Capstone Project 50

BERT

EncoderBlock

EncoderBlock

... ...

CLS Tôi học ở [MASK] học FPT

1 2 3 4 5 6 7 512...

CLS Tôi học ở đại học FPT

1 2 3 4 5 6 7 512...Input

Randomly mask
15% of tokens

1 2 3 4 5 6 7 512...

FFNN + Softmax

0.1%
...

10%
...

3%

môn

đại

trường
...

...

Figure 7: Masked Language Modeling examples

T = t1, t2, ..., tN . Model masks out token ti at position i and i is stored in set
M which contains the index of masked token in T . The loss function of this
task uses cross-entropy loss:

ŷi = WhL
i (22)

Lmlm = Σi∈MCrossEntropy(ŷi, ti) (23)

where hL
i is the embedding vector that represents for the masked token at po-

sition i at L-layer. ŷi is predicted result after the masked token’s embedding
passed through feed forward neural network layer, W indicates the learnable
layer.

Backbone language model we use is PhoBERT [2], a vietnamese encoder
model. PhoBERT is trained on open-domain dataset, for example, vietnamese
wikipedia so that it may not perform well in a specific domain including legal
domain. In or der to improve the performance to encode semantic of legal
documents conrrectly, we reference pretraining the language model way follow [3]
that finetuning RoBERTa on 4GB of legal text data. We finetuning PhoBERT
on masked language modeling task. However, we create 2 versions: PhoBERT
finetuned on 300MB and 3GB of legal data. Because we do not have resource
to train model with big dataset, we choose to suit our capabilities. The result
is explained at 5 in details. Dataset for finetuning is collected the same with

Final Capstone Project 51

[3] but less than it. By doing this way, we map the an open-domain phoBERT
into an in-domain legal language model. This is exactly useful when we can not
pretrain again a full phoBERT in a large legal dataset. After that, the new legal
PhoBERT is used to train condenser in the next section.

4.2.3 Pretrain Condenser

Transfrormer model is used in semantic textual similarity takes [CLS] token, a
representative of all word embedding in a sequence. However, [1] show that each
token in the sequence, including the [CLS], only pays heed when receiving infor-
mation from other tokens. The effectiveness of [CLS]’s knowledge aggregation
is thus determined by attention patterns. According to [33], the author helps
us to comprehend CLS’s attentive behaviors: the CLS token is not attended
by other tokens in the majority of middle layers, and it exhibits comparable
attention patterns to other text tokens. Up until the very last layer, CLS has
a singular, all-encompassing focus on the complete sequence to carry out NSP
task, the CLS token is inactive in many intermediate layers and only becomes
active during the final round of attention.

To solve this inactive behavior of regular transformer encoder model, Con-
denser is introduced with a bit different on top of an transformer encoder model.
A regular transformer encoder model is divided into three group: early layers,
late layers and head layers.

He = fee([h
0
cls;h

0]) (24)

Hl = fle(He) (25)

where fee(.) and fle(.) are encoder layers at early and late layers respectively.
He and Hl is hidden state of the input sequence including [CLS] and other
tokens at early and late layers in order. For traditional transformer encoder
models, the input goes through each encoder layers as ususal, in this case, the
hidden state h of each token is calculated by BERT normally, Eq. 24 and 24
show the computation. The difference is that hidden state of [CLS] and other
tokens in the input sequence are still cached or stored in order to train head
layers, which is the key of condenser architecture:

Hhead = fhead([h
late
CLS ;h

early]) (26)

Input for condenser head fhead(.) is taken from the hidden state of [CLS] output
from late layers and other tokens output from early layers. This not only solve
the inactive behavior of [CLS] token mentioned earlier, it still utilize the best
[CLS]’s state of performance, but also reuse the information of other tokens at
middle layers. Hhead represents the last hidden state of each token output from
the head layers including [CLS] and other tokens. In other words, Hhead can be
decomposed into Hhead = [hhead

cls , hhead
1 , ..., hhead

N]
The head layers are trained with MLM loss with the head’s output presented

in Eq. 27 and Eq. 29 which are re-written from Eq. 22 and Eq. 23 as follow:

ŷheadi = Whhead
i (27)

Final Capstone Project 52

Lcondenser
mlm = Σi∈MCrossEntropy(ŷheadi , ti) (28)

This new architecture design utilizes the meaningful CLS embedding at last layer
of an encoder model, also avoid lack of information of other words by take them
from the middle layers. In condenser, it tries to trains boost CLS hidden state
more powerful. Despite being able to improve token forms, the late encoder
backbone can only transmit new information through late CLS hidden state,
make sure the backbone must aggregate freshly generated information later, and
the head must condition on the late CLS representation to make LM predictions.
By linking the early layers to the late layer, CLS is free from having to encode
local information and the incoming text’s syntactic structure, allowing CLS to
concentrate on the overall meaning of the text. This informational division is
controlled by the number of early and late layers.

Head layer helps condenser boost it performance in encoding meaningful of
a sentence as much as possible. However, they are just exists in pretraining
phase and are dropped in finetuning. When finetuning condenser in Semantic
Textual Similarity or any relevant task, hidden state of CLS at late layer are
powered up in pretraining phase, now is finetuned in a specific task, it is trained
and backpropagate gradient into backbone. In the other words, condenser acts
as a regular transformer encoder model in finetuning, it still have the same
architecture with Transformer. The difference is that condenser has another
step to power up the performance of CLS, representative token of a sentence by
pretraining the LM backbone again added some layers, and the model is back
to transformer architecture in finetuning and inference.

In this project, we chose to initialize Condenser using PhoBERT that has al-
ready pretrained in-domain with legal corpus and initialize the head arbitrarily.
It means there are 12 encoder layers in our backbone PhoBERT, it is divided
into the first 6 layers is early layers, the later 6 layers is late layers and create
more 2 head layers. By eliminating the enormous cost of starting from scratch
with pre-training, This fits within our computing budget. The result will be
used to train Sentence BERT which is explained in Section 4.2.5. We impose
a semantic restriction by running MLM also with backbone late outputs to
stop gradient back propagated from the random head from distorting backbone
weights.

Lconstrain
mlm = Σi∈MCrossEntropy(Whlate

i , ti) (29)

This restriction is justified by the assumption that encoding per-token repre-
sentations hlate

i with i ̸= 0 and sequence representation hlate
0 where i = 0 is

the position of [CLS] token have a comparable method and won’t conflict. hlate
i

with i ̸= 0 is therefore still applicable for LM prediction. Therefore, the total
loss is determined as the sum of two MLM losses.

Ltotal = Lcondenser
mlm + Lconstrain

mlm (30)

The two MLM losses share the output projection matrix W, which lowers the
overall number of parameters and memory requirements.

Final Capstone Project 53

4.2.4 Pretrain CoCondenser

Pre-trained language models, specifically encoder models, are often used to
fine-tune and create dense retrieval models. However, training a dense re-
trieval model is not easy, requiring very high machine resources to train, clean
data sources and huge human resources to process datasets, ensuring training.
dataset in the most suitable state for a dense retrieval problem. Two com-
mon problems that directly affect the performane of dense retrieval models are
noise and large batchsize during training to strongly enhance the model’s abil-
ity to learn to distinguish contexts, in order to generate a vector. embedding
represents a quality sentence and carries the most complete semantics. Model
RocketQA [34] is one of the typical models that does both of those things to pro-
duce a quality dense retrieval model. This method offers improvements such as
the removal of many hard negative pairs when training dual-encoder with con-
trastive loss. More specifically, in the process of labeling the retrieval datasets,
the tagger will often label the missing passages, resulting in passages that should
have been included in the question’s list label being hard negative. leading to
model noise. (Example when testing the question of what is a service flight,
there are many circulars and decrees that all explain what a service flight is but
the label has only 1, this leads to other circulars and decrees being false, while
the selected label is true even though they have the same meaning, explaining
the same concept). The second thing that RocketQA proposes to improve is
to increase batchsize training, RocketQA trains in-batch negative, they have
the problem that, during the inference process, the query has to compare with
millions of data in the database. data, while in the training process, the model
only learns to distinguish the query with a small number of negative samples.
RocketQA trained dual encoder model with large batchsize to solve this prob-
lem.

However, the whole flow of the method is not really suitable for most of those
who want to train dense retrieval model with limited resources, not everyone
has a machine that is good enough to train large batch sizes, and has financial
resources. or human resources to denoise labels that are missing by the labeler.
[35] has provided a solution for this situation. They agree that removing the
noise problem in the dataset will improve the model quality because most lan-
guage models are very sensitive to noisy labels, the parameters for the model
will be updated incorrectly. Regarding the problem of retrieving the query when
it has to model to distinguish a large amount of knowledge to choose the one
that best fits the query. , or is not explicitly trained, thereby leading to the
inability to create a good representative vector, carrying full information and
semantics for the whole sentence. [35] will train the backbone language model so
that it has local anti-interference ability, that is, self-resolving noise problems,
anti-interference during training and weight updating, creating a representative
vector that CLS is explicitly pretrained, and trained on a sensible architecture.
Based on that develop dense retrieval.

For noise resistant, they take advantage of the language model pretraining
activity carried out by the Condenser pre-training architecture, explained in

Final Capstone Project 54

Section 4.2.3, which is actively conditioned on the CLS vector. It creates a
CLS representation that is information-rich and capable of condensing an input
sequence with reliability. Then, they present a straightforward corpus-level
contrastive learning objective: given a target corpus of documents from which
to retrieve, sample text span pairs from a batch of documents at each training
step, and train the model so that the CLS embeddings of two spans from the
same document are close and those of spans from different documents are far
apart. Combining the above two factors, the proposed coCondeser pre-train
technique enables the model to perceive a wider range of observation, corpus-
aware in unsupervised manner.

The authors of a research paper explain that although a machine learning
model called "Condenser" can be trained on different types of information to
create a universal understanding, it still has a problem with understanding the
meaning of the information it learns. Even though the model can interpret some
of the information, the relationships between the different pieces of information
still lack meaning, so they don’t work well together. To fix this problem, the
authors added a new technique called a "contrastive loss" to Condenser. They
also suggest training Condenser to understand different documents in a more
general way, rather than training it on specific question-answer pairs. They
do this by randomly selecting pairs of information from different documents
to help Condenser learn more generally. The specific part of the information
that Condenser learns from is called a "span," and the contrastive loss helps
Condenser better understand the meaning of these spans. The contrastive loss,
which takes into account the corpus, is defined for the entire training batch:

Lco
ij = − log

exp([hi1;hi2])∑n
k=1

∑2
l=1 Iij ̸=kl exp([hij ;hkl])

(31)

This equation defines the corpus-aware contrastive loss function, denoted by Lco
ij ,

for pre-training the passage embedding space using the coCondenser model. The
loss function measures how well the model is able to distinguish between pairs of
spans within the same document that should be semantically close, and pairs of
spans that should be far apart. The loss function is defined in terms of the late
CLS representations of two spans, hi1 and hi2, which are concatenated together
to form a single vector. The numerator of the fraction computes the similarity
between the two spans using the dot product of their concatenated representa-
tions, which is transformed using the exponential function. The denominator
sums the similarity between the two spans and all other spans in the batch,
with the exception of the same span paired with itself or its inverse. The Iij ̸=kl

term is an indicator function that is equal to 1 when the indices i, j, k, l satisfy
the inequality ij ̸= kl, and 0 otherwise. In essence, the loss function encourages
the model to learn embeddings that encode the semantic meaning of each span,
such that similar spans are assigned similar embeddings, and dissimilar spans
are assigned dissimilar embeddings. This is accomplished by minimizing the
negative logarithm of the similarity between two spans divided by the sum of
similarities between all pairs of spans in the batch, excluding pairs that are se-
mantically identical. The contrastive loss used in the equation is inspired by the

Final Capstone Project 55

contrastive loss used in SimCLR [36], where the goal is to learn representations
by contrasting positive and negative pairs of augmented examples. In this case,
the positive pairs are the two spans from the same document, and the negative
pairs are the spans from different documents. The use of the contrastive loss
is a form of noise contrastive estimation (NCE), which is a technique used to
estimate the probability distribution of a random variable by contrasting it with
a noise distribution.

Noise Contrastive Estimation (NCE) is a technique for estimating the prob-
ability of a certain event or occurrence, based on a limited set of observations.
This is often used in machine learning and natural language processing, where
we want to estimate the probability of a certain word or phrase appearing in
a given context. The basic idea behind NCE is to train a model to distinguish
between "real" and "fake" examples of the event or occurrence we are interested
in. The model is given a set of "real" examples, and a larger set of "fake" exam-
ples, which are generated by adding some random noise to the real examples.
The model is then trained to predict whether a given example is real or fake,
based on its features. For example, let’s say we want to estimate the probability
of the word "cat" appearing in a sentence. We could train a model using NCE
by giving it a set of real examples, which are sentences that contain the word
"cat", and a larger set of fake examples, which are sentences that don’t con-
tain the word "cat", but are generated by randomly adding or changing some
words in the real examples. The model is then trained to distinguish between
real and fake sentences, based on their features (e.g. the presence or absence
of certain words). Once the model is trained, we can use it to estimate the
probability of the word "cat" appearing in a new sentence. We simply give
the model the features of the new sentence, and it outputs a probability score,
indicating how likely it is that the sentence contains the word "cat". he main
difference between NCE and training with hard negative or in-batch negative
when using contrastive learning is in how the negative samples are chosen. In
hard negative mining, the negative samples are chosen to be the hardest ones to
classify correctly among a set of randomly selected candidates. In other words,
the algorithm selects samples that are most similar to the positive sample, but
are still labeled as negative. In-batch negative mining, on the other hand, se-
lects negative samples from within the same batch as the positive sample. This
means that the negative samples are taken from the same set of data that the
model is currently training on. In contrast, NCE selects negative samples from
a noise distribution that is different from the training data. The noise distribu-
tion is designed to be easy to sample from, but has a different distribution than
the training data. By sampling negative examples from the noise distribution,
the model is forced to learn to discriminate between the true training data and
the noise distribution. This can help prevent the model from overfitting to the
training data and can lead to more generalizable representations. Here’s an ex-
ample to help illustrate the difference between the three approaches: Suppose
we have a dataset of images of cats and dogs, and we want to train a model to
classify them correctly. With hard negative mining, we would randomly select a
negative sample, and then choose the sample that is most similar to the positive

Final Capstone Project 56

sample, but still labeled as negative. With in-batch negative mining, we would
select a negative sample from within the same batch of images that the posi-
tive sample is in. With NCE, we would sample negative examples from a noise
distribution, such as a distribution of random noise images or a distribution of
images of objects that are not cats or dogs.

The authors of the coCondenser paper noted that the contrastive loss used
in their approach is similar to the one used in NCE, where the loss function aims
to distinguish between true samples (i.e., samples from the actual data distribu-
tion) and noise samples (i.e., samples generated from a noise distribution). In
the context of coCondenser, the authors use random span sampling as a form of
noise contrastive estimation, where random spans from the input documents are
used as negative samples during training. The contrastive loss function is then
used to encourage the model to differentiate between true positive samples (i.e.,
spans that are semantically related) and negative samples (i.e., random spans
that are not semantically related). Therefore, the coCondenser approach can
be seen as providing an NCE narrative, where the noise samples are generated
through random span sampling, and the contrastive loss is used to encourage
the model to distinguish between positive and negative samples. Let’s say we
have a document that talks about the benefits of exercise, and we want to use
coCondenser to generate embeddings for the different spans of text in this doc-
ument. For instance, one span could be "running is good for your heart" and
another span could be "lifting weights can help build muscle". These two spans
are semantically related, since they both talk about the benefits of different
types of exercise. On the other hand, a random span in the same document
that is not semantically related could be "the sky is blue". This span is not
related to the topic of exercise and would not be used in the training process.
During training, coCondenser takes pairs of spans from the same document and
tries to learn to distinguish between semantically related and unrelated spans
using the contrastive loss. This helps it to generate embeddings that capture the
semantic meaning of the text. The coCondenser model assumes that spans that
are not semantically related have a low probability of being selected in a random
sampling process. This is because the model uses a corpus-aware contrastive
loss that compares the similarity between the representations of different spans
across the entire corpus. In other words, if two spans are not semantically re-
lated, they are likely to have different representations across the corpus, and
therefore the contrastive loss will penalize the model for treating them as simi-
lar. Of course, this assumption is not perfect, and it is possible that two spans
that are not semantically related may have similar representations by chance.
However, the coCondenser model is designed to minimize the impact of these
cases by using a large corpus and random sampling of spans. The training data
for coCondenser is sampled from spans taken from different documents in a cor-
pus. The purpose of sampling from a corpus is to ensure that the model learns
to represent information in a generalizable way rather than just memorizing
specific instances in the training data. So, although the data used to train co-
Condenser comes from a corpus, it is not trained on the entire corpus at once,
and the training data is sampled in a way that promotes generalization.

Final Capstone Project 57

the authors are explaining the approach they have taken in training their
coCondenser model. They start by stating that they use random spans as
surrogates of passages, which means that they randomly select spans of text
from different documents as their training data. They then enforce the dis-
tributional hypothesis through noise contrastive estimation (NCE), which is a
method commonly used in word embedding learning (e.g., Word2Vec) to learn
representations of words based on their co-occurrence patterns in a corpus. By
using NCE, the authors aim to ensure that the model learns to distinguish be-
tween semantically related and unrelated spans. They then go on to explain
that this approach can also be seen as a span-level language model objective,
similar to the popular "skip-gram" model used in word embedding learning. Fi-
nally, they state that the batch’s loss is defined as an average sum of MLM and
contrastive loss, which can also be seen as word and span LM loss, respectively.
The authors of coCondenser are drawing a comparison between their proposed
span-level language model objective and the popular "skip-gram" model used
in word embedding learning, such as in Word2Vec (Mikolov et al., 2013). In
the "skip-gram" model, the goal is to learn word embeddings by predicting the
context words surrounding a target word within a fixed window size. This can
be seen as a type of language modeling, where the target word is the input
and the context words are the output. Similarly, in coCondenser, the authors
propose to use spans as surrogates of passages and enforce the distributional
hypothesis through NCE, which is a form of contrastive learning. The MLM
loss of the span-level language model is similar to the word-level language model
in "skip-gram", and the contrastive loss helps to further refine the embedding
space by distinguishing related spans from unrelated ones. So, by making this
comparison to "skip-gram", the authors are highlighting the similarity of their
proposed approach to the widely-used technique in word embedding learning.

The authors of the coCondenser paper use two types of losses to train their
model: MLM loss and contrastive loss. The MLM loss is a standard loss used in
many language models, which aims to predict the masked tokens in a sequence
based on the context provided by the other tokens. In coCondenser, the MLM
loss is computed for each span separately, denoted as Lmlm

ij for span sij . The
contrastive loss, as we discussed earlier, aims to distinguish between semantically
related spans and randomly selected spans. The contrastive loss is computed
based on pairs of spans selected from the training corpus, and it penalizes the
model if the similarity between a semantically related pair is lower than that
of a randomly selected pair. The contrastive loss for a pair of spans is denoted
as Lco

ij . To combine the two losses, the authors define the batch’s loss as an
average sum of the MLM loss and the contrastive loss. That is, for a batch of
spans, the total loss is calculated as follows:

L =
1

2n

n∑
i=1

2∑
j=1

[Lmlm
ij + Lco

ij] (32)

In other words, the batch’s loss is a weighted average of the MLM loss for each
individual span in the batch, and the contrastive loss for pairs of spans in the

Final Capstone Project 58

batch. This loss function encourages the coCondenser model to learn both the
semantic relationships between spans and the contextual information within
each span.

In the paper, the authors refer to "unsupervised factors" as the underlying
semantic structure that is present in unannotated text data. These factors
capture the relationships between words and phrases in the language, such as
synonyms, antonyms, and related concepts, and can be learned by a language
model trained on a large corpus of text data. The coCondenser model is designed
to capture these unsupervised factors by using a contrastive loss to learn to
distinguish between related and unrelated spans of text. By doing so, it can
create a more effective embedding space that can be used in downstream natural
language processing tasks.

Stochastic gradient estimators (SGEs) are methods used to estimate the
gradient of the loss function with respect to the model parameters using only
a subset (or a single example) of the training data at each iteration. The idea
is to randomly sample a subset of the training data, called a mini-batch, to
compute an approximate gradient and update the model parameters. This pro-
cess is repeated for multiple iterations until the model converges to a minimum
of the loss function. Gradient estimators are algorithms used to estimate the
gradient of a function with respect to its parameters. In machine learning, the
gradient is used to update the model parameters during training to minimize
the loss function. There are several gradient estimators, including the stochas-
tic gradient estimator, which is commonly used in deep learning. The authors
of the coCondenser paper mention "large-batch unsupervised pretraining" as
a way to construct effective stochastic gradient estimators for the contrastive
loss. This means that they first pretrain their model on a large dataset using
unsupervised methods, without any specific task or objective in mind. The
purpose of this pretraining is to teach the model to understand the structure
and patterns of language in a general sense, so that it can later be applied to
specific tasks more effectively. Once the pretraining is done, the model is then
fine-tuned on a specific task or dataset, such as a question-answering task or a
language generation task. The fine-tuning is done using small batches of data,
which allows for more efficient training and better generalization to new data.
The authors argue that the large-batch unsupervised pretraining step is cru-
cial for achieving good performance on downstream tasks, because it helps the
model learn useful representations of language that can be applied to a wide
range of tasks. They also suggest that this pretraining step can be done once
on a large dataset, and the resulting model can be reused or adapted for dif-
ferent downstream tasks, which saves time and resources compared to training
a new model from scratch for each task. the contrastive loss requires fitting
the large batch into GPU memory, which can be challenging with limited re-
sources, such as a machine with only four commercial GPUs. To overcome this
memory constraint and perform effective contrastive learning, they incorporate
a technique called gradient caching [cite]. Gradient caching involves storing
intermediate gradient values for the parameters during training, allowing the
system to perform more efficient backpropagation during subsequent epochs.

Final Capstone Project 59

This reduces the memory usage during each batch and allows the system to
process larger batches, even with limited GPU resources. In essence, gradient
caching allows the system to approximate the gradient of the large batch with
a series of smaller batches, without losing accuracy or incurring a significant
computational overhead. Gradient caching and gradient checkpointing are both
techniques used to reduce the memory requirements of deep learning models
during training. Gradient caching refers to storing intermediate computations
of gradients during the forward and backward passes of the model, rather than
recomputing them during each iteration. This can reduce the amount of mem-
ory required during training, but can also result in slower training times due to
the additional overhead of caching. Gradient checkpointing, on the other hand,
involves recomputing intermediate activations during the backward pass, rather
than storing them in memory. This can reduce the memory requirements of the
model even further, at the cost of additional computation time. In the context
of the coCondenser paper, the authors use a variant of gradient caching called
"recompute-aware gradient caching". This involves recomputing intermediate
activations during the backward pass, but also caching a subset of activations
in memory to reduce the overhead of recomputation. This allows the model to
train effectively on machines with limited GPU memory.

Storing intermediate computations of gradients during the forward and back-
ward passes of the model can reduce the amount of memory required during
training because it allows the model to perform backpropagation and compute
gradients in a more memory-efficient way. During backpropagation, the model
computes gradients for each parameter by multiplying the gradient of the loss
function with respect to the output of the layer with the gradient of the layer’s
output with respect to its input. These gradients can be quite large and storing
them all in memory can quickly become unfeasible, especially for large models
or when training on GPUs with limited memory. By caching intermediate com-
putations of gradients, the model can free up memory by discarding unnecessary
computations that would otherwise need to be stored. This can help reduce the
memory footprint of the model and make it possible to train larger models or
use larger batch sizes without running out of memory. Gradient checkpoint-
ing is one way to implement gradient caching, where intermediate activations
are recomputed during the backward pass rather than stored in memory. This
allows the model to use less memory during training at the cost of increased
computational time. The memory referred to in this context is the GPU mem-
ory required to store intermediate computations of gradients during the training
process. Storing these intermediate computations allows the model to compute
gradients for larger batch sizes without running out of memory on the GPU.
Recomputing intermediate activations during the backward pass can reduce the
memory requirements of the model even further because it allows the model to
discard the intermediate activations after they have been used in the backward
pass. This means that the memory used to store the intermediate activations
can be freed up and used for other purposes, such as storing activations for the
forward pass or computing gradients. Without recomputing the intermediate
activations during the backward pass, the model would need to store all the

Final Capstone Project 60

intermediate activations for each layer until the gradients are computed for the
final layer. This can be very memory-intensive, especially for large models or
models with many layers. By recomputing the intermediate activations during
the backward pass, the model can avoid storing these intermediate activations,
thereby reducing the overall memory requirements.

The pretraining of coCondenser is done in two stages:

• Universal Condenser pretraining: In this stage, a Condenser is pretrained
using the same data as BERT, i.e., English Wikipedia and the BookCor-
pus. The Condenser is initialized with the pre-trained 12-layer BERTbase
weights and its backbone layers are warm-started using an equal split of
6 early layers and 6 late layers. The pretraining objective is to learn
a general-purpose representation of language that can be fine-tuned on
different downstream tasks.

• Corpus aware coCondenser pretraining: In this stage, the pre-trained Con-
denser from stage one is taken and its backbone and head layers are used
to warm-start the pretraining on the target corpus, which can be either
Wikipedia or MS-MARCO web collection. The pretraining objective is to
learn a corpus-specific representation of language that can be fine-tuned on
specific downstream tasks related to the target corpus. The architecture
of the Condenser is kept unchanged in this stage.

During both stages of pretraining, the coCondenser model uses the contrastive
learning framework and NCE objective to learn the representations of spans
sampled from the input corpus. The loss function used for pretraining is a
combination of MLM loss and contrastive loss, with MLM loss being used to
predict the original spans and contrastive loss being used to distinguish them
from negative spans. The negative spans are sampled randomly from the same
document as the original spans. The pretraining process is done in batches,
with each batch consisting of multiple spans sampled from different documents.
The gradients are calculated for each batch using backpropagation and used to
update the model parameters. The pretraining process continues for a fixed
number of epochs until the model converges and achieves the desired level of
performance. After pretraining, the coCondenser model can be fine-tuned on
specific downstream tasks by adding a task-specific head layer and training the
entire model end-to-end using supervised learning.

4.2.5 Build Sentence Transformer

Transformer models use attention to refine the embedding representation of
each words in the sequence by paying attention to the factors mainly affect to
itself. However, it just work to create token-level embeddings, not sentence-
level embeddings while we need our query input and documents in database
represented as a embedding vector

In order to compare 2 sentences, cross-encoder structure was introduced by
taking 2 sentences into a single BERT model, or any transformer encoder model.

Final Capstone Project 61

On top of this structure, a feed forward neural network perform classify whether
two sentences are similar by applying sigmoid or using any similarity score like
cosine similarity.

Comparing each pair of sentences makes cross-encoder is not scalable al-
though it produces very accurate similarity scores (better than the following
Sentence BERT about to be mentioned). We would have to do the cross-encoder
inference computation 100K times if we wanted to run a similarity search across
a tiny dataset of 100K sentences. Because the input of cross-encoder is a pair of
sentences separated by a special token, it is hard to use this model to generate
semantic embedding vector for each document in advance and invoke them from
database, compute similarity score when needed. Next, By averaging the values
across all token embedding output, original BERT creates semantic sentence
embeddings, it mean last hidden state of transformer encoder models. On the
other hand, special token, CLS token which stands in front of every sequence
when training with transformer encoder model as an alternative way to rep-
resent for the sequence and take it to comparison operator. But regardless of
which method is used, the accuracy is poor and is worse than utilizing averaged
GloVe embeddings.

Sentence-BERT, also known as SBERT, was developed as a remedy for this
lack of an accurate model with a respectable latency. For every standard se-
mantic textual similarity (STS) task, SBERT performs better than the prior
state-of-the-art (SOTA) models. SBERT provides sentence embeddings, which
is a blessing for scalability because it eliminates the requirement for a full in-
ference calculation for every sentence-pair comparison.In 2019, Reimers and
Gurevych presented evidence of the sharp acceleration. With BERT, it took 65
hours to identify the most analogous pair of sentences among 10K sentences.
The creation of embeddings with SBERT takes around 5 seconds, while the
cosine similarity comparison takes about 0.01 seconds.

Many more sentence transformer models have been developed since the
SBERT paper using ideas that were used to train the original SBERT. They
have all been practiced on numerous pairs of sentences, both similar and dissim-
ilar. These models are optimized to create comparable embeddings for related
sentences and dissimilar embeddings in all other cases using a loss function such
as softmax loss, multiple negatives ranking loss, or MSE margin loss.

In this project, Sentence BERT with the backbone is legal Condenser ex-
plained in Section 4.2.4, called CoLegalPhoBERT, instead traidtional trans-
former encoder model such as BERT or RoBERTa in [37]. Our Sentence BERT
using coCondenser and is finetuned by creating siamese network but trained with
constrastive learning approach instead triplet networks in the original Sentence
BERT paper. At the end of pre-training, the authors discard the Condenser
head, which includes the final prediction layer, and keep only the backbone lay-
ers. As a result, the model reduces to its backbone, or effectively a Transformer
Encoder. The weights of the backbone layers are then used to initialize the
query encoder and passage encoder in the downstream task of retrieval. Specif-
ically, the query encoder (Eq. 33) and document encoder (Eq. 34) are each
initialized with the weights of the corresponding backbone layer outputting the

Final Capstone Project 62

BERT

Pooling

u

BERT

Pooling

v

Question q Document d

f(u,v)

Figure 8: SBERT architecture with objective function

last token’s CLS representation. This initialization process allows the retrieval
model to benefit from the pre-trained knowledge captured by the coCondenser
model. Figure 8 has shown overview SBERT architecture. The pooling layer
which is used in this project is mean pooling layer. Objective function f(u, v) is
contrastive loss. Question and documents are encoded to semantic embedding
vector by:

q = CoLegalPhoBERT([CLS; question; SEP]) (33)

d = CoLegalPhoBERT([CLS; document;SEP]) (34)

Question and Document are bounded with beginning special token [CLS] and
ending special token [SEP] and passed into CoLegalPhoBERT, to create se-
mantic embedding vector. In training, f(u, v) in Figure 8 indicates L∫⌊ ranking
loss which can be calculated with both positive document dpos and negative
documents dneg for the given question to contrastively train CoLegalPhoBERT:

Lsb = ΣqΣdpos∈Dpos
lc(q, dpos, Dneg) (35)

Where Dpos is the positive document collection for the given question q. lc(q, dpos, Dneg)
is the contrastive loss function, which can be referenced from [38]:

lc(q, dpos, Dneg) = − log
ef(qpos,dpos)

ef(qpos,dpos) +Σdneg∈Dneg
ef(qpos,dneg)

(36)

Where Dneg is the collection of negative documents for given question q sampled
with sparse retrieval methods, in this project we use BM25+.

4.2.6 Question Answering

Sentence Transformer returns the most relevant documents to a given query
but they are all too long and some of returned information is not necessary.

Final Capstone Project 63

Therefore, a question answering exists to extract relevant pieces of knowledge
from context returned by Retriever Module.

There are two kinds of question answering: extractive and abstractive ques-
tion answering. Extractive question answering is popular because there are a
lot of datasets created for this task in a number of domain. Inputs of extractive
question answering include question and relevant contexts. They are separated
by a special token, in this case, phoBERT has [SEP] lied between question and
context, the model will return two numbers: start and end position, it means
the position of the start and end character in the answer span extracted from
the context. This type of question answering task is more likely suitable for
legal question answering model because it answers a legal question surely based
on given knowledges, there is no changed or paraphrase the answer which is
extremely sensitive in legal domain where accuracy of each word in a sentence
counts.

The sencond type of question answering task is abstractive question answer-
ing, or generative question answering. Model will take the inputs that are the
same with extractive question answering task but the output is a probability
distribution of each word in model’s vocabulary so that we can use some decod-
ing algorithms such as greedy search, beam search, top-p and top-k sampling
to generate human-like text answer. The answer is represented in the human-
readable way. Although this makes the chatbot model acts as a real human,
but in the legal domain, generation is hard to be committed that the generated
answer is suitable and safety while there is no any criteria to control and handle
the quality of a generative model. Therefore, extractive question answering is
highly recommended in legal domain and it is also performed in this project.
While encoder models are currently the preferred choice for extractive question
answering, sequence-to-sequence (Seq2Seq) models can also have advantages in
certain scenarios:

• Non-contiguous answer spans: Seq2Seq models are well-suited for tasks
where the answer span is not a contiguous sequence of words. This is
because they are capable of producing an output sequence that is not
constrained to a fixed length.

• Additional context: Seq2Seq models can incorporate additional context
beyond the given passage to answer a question. This can be useful for
tasks that require a broader understanding of the topic or require reasoning
beyond the information contained in the input passage.

• Language Generation: Seq2Seq models are capable of generating natural
language output, which can be useful for tasks that require the system to
generate an answer in a specific format or style.

Despite of performing extractive question answering, we do not output two
numbers that are start position and end position. We notice that predicting is
not associated to the idea of question answering task. We pass a query sentence
and its relevant knowledge, then expect the model to return the answers existing

Final Capstone Project 64

in one of given contexts. start position and end position are not originally the
idea of using language model to create an answer, answer a question like human.
Model is better to predict a span of text where each token is generated based
on the previous one until complete the answer. Predicting the beginning of
the supposed answer and its ending token, then slice the span of text is not
appropriate. Proof is shown below:

Final Capstone Project 65

5 EXPERIMENTS AND RESULTS

5.1 Dataset
Vietnamese Legal Text Retrieval The data we used for the "Vietnamese
Legal Text Retrieval" section comes from the "Legal Text Retrieval" dataset in
the "ZALO AI Challenge 2021", which includes up to 3200 legal articles. In
addition, we collected legal data from Vietnamese sources such as "Lawnet.vn"
and "vbpl.vn", with a total of nearly 145,000 legal documents spanning from
October 2018 to January 2023. After processing steps to filter out noise and
remove duplicate words in sentences, we obtained nearly 3GB of legal data.

Question Answering In order to address the problem of limited training
data for legal question answering, the authors trained their legal Phobert model
with UIT-ViQuAD [39], a collection of 23,000 questions and answers created by
humans using passages from 174 Vietnamese Wikipedia entries. By doing this,
the extractive question answering model can first learn reading comprehension
skills before being applied or performed inference on the 520 legal questions
and 1377 articles from the Automated Legal Question Answering Competition
(ALQAC 2022). After checking 520 questions, we found that there are 9 ques-
tions contain the answer is not a pieces of information that can be extracted from
a given question’s corresponding articles. Because we trained our Vqa-ViT5 to
perform extractive question answering task, we discard these unsuitable ques-
tion and retain 511 samples

5.2 Processing data
Data processing section of collecting data from Vietnamese law websites, we
follow the process of standardizing punctuation and using pre-built Vietnamese
text forms.

The combined and pre-built Vietnamese character sets are created to support
typing and displaying Vietnamese characters on computers. They include all the
characters in the Vietnamese alphabet, including tone and punctuation marks.

• The combined set is named "combined" because it consists of characters
created by combining basic characters in the Vietnamese alphabet. Other
characters such as "ê", ... are also created by combining different basic
characters.

• The pre-built Vietnamese character set is integrated into computer sys-
tems or application software, eliminating the need for users to install this
character set. It is provided by software manufacturers and supported on
most current operating systems and application software.

• Both the combined and pre-built Vietnamese character sets play an im-
portant role in supporting the use of Vietnamese on computers and mobile

Final Capstone Project 66

 VIETNAMESE LEGAL
 TEXT RETRIEVAL

 SB-Condenser-100MB

 Finetune language model (100 MB)

 Train condenser (100 MB)

 Train cocondenser (100 MB)

 Train Sentence Transformer (100 MB)

 SB-Condenser-300MB-Lite

 Finetune language model (300 MB)

 Train condenser (100 MB)

 Train cocondenser (100 MB)

 Train Sentence Transformer (100 MB)

 SB-Condenser-300MB-Full

 Finetune language model (300 MB)

 Train condenser (300 MB)

 Train cocondenser (300 MB)

 Train Sentence Transformer (100 MB)

 SB-Condenser-3GB

 Finetune language model (3GB)

 Train condenser (100 MB)

 Train cocondenser (100 MB)

 Train Sentence Transformer (100 MB)

Figure 9: Overview about four versions in Vietnamese Legal Text Retrieval

devices. However, users need to pay attention to using the correct char-
acters and marks in Vietnamese to avoid confusion or misunderstanding
the meaning of words.

In Vietnamese, punctuation marks play an important role in distinguishing
the meanings of words. Incorrect use of punctuation can lead to misunderstand-
ing or loss of the meaning of a sentence.

• For example, in the case of "hoàng" and "hòang", these are two different
words in meaning. "hoàng" means a name, while "hòang" has no meaning
in Vietnamese.

• Other punctuation errors in Vietnamese include not using the period,
comma, or punctuation marks correctly, or placing them in the wrong
position. For example, the difference between the sentences "Anh yêu
em" and "Anh, yêu em" or "Anh yêu, em" can change the meaning of the
sentence. Therefore, to avoid misunderstandings about meaning, using
punctuation correctly is very important in Vietnamese.

5.3 Pretrain Masked Language Model
Describe presentation: We have a total of 4 experimental models, which are
SB-Condenser-100MB, SB-Condenser-300MB-Lite, SB-Condenser-100MB-Full,
and SB-Condenser-3GB, respectively. However, the same training parameters

Final Capstone Project 67

0 1 2 3 4 5
Learning Rate 1e 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Learning Rate vs Loss

0.0

0.2

0.4

0.6

0.8

1.0

(a) Learning Rate vs Loss

0 2 4 6 8 10
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Training Loss Over Time

(b) Train loss over time

Figure 10: Overview about training loss

were used in the parameter setup. Therefore, throughout the process of describ-
ing the implementation method, we only represent the SB-Condenser-300MB
model in the core main section.

5.3.1 Setting parameters of training model

Table 3: Training parameters of Pretrain Masked Language Model.

Model Name Train Epochs Total Batch Size

Phobert Large 10 32

In setting the parameters for fine-tuning the Phobert Large language model,
we chose Epochs as 10 for training, and set the batch size for both the evaluation
and training sets as 8. Additionally, we set a parameter to increase the batch size
of the model to 32 by setting the Gradient Accumulation parameter to 4 (8*4).
The reason we increased the batch size through Gradient Accumulation instead
of directly increasing it is that directly increasing the batch size would lead to
an increase in GPU memory usage. In this training session, we used two types
of GPUs: T4 from Google Colab and P100 from Kaggle Notebook, both with
GPU memory ranging from around 13GB. This means that we cannot increase
the batch size further without encountering memory overflow issues. Therefore,
setting Gradient Accumulation ensures that the batch size can increase up to a
maximum of 32. Additionally, we also wanted to ensure that the batch size was
not too low, as having too low of a batch size would result in issues with the
loss function during training.

Final Capstone Project 68

0

2

4

6

8

10

ep
oc

h

0

1

2

3

4

5

le
ar

ni
ng

_r
at

e

1e 5

0.4

0.6

0.8

1.0

lo
ss

0 5 10
epoch

0

20000

40000

60000

st
ep

0 2 4
learning_rate 1e 5

0.4 0.6 0.8 1.0
loss

0 25000 50000 75000
step

Figure 11: Overview about pretrain Masked Language Model

5.3.2 Visualize Results

Regarding Figure 10, it shows us detailed insights into the results of the loss func-
tion compared to other training parameters such as learning rate and epochs. In
Figure 10a, the learning rate vs loss plot indicates that both parameters are di-
rectly proportional to each other throughout the training process. The learning
rate values range from below 1e−5 to 5e−5, while the loss values range from be-
low 1.0 to approximately 0.2. Moreover, we can clearly see that the automated
parameter tuning process gradually adjusts the learning rate and monitors the
loss function in parallel. The results demonstrate that the training process per-
forms well in enabling the PhoBERT Large language model to learn new word
connections and is particularly useful in the legal domain. In figure 10b, we
can see another view of the loss parameter compared to epochs. It is clear that
the loss decreases during the model training process, specifically when we set
the epoch parameter to 10. In some other machine learning or deep learning
problems, setting the epoch parameter to 10 or less may be too few and cannot
guarantee optimal results in model training. However, in the field of natural
language processing or fine-tuning for the Phobert Large language model in this
case, with a considerable amount of data and the specificity of this language

Final Capstone Project 69

model with over 340 million parameters, setting the epoch parameter to 10 can
save time during the model training process while still ensuring similar good
results as when using a larger epoch parameter. To clarify this, we can refer
back to Figure 10b, where we observe a significant decrease in the loss function,
especially during the first few epochs where the loss function reaches around
0.5, and then a slight decrease from 0.5 to almost 0.2 during the subsequent
epochs. Moreover, overall, the loss function decreases during the entire training
process with slight fluctuations and a notable decrease during the third epoch.

With regard of the Figure 11, we use the seaborn library to visualize four
main parameters: step, learning rate, loss, and epoch. From all the charts in
the figure, we can also have a deeper insight into the correlation and variation
of these parameters over time during the model training process. We can also
focus mainly on the learning rate parameter compared to other parameters,
clearly the model can be evaluated as relatively good because it maintains the
loss decreasing and not varying too much. Furthermore, by using dots to clearly
represent the position of the losses over time, we can also see a slight variation
from epoch 3 to epoch 4. Besides, there is also a bar chart comparing the
loss with itself to clarify that it still decreases and illustrate the variation of
this parameter more visually. Overall, setting the parameters for this language
model training, specifically the Phobert Large model with 300MB of clean legal
data and the training parameters mentioned above, resulted in a very objective
training outcome and can ensure the quality for the next training modules such
as Condenser, Cocondenser, and Round 1 and 2 of Sentence Transfer.

5.4 Pretrain Condenser
Describe presentation: We have a total of 4 experimental models, which are
SB-Condenser-100MB, SB-Condenser-300MB-Lite, SB-Condenser-100MB-Full,
and SB-Condenser-3GB, respectively. However, the same training parameters
were used in the parameter setup. Therefore, throughout the process of de-
scribing the implementation method, we only represent the SB-Condenser-
300MB-Lite model in the core main section.

5.4.1 Setting parameters of training model

Table 4: Training parameters of Pretrain Condenser.

Model Name Train Epochs Total Batch Size

Phobert Large 8 32

In setting the parameters for Pretrain Condenser, we chose Epochs as 8 for
training, and set the batch size for both the evaluation and training sets as
8. Additionally, we set a parameter to increase the batch size of the model

Final Capstone Project 70

0 1 2 3 4 5 6 7
Epoch

1

2

3

4

5

6

7

Lo
ss

Training Loss Over Time

(a) Overview about f1 Scores

0 1 2 3 4 5 6 7
Epoch

1

2

3

4

5

6

7

Lo
ss

Training Loss Over Time

(b) Overview about cosim similarity ’s accu-
racy, f1 and recall

Figure 12: Overview about SB-Condenser-300MB

to 32 by setting the Gradient Accumulation parameter to 4 (8*4). We used
Gradient Accumulation to increase the batch size instead of directly increasing
it to avoid exceeding the GPU memory limit. We used two types of GPUs with
a memory limit of around 13GB, T4 from Google Colab and P100 from Kaggle
Notebook. Directly increasing the batch size beyond a certain limit would have
led to memory overflow problems. By using Gradient Accumulation, we ensured
that the batch size could be increased up to a maximum of 32 without memory
issues. It was important to avoid having a batch size that was too low as it
would cause problems with the loss function during training.

5.4.2 Visualize Results

Looking at Figure 12, we have two charts to illustrate the variation of the Loss
Function throughout the training process. We chose to visualize this parameter
because it varies but always tends to decrease deeply from 7 to below 1. This
proves that the training of our Condenser model is always efficient and the result-
ing output can ensure the quality for subsequent training cycles. Additionally,
we can see that our training methodology for the two SB-Condenser-300MB-
Lite and SB-Condenser-300MB-Full trials in this training process is completely
different. With 100MB of original data from Zalo for the Lite version and
300MB with 200MB of data collected from reputable legal text websites such
as "lawnet.vn" and "vbpl.vn" for the Full version. However, the training pro-
cess shown in the two charts is quite similar, indicating that our preprocessing
process works well and our data processing results are equivalent to the data in
the "Legal Text Retrieval" dataset of the "Zalo Challenge 2021" competition.

Final Capstone Project 71

0 1 2 3 4 5 6 7 8
Epoch

2

3

4

5

6

7

8

9

Lo
ss

Training Loss Over Time

(a) Overview about f1 Scores

0 1 2 3 4 5 6 7 8
Epoch

2

3

4

5

6

7

8

9

Lo
ss

Training Loss Over Time

(b) Overview about cosim similarity ’s accu-
racy, f1 and recall

Figure 13: Overview about SB-Condenser-300MB

5.5 Pretrain Cocondenser
Describe presentation: We have a total of 4 experimental models, which are
SB-Condenser-100MB, SB-Condenser-300MB-Lite, SB-Condenser-100MB-Full,
and SB-Condenser-3GB, respectively. However, the same training parameters
were used in the parameter setup. Therefore, throughout the process of de-
scribing the implementation method, we only represent the SB-Condenser-
300MB-Lite model in the core main section.

5.5.1 Setting parameters of training model

Table 5: Training parameters of Pretrain Cocondenser.

Model Name Train Epochs Total Batch Size

Phobert Large 8 16

In setting the parameters for Pretrain Cocondenser, we chose Epochs as 8
for training, and set the batch size for both the evaluation and training sets
as 16. In this section, gradient accumulation cannot be applied because using
this parameter will result in very long training times when training on either a
100MB or 300MB training set with the Phobert Large language model.

5.5.2 Visualize Results

Looking at the Figure 13, we have two charts to illustrate the variation of
the Loss Function parameter throughout the training process. The two charts
show a similarity in shape and trend, with a decrease from 9 to around 2.5

Final Capstone Project 72

and fluctuations in the range of 2.5 to 3. However, in the remaining part of
the graph, a decreasing trend can be observed, with a decrease of nearly 1.5 in
the last epoch. This also proves that the model works well, and the training
process is continuous and effective, as the fluctuation of the loss function is not
significant enough to occur in only one or two epochs, while the remaining part
of the graph shows a decreasing trend.

5.6 Sentence Tranformer
5.6.1 Evaluation methods and indicators

Cosine similarity is a measure used to determine how similar two vectors are
to each other. This measure is commonly used in text analysis and natural
language processing applications to compare the similarity of two documents or
pieces of text.

In a vector space, two vectors A and B can be represented by their respective
components, where the value of each component represents the magnitude of
that dimension of the vector. The cosine similarity between two vectors A and
B is calculated as the cosine of the angle between the two vectors, which can
be derived from the dot product of the two vectors and the product of their
magnitudes.

The dot product of two vectors A and B is calculated by multiplying each
corresponding component of the two vectors and adding the results. The mag-
nitude of a vector can be calculated as the square root of the sum of the squares
of its components. Using these formulas, we can compute the cosine similarity
between two vectors A and B as follows:

cosinesimilarity(A,B) =
dotproduct(A,B)

magitudeA ∗magnitudeB
(37)

The resulting cosine similarity value will range between -1 and 1, where -1
indicates that the two vectors are completely dissimilar, 0 indicates that the two
vectors are orthogonal (i.e. perpendicular), and 1 indicates that the two vectors
are identical.

Cosine similarity is a useful measure for comparing the similarity of two
vectors in a high-dimensional space, where other distance measures such as Eu-
clidean distance may not be as effective. It is also useful in applications such as
collaborative filtering, where it can be used to recommend items to users based
on their similarity to other users or items.

Manhattan distance is a measure used to calculate the distance between
two points in a coordinate system. This measure is also known as taxicab
distance, since it is analogous to the distance a taxi would have to travel on a
grid-like city street system to get from one point to another.

In a two-dimensional coordinate system, Manhattan distance between two
points P and Q is calculated as the sum of the absolute differences of their
coordinates in the x- and y-dimensions, i.e.:

Final Capstone Project 73

manhattandistance(P,Q) = |Px −Qx|+ |Py −Qy| (38)

In higher-dimensional spaces, the Manhattan distance between two points
can be computed by summing the absolute differences of their coordinates in
each dimension.

Manhattan distance is often used in machine learning applications to calcu-
late the distance between two data points in a feature space. It is particularly
useful in cases where the features have different units or scales, since it is insen-
sitive to changes in scale and orientation of the coordinate system.

One drawback of Manhattan distance is that it does not take into account
the diagonal distance between two points, which may be a more relevant mea-
sure in certain applications. In such cases, Euclidean distance or Chebyshev
distance may be more appropriate measures to use.

Euclidean distance is a commonly used measure of the distance between
two points in a two- or multi-dimensional space. It is named after the ancient
Greek mathematician Euclid, who first described this concept in his work on
geometry.

In a two-dimensional space, Euclidean distance between two points P and Q
can be calculated using the Pythagorean theorem, which states that the square
of the hypotenuse of a right triangle is equal to the sum of the squares of the
other two sides. Specifically, the Euclidean distance between two points P and
Q is given by:

Euclideandistance(P,Q) = sqrt((Px −Qx)
2 + (Py −Qy)

2) (39)

In a multi-dimensional space, the formula for Euclidean distance is similar
but involves summing the squares of the differences in each dimension and taking
the square root of the sum:

Euclideandistance(P,Q) = sqrt((P1−Q1)
2+(P2−Q2)

2+ ...+(Pn−Qn)
2) (40)

Euclidean distance is a useful measure of distance in many applications, such
as machine learning and data analysis. One advantage of Euclidean distance
is that it takes into account both the x- and y-directions in a two-dimensional
space, as well as all dimensions in a multi-dimensional space, which may be
important in certain applications. However, it may be sensitive to differences
in scale and orientation of the coordinate system, and may not be appropriate
in all situations. In such cases, other distance measures such as Manhattan
distance or Chebyshev distance may be more appropriate to use.

Accuracy: Accuracy is a measure of how often the model correctly pre-
dicts the label of a sample. It is calculated by dividing the number of correct
predictions by the total number of predictions.

F1 score: F1 score is the harmonic mean of precision and recall, two other
common evaluation metrics. It is a good metric to use when the classes are

Final Capstone Project 74

imbalanced, meaning one class has significantly more samples than the other.
F1 score ranges from 0 to 1, with higher values indicating better performance.

Recall: Recall, also known as sensitivity, is a measure of how well the model
correctly identifies positive samples. It is calculated by dividing the number of
true positives by the sum of true positives and false negatives.

Average Precision (AP): Average Precision is a metric commonly used in
object detection and image segmentation tasks. It measures the area under the
precision-recall curve, which shows the trade-off between precision and recall at
different classification thresholds. AP ranges from 0 to 1, with higher values
indicating better performance.

5.6.2 Setting parameters of training model

Table 6: Training parameters of Sentence Transformer.

Model Name Train Epochs Total Batch Size

Phobert Large(R1) 10 32

Phobert Large(R2) 5 32

In terms of Sentence Transformer, we divide into two round. For the first
round, we set the training parameters as follows: max length is 256. This is be-
cause for the Phobert Base and Phobert Large language models, the maximum
length per line is 256. Therefore, setting the max length to 256 ensures that
each line meets the language model’s requirements without causing errors. We
also set the batch size parameter to 32 to ensure that the model’s learning pro-
cess runs optimally. We cannot increase the batch size to 64 or higher because
our available resources are limited to the A30 with 24GB of memory. Increasing
the batch size beyond this limit may cause memory overflow. While gradient
accumulation can be used to increase the batch size without changing memory
requirements, it may slow down the process. Therefore, this parameter is not
supported in this case. We trained the model for 10 epochs because we found
that it was suitable in terms of time while still ensuring the model’s quality.
Additionally, we consulted other papers as [4] with similar epoch numbers and
achieved good results.

For the second round, we inherited the results from the last epoch checkpoint
of the first round and continued to use the same training parameters, with a
max length of 256 and a batch size of 32. However, this time we set the number
of epochs to 5 because in some of our experiments and in other papers that use
the Condenser architecture, the number of epochs ranges from 5-10. However,
we found that using more than 5 epochs within this range did not result in
significant changes. After round 2, we could continue training in the subsequent
rounds, but training the model in these rounds only improves local results, while

Final Capstone Project 75

0.3 0.4 0.5 0.6 0.7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

cossim_f1
euclidean_f1
dot_f1

(a) Overview about f1 Scores

0 2 4 6 8
Epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

/F
1

Sc
or

e/
Re

ca
ll

Accuracy, F1 Score and Recall over Epochs

Accuracy
F1 Score
Recall

(b) Overview about cosim similarity ’s accu-
racy, f1 and recall

Figure 14: Overview about SB-Condenser-300MB-Full (Round 1)

overall there may be significant differences. To clarify this, we can observe the
results we recorded in rounds 1 and 2, and from there, gain insight for subsequent
rounds if we continue training.

5.6.3 Visualize Results

With regard to Figure 14, Firstly, considering figure 14a, we can see that the
"Overview about f1 Scores" chart, which evaluates three main methods: Co-
sine similarity, Manhattan distance, and Euclidean distance, shows that the
variation of f1 scores during the training process is completely different. The
variability of these three methods is completely different. The highest one is
Cossim with a fluctuation range from 0.6 to 0.7, while the other two methods
are much lower. Next is figure 14b, in which we focus on F1 Score, Recall, and
Accuracy of the Cosine similarity evaluation method, as its displayed results
are the best and its range represents more clearly the other evaluation methods.
Throughout the training process, the fluctuation range of Accuracy is always
above 0.97

In terms of Figure 15, Firstly, considering figure 15a, we can see that the
"Overview about f1 Scores" chart, which evaluates three main methods: Cosine
similarity, Manhattan distance, and Euclidean distance, shows that the varia-
tion of f1 scores during the training process is completely different. However,
the density at the 0.7 level always has the highest proportion. Next is figure 15b,
in which we focus on F1 Score, Recall, and Accuracy of the Cosine similarity
evaluation method, as its displayed results are the best and its range represents
more clearly the other evaluation methods. Throughout the training process,
the fluctuation range of Accuracy is always above 0.95, which can be considered
as a measure to ensure that the model performs relatively well.

Final Capstone Project 76

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

2

4

6

8

10

De
ns

ity

cossim_f1
euclidean_f1
dot_f1

(a) Overview about f1 Scores

0 2 4 6 8
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

/F
1

Sc
or

e/
Re

ca
ll

Accuracy, F1 Score and Recall over Epochs

Accuracy
F1 Score
Recall

(b) Overview about cosim similarity ’s accu-
racy, f1 and recall

Figure 15: Overview about SB-Condenser-300MB-Lite (Round 1)

Table 7: Binary Accuracy Evaluation of Round 2

Evaluatio Accuracy F1 Precission

SB-Condenser-300MB-Lite

Cosine-Similarity 96.9 63.2 76.3

Manhattan-Distance 96.6 59.2 69.4

Euclidean-Distance 96.6 59.5 73.8

SB-Condenser-300MB-Full

Cosine-Similarity 96.9 63.8 72.7

Manhattan-Distance 96.4 54.3 68.1

Euclidean-Distance 96.4 54.5 67.5

As mentioned above, in the second round, we performed with 5 epochs and
obtained relatively good results. With Accuracy always above 96.9 and F1
Score reaching approximately 63, and Precision can be close to 76.3 for SB-
Condenser-300MB-Lite. Besides, in terms of SB-Condenser-300MB-Full having
96.9, 63.8 and 72.7 for accuracy, F1 Score and Precission in that order. It can
be seen that the F1 Score in the second round is lower than in the first round,
however, overall, other metrics achieved a better ratio than in the first round,
such as Precision. That is why we stopped after the second round because if
we continued to train in the following rounds, we would only improve locally on
some specific types, while the overall performance would have large fluctuations,
and the metrics could even decrease.

Final Capstone Project 77

5.7 Final Results of Vietnamese Legal Text Retrieval

Table 8: The results of legal text retrieval versions

The metrics Training data F1 Score(val)

SB-Condenser-100MB 100MB 0.61

SB-Condenser-300MB-Lite 300MB 0.63

SB-Condenser-300MB-Full 300MB 0.63

SB-Condenser-3GB 3GB 0.66

The result: with regard to the summary table 8, we introduce four versions
of a conference we tested based on the Condenser architecture to solve the
problem of "Vietnamese Legal Text Retrieval".

• In the first version (SB-Condenser-100MB): we use 100MB of data
from the Zalo Legal Text 2021 competition. We use 100 MB of data to
pretrain Masked Language Model, although it is not much, it helps the
language model understand the characteristics of words in the legal field
linked together. In the following rounds, Condenser and Coconder, we
continue to use this data to understand the context of each sentence and
the links between legal terms and the separate content of each term.

• In the second version (SB-Condenser-300MB-Lite):, we added
200MB of data collected from reputable legal websites in Vietnam to
supplement the initial 100MB data. First, we used the 300MB data to
fine-tune the Phobert language model. Then, we used the checkpoint ob-
tained from fine-tuning to train in subsequent rounds, with 100MB of data
retained for training in each round.

• In the third version (SB-Condenser-300MB-Full):, we used 300MB
of data similar to experiment 2, but this time we trained all rounds with
the 300MB data, including Pretrain Masked Language Model, Pretrain
Condenser, Pretrain Cocondenser. For the final round, Sentence Trans-
former, we reused 100MB because the task was to combine Sparse Re-
trieval and Dense Retrieval on the domain dataset to answer questions.

• In the fourth version (SB-Condenser-3GB):,we added 2.9 GB of
data collected from reputable legal websites in Vietnam to supplement
the initial 100MB data. First, we used the 3GB data to fine-tune the
Phobert language model. Then, we used the checkpoint obtained from
fine-tuning to train in subsequent rounds, with 100MB of data retained
for training in each round. Besides, This training method is similar to the
second version, which can bring optimal training time while still ensuring
that the results are similar to using all 3GB for training in all rounds.

Final Capstone Project 78

We trained a total of 4 versions on different amounts of data: 100MB,
300MB, and 3GB. In particular, for the 300MB data, we split it into two training
methods. First, with the SB-Condenser-300MB-Lite version, we used 300MB
of training data for pretraining the masked language model, while in subse-
quent iterations, we used the original 100MB data in the Zalo domain for the
SB-Condenser-300MB-Full experiment, training with 300MB for all steps. The
results of the two 300MB experiments exceeded 0.63, which opened up a new
training approach where we can apply the training method of the SB-Condenser-
300MB-Lite version to save time and training resources. For the 3GB experi-
ment, we applied the training method of the 300MB-Lite version and achieved
an F1 score of over 0.66.

Predicted class

Actual class Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 9: Confusion matrix for binary classification

F2 Score: being a metric that combines precision and recall. It is calculated
as follows:

F2 = (1 + β2) · precision · recall
(β2 · precision) + recall

(41)

• where β is a parameter that adjusts the relative weight of precision and
recall. In practice, F2 score is often used when recall is more important
than precision. For example, in medical diagnosis, it is more important
to correctly identify all positive cases (high recall) even if it means more
false positives (low precision).

• To calculate F2 score, we first need to calculate precision and recall from
the confusion matrix.

Precisio: being the ratio of true positives to the sum of true positives and
false positives:

precision =
TP

TP + FP
(42)

Recall: being the ratio of true positives to the sum of true positives and
false negatives:

recall =
TP

TP + FN
(43)

Final Capstone Project 79

Table 10: The F2 Score of legal text retrieval versions

Version Metric Score

SB-Condenser-300MB-Lite F2 0,699

SB-Condenser-300MB-Full F2 0,649

SB-Condenser-3GB F2 0.723

In terms of the table 10, we evaluated our trial version using the F2 Score
evaluation method. In the field of law, Recall plays a crucial role as it indicates
the proportion of predictions that match the labels. Our highest F2 Score result
was achieved with the SB-Condenser-3GB version, with a score of 0.723. The
Lite version trained on 300MB achieved a score of 0.699, while the Full version
achieved a score of 0.649.

For inference, take a look at Figure 16, the query is sent to BM25+ module
to calculate BM25+ score with all documents in the database (sparse retrieval
purpose). At the same time, the query is passed to SentenceBERT model to
create cosine similarity score with all documents in the database (dense retrieval
purpose). The documents are chosen whose scores is maximum and calculated
by BM25 + _score ∗ cosine_similarity. Despite the number of documents
returned is fixed but it has another constraint that the relevant documents need
to lie in the range from max_score−2.6 to max_score. finally, the documents
and query are given to Question Answering model to extract a keypoint that
the query mentions, avoid redundant information in original returned documents
from the retrieval process’ output.

5.8 Final Results of Question Answering
The F1 Score being a commonly used metric for classification problems, par-
ticularly in QA. It is suitable when both precision and recall are equally im-
portant. To calculate the F1 score in this context, the individual words in the
prediction and true answer are compared. The score is based on the number
of words shared between the prediction and the truth. Precision is determined
by dividing the number of shared words by the total number of words in the
prediction, while recall is determined by dividing the number of shared words
by the total number of words in the ground truth.

Exact Match: The measurement referred to is very straightforward. In
each case where a question and corresponding answer are given, if the model’s
prediction matches the characters of the true answer(s), the EM score is 1.
However, any deviation in character accuracy will result in an EM score of 0.
This is a binary measure, meaning that being even one character off results in a
score of 0. Furthermore, if the model predicts any text for a negative example,

Final Capstone Project 80

Query

SentenceBERT

BM25+

Legal database

BM25+ score vector

cosine similarity score
vector

Documents

BM25+ flow

SentenceBERT flow

QA model

Key answer

QA flow

Figure 16: Inference flow

it automatically receives a score of 0 for that particular example.

F1 =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision+ recall
(44)

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) be-
ing a set of metrics used for automatic evaluation of text summarization and
machine translation. It measures the similarity of the generated text with one or
more reference summaries or translations, using several scores such as ROUGE-
1, ROUGE-2, and ROUGE-L. These scores represent the n-gram overlap of the
generated text with the reference text at the unigram, bigram, and longest com-
mon subsequence levels. ROUGE metrics are widely used in natural language
processing and text summarization research to evaluate the quality of generated
summaries or translations.

Table 11: The result of question answering version (Vqa-ViT5)

Version Metric Score

Vqa-ViT5 F1 0,646

Vqa-ViT5 EM 0,41

Vqa-ViT5 rougeL 0,66

Final Capstone Project 81

Dataset: In order to address the problem of limited training data for legal
question answering, the authors trained their legal Phobert model with UIT-
ViQuAD [39], a collection of 23,000 questions and answers created by humans
using passages from 174 Vietnamese Wikipedia entries. By doing this, the
extractive question answering model can first learn reading comprehension skills
before being applied or performed inference on the 520 legal questions and 1377
articles from the Automated Legal Question Answering Competition (ALQAC
2022). After checking 520 questions, we found that there are 9 questions contain
the answer is not a pieces of information that can be extracted from a given
question’s corresponding articles. Because we trained our Vqa-ViT5 to perform
extractive question answering task, we discard these unsuitable question and
retain 511 samples

The results: We used three evaluation methods, namely F1 Score, Exact
Match, and ROUGE, to evaluate the performance of our Vqa-ViT5 experiment,
which was trained on the dataset UIT-ViQuAD [39] with data spanning various
domains. For evaluation, we used 511 pairs of legal questions and answers from
the ALQAC-2022 competition, in contrast to the commonly used approach of
training on legal data and using a small set of validation data to evaluate results.
Table 11 shows our Vqa-ViT5 model trained on the comprehensive dataset and
using all 511 questions achieved an F1 Score of 0.646. The more accuracy-
demanding evaluation method, Exact Match (EM), yielded a score of 0.41. [3]
gives their result about 90% on ALQAC-2022. However, they mentions that
their F1 score is on the dev set which they randomly pick 15% of the official
dataset. It means their validation dataset (about 78 data) is smaller than us (511
data). Moreover, our Vqa-ViT5 is not trained on ALQAC-2022 dataset at all but
it still gives acceptable result. Table 12 shows some examples from Vqa-ViT5,
at the first question, model predict correctly answer in token-level, obviously its
EM is 1.0. Take a look at the second question, our model predicts a span of
text that includes the actual label, although the prediction is not incorrect, but
EM metric still return 0.0, and most of inference result is the same with this
situation, that why we said the result is kind of acceptable but the EM score is
not pretty high. Therefore In Table 12, we also compute rougL score in order
not to discard acceptable result like EM score because rougL score measures the
similarity between a machine-generated summary or translation and a reference
summary or translation by computing the longest common subsequence (LCS)
between them. The LCS is the longest sequence of words that appears in both
the generated and reference summaries. However, result of rougeL score is
just approximate to indicate that there are some semantically correct predicted
answers are discarded by EM, rougeL metric is not popularly used for extractive
question answering task because of answer’s representation.

Final Capstone Project 82

Table 12: Vqa-ViT5 example result table

question: Chiếm đoạt di vật của tử sĩ có thể bị phạt tù lên đến
bao nhiêu năm? (Appropriating relics of martyrs can
be punished with up to how many years?)

context: Tội chiếm đoạt hoặc hủy hoại di vật của tử sỹ ...thì
bị phạt tù từ 02 năm đến 07 năm: a) Là chỉ huy
hoặc sĩ quan; b) Chiếm đoạt hoặc hủy hoại di vật
của 02 tử sỹ trở lên. (The crime of appropriating or
destroying the relics of martyrs ... shall be punish-
able by imprisonment from 02 years to 07 years: a)
Being a commander or officer; b) Appropriating or
destroying relics of 02 or more martyrs.)

prediction: 07 năm (07 years)

label: 07 năm (07 years)

question: Người đã nhận làm gián điệp, nhưng không thực hiện
nhiệm vụ được giao và tự thú, thành khẩn khai báo
với cơ quan nhà nước có thẩm quyền, thì được miễn
trách nhiệm gì về tội gián điệp? (A person who has
accepted to act as a spy, but fails to perform the
assigned tasks and confesses and honestly declares
to the competent state agency, shall be exempt from
any responsibility for espionage charges?)

context: Tội gián điệp 1. Người nào có một trong các hành
vi... a) Hoạt động tình báo, ... thành khẩn khai báo
với cơ quan nhà nước có thẩm quyền, thì được miễn
trách nhiệm hình sự về tội này. (Crime of espionage
1. Any person who commits one of the acts... a)
Intelligence activities, ... sincerely declares to the
competent state agency, shall be exempt from re-
sponsibility criminal about this crime.)

prediction: miễn trách nhiệm hình sự (exempt from criminal li-
ability)

label: hình sự (Criminal)

Final Capstone Project 83

6 DISCUSSIONS
The general topic of our thesis is "Vietnamese Legal Text Retrieval," where our
model aims to provide users with the most relevant and appropriate laws in
response to their query. However, to improve the answering capability of our
model, we have also developed a "Question Answering" task that extracts laws
related to the user’s query and presents a concise answer based on those laws.
This is to provide users with the most accurate and succinct answer possible,
tailored to their specific question.

The results of our work over the past 14 weeks will be presented at the
ISICO 2023 conference in July in Indonesia. Besides, we will present the three
main parts of our work, which are also documented in two papers: preprocessing
of Vietnamese legal texts, which we collected from two websites, "lawnet.vn"
and "vbpl.vn," with nearly 145,000 documents; training the Condenser archi-
tecture to achieve optimal results on large datasets; and using the ViT5 model
trained on multidisciplinary datasets to achieve top results when tested on legal
datasets.

Vietnamese Legal Text Retrieval: we conducted experiments on a total
of 4 trial versions, namely SB-Condenser-100MB, SB-Condenser-300MB-Lite,
SB-Condenser-300MB-Full, and SB-Condenser-3GB. We compared the training
approach between the 300MB-Lite and 300MB-Full versions, which proposed
training on larger datasets like 3GB to save costs and reduce total training
time. This is because after evaluating the learning process or results through
several training iterations, they produced similar results. Therefore, this can be
considered a relatively new approach that brings efficiency for cases with limited
time and training resources.

Question Answering: we conducted training on the UIT-ViQuAD dataset
with nearly 23,000 question-answer pairs spanning various domains in Viet-
namese. After training, we evaluated on 510 question-answer pairs from the
ALQAC 2022 competition and achieved results comparable to those of other
published works that mainly focus on legal data. This opens up a new approach
for specific topics such as law because the data for training "Question Answer-
ing" models is currently scarce in most languages. Typically, to increase the
accuracy of the model, data is outsourced to a data expert to prepare for the
training process. However, for legal data, it is necessary to involve legal experts
such as legal specialists or lawyers to evaluate the dataset used to train the
model from a third party or directly from those who participate in completing
it. This approach can be applied not only to Vietnamese but also to other lan-
guages and different topics since finding a multi-domain dataset is more common
and easier than complex topics like law.

Final Capstone Project 84

7 CONCLUSIONS
Along with the experiments on my approaches, architectures, and proposals
that I have built and evaluated over the past 14 weeks, we have achieved certain
results on two tasks, "Vietnamese Legal Text Retrieval" and "Question Answer-
ing," equivalent to the top results on these tasks in Vietnam in 2022. From that,
we have gained a better understanding of the opportunities and challenges in
developing projects in practice, such as the need to quickly and timely collect
and process legal data with relative high costs and time required to train com-
plete models for both tasks. However, this topic still holds a lot of potential for
practical applications in addressing small issues from individuals’ legal research
to protect their legitimate rights or even for foreign businesses wishing to invest
in Vietnam but face legal obstacles as it is now.

In the future, we will continue to develop this project with more accurate
data processing, as well as integrating new algorithms to further enhance the
effectiveness. Perhaps releasing an official version for user experience evaluation
will help us collect more accurate evaluation results and provide us with a more
comprehensive overview of the applicability of this topic in Vietnam today. In
addition, we will also consider research directions to ensure that the results of
the model are improved and continue to produce papers at conferences on Nat-
ural Language Processing in the future.

Final Capstone Project 85

8 REFERENCES

References
[1] Luyu Gao and Jamie Callan. Condenser: a pre-training architecture for

dense retrieval. arXiv preprint arXiv:2104.08253, 2021.

[2] Dat Quoc Nguyen and Anh Tuan Nguyen. Phobert: Pre-trained language
models for vietnamese. arXiv preprint arXiv:2003.00744, 2020.

[3] Hieu Nguyen Van, Dat Nguyen, Phuong Minh Nguyen, and Minh
Le Nguyen. Miko team: Deep learning approach for legal question answer-
ing in alqac 2022. In 2022 14th International Conference on Knowledge
and Systems Engineering (KSE), pages 1–5. IEEE, 2022.

[4] Nhat-Minh Pham, Ha-Thanh Nguyen, and Trong-Hop Do. Multi-
stage information retrieval for vietnamese legal texts. arXiv preprint
arXiv:2209.14494, 2022.

[5] Phi Manh Kien, Ha-Thanh Nguyen, Ngo Xuan Bach, Vu Tran, Minh
Le Nguyen, and Tu Minh Phuong. Answering legal questions by learning
neural attentive text representation. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pages 988–998, 2020.

[6] Chieu-Nguyen Chau, Truong-Son Nguyen, and Le-Minh Nguyen. Vnlaw-
bert: A vietnamese legal answer selection approach using bert language
model. In 2020 7th NAFOSTED Conference on Information and Com-
puter Science (NICS), pages 298–301, 2020.

[7] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[10] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[11] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer, 2020.

Final Capstone Project 86

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners, 2020.

[13] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text, 2016.

[14] Gerard Salton and Christopher Buckley. Term-weighting approaches in
automatic text retrieval. Information processing & management, 24(5):513–
523, 1988.

[15] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple bm25
extension to multiple weighted fields. In Proceedings of the thirteenth ACM
international conference on Information and knowledge management, pages
42–49, 2004.

[16] Stephen E Robertson and Steve Walker. Some simple effective approxi-
mations to the 2-poisson model for probabilistic weighted retrieval. In SI-
GIR’94: Proceedings of the Seventeenth Annual International ACM-SIGIR
Conference on Research and Development in Information Retrieval, organ-
ised by Dublin City University, pages 232–241. Springer, 1994.

[17] Qiao Jin, Andrew Shin, and Zhiyong Lu. Lader: Log-augmented dense
retrieval for biomedical literature search, 2023.

[18] Avirup Sil, Jaydeep Sen, Bhavani Iyer, Martin Franz, Kshitij Fadnis, Mi-
haela Bornea, Sara Rosenthal, Scott McCarley, Rong Zhang, Vishwajeet
Kumar, Yulong Li, Md Arafat Sultan, Riyaz Bhat, Radu Florian, and
Salim Roukos. Primeqa: The prime repository for state-of-the-art multi-
lingual question answering research and development, 2023.

[19] Qiuhong Zhai, Wenhao Zhu, Xiaoyu Zhang, and Chenyun Liu. Contrastive
refinement for dense retrieval inference in the open-domain question an-
swering task. Future Internet, 15(4):137, 2023.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2019.

[21] Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiao-
Qiao She, Hua Wu, Haifeng Wang, and Ji-Rong Wen. PAIR: Leveraging
passage-centric similarity relation for improving dense passage retrieval. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021. Association for Computational Linguistics, 2021.

Final Capstone Project 87

[22] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin
Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. Rocketqa: An opti-
mized training approach to dense passage retrieval for open-domain ques-
tion answering. arXiv preprint arXiv:2010.08191, 2020.

[23] Nicholas Monath, Manzil Zaheer, Kelsey Allen, and Andrew McCallum.
Improving dual-encoder training through dynamic indexes for negative min-
ing, 2023.

[24] Xuan Fu, Jiangnan Du, Hai-Tao Zheng, Jianfeng Li, Cuiqin Hou, Qiyu
Zhou, and Hong-Gee Kim. Ss-bert: A semantic information selecting ap-
proach for open-domain question answering. Electronics, 12(7):1692, 2023.

[25] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can
you pack into the parameters of a language model?, 2020.

[26] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with
generative models for open domain question answering, 2021.

[27] Peng Xu, Davis Liang, Zhiheng Huang, and Bing Xiang. Attention-guided
generative models for extractive question answering, 2021.

[28] Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark Dras, and Mark
Johnson. VnCoreNLP: A Vietnamese natural language processing toolkit.
In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Demonstrations, pages 56–
60, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[29] Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark Dras, and Mark
Johnson. A fast and accurate vietnamese word segmenter. In Nicoletta Cal-
zolari, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi,
Kôiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène
Mazo, Asunción Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Toku-
naga, editors, Proceedings of the Eleventh International Conference on Lan-
guage Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,
2018. European Language Resources Association (ELRA), 2018.

[30] Dat Quoc Nguyen, Thanh Vu, Dai Quoc Nguyen, Mark Dras, and Mark
Johnson. From word segmentation to POS tagging for Vietnamese. In
Proceedings of the Australasian Language Technology Association Workshop
2017, pages 108–113, Brisbane, Australia, December 2017.

[31] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive
loss. CoRR, abs/2012.09740, 2020.

[32] Nhat-Minh Pham, Ha-Thanh Nguyen, and Trong-Hop Do. Multi-stage
information retrieval for vietnamese legal texts, 2022.

Final Capstone Project 88

[33] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Man-
ning. What does bert look at? an analysis of bert’s attention, 2019.

[34] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin
Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. Rocketqa: An opti-
mized training approach to dense passage retrieval for open-domain ques-
tion answering, 2021.

[35] Luyu Gao and Jamie Callan. Unsupervised corpus aware language model
pre-training for dense passage retrieval. arXiv preprint arXiv:2108.05540,
2021.

[36] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations, 2020.

[37] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks, 2019.

[38] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Ben-
nett, Junaid Ahmed, and Arnold Overwijk. Approximate nearest neighbor
negative contrastive learning for dense text retrieval, 2020.

[39] Kiet Van Nguyen, Duc-Vu Nguyen, Anh Gia-Tuan Nguyen, and Ngan Luu-
Thuy Nguyen. A vietnamese dataset for evaluating machine reading com-
prehension, 2020.

Final Capstone Project 89

9 APPENDIX

Appendix. Source code & Dataset

Link

Source
code

https://drive.google.com/drive/folders/
13MKB2i29prZ8KN-Kv5dNsnvb8v2QpBEO?usp=
sharing

Dataset
https://drive.google.com/drive/folders/
1i08yDyb_Z-BoppN3VMk7Tham1rs_rlqe?usp=
sharing

https://drive.google.com/drive/folders/13MKB2i29prZ8KN-Kv5dNsnvb8v2QpBEO?usp=sharing
https://drive.google.com/drive/folders/13MKB2i29prZ8KN-Kv5dNsnvb8v2QpBEO?usp=sharing
https://drive.google.com/drive/folders/13MKB2i29prZ8KN-Kv5dNsnvb8v2QpBEO?usp=sharing
https://drive.google.com/drive/folders/1i08yDyb_Z-BoppN3VMk7Tham1rs_rlqe?usp=sharing
https://drive.google.com/drive/folders/1i08yDyb_Z-BoppN3VMk7Tham1rs_rlqe?usp=sharing
https://drive.google.com/drive/folders/1i08yDyb_Z-BoppN3VMk7Tham1rs_rlqe?usp=sharing

	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	ABSTRACT
	INTRODUCTION
	Overview
	Question and Answer System

	Main Topic
	Vietnamese Law
	Vietnamese Legal Text Retrieval

	Specific Works

	RELATED WORKS
	Transformer
	Introduction
	Attention Mechanism
	Encoder-Decoder Architecture
	Transformer Components
	Training and Inference

	Sparse Retrieval
	 Dense Retrieval
	Cross-encoder approaches
	Dual-encoder approaches
	Sequence-to-Sequence (Seq2Seq) for question answering
	Beam search
	Contrastive learning in Information Retrieval
	Query-document matching
	Learn a good representation for queries and documents
	Contrastive learning
	Distinguish between positive and negative pairs of text
	Positive and negative pairs of text sampling

	PROJECT MANAGEMENT PLAN
	Overview
	Work Details

	MATERIALS AND METHODS
	Materials
	Dataset
	Framework and Libraries
	Hardware
	Project Management Tool

	Methods
	Processing data
	Pretrain Masked Language Model
	Pretrain Condenser
	Pretrain CoCondenser
	Build Sentence Transformer
	Question Answering

	EXPERIMENTS AND RESULTS
	Dataset
	Processing data
	Pretrain Masked Language Model
	Setting parameters of training model
	Visualize Results

	Pretrain Condenser
	Setting parameters of training model
	Visualize Results

	Pretrain Cocondenser
	Setting parameters of training model
	Visualize Results

	Sentence Tranformer
	Evaluation methods and indicators
	Setting parameters of training model
	Visualize Results

	Final Results of Vietnamese Legal Text Retrieval
	Final Results of Question Answering

	DISCUSSIONS
	CONCLUSIONS
	REFERENCES
	APPENDIX

