FPT UNIVERSITY- CAMPUS CAN THO

ECONOMIC STUDENTS' AWARENESS ON THE GREEN SUPPLY CHAIN MANAGEMENT AND SUSTAINABILITY

Bachelor of International Business Thesis

Group members:				
Name	Roll No.			
HUÌNH PHẠM VĂN	CS140108			
NGUYỄN ĐĂNG HUY	CS150160			
NGÔ MỸ HUYỀN	CS150166			
HỒ BẢO YẾN	CS150002			
LÊ VĂN QUÍ	CS140495			

Supervisor: TRƯƠNG HÒNG VÕ TUẤN KIỆT

Cần Thơ, 04/2023

TABLE OF CONTENTS

TABLE OF CONTENTS	2
ACKNOWLEDGEMENT	4
EXECUTIVE SUMMARY	5
LIST OF FIGURES	6
LIST OF TABLES	7
LIST OF ABBREVIATIONS AND ACRONYMS	8
Chapter 1: INTRODUCTION	9
1.1. BACKGROUND	9
1.2. RESEARCH OBJECTIVES	10
1.2.1. Overall objective	10
1.2.2. Specific objectives	10
1.3. RESEARCH QUESTIONS	10
1.4. OUTLINE	11
Chapter 2: LITERATURE REVIEW	12
2.1. CONCEPT OF RESEARCH	12
2.1.1. Definition of sustainability	12
2.1.2. Definition of green supply chain management	13
2.2. REVIEW OF PAST STUDIES	18
2.2.1. The past studies in relationship between GSCM and sustainability	18
2.2.2. The role of strategic management	23
2.2.3. The past studies about strategic management for GSCM	24
Chapter 3: RESEARCH METHODOLOGY	27
3.1. THEORITICAL FRAMEWORK	27
3.1.1. Research framework	27
3.1.2. Hypothetical conceptual framework	29
3.2. QUESTIONNAIRES DEVELOPMENT AND DATA COLLECTION	33
3.2.1. Methods of Data collection	33
3.2.2. Data analysis	35
Chapter 4: RESULTS AND DISCUSSION	43
4.1. AWARENESS ABOUT GREEN SUPPLY CHAIN MANAGEMENT AND	
SUSTAINABILITY	43
4.1.1. General information	43
4.1.2. Awareness of economic student about GSCM	44

4.1.3. Awareness of economic student and scholars about sustainability	48
4.2. THE RELATIONSHIP BETWEEN GSCM AND SUSTAINABILITY	
PERFORMANCE	55
4.3. BUSINESS STRATEGY SOLUTION FOR SUSTAINABILITY	68
4.3.1. Analysis of internal factor matrix	68
4.3.2. Analysis of external factor matrix	70
4.3.3. SWOT analysis for strategic solutions in sustainability	72
4.3.4. QSPM analysis for prioritization identified strategies in sustainability	74
Chapter 5: CONCLUSION AND RECOMMENDATION	76
Chapter 5: CONCLUSION AND RECOMMENDATION	76
Chapter 5: CONCLUSION AND RECOMMENDATION	76 76 77
Chapter 5: CONCLUSION AND RECOMMENDATION	76 76 77 80
Chapter 5: CONCLUSION AND RECOMMENDATION	
Chapter 5: CONCLUSION AND RECOMMENDATION	
Chapter 5: CONCLUSION AND RECOMMENDATION	

ACKNOWLEDGEMENT

Throughout the writing of this dissertation, I have received a great deal of support and assistance. First and foremost, we would like to acknowledge FPT University for all the guidance during the research process. We would like to convey our appreciation to the judges for their time, patience, and insightful remarks, in addition to their time and patience. We are happy to convey our sincere thanks to Teacher Truong Hong Vo Tuan Kiet, the person who is superlatively skilled in creating approaches and questions for our thesis. We are all inspired by his humble attitude to science and study. His insightful advice, engaging teaching style, and passion for the topic left a lasting effect on us. This aided us in making the appropriate decisions during the research process and effectively completing our thesis.

Furthermore, a large number of people and organizations have donated their precious time to assist our group with this poll and study. We required more than just academic backing and responsible solidarity for everyone in the group's contributions to the thesis. Also, a large number of people and organizations have donated their precious time to assist our group with this poll and study.

Can Tho, April 28th, 2023.

The authors of the thesis.

EXECUTIVE SUMMARY

In the current climate change situation, environmental issues are a top concern. Humans are facing global problems such as global warming, pollution of the water and air, depletion of the ozone layer, and the crisis in biodiversity. Therefore, this is not an urgent matter not only for those living on earth but for generations. This study aimed to discusse and understand the college students' knowledge and awareness of green supply chain management (GSCM) and sustainability issues. The study was realized with the participation of 534 economic students from universities in Can Tho City in Vietnam. The two analysing software IBM SPSS Statistics and SPSS Amos was adopted in this research. The research reveals that just a small percentage of economics students were aware of sustainability's critical role in the future and GSCM's primary components. This study deals with the correlation between five GSCM factors (internal environmental management, green procurement, green manufacturing, green distribution, and environmental education) and three sustainability performance dimensions (economic, environmental, and social performance). The results show that universities must emphasize the five areas listed above since they are essential to the long-term development of the economy, environment, and society. Although some research has examined how GSCM affects sustainability performance, nothing has been done to increase economic students' awareness of the part it plays in determining a company's success in sustainability. The notion that environmentally friendly corporate operations are advantageous is spreading. Raising students' knowledge of the value of corporate social responsibility (CSR), volunteerism, and environmentally friendly manufacturing is crucial for ensuring the long-term viability of enterprises, communities, and ecosystems.

LIST OF FIGURES

Figure 2.1. Three main components of sustainable development	13
Figure 3.1. Research Framework	
Figure 3.2. Conceptual framework	
Figure 3.3. Hypothesis framework	
Figure 3.4 Analytical framework	
Figure 3.5. Demarcation between Measurement Model and Structural Model	
Figure 4.1. Awareness of economic students in IEM	45
Figure 4.2. Awareness of economic students in GP	46
Figure 4.3. Awareness of economic students in GM	46
Figure 4.4. Awareness of economic students in GD	47
Figure 4.5. Awareness of economic students in EE	47
Figure 4.6. Awareness of internal factor of sustainability	
Figure 4.7. Awareness of external factor of sustainability	51
Figure 4.8. Scholars, share about internal factors of sustainability	
Figure 4.9. Scholars' share about external factors of sustainability	
Figure 4.10. SEM Model of GSCM and Sustainability performance	66

LIST OF TABLES

Table 3.1. Factors and items of GSCM
Table 3.2. Internal factors in sustainability
Table 3.3. External factors in sustainability
Table 4.1. Demographic characteristics of economic student group
Table 4.2. Demographic characteristics of scholar group
Table 4.3. Awareness of economic students about GSCM 45
Table 4.4. Economic students' awareness about internal factors of sustainability
Table 4.5. Economic students' awareness about external factors of sustainability
Table 4.6. The opinion of scholars and students about internal factor of sustainability53
Table 4.7. The opinion of scholars and students about external factor of sustainability54
Table 4.8. Factor loading and the Cronbach's α estimates (Cronbach's Alpha)
Table 4.9. Scale of factors and test parameters in Exploratory Factor Analysis (EFA) onSustainability Performance58
Table 4.10. Scale of factors and test parameters in Exploratory Factor Analysis (EFA) onGreen Supply chain management
Table 4.11. Scale of factors and test parameters in Confirmatory Factor Analysis (CFA)60
Table 4.12. Model fit indicators in Structural Equation Modelling (SEM)
Table 4.13. Final estimates of relationship between GSCM and EP 62
Table 4.14. Final Estimates of relationship between GSCM and ENP63
Table 4.15. Final Estimates of relationship between GSCM and SP 64
Table 4.16. The Internal Factor Evaluation Matrix (IFEM)
Table 4.17. The External Factor Evaluation Matrix (EFEM) 71
Table 4.17. The External Factor Evaluation Matrix (EFEM)

LIST OF ABBREVIATIONS AND ACRONYMS

CFA	Confirmatory factor analysis		
CSR	Corporate social responsibility		
EE	Environmental education		
EFA	Exploratory Factor Analysis		
EFAM	External Factor Evaluation Matrix		
ENP	Environmental Performance		
EP	Economic Performance		
GD	Green Distribution		
GM	Green Manufacturing		
GP	Green Procurement		
GSC	Green Supply Chain		
GSCM	Green Supply Chain Management		
GSCS	Green Supply Chain Strategy		
HM	Hospitality Management		
IB/BA	International Business/Business Administration		
IEM	Internal environment management		
IFEM	Internal Factor Evaluation Matrix		
MC	Media Communication		
QSPM	Quantitative Strategic Planning Matrix		
SCM	Supply Chain Management		
SEM	Structural Equation Modelling		
SP	Social Performance		
SSCM	Sustainable Supply Chain Management		

Chapter 1

INTRODUCTION

This chapter will provide a more comprehensive understanding of the study issue, the background, the objectives, and outline of the article, as well as an overview of the analysis methods used.

1.1. BACKGROUND

Global climate change is one of society's most divisive and difficult issues, and its effects on business are now significant, but will grow. In December 2015, nearly 200 nations signed "The Paris Accord to address this serious issue. This was implemented in November 2016. The Paris pact aims to limit global warming to 2°C and push world leaders to aim for net zero emissions, which would phase out fossil fuels. Industry contributes to climate change. Hence, the business community supports the Paris Climate Agreement. Approximately 350 corporations reaffirmed their support for the Agreement at COP22. Businesses are considering lowering CO_2 emissions to support global accords and reduce costs. Endorsing a carbon strategy may provide businesses with an edge over their rivals. Companies must alter their strategies and leverage climate change to gain a competitive advantage. Thus, firms and decision makers in this industry require help (Carola et al., 2013).

Today, sustainable development is increasingly significant in global business and the economy. Economic, environmental, and social factors can be used to create sustainable supply chains. Scientists and businesspeople are becoming increasingly interested in business strategies that include sustainable development ideas and instruments (Blanka, 2019). Recent studies on supply chain design have focused on environmental considerations. The GHG emissions from various transportation types and energy-saving technologies in transportation and manufacturing have been studied (Pan et al., 2013; Wang et al., 2011). The Green Supply Chain includes environmental considerations in supply chain design. Companies are also adding the green notion to their supply chains, establishing the "Green Supply Chain" (GSC). Green supply chain management (GSCM) processes have become a primary strategic focus of commercial enterprises. Green Supply Chain Strategy (GSCS) is a long-term strategy that integrates environmental thinking into supply chain management to gain a competitive edge

(Kumar et al., 2011). The GSCS covers water, waste, and carbon emissions, although this study focused on enhancing the carbon emission indicator (Carola et al., 2013).

Therefore, firms must prioritize green supply chain (GSCM) management if they want to establish and sustain a competitive edge (Zhu et al., 2008). For many years, GSCM has been widely discussed worldwide, particularly in the United States, European Union (EU), and Japan. As a new systematic environmental approach to green supply chain management, GSCM is adopted and used by forward-thinking companies worldwide (Bhool and Narwal, 2013). Although GSCM has been gaining traction internationally in recent years, it remains an emerging field of study in Vietnam (Do et al., 2020). There are strategies that businesses need to implement to discover new income possibilities, create value, enhance brand image, decrease costs, and mitigate risks. The Green Supply Chain Strategy provided in this study provides recommendations that may be put into practice. It provides direction that is broken down into a series of steps, beginning with the assessment and ending with the monitoring of outcomes (Luthra et al., 2013). The offered factors are intended to indicate reference models for assessing the efficiency of green supply chain management in sustainable development.

1.2. RESEARCH OBJECTIVES

1.2.1. Overall objective

The objective of this dissertation is to examine economic students' awareness of GSCM practices and determine the relationship between SCM practices and sustainability performance. In this way, the study suggests feasible business strategies for GSCM for sustainable development.

1.2.2. Specific objectives

To examine awareness of economic student about green SCM and sustainability

To identify influence of GSCM factors on sustainability performance

To propose feasible strategy solutions to enhance sustainability performance.

1.3. RESEARCH QUESTIONS

What do the economic students think about GSCM practices?

Which factors of GSCM impact on sustainability performance?

How to strengthen the relationship between GSCM and sustainability performance?

1.4. OUTLINE

This thesis comprises five chapters. The first chapter provides the background and objectives of this thesis. The second chapter provides a literature review of the theories involved in green supply chain management and sustainability. The third chapter presents the research framework, conceptual framework, questionnaire development, and data analysis in this thesis to demonstrate the whole process and its validity and reliability. Chapter 4 includes all the empirical findings of the study: the awareness of economic students in GSCM, the relationship between GSCM and sustainability, and feasible strategy solutions. The final section provides a summary and recommendations.

Chapter 2 LITERATURE REVIEW

This chapter will develop the theoretical model and scale of components based on the related theories of GSCM, sustainability and strategic management.

2.1. CONCEPT OF RESEARCH

2.1.1. Definition of sustainability

The success of the sustainability initiative is analyzed from a variety of perspectives, including economic, environmental, and social.

Economic performance, which refers to total profitability, is a significant reason why organizations use GSCM procedures. Economic performance refers to an organization's ability to save expenses through smart purchasing decisions, waste management, energy use, waste disposal methods, and penalties for environmental damage (Zhu et al., 2008). Therefore, we categorized the GSCM practice-economic performance relationship studies that evaluated economic performance using objective or perceived sales, profit, and market share increases (Chan et al., 2012; Lee et al., 2013; Kuei and Lu, 2013; Abdullah and Yaakub, 2014).

Environmental performance usually incorporates energy savings, waste reduction, and emission reduction. Environmental performance includes reducing air emissions, water waste, and solid wastes, and reducing hazardous product usage (Zhu et al., 2005). Energy conservation, waste, pollution, and emission reduction are environmental performance criteria (Rao, 2002; Zhu et al., 2005; Chiou et al., 2011; Lee et al., 2012).

Social performance is used to measure the impact of GSCM practices on product and company image, employee health and safety, and customer loyalty and satisfaction (Zailani et al., 2012; Ashby et al., 2012).

Figure 2.1. Three main components of sustainable development

2.1.2. Definition of green supply chain management

The term "supply chain" refers to the network of businesses and organizations involved in the production and distribution of goods, from the initial procurement of raw materials to the collection of finished goods for recycling (Damert et al., 2017). The Supply Chain is composed of two major processes that operate in tandem with one another: 1) the Production Planning and Inventory Control Process, and 2) the Distribution Process (Carola et al., 2013).

The innovative and diverse character of supply chain management has resulted in a new way of defining the pitch. However, the phrase was not used for the first time until the 1980s, and it did not become commonly used until the 1990s. Prior to its widespread use, the phrases "logistics" and "operations management" operations management' were the most prevalent ones (Tekin et al., 2020). People often get logistics and supply chain management confused with one another. The process of procuring, manufacturing, and distributing raw materials and finished goods in appropriate amounts and locations is referred to as logistical. It is often considered to occur within the confines of a single corporation. The management of the supply chain includes the handling of client orders, manufacturing processes, movement of logistical goods, and flow of information. It is necessary to exercise control and supervision over all operations across the supply chain (Lummus et al., 2001; Peijia & Siqi, 2013). According to (Croom et al., 2000), a supply chain comprises many different types of participants, including suppliers, manufacturers, distributors, contractors, resellers, retailers, and customers. There are numerous distinct procedures and activities, including the production of goods, provision of services, and gathering of information (Peijia & Siqi, 2013).

Supply chain management is a multidisciplinary approach. Production management converts raw resources into intermediate and final goods and distributes them to customers (Lambert & Cooper, 2000; Bowersox et al., 2007). Supply chain operations increase consumer value and retain a competitive advantage (Bozarth et al., 2008; Tekin et al., 2020). Supply chain management should excel in planning and control, work and organization structures, product and information flows, facility structures, management techniques, power and leadership structures, risk and reward structures, and culture and attitude (Lambert & Cooper, 2000; Peijia & Siqi, 2013). Competition occurs across the entire supply chain, and effective management of the supply chain may increase a company's competitive advantage and improve organizational performance. The effectiveness of the supply chain depends on the choices made by businesses regarding supply chain drivers. This is a choice between operational effectiveness and customer service (Hugos, 2011; Peijia & Siqi, 2013; Tekin et al., 2020).

"Supply Chain Management (SCM) is the integration of these activities through improved supply chain relationships to achieve a sustainable competitive advantage" (Handfield & Nichols, 1999).

SCM emerged in the 1970s with an emphasis on outsourcing, assembly, and distribution of goods to customers (Mentzer et al., 2001). SCM is "the integration of important business processes from end users via original suppliers that supply goods, services, and information that provide value to consumers and other stakeholders," as defined by the Global Supply Chain Forum (Lambert et al., 1998; Ankita & Nilupa, 2017).

"Green" is sometimes used interchangeably with "sustainable," which emphasizes environmental, social, and economic impact (Dobers and Wolff, 2000; Rahimifard and Clegg, 2007; Saha and Darnton, 2005). "Green supply chain management" (GSCM) has evolved as environmental consciousness grows (Srivastava, 2007). The 1980s "quality revolution" and the 1990s supply chain revolution inspired GSCM, which departed from the usual supply chain approach. GSCM's focus of GSCM on waste reduction and natural resource conservation has attracted researchers and industry experts. Eco-efficiency and remanufacturing are becoming increasingly vital for enhancing routine operations (Ashley, 1993; Srivastava, 2007). They believe that green actions to save resources, reduce waste, and enhance productivity may boost corporate competitiveness. Hence, "greening" may reduce

FFT. Fpt University TRƯỜNG ĐẠI HỌC FPT

firms' environmental impacts, increase productivity, and provide new ways to compete (Hajikhani et al., 2012). Consumer expectations and regulatory restraints drive sustainable business practices (Guide and Srivastava, 1998). Owing to government legislation and public environmental responsibility, strategic planners have had to address these issues and adopt many green initiatives (Mutingi, 2013).

Recently, academic and industry interest in cross-disciplinary GSCM has increased (Sarkis et al., 2011). Air pollution, solid waste disposal, and natural resource use must be monitored and managed throughout the development (Zhu et al., 2007). Environmentally conscious businesses, governments, organizations, and individuals have formed procurement and purchasing strategies that incorporate environmental requirements, displaying their collective bargaining and buying strength (Massoud et al., 2010; Kannan et al., 2010). Product control trumps environmental effects in GSCM manufacturing and delivery. A company must be lucrative and environmentally friendly (Ho et al., 2009; Luthra et al., 2013). Green supply chains contribute to sustainability and provide firms with a competitive edge in cost reduction, revenue growth, risk management, employee motivation, and environmental compliance (Tekin et al., 2020).

Green supply chain management (GSCM) is a subset of sustainable supply chain management that emphasizes collaboration across departments and with consumers and suppliers in environmental management (Zhu & Sarkis, 2004; Zhu et al., 2008; Yu et al., 2013). Management techniques and collaboration between downstream customers and upstream suppliers increase environmental sustainability (Rao & Holt, 2005; Vachon & Klassen, 2006; Green et al., 2012; Wong et al., 2013). GSCM relies on supply chain partners' practices, such as green purchasing embedded in supply interchanges between manufacturers, suppliers, and customers and cross-functional cooperation to maximize long-term benefits. When the supply chains work together, firms benefit from environmental management (Walton et al., 1998; Van Hoek, 1999; Zhu & Sarkis, 2004; Rao & Holt, 2005; Yu et al., 2013). Thus, GSCM must be entrenched throughout departments inside and across enterprises, and environmental practices can only be realized through collaboration and communication (Apsan, 2000; Zhu & Geng, 2001; Mengying et al., 2018).

According to Liu et al. (2012), GSCM stresses environmental concerns across the SC, and requires strategic coordination among all SC members. Mohanty and Prakash (2013) state

that GSCM combines productivity increases and environmental preservation. They claimed that GSCM boosted productivity and environmental performance. Green efforts in various supply chain phases have been studied theoretically. Greening SC provides organizations cost savings, competitive advantage, and brand image, which helps create environmental uniqueness and benefits society (Bowen et al., 2001; Hall & Clark, 2003). Despite these advantages, Bowen et al. (2001) and Sarkis (1999) state that the industry does not green SC. Green buying also affects firms' environmental ambitions (Min & Galle, 1997). Sroufe (2006) established a framework that includes environmental performance indicators, a supplier assessment measure, and environmental activities to help organizations gain a competitive edge and decrease risk. According to Rao (2007), inbound greening is not well recognized in South Asia, although several companies have adopted it. Some firms implement inbound greening to boost performance and acquire a competitive edge, while others do so to fulfil their goals or comply with external regulations. Drumwright (1994) suggests that corporations use green inbound logistics because of numerous variables, including social duty efforts to increase efficiency and competition (Sardar Muhammad Zahid, 2016).

Academic and industrial interest in GSCM, a cross-disciplinary area, has recently grown (Sarkis et al., 2011). These development stages require the monitoring and management of local, regional, and global environmental challenges, including air pollution, solid waste disposal, and natural resource utilization (Zhu et al., 2007a). Environmentally minded enterprises, governments, organizations, and people have developed procurement and purchasing policies that include environmental standards, demonstrating their collective negotiating and buying powers (Kannan et al., 2010; Massoud et al., 2010).

Green Supply Chain Management reduces environmental hazards and improves the ecological efficiency of companies and their partners to increase corporate profits (Van Hoek, 1999). Zhu et al. (2008) stated that GSCM is an excellent management tool and concept for proactive and leading manufacturing organizations. GSCM emphasizes environmental challenges in upstream and downstream supply chain management (Shipeng & Linna, 2011). "GSCM is still relatively new (innovation) for most businesses in various sectors (Lin & Ho, 2008) and nations (Seuring & Müller, 2008)," Zhu et al. (2012) said. GSCM comprises of green procurement, production, packaging, delivery, and marketing. GSCM reduces energy,

emissions, and hazardous, chemical, and solid wastes (Olugu et al., 2010; Kannan et al., 2013; Mengying et al., 2018).

Green Supply Chain Management (GSCM) is a more recent concept than traditional Supply Chain Management (SCM). Some literary reviews may be found in GSCM. Adding a "greening phase" to the supply chain operations across the board creates a more "integrated" and "co-operative" supply chain that, in the end, yields superior competitive advantages. This is what Green Supply Chain Management is about (Rao, 2002). GSCM, as was said before, necessitates the simultaneous consideration of environmental and social concerns within commercial operations. Porter and Van der Linde (1995) lay forth the fundamentals of "greening" as a "competitive endeavor". They believed that the competitiveness of businesses could be boosted by implementing green initiatives to conserve resources, eliminate waste, and increase productivity. Thus, "greening" may lessen businesses' negative effects on the environment, while simultaneously boosting productivity and opening up novel avenues to gain an edge in the marketplace (Hajikhani et al., 2012).

In short, GSCM differs from the conventional SCM. GSCM considers the environment and economics, whereas conventional SCM focuses on economy. GSCM is green, integrated, and environmentally optimized, whereas conventional SCM ignores human toxicology (Beamon, 1999; Gilbert, 2000; Ho et al., 2009). GSCM prioritizes product control over environmental impacts during manufacturing and delivery. A corporation must be competitive and profitable while meeting environmental standards for goods and manufacturing (Ho et al., 2009; Luthra et al., 2013). Therefore, green supply chains play an important role in sustainability, as they provide a competitive advantage for businesses in terms of cost reductions, generation of new revenues and innovative sources of income, risk management and reduction, staff motivation, and means of satisfying environmental compliance requirements (Tekin et al., 2020). GSCM

To enhance agility, GSCM reduces risk and accelerates innovation, both of which contribute to increased agility.

To boost adaptability: As a means of making the supply chain more flexible, green supply chain analysis typically results in new methods and ongoing enhancements.

To encourage alignment, a key part of GSCM is establishing policies with suppliers and customers to improve business processes and principal alignment (Françoise, 2010).

2.2. REVIEW OF PAST STUDIES

2.2.1. The past studies in relationship between GSCM and sustainability

This investigation contributes to GSCM theory by assessing the impact of GSCM practices on environmental sustainability and examining the impact of five GSCM practices on environmental sustainability. Schmidt et al. (2017) discovered a link between GSCM practices, and market and financial performance. The findings, according to Paulraj (2011), inferred a positive relationship between green purchasing and environmental sustainability. This implies that careful product procurement and the consideration of environmental, social, and economic factors may improve environmental sustainability. These findings support those of Chan et al. (2012), who argue that implementing a valuable internal environmental management system can help a company improve its sustainability performance. Furthermore, Singh and Pandey (2012) argue that accounting for the environment in a firm's promotional behavior may increase CSP while generating a positive image and trust within society. Similarly, green marketing was discovered to have a major impact on environmental sustainability as well as green distribution and packaging. The findings of Zsidisin and Siferd (2001), who discovered that green packaging may reduce harmful environmental impacts by implementing recycling progression, and Kumar et al. (2015), who discovered that green distribution may direct fuel consumption by optimizing transportation routes.

According to Zhu et al. (2007b); Sungchul and Alex (2011); Zhu et al. (2012); Yu and Ramanathan (2015); Ikegwuru and Pokubo (2018); Pratiwa and Widodob (2019), an affluent discernment into the ingrained blueprints of green supply chain management (GSCM) practices for humanizing environmental sustainability is suggested by previous empirical literature. According to the literature, implementing green supply chain management practices can improve a company's environmental sustainability. For instance, Pratiwa and Widodob (2019) used a cross-sectional research design to examine the impact of GSCM practices on corporate sustainability performance. Using data from retail fuel stations in Rivers State, Nigeria, Ikegwuru and Pokubo (2018) show how sustainable supply chain management practices and environmental performance are related. The study included statistical methods, such as reliability and validity tests, as well as a correlational test. The

findings support the hypotheses that economic sustainability is related to environmental performance, environmental sustainability is related to environmental performance. Sungchul and Alex (2011) used an experimental method to investigate the impact of two sustainability dimensions (environmental and economic) and price on consumer responses. The study's findings show that consumers support sustainability in both dimensions, leaving behind confirmatory appraisals of the company and purchase intent. Consumers react more negatively to a company's meager commitment to environmental care than to a company's meager commitment to economic sustainability.

Finally, the study discovered that when consumers are aware of a firm's poor environmental sustainability, they do not respond positively to low prices. This study found a link between consumer support for sustainability and corporate sustainability. Other research, such as Yu and Ramanathan's (2015) and Zhu et al. (2012), gave the impression that there is a positive relationship between the implementation of sustainable supply chain management (SSCM) practices and environmental performance. Zhu, Sarkis, and Lai (2007) discovered that implementing eco-design measures in the context of supply chain management can enhance environmental performance.

GSCM techniques have been linked to improved environmental, economic, and operational outcomes as well as enhanced competitiveness, according to the findings of several academic studies. Several studies have found that GSCM techniques improve environmental efficiency (Florida, 1996; Zhu & Sarkis, 2004). According to Geffen and Rothenberg (2000), a cooperative relationship with vendors may boost the spread of environmentally friendly procedures. Additionally, joint efforts in areas such as R&D and collaboration programs between suppliers and customers have a positive impact on the environment. In many cases, companies adopt environmentally progressive policies to improve their bottom lines. It remains unclear whether GSCM methods have beneficial or negative financial effects (Wagner et al., 2001). Environmental management strategies, such as GSCM, according to Alvarez Gil et al. (2001), have a favorable impact on the bottom line. It has been said that "inter-firm contacts provide formal and informal systems that increase trust and minimize risk and, in turn, enhance creativity and productivity; however, this has been refuted by experts such as Dodgson (2000), Dyer and Singh (1998), and Von Hippel (1998). Few studies have

shown a beneficial correlation between environmental practices and business outcomes. Environmental management practices are strategic, creative initiatives and instruments for business, as described by Szwilski (2000) and Hajikhani et al. (2012).

The integration of environmental thinking requires paying close attention to actions that encourage ecologically sound and environmentally benign ways of living and making choices. Sustainable actions like these ensure that our planet's natural riches will be there for future generations to enjoy (Verma et al., 2018). Socially responsible businesses may reduce their expenses and have a less environmental effect, as mentioned by Jaggernath and Khan (2015) and Verma et al. (2018). Green supply chain collaboration, as proposed by Cosimato and Troisi (2015), is also beneficial since it helps increase efficiency and decrease waste. Like the proactive environmental approach, GSCM adoption may result in a number of positive changes for business operations. To objectively investigate the connection between institutional pressures, GSCM practices, and performance, Zhu et al. (2013) surveyed 396 firms in China. Long-term economic success may be achieved by changing environmental and operational standards; however, GSCM techniques have little effect. Using a questionnaire survey of typical export-oriented cities in China, Zhu et al. (2017) investigated the moderating and mediating effects of customer relational governance (CRG) on the links between two GSCM practices (green innovation and purchasing) and environmental and economic performance. Empirical research conducted on the Brazilian automotive supply chain by Rosaangla et al. (2017) showed a favorable correlation between supply chain economic performance and environmental performance and the use of GSCM principles (Feng et al., 2018).

GSCM techniques promote business strategies and environmental sustainability. Collaboration decreases environmental effects without compromising the quality, cost, reliability, effectiveness, or energy savings (Wei et al., 2016). Supply chain professionals employ GSCM methods to lessen the environmental effect of manufacturing businesses by responsibly disposing items and improving their economic and social standing. GSCM improves organizational performance (Shafique et al., 2017). Wei et al. (2016) and Shafique et al. (2017) believed that GSCM techniques save costs and help the environment and society. GSCM helps supply chain managers reduce environmental waste. Supply chain optimization boosts cash flow and customer value across the product life cycle (Li et al., 2015).

Organizational financial success is driven by raw material and energy efficiency, waste minimization, and process enhancements across the product lifecycle (Schmidt et al., 2017). Green supply chain techniques boost brand image, social validity, and competitiveness (Yang, 2017). Li et al. (2015) and Yang (2017) agree that green supply chain methods assist the company in both ways. Proactive environmental regulations boost corporate social responsibility. Collaboration improves strategic and tactical eco-efficient supply chain planning. Green product design improves environmental and economic performance (Li et al., 2015). Ecological elements in supply chain models minimize costs and carbon footprints. Environmental performance requires a reduction in carbon footprint. Green strategies and partnerships improve economic and environmental performance (Yang, 2017; Grandiere, 2019).

Environmental and financial performance may benefit from both GSCM approaches, as Cousins et al. (2019) show. In addition, the more robust the correlation between GSCM procedures and cost performance, the more idiosyncratic the company and the more traceable its supply chain. Companies are being pushed to adopt GSCM because of rising expenses associated with hazardous waste disposal, eco-friendly product production, and eco-friendly product packaging (Laosirihongthong et al., 2013). Internal awareness, supplier pressure, customer awareness, cost-related pressure, and legislation are the only few elements that drive industries to implement green supply chain management and improve their performance. Balasubramanian and Shukla (2017), Wang and Dai (2018), and Le (2020) find favorable correlations between GSCM and macroeconomic efficiency in terms of GDP, environmental impact, and social well-being. Furthermore, Green et al. (2012) and De Giovanni and Vinzi (2012) find that GSCM and other forms of environmental management positively correlate with a company's financial performance, operational performance (increased quantity of goods delivered on time, decreased inventory levels, decreased scrap rate, promoted product quality, expanded product lines, and improved capacity utilization), and environmental performance (Do et al., 2020).

Zhu and Sarkis (2004) evaluated the connection between certain GSCM methods and the performance of Chinese manufacturing firms was evaluated in a broad sense by Zhu and Sarkis (2004). They examined how concepts such as quality control and just-in-time production affect the efficiency with which GSCM is implemented. Issues in the GSCM

performance assessment were summarized by Hervani et al. (2005). According to Chien and Shih (2007a, 2007b), the electrical and electronic sectors in Taiwan have implemented GSCM techniques. They also linked management methods with organizational output in accordance with EU regulations. Three researchers from India (Hasan et al., 2007) created a theoretical framework to interpret the obstacles faced by environmentally aware manufacturers. Green supply chain methods were investigated by Yu (2007), who looked at what elements in Taiwan's logistics sector influenced their acceptance. Zhu et al. (2007a) how GSCM was the use of GSCM in China's industrial industry and its effect on productivity. They looked at the extent to which GSCM was in its adoption process in four distinct Chinese manufacturing industries. Building on earlier research, Zhu et al. (2007b) conducted an empirical study on the automotive supply chain in China's companies to examine the challenges, drivers, initiatives, and performance of GSCM. According to the findings, there are significant internal motivations for GSCM practice adoption in the Chinese car supply chain, and regulatory and market pressures have been considerable and increasing. Choudhary (2011) analyzed the interrelationships between various performance assessment criteria. Internal environment management, green buying, customer collaboration, investment recovery, and eco-design are the five criteria used to evaluate performance. According to Diabat and Govindan (2011), GSCM may be an effective organizational philosophy for mitigating environmental hazards. Using a case study, they produced a model based on the ISM to aid in the implementation of green supply chain management principles. Eltayeb et al. (2011) determined the concrete environmental, economic, and intangible effects of the implementation of green supply chain efforts by Eltayeb et al. (2011). Barriers to GSCM adoption in India's car sector were modelled by Luthra et al. (2011) using the Integrated Systems Model (ISM) by Luthra et al. (2011). Measures of success for green supply chains in the automotive industry were determined by Olugu et al. (2010). Forward and inverse chain performance metrics were also created. For the best possible selection of eco-friendly vendors, Peng (2012) used an analytic hierarchy process and grey relational analysis. He created a mechanism to rate and rank green suppliers (Luthra et al., 2013).

The goal of this study was to determine whether there is a connection between GSCM practices and sustainability performance. Green purchasing, green manufacturing, green marketing, distribution, eco-design, internal environment management, environmental

education, investment recovery, customer cooperation, and green information systems are typical components of GSCM activities. This study aims to determine which factors affect performance the most, which is sustainable. Environmental, economic, social, and operational performances are all aspects of sustainable performance. In this study, we incorporated factors from other studies, including Zhu et al. (2008), Cankaya and Sezen (2018), and Green et al. (2012). The significance or renewal of the research is the addition of measurement indicators on sustainability performance from ISO 26.000, Indonesia regulation from Environment and Forestry Ministry from the Republic of Indonesia Number: The inclusion of quantitative indicators for sustainability performance represents the renewal or importance of the research. Cankaya and Sezen (2018) contented that environmental education has long been viewed as a crucial tool for ensuring human expansion and open access for a future sustainable society. Recent quantitative studies highlight the value of eco-friendly business management. The success of environmental education has two objectives. Teaching each employee about a company's environmental policy comes first. Changing each person's behavior will create a more stable and responsible connection with the rest of the world.

2.2.2. The role of strategic management

David (2004) proposed a strategy for accomplishing far-reaching goals. Geography, acquisition, diversification, product development, personnel rationalization, market penetration, liquidation, divestment, and joint ventures are all examples of business strategies (Fadhilah and Ayunda, 2020). If managers want to achieve their organizations' goals, they should weigh the pros and cons of potential cross-departmental decisions using a strategic (Pearce and Robinson, 2013). A company's strategic strategy guides resource allocation (Wang et al., 2011; Ben-Abdallah et al., 2022).

The development of these strategies is complex. To set objectives, establish the organization's vision and purpose. However, it is difficult to achieve business trips. However, technology and marketing are obstacles. This strategy must change with many new competitors. Organizational Technology Impact Strategy. Organizational performance may also suffer. Technology must be used to improve performance and income. Technology can also save companies (Fadhilah and Ayunda, 2020). Several successful companies have found that a strategic planning process helps them analyze situations, set goals, and allocate resources. This tool may help improve decision-making and assess corporate growth (Brews and Purohit,

2007; Altamony et al., 2012; Gürel and Tat, 2017; Alshraideh et al., 2017; Ahmad et al., 2021a; Ahmad et al., 2021b; Alaali et al., 2021; Al-Dmour et al., 2021).

Strategy management includes examining the internal and external contexts to plan, implement, and evaluate strategies (Gupta et al., 2015; Fadhilah and Ayunda, 2020). Strategic management helps corporate leaders create and implement future plans and policies for the future (Nolan et al., 2008; Widiatama, Hamid and Matrono, 2018; Studer, 2016). It organizes qualitative and quantitative facts to aid in ambiguous decision-making (Meredith, et al., 2009). The Strategic Management Process (SMP) choices and actions typically determine a company's long-term prosperity. SMP does not always give "positive news." Certain firm parts and divisions may be affected and unforeseen implications must be considered (Ibrahim, Bartsch and Sharifi, 2020). Strategy management can help any company. According to Catley (2014), strategic management can help them set realistic goals and objectives and ensure that all relevant parties work together to achieve them; 2) it can help them better understand their strengths and weaknesses and how they compare themselves to the market and their competitors; 3) it can provide employees with meaningful work; and 4) it can provide organizations with a competitive advantage. Clear goals inspire and concentrate on employees (Fadhilah and Ayunda, 2020).

2.2.3. The past studies about strategic management for GSCM

Kusi-Sarpong, Sarkis, and Wang (2016) found that firms that form strategic relationships with their suppliers are more likely to remain profitable in the long term. Several studies, such as Roychowdhury, Shroff, and Verdi (2019) and Bansah et al. (2018), have found similar outcomes. Dong et al. (2020) and Jermsittiparsert, Siriattakul, and Sangperm (2019) also highlighted the capability of enterprises to enhance their sustainable performance via reverse logistics operations. Shahid et al. (2020) found that companies with an environmental management program were more successful in maintaining stable economic, social, and environmental footings over time. The findings of Owusu et al. (2021) on the relationship between environmental management and sustainable performance are similar.

Tekin et al. (2020) found that strategy management helps firm X profit from green measures. Company X benefited from contributing to the development of GSCM. Thus, the GSCM strategy indirectly enhances Firm X's economic and environmental performance via cost reduction and innovation. Fahad and Iffat (2018) examine Unilever's SSCM strategy. The

firm has high GSCM goals. It aims to sustainably provide 100% of agricultural raw materials, integrate over half a million smallholder farmers and small firms into their supply chains, and empower over a billion people to enhance their health and well-being by 2020. Unilever's board of directors chose a new CEO and planned to improve their financial performance. The first non-Unilever CEO introduced new ideas. A sustainable supply chain requires collaboration, integration of key players, operations, distribution, redesign, purchase, and the ability to execute sustainability initiatives (Laurin and Fantazy, 2017). IKEA makes durable, high-quality furniture using as little material as possible to reduce shipping, petrol, and labor expenses. Malti (2021) said that this unique qualitative case study seeks a GSCM strategic solution in which supply chain managers need to gain a competitive advantage. Business managers may apply GSCM strategies to increase environmental performance, waste reduction, cost savings, and competitiveness (Daddi et al., 2016). The competitive advantage of green supply chain managers may be the largest finding of this study. Management may use a company's sustainability model to determine its economic and social impacts (Pryshlakivsky and Searcy, 2015). This qualitative case study can assist corporate leaders and supply chain managers in identifying the correct green supply chain solution, enhancing environmental efficiency, decreasing waste, saving money, and increasing competitiveness.

This report may help managers evaluate GSCM strategies to gain a competitive advantage. This study indicates that GSCM solutions, such as green purchasing, manufacturing, distribution, packaging, marketing, environmental education, environmental certification, internal environmental management, and return on investment may increase competitiveness and save money. Jamila Nasser Malti's (2021) study may assist company managers in conserving the environment and minimizing air pollution to meet society's health needs. GSCM lowers air pollutants, water discharge, solid waste, and hazardous materials (Nishitani, Kokubu and Kajiwara, 2016). These findings may assist GSCM managers in developing competitive GSCM solution strategies. This report suggests various actions. Second, administrators should establish a thorough set of rules, processes, and duties for all personnel involved in the integration. Green operations improve efficiency and competitiveness. Managers should include employees, suppliers, and customers in the supply chain GSCM. Green purchasing, manufacturing, distribution, packaging, marketing, environmental education, internal environmental management, and region of interest (ROI) are important.

ISO 14001 is required to fulfil global emissions, waste, resources, and environmental protection standards.

In conclusion, existing research on the aforementioned topics has been gathered and reduced to provide practical knowledge on GSCM construction and development. Discuss the advantages of problem-solving approaches. Thus, this research might help organizations explore GSCM strategies to gain a competitive advantage.

Chapter 3

RESEARCH METHODOLOGY

The theoretical framework and methodologies used for the study will be defined in this chapter. Each method's structure and explanation are also thoroughly discussed.

3.1. THEORITICAL FRAMEWORK

3.1.1. Research framework

This research framework presents an approach for this study. First, before coming up with a research idea, information was collected from the literature review: Green Supply Chain and Sustainability Performance from previous studies, articles, scientific journals, and information from the government. From this, we developed a theoretical framework and appropriate research model. After building a theoretical framework and model to determine it, the collected information helps determine the scope of the research study, observational sample size, stakeholder design, questionnaire, and organization of the trial survey before primary data collection. The analytical method will provide research results from which to develop a reasonable solution strategy, combined with the results of discussions with previous studies on green supply chains for sustainable development.

3.1.2. Hypothetical conceptual framework

3.1.2.1. Conceptual framework

The success of the sustainability initiative is analyzed from a variety of perspectives, including economic, environmental, and social.

Economic performance, which refers to total profitability, is a significant reason why organizations use GSCM procedures. Economic performance refers to an organization's ability to save expenses through smart purchasing decisions, waste management, energy use, waste disposal methods, and penalties for environmental damage (Zhu et al., 2008). Therefore, we categorized economic performance relationship studies that evaluated economic performance using objective or perceived sales, profit, and market share increases (Chan et al., 2012; Kuei & Lu, 2013; Lee et al., 2013; Abdullah & Yaakub, 2014).

Environmental performance usually incorporates energy saving, waste reduction, and emission reduction. Environmental performance includes reducing air emissions, water wastes, and solid wastes and reducing hazardous product usage (Zhu et al., 2005). Energy conservation, waste, pollution, and emissions reduction were environmental performance criteria (Rao, 2002; Zhu et al., 2005; Chiou et al., 2011; Lee et al., 2012).

Social performance was used to measure the impact of GSCM practices on product and company image, employee health and safety, and customer loyalty and satisfaction (Ashby et al., 2012; Zailani et al., 2012).

3.1.2.2. Research hypotheses

In the publications analyzed in this section of the literature study, GSCM procedures were reviewed in relation to various supply chain actions. Previous research has focused on many aspects of GSCM procedures, such as (Ninlawan et al. (2010), Green et al. (2012), Lee et al. (2012), Laosirihongthong et al. (2013), and Thoo et al. (2014). Internal environmental management, external GSCM, eco-design, and investment recovery are the four dimensions of GSCM presented by Zhu et al. (2005). Important GSCM activities were outlined by Holt and Ghobadian (2009), and include logistics, supplier assessment and evaluation, green procurement and logistics policies, supplier education and mentorship, and industrial networks. Green purchasing, production, distribution, and logistics are all crucial components of GSCM practices that, according to Ninlawan et al. (2010) and Thoo et al. (2014), are

required for manufacturing sectors to improve their sustainability performance. Internal environmental management, green information systems, green buying, customer participation, eco-design, and investment recovery are approaches proposed by Green et al. (2012) as part of GSCM. Corporate and operational strategies, including internal environmental management, green buying, customer collaboration, and eco-design, are all part of the GSCM processes, as pointed out by Lee et al. (2012). This study examined GSCM approaches from four key perspectives: internal environmental management, green distribution, and environmental education (Thoo et al., 2015).

The term "intra-organizational environment management" (IEM) is used to describe the processes and procedures that take place inside an organization to ensure environmental sustainability. Studies have shown this to be the case (Zhu et al., 2005; Ann et al., 2006; Kim et al., 2011; Huang et al., 2012; Kuei and Lu, 2013; Cheng et al., 2014).

*H*₁: *There is a positive influence of internal environment management on sustainability*

Green procurement: An organization uses green procurement to select suppliers based on their environmental competence, technical and eco-design capabilities, environmental performance, ability to produce environmentally friendly products, and ability to support the main company's environmental goals (Paulraj, 2011). Green procurement is a collection of supply side practices used by an organization to select suppliers based on their technical, environmental, and social competencies. This study also emphasizes the 3Rs, reuse, recycle, and reduce, as part of the green procurement process for paper and part containers (plastic bag/box), placing purchasing orders via email (paperless) (Ninlawan et al., 2010; Lee et al., 2012), eco-labeling products, ensuring suppliers' environmental compliance certification, and auditing suppliers' internal environmental management (Lee et al., 2012).

*H*₂: *There is a positive influence of green procurement on sustainability.*

Green manufacturing is a production method that actively designs and redesigns green processes (Green et al. 2012; and Lee et al. 2012) decreasing hazardous substances, boosting energy efficiency in lighting and heating, practicing 3Rs, and limiting waste (Ninlawan et al., 2010), and so on., Green et al. (2012) and Lee et al. (2012) all agree that in order to be considered "green," a company's product designs must allow for the easy reuse, recycling,

and recovery of parts and materials; the elimination or reduction of hazardous products used in the manufacturing process; and the judicious use of both raw materials and energy.

H₃: There is a positive influence of green manufacturing on sustainability.

Green distribution includes downsizing packing, using "green" materials, promoting recycling and reuse, standardizing packaging among vendors, and encouraging returnable packaging. (6) Reduce material and unpacking time (Ninlawan et al., 2010), (7) Use recyclable pallets, and (8) Save warehouse energy (Holt and Ghobadian, 2009).

*H*₄: *There is a positive influence of green distribution on sustainability.*

Green environmental education has long been viewed as a crucial tool for ensuring human expansion and open access for a future sustainable society. The success of environmental education has two objectives. Teaching each employee about a company's environmental policy comes first. Changing each person's behavior will create a more stable and responsible connection with the rest of the world (Cankaya and Sezen, 2018).

*H*₅: *There is a positive influence of environmental education on sustainability.*

Figure 3.2. Conceptual framework

Figure 3.3. Hypothesis framework

3.2. QUESTIONNAIRES DEVELOPMENT AND DATA COLLECTION

3.2.1. Methods of Data collection

The main purpose of this research was to determine the relationship between GSCM practices and sustainability performance of economic students in Can Tho City, Vietnam. Before developing the questionnaire, three academicians and 102 supply chain managers and scholars were asked which dimensions of GSCM practices should be considered. As a result, five dimensions were considered for analysis (internal environmental management, green procurement, green manufacturing, green distribution, and environmental education). A structured questionnaire was used to collect data from 534 economic students from business administration. international business. hospitality management, and multimedia communication disciplines. Purposive sampling was used to select respondents due to their in-depth knowledge and involvement in execution and strategy formulation with regard to issues related to supply chains and logistics. All selected students had experienced courses such as supply chain management, global procurement, logistics, and omni-channels. Walks in follow-ups were made to classes to be collected by QR codes in 10 weeks (from November 01, 2022, to January 15, 2023). After ten weeks of data collection, 534 questionnaires were retrieved, representing an 85% response rate, which was deemed appropriate for data analysis. The questionnaire was composed of two sections, along with a section on the control variables. Control variables considered as categorical measures included sex, age, and educational level. The two main sections were rated on a five-point Likert scale (1= strongly disagree to 5= strongly agree). The first section covered the 33 items used to measure GSCM based on (Bu et al., 2020; Dadhich et al., 2015; Ghobakhloo et al., 2013; Xie and Breen, 2012). These items were divided into the following dimensions: internal environmental management (four items), green procurement (five items), green manufacturing (four items), green distribution (five items), and environmental education (three items). The second section considered economic (seven items), environmental (five items), and social (six items) performance to measure sustainability performance.

Factors	Items	Code	Sources
Internal Environment Management	Commit GSCM from senior managers	IEM1	Zhu et al. (2008): Huang et al.
	Support to GSCM from mid-level managers	IEM2	(2012): Kuei et al. (2013) :
	Establish cross-functional cooperation team	IEM3	Cheng et al. (2014); Feng et al.
	Take criteria to measure green quality	IEM4	(2015)
Green Procurement	Ensure suppliers meet their environmental	CD1	
	objectives	GPI	
	Require suppliers to have ISO 14000	GP2	Rao and Holt $(2005);$
	Purchase materials with green attributes	GP3	Min and Galle (1997) ; Zhu et
	Purchase equipment that saves energy	GP4	al. (2008); Salam (2009)
	Purchase goods with eco-labeling	GP5	
	Ensure product have recyclable contents	GM1	Al-Sheyadi et al. (2019);
Green	Minimize the use of materials in packaging	GM2	Schmidt et al. (2017); Rao and
Manufacturing	Encourage reuse of products and recycled materials	GM3	Holt, (2005); Zhu and Sarkis,
Manufacturing	Use Life Cycle Assessment to evaluate	GM4	2004;
	environmental load	01014	Carter et al. (2000)
	Recyclable whether reusable package or	GD1	
	containers in logistics	GD1	
Green	Reuse of valuable components of an end-of life	GD2	
Distribution	product	a D A	Cankaya and Sezen (2018)
	Select a method about cleaner transportation	GD3	
	Use routing systems to reduce travel activity	GD4	
	Derticinets in non-covernment and covernment	GDS	
	subsidized program about CSCM and	EE1	
	sustainability	LLI	
Environmental	Participate training courses on GSCM and		Cankaya and Sezen (2018)
Education	sustainability for executives	EE2	Culling and Sezen (2010)
	Participate training courses on GSCM and		
	sustainability for managers and members	EE3	
	Reduce cost for environmentally friendly input	ED1	
	procurement	EPI	
	Reduce cost of delivery and inventory	EP2	
	Reduce fee to waste discharge	EP3	Chap at al. (2012) : Log at al.
Economic	Increase demand flexibility, delivery flexibility,	FP/	(2013): Kuei et al. (2012)
Performance	and production flexibility		Abdullah and Yaakub (2014)
	Ensure procurement and delivery on time	EP5	
	Capture demand for environmentally friendly	EP6	
	product market	ED7	
	Obtain certificate for green product warranty	EP/	
	pollution control	ENP1	
	Recognize products of ecolabeling recycled		
Fnvironmental	material and design-for-assembly	ENP2	Rao (2002); Zhu et al. (2005);
Environmental Dorformance	Save energy consumption and recycling process	ENP3	Chiou et al. (2011); Lee et al.
I erformanee	Encourage green and clean technologies use	ENP4	(2012)
	Increase efficiency in scarcity of resources, higher	LITT	
	waste generation and waste disposal problem	ENP5	
	Increase social and environmental responsibility	SP1	
	Increase organizational capability	SP2	
Ø!-1	Increase employees' motivation, health and safety	SP3	Zoiloni et al. (2012): A dat
Social Performance	Increase customer interest and satisfaction from	CD4	\angle aniani et al. (2012); Ashby et
	green products	Sr4	al. (2012)
	Create trust to society or public	SP5	
	Get government support for enforcement	SP6	

Table 3.1. Factors and items of GSCM

Source: Authors' synthesis, 2023

3.2.2. Data analysis

Figure 3.4. Analytical framework

Objective 1: To examine awareness of green SCM role in sustainable development

To reflect the first objective, descriptive statistics are a technique for summarizing, estimating, presenting, and describing sample characteristics. It includes statistical analysis, frequency distribution, percentage distribution, and use of the average value and standard deviation of narrative analysis displayed in tables and graphs to meet the objectives of the study. The values used in this study were the highest, lowest, and average values of the components being studied. Moreover, the study applied an ANOVA test to this objective.

Fisher, a statistician, created the ANOVA (1919). It is a collection of statistical models and estimation procedures for analyzing how means differ from one another. The ANOVA test allows one to compare more than two groups simultaneously to determine whether there is a relationship between them. The result of the ANOVA formula, the F statistic, enables the analysis of numerous datasets to evaluate the variability within and across samples. One-way ANOVA was used to investigate the relationship between the dependent and independent variables when there were three or more sets of data. Therefore, go to the Bonferroni test in Post Hoc if Sig > 0.05 in the Test of Homogeneity of Variances indicates that the variance between the two categories is similar; otherwise, it is assumed that the variance between the two categories is difference if the Sig value was less than 0.05. This value indicates that if there is a difference, the difference is utilized to decide which group is larger and which group is smaller. ANOVA assists in detecting correlations between variables, which leads to new discoveries that can contribute to previous studies and improve the reliability of data and conclusions.

Objective 2: To identify factors influence on sustainability performance

One of the most commonly used dependability metrics in the social and organizational sciences is Cronbach's alpha reliability (Cronbach, 1951). A reliability test called Cronbach's Alpha Rules was used to assess a questionnaire's dependability, stability, and item structure. Since it is also used to assess the internal consistency of indices, Cronbach's alpha is an "internally consistent" measure of dependability (Cronbach, 1951). A decent scale should have a Cronbach's alpha reliability of 0.7 or higher, according to Nunnally (1978). According to Hair et al. (2009), a scale that guarantees unidirectionality and reliability should have a Cronbach's alpha criterion of 0.7 or higher; however, for an initial exploratory investigation, a threshold of 0.6 is appropriate. The more Cronbach's alpha that is present, the more reliable the scale.

The SEM methodology can be traced back to the early part of the previous century. However, the full potential of route analysis was not revealed by sociologists, particularly until the 1960s. This discovery was made in the 1960s. Based on this, Joreskog (1973) and Keesling (1972) extended SEM into a broad notion that may be used for all types of causal interactions. Bagozzi and Yi (1988) pioneered its use in economics, particularly marketing research. Since then, its utilization has become routine throughout the majority of economic specializations.

The ideas of a theory, the assumptions generated by the theory, the observations and measurements contained in the theory, and the formal arrangement of all these pieces in an overall representation make up the structure of theory creation (Bagozzi and Yi, 1998). In this setting, structural equation modelling (SEM) provides a comprehensive method that seeks to bridge the gap between philosophical and statistical traditions. It provides a representation of theoretical as well as observational concepts, as well as the rules that apply to those words. In addition, it considers the likelihood of measurement mistakes in both variables and equations. At the observable level, SEM considers manifest variables as indicators, and at the theoretical level, it takes into account unseen, latent, or emergent variables as theoretical constructs. The link between constructs and indicators can be characterized using measurement models. These models define how the constructs are assessed using the indicators, thereby modelling the relationship between the two. In the structural model, the equations are what "represent" the theoretical connections that exist between the different structures.

After a theoretical model is created, it can be tested against real-world data. SEM is the current gold standard for the multivariate statistical analysis of this procedure. Covariance of all observable variables was considered in the covariance-based SEM analysis. Compared to approaches such as regression analysis, which focus on the data as a whole, this is a key distinction. The free parameters of all models were estimated using the empirical covariance matrix. An iterative process is used to reduce the discrepancy between the empirical and estimated covariance matrices.

The primary aim of covariance-based SEM is confirmatory, as it is used to examine the soundness of pre-established models. It needs a theoretical foundation, and its contribution to theory building is found in its capacity to evaluate measurement models, differentiate between distinct conceptions, and theorize about the strength of causal links. This SEM method is used for theories after conceptual work has been completed.

Figure 3.5. Demarcation between Measurement Model and Structural Model (Source: Byrne, 2010)

Structural Equation Model (SEM) is a hybrid methodology that considers elements from both factor and regression analyzes. Nevertheless, in contrast to the regression model, the Structural Equation Model (SEM) is predicated on the covariance matrix and uses a confirmatory method to evaluate research hypotheses in a unified procedure by modelling complicated interactions among a large number of observable and latent variables. In addition, SEM analyzes the observed variables to determine the measurement errors as well as the correlations between the errors. In contrast to the regression model, which can only identify direct impacts, the structural equation model can identify both direct and indirect influences. Cronbach's alpha test is the first stage in the SEM analysis process, followed by numerous further procedures that culminate in the generation of SEM estimations. In the first step of the process, the reliability of the newly developed scale was assessed using Cronbach's alpha. In the second stage, Exploratory Factor Analysis (EFA) was conducted to select eligible items for inclusion in the models and to exclude items whose factor loadings were lower than 0.5.

The most notable aspect of the third step was Structural Equation Modeling (SEM) estimation, which involved an iterative process based on theoretical and empirical analyzes to obtain a structural model fit. This was done to evaluate the rationality of the fundamental multidimensional constructs. The SEM evaluates not only the measurement model but also the structural model. Confirmatory factor analysis will make use of the measurement model

to establish the nature of the link between latent variables and observable variables. Hence, in the event that the model fit indices are poor, testing the structural model will not be guaranteed (Dursun and Kocagoz, 2010). This helps narrow the gap between a confirmatory strategy, in which only one model is tested, and an exploratory approach, in which several models are tried (Garetti and Taisch, 2009). Statistics such as the chi-square fit test index (CMIN/DF), Tucker-Lewis index (TLI), goodness-of-fit index (GFI), comparative fit index (CFI), and root mean square error of approximation (RMSEA) were included in the indicator developed by Yu et al. (2013) to evaluate how well a model fits its data. Finally, the structural model is evaluated to establish the nature of the connection between the endogenous variable (sustainability performance) and the exogenous factors (GSCM). The software packages SPSS 22.0, and AMOS 22.0, were used to process the collected data.

Objective 3: To propose feasible strategy solutions to enhance sustainability performance

In this study, four matrices, namely IFE, EFE, SWOT, and QSPM, were used to determine feasible strategies.

SWOT is a crucial tool for strategic planning and organizational objectives. The SWOT analysis identifies, analyzes, and evaluates possible internal and environmental variables and their impacts. SWOT analysis evaluates business processes during strategic corporate planning. Focus on IFE and EFE to achieve organizational objectives. External factors affect product development, market segmentation and positioning, service offerings, and company acquisition and sales. Internal analysis assesses operational capabilities and performance. Comparing and analyzing prior firm performance, significant rivals, and industry may help determine internal strategic variables.

This study employed a case study technique using many data sources. We utilized questionnaire surveys. We also interviewed the crucial field informants in detail. The survey included 16 external and 15 internal variables. The SWOT criteria were utilized to create EFE and IFE matrices (Haryani et al., 2018). Variable scales were determined using definitions. IFE and EFE are strategy inputs. Strategists may build and assess different strategies by making modest judgments in the input matrices regarding the relative relevance of external and internal components (David, 2011). The variables were measured and evaluated as follows.

A coefficient weight was assigned to each element to represent the importance of that factor in comparison with the others. From a score of 0.0 (which indicates that the factor is not essential) to a value of 1.0 (which indicates that the item is very important), the goal is to assign the most weight to the element that has the greatest influence on the organization (very important). It is expected that the total of these coefficients will be 1.

The rating was established via the completion of a questionnaire, with the following factors taken into consideration:

- The IFE matrix is as follows: 1, major weakness; 2, minor weakness; 3, minor strength; and 4, major strength.

- The rating for the EFE Matrix represents how the firm reacted to external influences, where 1= low response; 2=average response; 3= good response; and 4= high response.

- The ultimate value of each factor can be calculated by multiplying its weight by its rating.

- The final total score for each factor is calculated first, followed by computation of the overall weighted score for the factor as a whole.

The high-level strategic management tool QSPM evaluates strategies. It objectively compares plausible strategies and actions. It uses management tools to objectively choose an optimal plan. It helps organize and prioritize critical internal, external, and competitor data for strategic planning. Many managers and academics reject emotional, intuitive, creative, and political techniques (Meredith et al., 2009). QSPM ranks plans by how well they help businesses capitalize on strengths and opportunities, address weaknesses, and avoid or reduce external risks (Abratt, 1993; Dibb, 1995; David, 2016). This necessitates subjective choices along the process, boosting the possibility that the organization's ultimate strategy selection will be successful (Zulkarnain, 2019). The QSPM now includes Attractiveness Scores (AS), Total Attractiveness Scores (TAS), and TAS Sum (Leliga et al., 2019).

Table 3.2. Internal factors in sustainability

No.	Strength	Code	Sources
	Economic aspect		
1	Reduce cost for environmentally friendly input	SE1	
1	procurement	SEI	Hervani et al. (2005): Zhu
2	Reduce cost of delivery and inventory	SE2	et al. (2007b): Chardine-
3	Reduce fee to waste discharge	SE3	Baumann (2011):
4	Reduce fine for environment accidents	SE4	Azevedo et al. (2011) ;
5	Increase demand flexibility, delivery flexibility, and	SE5	Ageron et al. (2012)
-	production flexibility		
6	Ensure procurement and delivery on time	SE6	
	Environmental aspect		
7	Optimize process for waste and emission reduction,	SEN1	
	pollution control		Beamon (1999); Hervani
8	Recognize products of eco-labeling, recycled	SEN2	et al. (2005) ; Zhu et al.
0	material, and design-for-assembly	CEN/2	(200/a); Azevedo et al.
9 10	Save energy consumption and recycling process	SEN3	(2011); Deff(2011)
10	Encourage green and clean technologies use	SEN4	
11	Social aspects	001	
11	Increase social and environmental responsibility	221	Gunasekaran et al. (2004) ;
12	Increase organizational capability	552 552	Zhu et al. (2007b); Marklay and Davis
15	increase employees motivation, nearin and Safety	222	(2007): Dechempelly et al
14	Increase customer interest and satisfaction from	554	(2007); Pochampany et al.
14	green products	554	(2009), Azevedo et al.
	Weakness		(2011)
	Economic aspect		
15	Constrained finance/capital	WE1	Rogers et al. (1998):
16	Lack of organization encouragement	WE2	AlKhidir and Zailani
17	Lack of IT implementation	WE3	(2009); Ravi and Shankar
	1		(2005); AlKhidir et al.
10		WE4	(2009); Mclaren et
18	Hesitate to convert to new systems		al. (2004)
	Environmental aspect		
19	Hesitate to change GSCM from supplier	WEN1	Yu Lin (2007); Yu Lin et
20	Lack of sustainable guidance	WEN2	al.
			(2008); Hsu et al. (2008);
21	Lack of sustainability training	WEN3	Chien
<i>L</i> 1	courses/consultancy/mentor	W LING	et al. (2007a); Ravi et al.
			(2005).
	Social aspect		
22	Lack of corporate social responsibility	WS1	Digalwar et al. (2004);
23	Lack of top management commitment	WS2	Hamel et
			al. (1989); Sarkis (2009);
_			Mudgal
24	Do not want technology advancement adoption	WS3	et al. (2009); Mudgal et al.
			2010); Ravi V. et al.
			(2005); Zhu et al. (2007b)

Source: Authors' synthesis, 2023

Table 3.3. External factors in sustainability

No.	Opportunity	Code	Sources
	Economic aspect		
1	Promote green image, global marketing and competitiveness	OE1	Hervani et al. (2005); Zhu et
2	Capture demand for environmentally friendly product market	OE2	al. (2007b); Chardine- Baumann (2011); Azevedo et
3	Obtain certificate for green product warranty	OE3	al. (2011); Ageron et al.
4	Attract investors and shareholders	OE4	(2012)
	Environmental aspect		
5	Increase green business strategies	OEN1	
6	Increase efficiency in scarcity of Resources, higher waste generation and waste disposal problem	OEN2	Beamon (1999); Hervani et al. (2007); Zhu et al. (2007);
7	Adapt to global climate pressure and ecological change	OEN3	Azevedo et al. (2007), (2011); Deif
8	Contribute to government rules and legislation system related to sustainability	OEN4	(2011)
	Social aspect		
9	Support from green movement activism by non- government organization	OS1	Gunasekaran et al. (2004); Zhu et al. (2007b): Markley
10	Create trust to society or public	OS2	and Davis (2007);
11	Get government support for enforcement	OS2	Pochampally et al. (2009); Azevedo et al. (2011)
	Threat		
	Economic aspect		
12	Impact economic uncertainty	TE1	Hosseini (2007); Yu Lin
13	Impact market competition	TE2	(2007);
			Mudgal et al. (2010). Hosseini (2007); Mudgal et
			al. (2009); Ravi et al. (2005);
14	Need for big investment	TE3	AlKhidir et al. (2009).
			Walker et al. (2008).
	Environmental espect		
15	Poor legislation related to sustainability	TEN1	Hosseini (2007): Yu Lin et
16	Lack of effective environmental measures	TEN2	al.
			(2008); Hsu et al. (2008); Mudgal
		TEN3	et al. (2009); Mudgal et al.
17	Lack of government support system		(2010); Scupola (2003); Srivastva (2007).
	Social aspect		
18	Weak pressure from society	TS1	Yu Lin (2007); Yu Lin et al. (2008): Hsu et al. (2008):
			Chien
19	Lack of quality human resources	TS2	et al. (2007b); Yu Lin and
			Hui Ho (2008); Rao and Holt (2005); Perron (2005)
Source	e: Authors' synthesis, 2023		

Chapter 4 RESULTS AND DISCUSSION

This chapter will review the results or findings of the data collected and analyzed, describing the awareness of and relationship between green supply chain management and sustainability, and strategy solutions for sustainability.

4.1. AWARENESS ABOUT GREEN SUPPLY CHAIN MANAGEMENT AND SUSTAINABILITY

4.1.1. General information

Table 4.1 provides more detailed information about the characteristics of the economic students in the study area. The majority of the respondents (63.3%) were female, while 36.7% were male. Based on the different major groups of economic students, the maximum range is the business administration or international business (IB/BA) group at 73.60%, followed by the media communication (MC) group (17.79%). The minimum range was observed in the hospitality management (HM) group (8.61%).

Quantity	Percentage (%)
196	36.70
338	63.30
393	73.60
46	8.61
95	17.79
	Quantity 196 338 393 46 95

Source: Field Survey Data, 2023

Table 4.2 displays basic information of scholars. They play vital role to provide weight score for calculating marks of strategic matrixes. There is various information related to scholars. First, scholars' age group (36-49) had the largest percentage 49.02% of ones, whereas over 50 ages group occupied a modest number 17.65%. Less than 36 years old group was 33.33%. Second, the vast majority of males participated the interview (73.53%) contrasting with a minority of females (26/47%) doing similar investigations. Third, the biggest disparity could be found at the marital status, which can be well-illustrated in the fact that 85.29% of scholars had married compared to only 14.71% single. Fourth, the most outstanding feature of the table

is that scholar education at doctoral level was the most prevalent background, at 41.16%, while the opposite is true of university level (10.78%). Master level ranks second in terms of popularity, at 34.31%, followed by others with 12.75%. Last but not least, the greatest proportion of original professional is domestic scholars, at 55.88%. Less than half as much, namely 22.55%, is from foreign scholars. Transporter/Logistics accounts for 21.57%.

Description	Ν	Percentage (%)
Based on Age		
≤35	34	33.33
36-49	50	49.02
≥50	18	17.65
Based on Gender		
Male	75	73.53
Female	27	26.47
Based on Marital status		
Single	15	14.71
Married	87	85.29
Based on Academic level		
University	11	10.78
Master	35	34.31
Doctor	43	42.16
Others	13	12.75
Based on original professional		
Domestic Scholar	57	55.88
Foreign Scholar	23	22.55
Transporter/Logistics	22	21.57

 Table 4.2. Demographic characteristics of scholar group

Source: Field Survey Data, 2023

4.1.2. Awareness of economic student about GSCM

Information on the economic students' shares is presented in Table 4.3. Overall, opinions of the MC learner group relate to factors of GSCM higher than those of the IB/BA and HM groups. For internal environmental management (IEM), there was a statistically significant disparity at the 1% level of the robustness test. Although there was no significant difference in awareness of the IB/BA, HM, and MC groups regarding the factors of green procurement (GP), green manufacturing (GM), green distribution (GD), and environmental education, the MC student group showed a trend of better awareness in all factors compared to the IB/BA and HM groups, except for GD.

Factors	IB/BA (n=393)	HM (n=46)	MC (n=95)	ANOVA Sig.F ≤ 0.05	Robust Test Sig.Welch ≤ 0.05
Internal environment management (IEM)	4.15 ^a	4.38 ^{ab}	4.42 ^b	-	***
Green procurement	4.07	4.09	4.21	NS	
Green manufacturing	4.05	4.01	4.29	NS	
Green distribution	4.14	4.31	4.18	NS	
Environmental education	4.15	4.17	4.24	NS	

Table 4.3. Awareness of economic students about GSCM

Source: Field Survey Data, 2023

Note: *, p-value < 0.1; **, p-value < 0.05; ***, p-value < 0.001. Significant at the 0.05 level. If the value of Levene is less than 0.05, the Robust test is used. If the value of Levene is more than 0.05, the Anova test is used. The numbers in the same row followed by different letters are significant at the 5% level via the statistical Anova or Robust test.

More specifically, in the IEM (Figure 4.1), the HM category showed impressive significance in awarding the item of commit GSCM from senior managers (IEM1), while the MC group was overwhelmingly greater in terms of support for GSCM from mid-level managers (IEM2) than in the IB/BA and HM groups. The HM and MC groups are similar in that they have the same ideas on the items of establishing a cross-functional cooperation team (IEM3) and criteria for measuring green quality (IEM4). Awareness of the IB/BA student category was the lowest among all IEM items among the student categories.

Figure 4.1. Awareness of economic students in IEM

Regarding green procurement, Figure 4.2 presents a remarkable rise in awareness of the MC group in all GP components. Although the awareness of the IB/BA group was lower than that of the MC group, it was better than that of the HM group.

Figure 4.2. Awareness of economic students in GP

Turning to green manufacturing (Figure 4.3), the MC student profile had the best awareness in the minimization of the use of materials in the packaging (GM2) and reuse of products and recycled materials (GM3), whereas the HM learner profile played the most important role in the life cycle assessment to evaluate the environmental load (GM4). There was an idea convergence among IB/BA, HM, and MC profiles to ensure that products had recyclable contents (GM1).

Figure 4.3. Awareness of economic students in GM

Figure 4.4 demonstrates the ideas of the economic students related to green distribution. There was a considerable disparity in awareness of the HM student category compared with IB/BA and MC. This student group had the highest score in all GD components, followed by the MC student category, and the lowest score was in the IB/BA student category.

Figure 4.4. Awareness of economic students in GD

For environmental education (Figure 4.5), the MC learner group continued to show their awareness of environmental aspects. The MC students had the highest scores for all components of EE ideas compared to the IB/BA and HM groups, in which the item of sustainability for executives (EE2) witnessed a similar opinion in both HM and MC.

Awareness in environmental education (EE)

Figure 4.5. Awareness of economic students in EE

4.1.3. Awareness of economic student and scholars about sustainability

According to previous research papers, some internal factors (Strengths and Weaknesses) affect sustainable performance (Table 3.2). The factors of strength that bring about sustainable performance include reducing costs for environment-friendly input procurement (SE1), reducing the cost of delivery and inventory (SE2), reducing the fee for waste discharge (SE3), reducing fines for environmental accidents (SE4), increasing demand flexibility, delivery flexibility, and production flexibility (SE5), and ensuring procurement and delivery on time (SE6). Environmental factors include optimizing processes for waste and emission reduction, pollution control (SEN1), recognizing products of eco-labeling, recycled materials, design-for-assembly (SEN2), saving energy consumption and recycling processes (SEN3), and encouraging green and clean technologies to use (SEN4). Factors affecting social performance include increasing social and environmental responsibility (SS1); increasing organizational capability (SS2); increasing employees' motivation, health, and safety (SS3); and increasing customer interest and satisfaction with green products (SS4). On the other hand, the factors that affect the economic aspect include constrained finance/capital (WE1), lack of organizational encouragement (WE2), Lack of IT implementation (WE3) and hesitation to convert to new systems (WE4). The environmental aspect included heating to change GSCM from the supplier (WEN1), lack of sustainable guidance (WEN2), and lack of sustainability training courses/consultancy/mentor (WEN3). On the other hand, Lack of corporate social responsibility (WS1), Lack of top management commitment (WS2), and Do not want technology advancement adoption (WS3) are barriers to social performance.

Table 4.4 compares the perceptions of the economic students regarding the sustainability of internal factors (strengths and weaknesses). The results show a significant difference among the three groups of economic students in terms of economic performance (EP) factor (Levene Sig = 0.880) and environmental performance (ENP) (Levene Sig =0.031). Specifically, the mean value of MC group was the highest 4.10 for economic performance and 4.23 for environmental performance. The study also found a significant difference in the environmental performance of the MC and IB/BA groups at the 5% significance level.

	IB/BA	HM	MC	ANOVA	Robust Test
Factors	(n=393)	(n=46)	(n=95)	Sig.F ≤ 0.05	Sig.Welch ≤ 0.05
Economics Performance (EP)	4.04	3.93	4.10	*	
Environmental Performance (ENP)	4.04 ^a	3.97 ^{ab}	4.23 ^c		**
Social Performance (SP)	4.12	4.10	4.22	NS	
Sources Field Suman Data 2022					

 Table 4.4. Economic students' awareness about internal factors of sustainability

Source: Field Survey Data, 2023

Note: *, p-value < 0.1; **, p-value < 0.05; ***, p-value < 0.001. Significant at the 0.05 level. If the value of Levene is less than 0.05, the Robust test is used. If the value of Levene is more than 0.05, the Anova test is used. The numbers in the same row followed by different letters are significant at the 5% level via the statistical Anova or Robust test.

The radar chart (Figure 4.6) provides information on the share of economic students associated with the internal factors of sustainability. Generally, there was no substantial difference in the awareness of the internal factors of sustainability among IB/BA. HM and MC groups.

Figure 4.6. Awareness of internal factor of sustainability

Table 3.3 (page 42) presents the external factors of the sustainability performance effect. The factors that promote the economic aspect include promoting green image, global marketing, and competition (OE1), capturing demand for an environment-friendly product market (OE2), obtaining a certificate for green product warranty (OE3), and attracting investors and shareholders. (OE4). The environmental performance aspect includes increasing green business strategies (OEN1), increasing efficiency in resource scarcity, higher waste generation and waste disposal problems (OEN2), adapting to global climate pressure and

ecological change (OEN3), and contributing to government rules and legislation systems related to sustainability (OEN4). Other opportunistic factors for improving social performance include support from green movement activism by non-government organizations (OS1) and creating trust in society or the public (OS1). OS2) and government support for enforcement (OS2). On the other hand, external sustainability factors that threaten sustainable performance from an economic perspective include impact economic uncertainty (TE1), impact market competition (TE2), and the need for big investment (TE3). Barriers to environmental aspects include poor legislation related to sustainability (TEN1), a lack of effective environmental measures (TEN2), and a lack of a government support system (TEN3). Social aspects include weak pressure from society (TS1) and a lack of quality human resources (TS2).

Factor	IB/BA	HM	MC	ANOVA
Factor	(n=393)	(n=46)	(n=95)	$Sig.F \leq 0.05$
Economics Performance (EP)	4.17	4.02	4.25	*
Environmental Performance (ENP)	4.13 ^a	4.09 ^{ab}	4.31 ^b	**
Social Performance (SP)	4.13 ^a	4.12 ^{ab}	4.29 ^b	**

Table 4.5. Economic students' awareness about external factors of sustainability

Source: Field Survey Data, 2023

Note: *, p-value < 0.1; **, p-value < 0.05; ***, p-value < 0.001. Significant at the 0.05 level. If the value of Levene is less than 0.05, the Robust test is used. If the value of Levene is more than 0.05, the Anova test is used. The numbers in the same row followed by different letters are significant at the 5% level via the statistical Anova or Robust test.

The ANOVA results (Table 4.5) revealed significant differences among the student groups in terms of sustainability awareness. Economic performance (Levene Sig=0.282), environmental performance (Levene Sig=0.180), and social performance (Levene Sig = 0.604) were all shown to have significantly different average student perceptions of the external elements (opportunities and threats) of sustainable performance. By comparing the opinions of all three student subgroups, it becomes clear that MC students have the most favorable view of economic performance (4.25), followed closely by IB/BA students (4.17). There was a discrepancy in how people rated environmental performance and social performance, with mean MC values of 4.3 and 4.29, respectively. As a result, we need to spread the knowledge about national competitiveness and sustainable development worldwide; we need to connect the dots between economic growth, environmental

preservation, and social progress. Able to draw on resources outside of oneself to counter potential dangers.

More specifically, Figure 4.7 indicates that the students' selection propensity for external factors for the sustainable performance of the MC group has the highest impact on each factor. In general, the three groups of students exhibited different selection trends. Specifically, the MC group tended to choose OE1, OE3, TE3, OEN3, and OS1, which reached value of 4.4 or higher. The HM group tended to favor OS1, OE1, and OE4. As for the factor, IB/BA students tended to make other choices that were similar in choice, but in some choices OS1, OE1 achieved a value of 4.2.

Figure 4.7. Awareness of external factor of sustainability

In general, the students had similar opinions on internal factor, but their answers diverged when the topic of sustainability was raised. It is worth noting that students from various disciplines were able to apply the notion of sustainability to their work. Future educators said they would educate their own students about sustainability, and students in the IB/BA, HM, and MC programs said they had learned that environmental concerns should be weighed alongside economic and social concerns. In particular, MC students focused on the three main pillars of sustainability (economic, environmental, and social aspects).

Scholars generally agreed with the core components, but their views shifted when asked about long-term viability. It is noteworthy that students from a broad range of scholarly backgrounds were able to incorporate the idea of sustainability into their projects. Most scholars said that they appreciated the internal components. The difference in the selection trend based on the internal variables of sustainable performance is shown in Figure 4.8 If the

value of the selection criteria exceeds 2.5 on a scale of 0 to 5, the evaluation is good; otherwise, the assessment is poor. The three fundamental pillars of sustainability (economic, environmental, and social aspects) have received extraordinary attention from international researchers. The trend of picking components by foreign scholars is relatively similar, with values greater than 4.5. The concepts of domestic scholars and Transporter/Logistics groups are similar in that they share around 4.0.

Internal factor of sustainability (Scholar)

Figure 4.8. Scholars' share about internal factors of sustainability

The radar chart (Figure 4.9) shows the differences in the selection trends of the internal factors of sustainable performance. The results show that the group of foreign scholars has the highest value and tends to be similar to each factor, but prominently shows in factors OS1, TEN3, TEN1, OE2, TE1, and TE3 with values above 4.5. For the logistics/transporter group, the trend was in favor of TEN3, OEN4, and the domestic scholar group was OS1.

Figure 4.9. Scholars' share about external factors of sustainability

ANOVA was used to compare the differences in opinions and perceptions of scholars and economic student groups on the internal factors affecting sustainable performance. When Levene Sig = 0.003 for environmental performance and 0.006 for social and economic performance, Levene Sig = 0.319. In particular, the average value of foreign scholars has always reached its highest value (Table 4.6). Analysis of differences in the perception and opinion of each item with each internal factor of sustainable performance showed significant differences. Specifically, when analyzing economic performance, the foreign scholar group has a significant disparity in opinion with others. For the analysis of environmental and social performance, there is a remarkable difference in the awareness of foreign scholars compared to the IB/BA group.

	Domestic Scholar (n=57)	Foreign Scholar (n=23)	Transporter (n=22)	IB/BA (n=393)	HM (n=45)	MC (n=95)	ANOV A Sig.F ≤ 0.05	Robust Test Sig.Welch ≤ 0.05
Economics Performance (EP)	3.84 ^{bc}	4.55 ^d	3.93 ^{ac}	4.09 ^{ac}	3.93 ^{abc}	4.18 ^{ac}	***	
Environmental Performance (ENP)	4.15 ^a	4.54°	3.99ª	4.04 ^a	3.97 ^{ab}	4.23 ^{bc}		***
Social Performance (SP)	4.05 ^a	4.44 ^{bc}	3.99ª	4.12 ^a	4.10 ^{ab}	4.22 ^{ac}	**	

Table 4.6. The opinion of scholars and students about internal factor of sustainability

Source: Field Survey Data, 2023

Note: *, p-value < 0.1; **, p-value < 0.05; ***, p-value < 0.001. Significant at the 0.05 level. If the value of Levene is less than 0.05, the Robust test is used. If the value of Levene is more than 0.05, the Anova test is used. The numbers in the same row followed by different letters are significant at the 5% level via the statistical Anova or Robust test.

The ANOVA findings (Table 4.7) show substantial variations in sustainability awareness between economic students and scholars. There was a statistically significant difference among economic performance (Levene Sig = 0.006), environmental performance (Levene Sig= 0.001), and social performance (Levene Sig= 0.364) in terms of sustainable performance. A comparison of the perspectives of these three categories reveals that foreign scholars have the most positive outlook on economic success (4.52), followed by MC students (4.25). Both environmental and social performance were lower in the foreign scholar group (4.65 and 4.50).

	Domestic Scholar (n=57)	Foreign Scholar (n=23)	Transporter (n=22)	IB/BA (n=393)	HM (n=45)	MC (n=95)	ANOV A Sig.F ≤ 0.05	Robust Test Sig.Welch ≤ 0.05
Economics								
Performance	4.15 ^{ac}	4.52^{bc}	3.96 ^a	4.17 ^a	4.02^{a}	4.25 ^{ab}		***
(EP)								
Environmental								
Performance	4.04 ^a	4.65 ^b	4.11 ^a	4.13 ^a	4.09 ^a	4.31 ^{ab}		***
(ENP)								
Social								
Performance	4.17 ^{ac}	4.50^{bc}	4.02 ^a	4.13 ^a	4.12 ^a	4.29 ^{ab}	***	
(SP)								
C	D							

Table 4.7. The opinion of scholars and students about external factor of sustainability

Source: Field Survey Data, 2023

Note: *, p-value < 0.1; **, p-value < 0.05; ***, p-value < 0.001. Significant at the 0.05 level. If the value of Levene is less than 0.05, the Rrobust test is used. If the value of Levene is more than 0.05, the Anova test is used. The numbers in the same row followed by different letters are significant at the 5% level via the statistical Anova or Robust test.

It is important to note that there have been a number of recent sustainability measures implemented at the university level. The value of a sustainable environment is important for millennials. Sustainability efforts or studies should involve students in designing, developing, implementing, and leading the most sustainability efforts. Students were aware of various GSCM and sustainability. This could be attributed to the lack of obvious efforts to promote sustainability and the integration of sustainability into various program curricula.

The research yielded a total of 43 indicators for various parts of the triple bottom line. According to the reviewed materials, raising student awareness of the need for sustainable supply chain management is a critical challenge. The findings showed that the IB/BA student group had a lower awareness level of GSCM and sustainability than the HM and CM groups. The awareness levels of college students differ from those of community members. If education helps students learn more about sustainability in the classroom, they may be more likely to use sustainable ideas and methods in their own lives. Even though there are three aspects of sustainability (economic, social, and environmental issues), universities often use only the economic and social aspects, which students are less interested in. A study of economics students shows that they fully understand what it means to be sustainable. This finding agrees with Labog's (2017) research, which showed that learning about ideas and activities in school can help people connect with the environment and become more aware of sustainability. As the students learn more, they feel more like they know what to do. This

result is consistent with what Sivamoorthy et al. (2013) presented, which is that knowledge does not change how people feel or act, but it does change how students see practice.

Additionally, this research reveals that students have a strong grasp of socio-economic and environmental issues but lack practical experience due to disparities in perception with experts. Hence, in addition to theoretical knowledge, universities should give students more experience to induce the necessary lifestyle or behavior change, so that students are more aware of GSCM practices (Hamid et al., 2017). This level of sustainability consciousness must be developed primarily through the college curriculum. To induce the necessary lifestyle or behavior change, so that students are more cognizant of sustainable practices, universities must give students more than just theoretical material (Hamid et al., 2017). To improve students' knowledge of sustainability and GSCM, instructors should provide criteria that students do not possess. Students must be mindful when discussing or delivering information on environmental concerns and engaging in activities that raise knowledge about sustainable performance. Students may receive environmental and cognitive instruction at home and at university.

4.2. THE RELATIONSHIP BETWEEN GSCM AND SUSTAINABILITY PERFORMANCE

Relationships between variables can be estimated using modern statistical methods, such as structural equation modeling (SEM) (Wang and Rhemtulla, 2021). AMOS.22 was used to conduct Structural Equation Modeling (SEM) to test the hypotheses. Confirmatory factor analysis (CFA) was used to check the reliability and validity (CFA). The loading intervals and reliability estimates are summarized for each construct in Table 4.8. Cronbach's alphas for internal environment management, green procurement, green manufacturing, green distribution, environmental education, economic performance, environmental performance, and social performance were 0.834, 0.929, 0.826, 0.914, 0.904, 0.937, 0.828, and 0.820, respectively. All Cronbach's alpha values were higher than 0.7, indicating that the correlations between the observable and latent variables were reliable (De Leeuw et al., 2019).

Interna	l environment management (Cronbach's Alpha)	0.834
IEM1	Commit GSCM from senior managers	0.782
IEM2	Support to GSCM from mid-level managers	0.783
IEM3	Establish cross-functional cooperation team	0.784
IEM4	Take criteria to measure green quality	0.815
Green J	procurement (Cronbach's Alpha)	0.929
GP1	Ensure suppliers meet their environmental objectives	0.915
GP2	Require suppliers to have ISO 14000	0.914
GP3	Purchase materials with green attributes	0.911
GP4	Purchase equipment that saves energy	0.911
GP5	Purchase goods with eco-labeling	0.914
Green	manufacturing (Cronbach's Alpha)	0.826
GM1	Ensure product have recyclable contents	0.777
GM2	Minimize the use of materials in packaging	0.770
GM3	Encourage reuse of products and recycled materials	0.751
GM4	Use Life Cycle Assessment to evaluate environmental load	0.820
Green	distribution (Cronbach's Alpha)	0.914
GD1	Recyclable whether reusable package or containers in logistics	0.903
GD2	Reuse of valuable components of an end-of life product	0.900
GD3	Select a method about cleaner transportation	0.897
GD4	Use routing systems to reduce travel activity	0.892
GD5	Identify defective merchandise to reuse	0.884
Enviro	nmental education (Cronbach's Alpha)	0.904
EE1	Participate in non-government and government subsidized program about GSCM and sustainability	0.869
EE2	Participate training courses on GSCM and sustainability for executives	0.853
EE3	Participate training courses on GSCM and sustainability for managers and members	0.867
Econon	nic Performance (Cronbach's Alpha)	0.937
EP1	Reduce cost for environmentally friendly input procurement	0.925
EP2	Reduce cost of delivery and inventory	0.924
EP3	Reduce fee to waste discharge	0.926
EP4	Increase demand flexibility, delivery flexibility, and production flexibility	0.926
EP5	Ensure procurement and delivery on time	0.931
EP6	Capture demand for environmentally friendly product market	0.930
EP7	Obtain certificate for green product warranty	0.926
Enviro	nmental Performance (Cronbach's Alpha)	0.828
ENP1	Optimize process for waste and emission reduction, pollution control	0.781
ENP2	Recognize products of ecolabeling, recycled material, and design-for-assembly	0.800
ENP3	Save energy consumption and recycling process	0.790

Table 4.8. Factor loading and the Cronbach's α estimates (Cronbach's Alpha)

ENP4	Encourage green and clean technologies use	0.777
ENP5	Increase efficiency in scarcity of resources, higher waste generation and waste disposal problem	0.820
Social P	erformance (Cronbach's Alpha)	0.820
SP1	Increase social and environmental responsibility	0.787
SP2	Increase organizational capability	0.784
SP3	Increase employees' motivation, health and safety	0.785
SP4	Increase customer interest and satisfaction from green products	0.781
SP5	Create trust to society or public	0.827
SP6	Get government support for enforcement	0.785

Source: Field Survey Data, 2023

The factor loading values in Table 4.9 exceeded 0.5, indicating that they fell within the allowable range (Al-Lozi et al., 2018; Sung et al., 2019). To examine the discriminant validity in covariance-based SEM, Rimkeviciene et al. (2017) proposed a comparison strategy. The Kaiser-Meyer-Olkin (KMO) test was used to examine the relationship performance measures and determine whether the factor analysis for the scale was adequate; all results were within the acceptable zone of more than 0.5. The KMO value in the research required a significance level over 0.5 which was considered statistically significant (0.925). In addition, we extracted all possible components with eigenvalues greater than one (1.566). Through Bartlett's test of sphericity, we can determine whether the observed variables in the factor are associated with one another. Statistically, the results of Bartlett's test are significant (sig Bartlett's Test 0.05 (0.00), demonstrating significant correlation between the observed variables within the factor.

The factor-loading coefficient represents the strength of the association between a given factor and an observable variable. The factor-loading coefficient of 0.7 is statistically significant. Overall, the factor loadings of the three factors were greater than 0.70, except for Environmental Performance (ENP2=0.686; ENP5=0.682), and Social Performance (SP4=0.688; SP6=0.679). Validity in previous research was often deemed to be met by factor loadings of 0.50 or higher (Yu et al., 2013).

Itoma		Factor Loading	
items	F1	F2	F 3
EP2	0.856		
EP1	0.848		
EP4	0.826		
EP3	0.823		
EP5	0.803		
EP7	0.782		
EP6	0.780		
SP2		0.770	
SP3		0.736	
SP1		0.718	
SP5		0.702	
SP4		0.688	
SP6		0.679	
ENP4			0.776
ENP1			0.768
ENP3			0.764
ENP2			0.686
ENP5			0.682
Parameters of test			Result
Kaiser-Meyer-Olkin	(KMO)		0.925
Cumulative % (Initia	ll Eigenvalues)		63.100%
Bartlett's Test of Sph	ericity (Sig.)		0.000
Initial Eigenvalue			1.566

Table 4.9. Scale of factors and test parameters in Exploratory Factor Analysis (EFA) on Sustainability Performance

Source: Field Survey Data, 2023

The factor loading values in Table 4.10 exceeded 0.5, indicating that they fell within the allowable range (Al-Lozi et al., 2018; Sung et al., 2019). To examine the discriminant validity in covariance-based SEM, Rimkeviciene et al. (2017) proposed a comparison strategy. The Kaiser-Meyer-Olkin (KMO) test was used to examine the relationship performance measures and determine whether the factor analysis for the scale was adequate; all results were within the acceptable zone of more than 0.5. The KMO value in the research required a significance level over 0.5 which was considered statistically significant (0.878). In addition, we extracted all possible components with eigenvalues greater than one (1.053). Through Bartlett's test of sphericity, we can determine whether the observed variables in the factor are associated with one another. Statistically, the results of Bartlett's test are significant (sig Bartlett's Test 0.05 (0.00), demonstrating significant correlation between the observed variables within the factor. The factor-loading coefficient represents the strength of the association between a given

FPT, Fpt University TRƯỜNG ĐẠI HỌC FPT

factor and an observable variable. The factor-loading coefficient of 0.7 is statistically significant. Overall, the factor loadings of the five factors were greater than 0.70, except for Internal Environment Management (IEM4=0.692).

Ttoma	Factor Loading								
Items	F1	F2	F3	F4	F5				
GP4	0.878								
GP3	0.874								
GP2	0.855								
GP1	0.852								
GP5	0.849								
GD5		0.894							
GD4		0.862							
GD3		0.849							
GD2		0.840							
GD1		0.813							
IEM1			0.838						
IEM2			0.770						
IEM3			0.763						
IEM4			0.692						
EE2				0.849					
EE1				0.822					
EE3				0.819					
GM3					0.863				
GM2					0.776				
GM1					0.762				
Parameters of test									
Kaiser-Meyer-Olkin (K	MO)				0.878				
Cumulative % (Initial E	Eigenvalues)			75.575%				
Bartlett's Test of Spheri	city (Sig.)				0.000				
Initial Eigenvalue					1.053				

Table 4.10. Scale of factors and test parameters in Exploratory Factor Analysis (EFA) on Green Supply chain management

Source: Field Survey Data, 2023

The last step of the measurement process involved averaging the results for each multivariate construct. The EFA recommended that the objects be placed into suitable dimensions that were being investigated, which supported the specification of the SEM (Table 4.11). In this study, Confirmatory Factor Analysis (CFA) and Structural Equation Modelling (SEM) were performed using the statistical software program SPSS AMOS version 22.0, to assess the degree to which the survey data sets were a good match for the model. The covariance connection between E8 and E9 was determined using a modified index. Similarly, the

covariance relationships between E13 and E17, E29 and E30, and E6 and E7 were also obtained in Figure 4.10.

Items	Factors							
Items	F1	F2	F3	F4	F5	F6	F7	F8
EP5	0.915							
EP2	0.903							
EP1	0.859							
EP4	0.858							
EP3	0.812							
EP7	0.681							
EP6	0.658							
GP4		0.894						
GP2		0.863						
GP3		0.850						
GP1		0.841						
GP5		0.827						
GD5			0.912					
GD4			0.863					
GD3			0.855					
GD2			0.853					
GD1			0.813					
SP2				0.858				
SP3				0.757				
SP1				0.757				
SP6				0.711				
SP4				0.695				
SP5				0.515				
ENP4					0.819			
ENP3					0.809			
ENP1					0.804			
ENP5					0.716			
ENP2					0.700			
IEM1						0.855		
IEM2						0.764		
IEM3						0.763		
IEM4						0.592		
EE2							0.916	
EE1							0.881	
EE3							0.876	
GM3								0.847
GM2								0.734
GM1								0.726
Parameters of test								
Kaiser-Meyer-Olkin (KMO)							0.908	
Cumulative % (Initial Eigenvalu	es)						70.208%	
Bartlett's Test of Sphericity (Sig.	.)						0.000	
Initial Eigenvalue							1.1163	
Source: Field Survey Data, 202	23							

Table 4.11. Scale of factors and test parameters in Confirmatory Factor Analysis (CFA)

The investigation resulted in the generation of a fit-generated structural model that indicated a p-value of 0.000 (p-value less than 0.01), chi-square value of 1289.551 (2,793.8), and

goodness of fit index (GFI) of 0.887 (> 0.800). According to Baumgartner and Homburg (1995), this index can be accepted at a value of 0.8, even though GFI cannot be less than 0.9. Other acceptable values include a Tucker-Lewis index (TLI) of 0.943 (> 0.900), a comparative fit index (CFI) of 0.948 (> 0.900), and a root mean square error of approximation (RMSEA) of 0.044 (less than or equal to 0.080. In light of these findings, the research model was put through its pace, and the outcomes proved that the model is appropriate (Table 4.12).

Indicators	Cut-off values	Calculated values	Conclusion
Chi-square/df	\leq 3.000	2.028	Fit
CFI	≥ 0.900	0.948	Fit
GFI	≥ 0.800	0.887	Fit
TLI	\geq 0.900	0.943	Fit
RMSEA	≤ 0.080	0.044	Fit

Table 4.12. Model fit indicators in Structural Equation Modelling (Structural Equation Modelling)	EM)
---	-----

Source: Field Survey Data, 2023

Note: Cut-off values adopted from Yu et al. (2013)

Impact of GSCM on Economic Performance

The value of the correlation between GSCM practices and economic performance is R=0.514, which indicates that it is a robust and favorable association (Table 4.13). Economic performance is considered the first variable of sustainability performance. GSCM techniques have a favorable impact on economic performance, according to the theory provided. We hypothesize that GSCM procedures have a beneficial influence on economic performance (1a, 1b, 1c, 1d, and 1e). The data in Table 4 indicate that green procurement has a positive value of = 0.723 and a P value of 0.00, which is less than 0.05. As a result, we accept 1b as being true for certain GSCM procedures. Green manufacturing, green distribution, environmental education, and internal environmental management all have negative betas for economic performance. Consequently, for these GSCM procedures, hypotheses 1a, 1c, 1d, and 1e must be rejected.

Relationship	Estimate β	S.E	C.R	P – value	Hypothesis Result
$EP \leftarrow IEM$	0.125	0.093	1 336	0 181	Not accepted
	0.720	0.070	10,401		
$EP \leftarrow GP$	0.723	0.054	13.401	***	Accepted
$EP \leftarrow GM$	-0.188	0.062	-3.026	0.002*	Not accepted
$EP \leftarrow GD$	-0.121	0.035	-3.437	***	Not accepted
$EP \leftarrow EE$	-0.054	0.052	-1.044	0.297	Not accepted
$R^2 = 0.514 (EP)$					

Table 4.13. Final estimates of relationship between GSCM and EP

Source: Field Survey Data, 2023

Note: *, **, and *** indicate significance at P < 0.05, P < 0.01, and P < 0.001, respectively.

EP = 0.723 GP - 0.188 GM - 0.121 GD (1)

The equation (1) demonstrates that three aspects (green procurement, green manufacturing, and green distribution) of GSCM practices have a major impact on economic performance. The value of the original sample, 0.723, reveals that green procurement has the most positive influence on economic performance. This means that procuring goods and services in a more environmentally responsible manner may boost economic output by ensuring the use of products and services that meet stringent sustainability standards. On the other hand, both green manufacturing and green distribution have a detrimental impact on economic performance.

Impact of GSCM on Environmental Performance (ENP)

Table 4.14 presents the findings of the second hypothesis regarding environmental performance and how the use of GSCM procedures affects environmental performance. Because the P-value for each dimension (except for green distribution) is lower than 0.05, and the beta coefficients for internal environmental management (0.379) and green procurement (0.316) are positive, the research indicates that environmental performance is significantly improved by green procurement and internal environmental management. Based on the findings of this research, Hypotheses 2a and 2b are supported. Consequently, companies can improve their performance in terms of the environment by increasing the

frequency of these activities. However, hypotheses 2c, 2d, and 2e cannot be accepted because their corresponding beta values are negative: 0.203, 0.082, and 0.242, respectively.

Relationship	Estimate β	S.E	C.R	P – value	Hypothesis Result
$ENP \leftarrow IEM$	0.379	0.128	2.973	0.003*	Accepted
$\text{ENP} \leftarrow \text{GP}$	0.316	0.060	5.244	***	Accepted
$\text{ENP} \leftarrow \text{GM}$	-0.203	0.083	-2.450	0.014**	Not accepted
$\text{ENP} \leftarrow \text{GD}$	-0.082	0.047	-1.754	0.079	Not accepted
$\text{ENP} \leftarrow \text{EE}$	-0.242	0.070	-3.459	***	Not accepted
$R^2 = 0,109 (ENP)$					

Table 4.14. Final Estimates of relationship between GSCM and ENP

Source: Field Survey Data, 2023

Note: *, **, and *** indicate significance at P < 0.05, P < 0.01, and P < 0.001, respectively.

ENP = 0.379 IEM + 0.316 GP - 0.203 GM - 0.242 EE (2)

Equation (2) shows the results of regression analysis to test the effect of GSCM on environmental performance. The environmental performance of sustainability is significantly impacted by four factors of GSCM practices (internal environmental management, green procurement, green manufacturing, and environmental education). According to the results, the factor that had the greatest impact on environmental performance was internal environmental management, which received a value of 0.379. The second most important factor was green procurement, which had a value of 0.316. This indicates that managers' participation in GSCM in constructing a company's green team and green quality measurement may increase environmental performance. There is a negative correlation between environmental performance, green manufacturing, and environmental education.

Impact of GSCM on social performance

Table 4.15 shows the results of Hypotheses 3a, 3b, 3c, 3d, and 3e that GSCM practices improve Social Performance (SP). The beta values of internal environmental management (0.354), green procurement (0.327), and environmental education (0.418) revealed a strong link with social performance. Hypotheses 3a, 3b, and 3e are accepted because the P-value of internal environmental management, green procurement, and environmental education is

0.000, which is less than 0.001. Finally, green manufacturing and distribution beta values of 0.212 and 0.033 showed that social performance was negatively associated, disproving Hypotheses 3c and 3d.

Relationship	Estimate β	S.E	C.R	P – value	Hypothesis Result
$SP \leftarrow IEM$	0.354	0.096	3.669	***	Accepted
SP ←GP	0.327	0.047	7.028	***	Accepted
SP ←GM	-0.212	0.062	-3.026	***	Not accepted
SP ←GD	-0.033	0.034	-0.945	0.345	Not accepted
$SP \leftarrow EE$	0.418	0.096	4.343	***	Accepted
$R^2 = 0, 194 (SP)$					

Table 4.15. Final Estimates of relationship between GSCM and SP

Source: Field Survey Data, 2023

Note: *, **, and *** indicate significance at P < 0.05, P < 0.01, and P < 0.001, respectively.

SP = 0.354 IEM + 0.327 GP - 0.212 GM + 0.418 EE (3)

According to Equation (3), four GSCM-related factors have a significant effect on the social performance of sustainability. These four elements are green purchasing, green production, green marketing, internal environmental management, and environmental education. The original sample value of 0.418 indicated that environmental education had the greatest impact on social performance. The results of this study show that environmental education may improve the social performance of sustainability. This finding is in line with research by Febry et al. (2022), who discovered that providing environmental training to managers and staff may boost a company's social performance and, hence, its sustainability. This study contradicts Cankaya and Sezen (2018), who found that environmental education does not improve. Environmental education raises awareness and achieves a green strategy to reach the public, but it takes time to see its effects.

Economic performance aspect

The findings of structural equation modelling reveal that there is only one factor that determines the economic performance, and that factor is green procurement. This finding is

in line with those of numerous other investigations (Febry et al., 2022; Adnan et al., 2021; Le, 2020; Wisdom et al., 2019; Hassan et al., 2016). Research also shows that there is a considerable correlation between green procurement and economic performance. It has been shown that purchasing goods and services that minimize environmental effect contributes considerably to improved economic performance. The findings also demonstrate that businesses that engage in environmentally responsible purchasing may contribute to an improvement in economic performance. Zailani et al. (2012) believe that green procurement may improve the community image. However, the research differs from the results of Yassine (2022), who noted that there was no relationship between green procurement and economic performance.

There was no statistically significant link between economic performance (EP) and internal environmental management, green production, green distribution, or environmental education. More precisely, EP makes no noticeable difference in the way the research manages its internal environment. This is similar to the findings of Benedict et al. (2022). There was no connection between EP and the green manufacturing factor. Sezen and Cankaya (2013) arrived at the same conclusion. Moreover, the results demonstrate that green distribution does not positively influence EP (Febry et al., 2022; Le, 2020). Finally, although our study did not find a correlation between environmental education and EP, prior research by Febry et al. (2022) and Adnan et al. (2021) found such a link.

Figure 4.10. SEM Model of GSCM and Sustainability performance

Environmental performance aspect

This study demonstrated how internal environmental management and green procurement affect environmental performance. According to the results, internal environmental management of GSCM practices enhances environmental performance (ENP), which was confirmed by previous studies by Benedict et al. (2022), Febry et al. (2022), and Adnan et al. (2021). Febry et al. (2022), Adnan et al. (2021), and Wisdom et al. (2019) state that green procurement reduces environmental pollutants, which may improve environmental performance. This study finds that green procurement helps businesses effectively. Nevertheless, Le (2020) and Hassan et al. (2016) find no relationship between green procurement and ENP.

On the other hand, green manufacturing, green distribution, and environmental education do not have a significantly positive effect on ENP. Consequently, the hypotheses were rejected. The findings for the green manufacturing factor contradict those of Febry et al. (2022), Adnan et al. (2021), Le (2020), Wisdom et al. (2019), Ardian et al. (2018), and Sezen and Cankaya (2013), who found that green manufacturing has a positive and significant influence on environmental performance. This implies that green manufacturing practices, such as process optimization and the use of cleaner production, not only minimize negative environmental effects, but also cut costs and boost revenues. Nevertheless, the link between green distribution and ENP was minor. This is consistent with the findings of prior studies by Febry et al (2022).

Social performance aspect

Internal environmental management and green procurement have a positive relationship with SP. The findings of the study show that the internal environmental management practices of GSCM contribute to social performance. This confirms the findings of Benedict et al. (2022), Febry et al. (2022), and Adnan et al. (2021) that when the activities of internal environmental management are senior managers' commitment, mid-level managers support, cross-functional cooperation teams, and green quality criteria. In other words, EE had the highest impact on environmental performance with a beta value of 0.418 (Table 4.14). Raise awareness and understanding of green supply chains, actively participate in knowledge training programs on green supply chains, and promote sustainable development organized by the government and non-governmental organizations. A training course on production and business management

in a green and sustainable supply chain for managers and employees has a positive impact and improves social performance. This has also been demonstrated in environmental education research that supports a company's sustainable performance. This correlation is the highest among other continents, and similar results have been reported by Rizki and Augustine (2022), and Adnan et al. (2021). By contrast, green manufacturing and green distribution are not significant and have a positive impact on social performance. Thus, green manufacturing and green distribution do not improve sustainability performance. Similar results have been reported by Febry et al. (2022), Le (2020), and Ardian et al. (2018).

4.3. BUSINESS STRATEGY SOLUTION FOR SUSTAINABILITY

4.3.1. Analysis of internal factor matrix

Table 4.16 shows that when analyzing the identified strengths, the main strengths SE3, SE4, SE5, SEN1, SEN1, SEN4, SS1, SS3, and SS4 showed similar average scores, that is, between 0.1668 and 0.1708 each, while SE1, SE2, SE6, and SS2 ranged between 0.1230 and 0.1290. In analyzing the weaknesses, the most outstanding feature of Table 4.16 is that WS3 is the most common weakness at 0.0824, whereas the opposite is true for WE2 (0.0410). WE3 ranked second in terms of weakness (0.0818), followed by WE1 (0.0418). Notably, WE2, WE4, WEN1, WS1, WS2, WEN2, and WEN3 had similar levels, that is, between 0.0410 and 0.0416, respectively. The results of the analysis of IFEM obtained a number of strengths of 2.1799 and 0.4952 weaknesses and a total weighted final score of 2.6751. In light of these findings, organizations may use the power factor to mitigate the disadvantages experienced by sustainable businesses and boost competitive advantage.

Internal characteristics such as strengths and weaknesses impact the IFEM analysis. The investigation found three key parameters that determine the green sustainability performance dynamics. The highest-scoring qualities of this strategy are employee motivation, health, and safety (SE1). This suggests that a corporation may provide a safe working environment and excellent remuneration, and top managers can assist their people in embracing the idea and fully comprehend green sustainability performance, making it simpler to execute the sustainability plan. This research matches of Peijia and Siqi (2013). Consumer satisfaction with green goods was the second-most important aspect of this survey (SS4). This finding supports Peijia and Siqi (2013) study. This suggests that buyers are more interested in environmentally friendly goods and want to know their environmental information, which

encourages GSCM and sustainable performance by increasing competition from manufacturers of green products. Enhanced social and environmental responsibility was next found (SS1). This resembles the findings of recent studies (Peijia and Siqi, 2013; Malti, 2021). Thus, socially responsible companies help corporations recruit, develop, and manage people as investments. Environmental social responsibility considers people, environment, and profits for long-term competitive advantage. Socially responsible and sustainable employment strategies help organizations satisfy their present and future needs.

Code	INTERNAL FACTOR	Weight	Rating	Score
	Strength			
SE1	Reduce cost for environmentally friendly input procurement	0.0424	3	0.1272
SE2	Reduce the cost of delivery and inventory	0.0417	3	0.1251
SE3	Reduce fee to waste discharge	0.0421	4	0.1684
SE4	Reduce fines for environmental accidents	0.0417	4	0.1668
SE5	Increase demand, delivery, and production flexibility	0.0421	4	0.1684
SE6	Ensure procurement and delivery on time	0.0410	3	0.1230
SEN1	Optimize processes for waste and emission reduction, pollution control	0.0423	4	0.1692
SEN2	Recognize products of eco-labeling, recycled material, and design-for-assembly	0.0403	4	0.1612
SEN3	Save energy consumption and recycling process	0.0410	4	0.1640
SEN4	Encourage green and clean technologies used	0.0417	4	0.1668
SS1	Increase social and environmental responsibility	0.0424	4	0.1696
SS2	Increase organizational capability	0.0430	3	0.1290
SS3	Increase employees' motivation, health, and Safety	0.0427	4	0.1708
SS4	Increase customer interest and satisfaction with	0.0426	4	0 1704
	green products	0.0420	-	0.1704
	Total	0.587		2.1799
	Weakness			
WE1	Constraining finance/capital	0.0418	1	0.0418
WE2	Lack of organizational encouragement	0.0410	1	0.0410
WE3	Lack of IT implementation	0.0409	2	0.0818
WE4	Hesitate to convert to new systems	0.0412	1	0.0412
WEN1	Hesitate to change GSCM from supplier	0.0412	1	0.0412
WEN2	Lack of sustainable guidance	0.0416	1	0.0416
WEN3	Lack of sustainability training courses/consultancy/mentor	0.0416	1	0.0416
WS1	Lack of corporate social responsibility	0.0413	1	0.0413
WS2	Lack of top management commitment	0.0413	1	0.0413
WS3	Do not want technology advancement adoption	0.0412	2	0.0824
	Total	0.4131		0.4952
	Total weighted score			2.6751

 Table 4.16. The Internal Factor Evaluation Matrix (IFEM)

Source: Field Survey Data, 2023

This study discovered three primary elements that determine sustained output performance. WS3 was initially discovered. This result matches those of previous studies (Luthra et al.,

2011; Abebaw and Virdi, 2019). This suggests that it is difficult to transform a company's fundamental technology will be tough. Hence, technological skepticism hinders GSCM implementation. The absence of IT implementation is another performance obstacle (WE3). This finding supports earlier research (Luthra et al., 2011; Abebaw and Virdi, 2019; Govindan et al., 2013). Businesses struggle to adapt technology to green supply chains. Constraining finance/capital prevents sustainable performance (WE1). This finding supports earlier research (Govindan et al., 2013; Abebaw and Virdi, 2019; Peijia and Siqi, 2013; Luthra et al., 2011). This indicates that green supply chain implementation requires capital and financial resources.

4.3.2. Analysis of external factor matrix

Table 4.17 shows an analysis of the external variables (opportunities and threats). In analyzing opportunities, the key point to taking advantage of in the matrix is (OE4) in sustainable development, with an average score of 0.2188. The second and most important level is (OE1), which builds a company's image of the environment and increases its international competitiveness, with an average score of 0.2176. Next, non-governmental organizations' (OS1) support for green movement advocacy is crucial, averaging 0.2168. When examining the opportunity, the lowest score may assist the organization in running more effectively in the context of finite natural resources, pollution, and emissions challenges (OEN2). The average score increased from 0.2016. For instance, economics learners and scholars have argued that ineffective environmental policies hurt sustainable green performance. (TE3) and (TEN3) had the highest average values of 0.2014. This yields 2.3280 dominant elements of opportunity, 1.4636 threats, and a difference of 0.8644. This indicates that corporate sustainability strategies have the potential to combat danger and improve companies.

EFEM analysis determines external elements such as opportunity and threat. External factor analysis makes the three main drivers of sustainable performance manageable and discussable. The top element was attracting investors and stockholders (OE4). This study matches those of (Peijia and Siqi, 2013; Roychowdhury, Shroff and Verdi, 2019; Bansah et al., 2018). Maintaining good supplier connections is crucial to GSCM's long-term success of GSCM. Long-term supplier relationships may encourage suppliers and investors to work with businesses to achieve green buying and sustainability objectives.

Code	EXTERNAL FACTOR	Weight	Rating	Score
	Opportunity			
OE1	Promote green image, global marketing, and competitiveness	0.0544	4	0.2176
OE2	Capture demand for environmentally friendly product market	0.0536	4	0.2144
OE3	Obtain a certificate for a green product warranty	0.0525	4	0.2100
OE4	Attract investors and shareholders	0.0547	4	0.2188
OEN1	Increase green business strategies	0.0529	4	0.2116
OEN2	Increase efficiency in scarcity of resources, higher waste generation and waste disposal problem	0.0504	4	0.2016
OEN3	Adapt to global climate pressure and ecological change	0.0513	4	0.2052
OEN4	Contribute to government rules and legislation systems related to sustainability	0.0522	4	0.2088
OS1	Support from green movement activism by non- government organizations	0.0542	4	0.2168
OS2	Create trust in society or public	0.0525	4	0.2100
OS3	Get government support for enforcement	0.0533	4	0.2132
	Total	0.5820		2.3280
	Threat			
TE1	Impact economic uncertainty	0.0519	3	0.1557
TE2	Impact market competition	0.0522	3	0.1566
TE3	Need for big investment	0.0526	4	0.2104
TEN1	Poor legislation related to sustainability	0.0522	4	0.2088
TEN2	Lack of effective environmental measures	0.0518	3	0.1554
TEN3	Lack of government support system	0.0526	4	0.2104
TS1	Weak pressure from society	0.0522	4	0.2088
TS2	Lack of quality human resources	0.0525	3	0.1575
	Total	0.4180		1.4636
	Total weighted score			3.7916

Table 4.17. The External Factor Evaluation Matrix (EFEM)

Source: Field Survey Data, 2023

Green image, worldwide marketing, and competitiveness promote sustainable performance (OE1). This matches previous surveys (Ososanmi et al., 2021; Geng et al., 2017; Khan et al., 2020; Yenipazarli, 2017; Brockhaus et al., 2016). This indicates that companies advertise eco-friendly items. Green goods boost a company's reputation and revenue. Environmental organizations may compete for and export globally. If a company learns that its competitors

are exporting, it may be motivated to develop more sustainable manufacturing practices. The sustainability promotion study showed that NGO green movement action support was the final component (OS1). This result matches those of previous studies (Ososanmi et al., 2021; Peijia and Siqi, 2013; Dawkins et al., 2019). Sustainable performance requires non-government. These groups have designed environmental and competitiveness policies for industrial companies. However, these groups encourage global green production and consumption among the national governments. Full government support is required to promote GSCM in industry.

This study discovered two important external challenges for sustained success. (TE3) and (TEN3) scored the highest scores. This means that, to adopt GSCM, firms must invest in green techniques, including green procurement, green design, green manufacturing, green distribution, and green labeling for packaging. They must also pay environmental management expenses. Hence, the biggest obstacle to GSCM adoption is the lack of financial backing. This is consistent with the results of previous studies (Luthra et al., 2011; Govindan et al., 2013; Abebaw and Virdi, 2019; Peijia and Siqi, 2013). According to Luthra et al. (2011), the absence of a government support system (TEN3) reveals that governments do not exert pressure on non-compliant enterprises regarding environmental performance and regulatory punishment policies.

4.3.3. SWOT analysis for strategic solutions in sustainability

The SWOT analysis generates viable alternatives. The SWOT analysis provides four possible strategies: expansion (SO), diversification (ST), stability (WO), and defensive (WT). SWOT helps strategic planning achieve organizational objectives. This aids in problem solving.

Most implementations of the SWOT model take the form of a two-dimensional coordinate table, with each of the four zones displaying a distinct set of strategies.

Expansion Strategy (SO)

SE1234OE12: Advertising image of eco-brand for smart consumers (SO1).

SE₁₂₃₄₅OE₄: Investing a synchronic process of GSCM in an organization (SO₂).

SE₄OEN₁₂₃: Enhancing enterprise production for ecology (SO₃).

SE₅₆OEN₄: Fortifying role and position of an enterprise (SO₄).

SEN₁₂₃₄OS₁₂₃: Approaching green fund with priority loan (SO₅).

 $SS_{1234}OE_{1234}$: Increasing domestic and international competition through environmental and social responsibility actions. (SO₆).

Table 4.18.	The SWOT	' matrix
-------------	----------	----------

SO Strategies	WO Strategies
SE1234OE12: Advertising image of eco-	WE ₁₂₃₄ OE ₄ : Appealing investor for GSCM
brand for smart consumers (SO ₁)	(WO ₁)
SE12345OE4: Investing a synchronic process	WEN ₁₂₃ OS ₁₃ : Improving GSCM knowledge
of GSCM in organization (SO ₂)	for human resource in enterprise by training
	program of government and non-
	government (WO ₂)
SE ₄ OEN ₁₂₃ : Enhancing enterprise	WS ₃ OEN ₂ : Applying advanced technology
production for ecology (SO ₃)	in production and management to increase
	efficiency (WO ₃)
SE ₅₆ OEN ₄ : Fortifying role and position of	
enterprise (SO ₄)	
SEN ₁₂₃₄ OS ₁₂₃ : Approaching green fund	
with priority loan (SO ₅)	
$SS_{1234}OE_{1234}$: Increasing domestic and	
international competition by environmental	
and social responsibility actions (SO ₆)	
ST Strategies	WT Strategies
SE1234TE12: Establishing risk fund for	WEN ₁₂₃ TEN ₁₂₃ : Inviting foreign
unexpected situations (ST ₁)	consultancy and using international criteria
	related to sustainability (WT_1)
SS ₁₂₃₄ TS ₁₂ : Building a green association	WS ₁₂ TS ₁₂ : Conducting campaign smart
comprises Enterprise-Government-	consumer and manufacturer for a green
Consumer (ST ₂)	planet (WT ₂)
Source: Field Survey Data. 2023	

Diversification Strategy (ST)

SE₁₂₃₄TE₁₂: Establishing risk fund for unexpected situation (ST₁).

SS₁₂₃₄TS₁₂: Building a green association comprises Enterprise-Government-Consumer (ST₂)

Stability Strategy (WO)

WE₁₂₃₄OE₄: Appealing investor for GSCM (WO₁)

WEN₁₂₃OS₁₃: Improving GSCM knowledge for human resources in an enterprise by training

programs of government and non-government (WO₂).

WS₃OEN₂: Applying advanced technology in production and management to increase efficiency (WO₃)

Defensive Strategy (WT)

WEN₁₂₃TEN₁₂₃: Inviting foreign consultancy and using international criteria related to sustainability (WT1)

 $WS_{12}TS_{12}$: Conducting a campaign for smart consumers and manufacturers for green planets (WT_2).

4.3.4. QSPM analysis for prioritization identified strategies in sustainability

The QSPM helps to analyze and prioritize internal, external, and competitor data for strategic planning. This method impartially selects the firm's best strategy. QSPM's left column of the QSPM includes the IFE and EFE matrix factors. The attractiveness Score (AS) reflects the factor's significance to other approaches. AS is (1-4) or (not attractive – highly attractive). The total attractiveness score (TAS) ranks strategies by significance. The QSPM sum of the total attractiveness scores shows the strategy choices.

Expansion Strategy (SO) plan requires prioritization of various factors. This method boosts sustainability by investing in a synchronic process of GSCM in the organization (I), strengthening the enterprise's role and position (II), improving enterprise production for ecology (III), increasing domestic and international competition through environmental and social responsibility actions (IV), advertising eco-brand image for smart consumers (V), and approaching green funds with priority loans (VI) (VI).

Stability Strategy (WO) promotes corporate stability or innovation. Combining weaknesses with opportunities achieves stability. If a business's sustainability is hindered by financial shortages, investment capital for applied technology and sustainability-savvy employees. Some recommended tactics and priorities: Using sophisticated technology in production and management to boost efficiency (I), appealing to investors for GSCM (II), and Developing GSCM knowledge for company human resources via government and non-government training programs (III).

Diversification Strategy (ST) is a resource-based approach to sustainability issues. The ST strategy addresses the vulnerabilities and threats. Considering these outcomes, sustainability requires considerable investment resources and government support. The suggested approach

creates a green connection with Enterprise-Government-Consumer (I), creating a risk fund for unforeseen events, and (II).

Defensive Strategy (WT) reduces internal vulnerabilities and avoids external threats. A savvy consumer and manufacturing campaign for a green world (I), inviting foreign consultants and employing international sustainability standards may be a solution (II).

Table 4.19. The Quantitative Strategic Planning Matrix (QSPM)					
No.	Strategic solutions	Code	Se		

No.	Strategic solutions	Code	Score	Rank/ Priority
	SO Strategies			
1	SO ₂ : Investing a synchronic process of GSCM in the organization	SE12345OE4	6.8185	Ι
2	SO ₄ : Fortifying role and position of enterprise	SE56OEN123	6.6388	II
3	SO ₃ : Enhancing enterprise production for ecology	SE ₅₆ OEN ₄	6.5705	III
4	SO ₆ : Increasing domestic and international competition through environmental and social responsibility actions	SS ₁₂₃₄ OE ₁₂₃₄	6.5295	IV
5	SO ₁ : Advertising image of eco-brand for smart consumers	SE1234OE12	6.4004	V
6	SO ₅ : Approaching green fund with priority loan	SEN ₁₂₃₄ OS ₁₂₃	6.3102	VI
	WO Strategies			
7	WO ₃ : Applying advanced technology in production and management to increase efficiency	WS ₃ OEN ₂	6.5662	Ι
8	WO_1 : Appealing to investors for GSCM	$WE_{1234}OE_{4}$	6.5318	II
9	WO ₂ : Improving GSCM knowledge for human resource in the enterprise by training programs of government and non-government	WEN ₁₂₃ OS ₁₃	6.4345	III
	ST Strategies			
10	ST ₂ : Building a green association comprising Enterprise-Government-Consumer	$SS_{1234}TS_{12}$	6.1904	Ι
11	ST ₁ : Establishing risk fund for unexpected situations	$SE_{1234}TE_{12}$	6.1062	II
	WT Strategies			
12	WT ₂ : Conducting a campaign for smart consumers and manufacturer for a green planet	$WS_{12}TS_{12}$	6.4423	Ι
13	WT ₁ : Inviting foreign consultancy and using international criteria related to sustainability	WEN123TEN123	6.3777	II

Source: Field Survey Data, 2023

Chapter 5

CONCLUSION AND RECOMMENDATION

5.1. CONCLUSION

First and foremost, GSCM plays important role to the long-term growth of the economy, environment, and society, university educations need to emphasize the critical importance of five elements (IEM, GP, GM, GD, and EE). Students in general, and those majoring in IB/BA and HM in particular, must do this. By educating and inspiring students to support and participate in the essential policies, programs, and efforts to bring about economic, environmental, and social change, universities have the ability to contribute to a world that is healthier and more sustainable. The establishment of business people and businesses toward social responsibility, community involvement, and eco-friendly manufacturing for sustainability depends heavily on raising economic learners' understanding of these issues.

Second, past studies have mostly examined how GSCM strategies affect firms' sustainability performance and perspectives. As a result, a theoretical framework that connects economics students' perspectives and the connection between GSCM practice and sustainable performance is required. Today's business students will eventually work as executives for businesses and governments. The notion that environmentally friendly corporate operations are advantageous is spreading. Even if they are only in town for a brief time, students may have a significant impact by introducing novel sustainability strategies and even by launching successful enterprises.

Third, the score of 2.6751 for internal variables and 3.7916 for external factors showed that corporations had a lot of sustainability potential. SWOT analysis shows economic students' sustainable awareness as a positive. SWOT matrix with thirteen sustainable business strategy solutions discovered SO (Expansion), WO (Stability), ST (Diversification), and WT (Defensive). After reaching this level, it was expected that QSPM matrix would give more accurate analysis. Based on the analysis, SO (Expansion) "Investing a synchronic process of GSCM in the organization" with TAS of 6.8185, WO (Stability) "Applying advanced technology in production and management to increase efficiency" with TAS of 6.5662, ST (Diversification) "Building a green association comprising Enterprise-Government-

Consumer" with TAS of 6.1904, and WT (Defensive) "Conducting a campaign for the smart consumer and manufacturer were priority business strategies to carry out.

Fourth, Education plays important role in providing sustainable business knowledge for business learner. Universities have the ability to contribute to a world that is healthier and more sustainable. The establishment of business people and businesses toward social responsibility, community involvement, and eco-friendly manufacturing for sustainability depends heavily on raising economic learners' understanding.

Last but not least, today's economics students are tomorrow's managers and entrepreneurs. Their understanding of sustainable business is an important tool to help guide business decisions that care about the environment, social responsibility, in addition to the profit goals of the business. Even if they are just employees at the company, they can share sustainable business knowledge with their colleagues and managers. These bring a sense of business responsibility towards the value of sustainability.

5.2. RECOMMENDATION

In this study, using internal factors (strengths and weaknesses) and external factors (opportunities and threats) related to the corporate sustainable development strategy built on an integrated foundation. Incorporating reliable sources from previous studies. Internal and external factors are grouped into three key dimensions of sustainability (economic, environmental and social aspects). This helps the respondents (economic students) to understand the nature of sustainability and give important opinions. The research focuses on exploiting the awareness of bioeconomists on the criteria of sustainable business strategies that approach the green supply chain, as a potential future entrepreneur. Therefore, the opinion of economics students play role as a coming start-up entrepreneur. The proposed strategies are also applicable to start-ups in the direction of green supply chain approach for sustainable business strategy rather than assessing students' consciousness. This paper suggests 19 activies of four strategy groups towards sustainable business operations for prospective entrepreneurs.

Expansion Strategy (SO)

SO1: Advertising image of eco-brand for smart consumers

Activity 1: To convey environmentally friendly messages to the minds of consumers.

<u>Activity 2:</u> To carry out green advertising by holding a company campaign related to environmental responsibility

.SO₂: Investing a synchronic process of GSCM in the organization.

Activity 3: To consult GSCM processes in the international organization

SO₃: Enhancing enterprise production for ecology

Activity 4: Invest in friendly technological innovation in line with environmental changes.

SO₄: Fortifying role and position of enterprise.

<u>Activity 5:</u> Businesses should have action programs to protect the environment and improve social responsibility.

Activity 6: Capturing customers' feelings and needs in connecting with customers.

Activity 7: Train loyal and effective staff in the process of creating a brand image

SO₅: Approaching green fund with priority loan.

<u>Activity 8:</u> To make detailed plans to appeal for green funds organizations to consider, approve and receive support packages for green development programs.

SO₆**:** Increasing domestic and international competition.

Activity 9: To improve reputation to enhance competitiveness.

Diversification Strategy (ST)

ST₁: Establishing risk fund for unexpected situation.

Activity 10: To extract 5-10% enterprise's annual profit for risk fund

ST₂: Building a green development association comprises Enterprise-Government-Consumer

<u>Activity 11:</u> To collect and analyze green data related to circular economy, green growth and sustainable development.

Activity 12: To consult sustainability policies with Enterprise-Government-Consumer

Stability Strategy (WO)

WO₁: Appealing investor for GSCM

<u>Activity 13:</u> To introduce organization's green planning and strategies for medium and long period to investor, green financial institutions.

<u>Activity 14:</u> To participate environmental improve, sustainable development campaigns that NGOs, government carry out.

WO₂: Improving GSCM knowledge for human resources of enterprise by training programs of government and non-government.

<u>Activity 15:</u> To participate actively sustainable courses and training to upgrade human resource.

WO3: Applying advanced technology in production and management to increase efficiency.

<u>Activity 16:</u> To approach GSCM for stakeholder in supply chain towards synchronic and green technology system.

Activity 17: To establish budget for green technology exchange.

Defensive Strategy (WT)

WT1: Inviting foreign consultancy and using international criteria related to sustainability

<u>Activity 18:</u> To approach evaluating, monitoring criteria and production and management standardization towards international regulation.

WT₂: Conducting smart consumers and manufacturers campaigns for green planets.

<u>Activity 19:</u> To carry out advertisement and public relationship benefits from green products and manufacturing.

REFERENCES

- Abdel-Baset, M., Chang, V., and Gamal, A.(2019). "Evaluation of the green supply chain management practices: A novel neutrosophic approach". *Computers in Industry*, Vol. 108, No. 1, pp. 210-220.
- Abdullah, N. A. H. N., and Yaakub, S.(2014). "Reverse logistics: pressure for adoption and the impact on firm's performance". *International Journal of Business Society*, Vol. 15, No. 1, pp. 151. Available:<<u>http://www.ijbs.unimas.my/repository/pdf/Vol15No1paper9.pdf</u>>.[26 March 2023].
- Abebaw, H., Virdi, S. S. (2019)."Barriers for Green Supply Chain Management Implementation: In Ethiopia Leather and Leather Product Industry".*International Journal of Research and Analytical Reviews*, Vol. 6, No. 1. Available:<https://ssrn.com/abstract=3501470>.
- Abratt, R.(1993). "Market segmentation practices of industrial marketers". *Industrial marketing management*, Vol. 22, No. 2, pp. 79-84. doi:<<u>https://doi.org/10.1016/0019-8501(93)90033-4</u>>.
- Adnan, S., Zafar, A., Hamza, M., Qadir, A. (2021)."The effect of green supply chain practices on firm sustainability performance: Evidence from Pakistan". Uncertain Supply Chain Management, Vol. 9, pp. 31-38. doi:
- Ageron, B., Gunasekaran, A., & Spalanzani, A. (2012). "Sustainable supply management: An empirical study". *International Journal of Production Economics*, Vol. 140, No. 1, pp. 168– 182. doi:<https://doi.org/10.1016/j.ijpe.2011.04.007>.
- Ahmad, A., Alshurideh, M., Al Kurdi, B., Aburayya, A., and Hamadneh, S.(2021b). "Digital Transformation Metrics: A Conceptual View". *Journal of Management Information and Decision Sciences*, Vol. 24, No. 7, pp. 1-18.
- Ahmad, A., Alshurideh, M. T., Al Kurdi, B. H., and Alzoubi, H. M. (2021a). "Digital Strategies: A Systematic Literature Review". Paper presented at the Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021).
- Al-Dmour, R., AlShaar, F., Al-Dmour, H., Masa'deh, R., and Alshurideh, M. T. (2021). "The Effect of Service Recovery Justices Strategies on Online Customer Engagement Via the Role of "Customer Satisfaction" During the Covid-19 Pandemic: An Empirical Study". In M. T. Alshurideh, A. E. Hassanien, and R. e. Masa'deh (Eds.), *The Effect of Coronavirus Disease (COVID-19) on Business Intelligence* (pp. 325-346). Cham: Springer International Publishing.
- Al-Lozi, M. S., Almomani, R. Z. Q., Al-Hawary, S. I. S. (2018). "Talent Management Strategies as a Critical Success Factor for Effectivenessof Human Resources Information Systems in Commercial Banks Working inJordan". *Global Journal of Management and Business Research: Administration Management*, Vol. 18, No. 1, pp. 30-43.
- Alaali, N., Travels, B., Al Marzouqi, A., Albaqaeen, A., Alshurideh, M., Mouzaek, E., . . . Salloum, S.(2021). "The impact of adopting corporate governance strategic performance in the tourism

sector: A case study in the Kingdom of Bahrain". *Journal of Legal, Ethical and Regulatory Issues*, Vol. 24, No. S1, pp. 1-18.

- Alamanda, D. T., Anggadwita, G., Raynaldi, M., Novani, S., and Kijima, K.(2019). "Designing strategies using IFE, EFE, IE, and QSPM analysis: digital village case". *The Asian Journal of Technology Management*, Vol. 12, No. 1, pp. 48-57. doi:https://doi.org/10.12695/ajtm.2019.12.1.4>.
- AlKhidir, T., & Zailani, S. (2009). "Going Green in supply chain towards Environmental Sustainability". *Global Journal of Environmental Research*, Vol. 3, No. 3, pp. 246-251.
- Alshraideh, A. T. R., Al-Lozi, M., and Alshurideh, M. T.(2017). "The impact of training strategy on organizational loyalty via the mediating variables of organizational satisfaction and organizational performance: An empirical study on Jordanian agricultural credit corporation staff". *Journal of Social Sciences*, Vol. 6, No. 2, pp. 383-394. doi:< https://doi.org/10.25255/jss.2017.6.2.383.394>.
- Altamony, H., Masa'deh, R. E., Alshurideh, M., and Obeidat, B. (2012). Information Systems for Competitive Advantage: Implementation of an Organisational Strategic Management Process. Paper presented at the Proceedings of the 18th IBIMA Conference on Innovation and Sustainable Economic Competitive Advantage: From Regional Development to World Economic, Istanbul, Turkey, 9-10 May 2011.
- Alvarez Gil, M., Burgos-Jimenez, J., and Cespedes-Lorente, J.(2001). "An Analysis of Environmental Management, Organizational Context and Performance of Spanish Hotels". *Omega*, Vol. 29, No. 6, pp. 457-471. doi:
- Ambec, S., and Lanoie, P.(2008). "Does It Pay to Be Green? A Systematic Overview". Academy of Management Perspectives, Vol. 22, No. 4, pp. 45-62. doi:< https://doi.org/10.5465/AMP.2008.35590353>.
- Ankita, W., and Nilupa, U. (2017). A framework for successful implementation of green supply chain management in construction organisations. Paper presented at the The 42nd AUBEA International Conference, Melbourne.
- Ann, G. E., Zailani, S., and Abd Wahid, N.(2006). "A study on the impact of environmental management system (EMS) certification towards firms' performance in Malaysia". *Management of Environmental Quality: An International Journal*, Vol. 17, No. 1, pp. 73-93. doi:<<u>https://doi.org/10.1108/14777830610639459</u>>.
- Apsan, H.(2000). "Running in nonconcentric circles: Why environmental management isn't being integrated into business management". *Environmental Quality Management*, Vol. 9, No. 4, pp. 69-75. doi:<htps://doi.org/10.1002/1520-6483(200022)9:4<69::AID-TQEM7>3.0.CO;2-3>.
- Ardian, P., Hariyati, R., and Afifah, E.(2018). "Correlation between implementation case reflection discussion based on the Graham Gibbs Cycle and nurses' critical thinking skills". *Enfermería Clínica*, Vol. 29, No. pp. doi:<<u>https://doi.org/10.1016/j.enfcli.2019.04.091</u>>.

Arslan, M. C., and Kısacık, H. (2017). The corporate sustainability solution: triple bottom line.

- Ashby, A., Leat, M., and Hudson Smith, M.(2012). "Making connections: A review of supply chain management and sustainability literature". Supply Chain Management: An International Journal, Vol. 17, No. 5, pp. 497-516. doi:<<u>https://doi.org/10.1108/13598541211258573</u>>.
- Ashley, S.(1993). "Designing for the environment". *Mechanical Engineering*, Vol. 115, No. pp. 52-55.
- Azevedo, S. G., & Carvalho, H., & CruzMachado, V. (2011). "The influence of green practices on supply chain performance: A case study approach". *Transportation Research Part E, Logistics and Transporta-tion Review*, Vol. 47, No. 6, pp. 850–871. doi:<https://doi.org/10.1016/j.tre.2011.05.017>.
- Bagozzi, R. P., and Yi, Y.(1988). "On the evaluation of structural equation models". *Journal of the academy of marketing science*, Vol. 16, No. pp. 74-94.
- Balasubramanian, S., and Shukla, V.(2017). "Green supply chain management: an empirical investigation on the construction sector". *Supply Chain Management*, Vol. 22, No. pp. doi:< https://doi.org/10.1108/SCM-07-2016-0227>.
- Bansah, K. J., Dumakor-Dupey, N. K., Kansake, B. A., Assan, E., and Bekui, P.(2018). "Socioeconomic and environmental assessment of informal artisanal and small-scale mining in Ghana". *Journal of Cleaner Production*, Vol. 202, No. pp. 465-475.
- Beamon, B. M.(1999). "Measuring supply chain performance". *International Journal of Operations Production Management*, Vol. 19, No. 3, pp. 275-292.
- Ben-Abdallah, R., Shamout, M., and Alshurideh, M.(2022). "Business Development Strategy Model Using EFE, IFE AND IE Analysis in a High-tech Company: An Empirical Study". Academy of Strategic Management Journal, Vol. 21, No. pp. 1-9.
- Benedict, O. A., Agyapong, D., Owusu, D. (2022)."Green supply chain practices and sustainable performance of mining firms: Evidence from a developing country". *Cleaner Logistics and Supply Chain*, Vol. 4, pp. 100046. doi:
- Bhool, R., and Narwal, M.(2013). "An analysis of drivers affecting the implementation of green supply chain management for the Indian manufacturing industries". *International Journal of Research in Engineering and Technology*, Vol. 02, No. pp. 242-254. doi:<<u>https://doi.org/10.15623/ijret.2013.0211037</u>>.
- Blanka, T. (2020). *Evaluation of green supply chain-reference models approach*. Paper presented at the DIEM: Dubrovnik International Economic Meeting.
- Boaden, R., Marchington, M., Hyde, P., Harris, C., Sparrow, P., Pass, S., ... Cortvriend, P. (2008). *The Process of Engagement and Alignment: Improving Health Through Human Resource Management*. London: Chartered Institute of Personnel and Development.
- Bowen, F. E., Cousins, P. D., Lamming, R. C., and Farukt, A. C.(2001). "The role of supply management capabilities in green supply". *Production operations management*, Vol. 10, No. 2, pp. 174-189.

- Bowersox, D. J., Closs, D. J., and Cooper, M. B. (2007). *Supply Chain Logistics Management*. New York: McGraw-Hill.
- Bozarth, C. C., Handfield, R. B., and Weiss, H. J. (2008). *Introduction to operations and supply chain management*: Pearson Prentice Hall Upper Saddle River, New Jork.
- Brockhaus, S., Fawcett, S., Kersten, W., Knemeyer, M.(2016)."A framework for benchmarking product sustainability efforts: Using systems dynamics to achieve supply chain alignment". *Benchmarking: An International Journal*, Vol. 23 No. 1, pp. 127-164. doi:<https://doi.org/10.1108/BIJ-09-2014-0093>.
- Brews, P., and Purohit, D.(2007). "Strategic Planning in Unstable Environments". Long Range Planning, Vol. 40, No. pp. 64-83. doi:< https://doi.org/10.1016/j.lrp.2006.12.001>.
- Brundtland, G.(1987). "Report of the World Commission on Environment and Development: Our Common Future". Our Common Future. United Nations General Assembly document A/42/427.
- Byrne, B. M. (2010). *Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming*. New York: Routledge.
- Cankaya, S. Y., and Sezen, B.(2018). "Effects of green supply chain management practices on sustainability performance". *Journal of Manufacturing Technology Management*, Vol. 30, No. 1, pp. 98-121. doi:<<u>https://doi.org/10.1108/JMTM-03-2018-0099</u>>.
- Carola, P. T., García, A., and Coves, A. M.(2013). "A proposal for a green supply chain strategy". *Journal of Industrial Engineering and Management*, Vol. 11, No. 3, pp. 445-465. doi:<<u>https://doi.org/10.3926/jiem.2518</u>>.
- Carter, C. R., and Rogers, D. S.(2008). "A framework of sustainable supply chain management: moving toward new theory". *International journal of physical distribution logistics management*, Vol. 38, No. 5, pp. 360-387. doi:<https://doi.org/10.1108/09600030810882816>.
- Catley, C. (2014). Strategic Planning: Why Do We Need To Do It? (S. Blocks Ed.).
- Chan, R. Y. K., He, H., Chan, H. K., and Wang, W. Y. C.(2012). "Environmental orientation and corporate performance: The mediation mechanism of green supply chain management and moderating effect of competitive intensity". *Industrial marketing management*, Vol. 41, No. 4, pp. 621-630. doi:<<u>https://doi.org/10.1016/j.indmarman.2012.04.009</u>>.
- Chardine-Baumann, E., and Botta-Genoulaz, V.(2014). "A framework for sustainable performance assessment of supply chain management practices". *Computers and Industrial Engineering*, Vol. 76, No. pp. 138-147. doi:<<u>https://doi.org/10.1016/j.cie.2014.07.029</u>>.
- Cheng, B., Ioannou, I., and Serafeim, G.(2014). "Corporate Social Responsibility and Access to Finance". *Strategic Management Journal*, Vol. 35, No. 1, pp. 1-23. doi:<<u>https://doi.org/10.2139/ssrn.1847085</u>>.
- Chien, M., and Shih, L.-H.(2007b). "Relationship between Management Practice and Organization Performance under European union directives such as ROHS, a case study on the Electrical

and Electronics industry in Taiwan". African Journal of Environmental Science and Technology, Vol. 1, No. 3, pp. 37-48.

- Chien, M. K., and Shih, L. H.(2007a). "An Empirical Study of the Implementation of Green Supply Chain Management Practices in the Electrical and Electronic Industry and Their Relation to Organizational Performances". *International Journal of Environmental Science and Technology*, Vol. 4, No. 3, pp. 383-394.
- Chiou, T.-Y., Chan, H., Lettice, F., and Chung, S.-H.(2011). "The Influence of Greening the Suppliers and Green Innovation on Environmental Performance and Competitive Advantage in Taiwan". *Transportation Research Part E-logistics and Transportation Review TRANSP RES PT E-LOGIST TRANSP*, Vol. 47, No. pp. 822-836. doi:<<u>https://doi.org/10.1016/j.tre.2011.05.016</u>>.
- Choudhary, M.(2011). "Inter-organizational comparison of green supply chain management using analytical hierarchy process". *International Journal of Engineering Research and Industrial Applications*, Vol. 4, No. 3, pp. 345-368.
- Cooper, P. J., and Vargas, C. M. (2004). *Implementing sustainable development: From global policy to local action*: Rowman and Littlefield Publishers.
- Cosimato, S., and Troisi, O.(2015). "Green supply chain management: Practices and tools for logistics competitiveness and sustainability. The DHL case study". *The TQM Journal*, Vol. 27, No. 2, pp. 256-276. doi:
- Cousins, P., Lawson, B., Petersen, K., and Fugate, B.(2019). "Investigating Green Supply Chain Management Practices and Performance: The Moderating Roles of Supply Chain Ecocentricity and Traceability". *International Journal of Operations and Production Management*, Vol. 39, No. 5, pp. 767-786. doi:< https://doi.org/10.1108/IJOPM-11-2018-0676>.
- Cronbach, L. J.(1951). "Coefficient alpha and the internal structure of tests". *Psychometrika*, Vol. 16, No. 3, pp. 297-334.
- Croom, S., Romano, P., and Giannakis, M.(2000). "Supply chain management: an analytical framework for critical literature review". *European journal of purchasing supply management*, Vol. 6, No. 1, pp. 67-83. doi:< https://doi.org/10.1016/S0969-7012(99)00030-1>.
- Cummings, S., Wilson, D., and Anqwin, D. (2003). *Images of Strategy*. Mulden: Blackwell Publishing.
- Daddi, T., Testa, F., Frey, M., and Iraldo, F.(2016). "Exploring the link between institutional pressures and environmental management systems effectiveness: An empirical study". *Journal of Environmental Management*, Vol. 183, No. pp. 647-656.
- Damert, M., Paul, A., and Baumgartner, R. J.(2017). "Exploring the determinants and long-term performance outcomes of corporate carbon strategies". *Journal of Cleaner Production*, Vol. 160, No. pp. 123-138. doi:< https://doi.org/10.1016/j.jclepro.2017.03.206>.

- David, F. R. (2004). Strategic Management Concepts. Francis Marion University, New Jersey.
- David, F. R. (2011). Strategic management: Concepts and cases: Pearson College.
- Dawkins, E., André, K., Axelsson, K., Benoist, L., Swartling, Å. G., Persson, Å.(2019)."Advancing sustainable consumption at the local government level: A literature review". *Journal of cleaner production*, Vol. 231, pp. 1450-1462.
- De Giovanni, P., and Vinzi, V. E.(2012). "Covariance versus component-based estimations of performance in green supply chain management". *International Journal of Production Economics*, Vol. 135, No. 2, pp. 907-916.
- De Leeuw, E., Hox, J., Silber, H., Struminskaya, B., Vis, C. (2019). "Development of an international survey attitude scale: measurement equivalence, reliability, and predictive validity". *Measurement Instruments for the Social Sciences*, Vol. 1, No. 9. doi:<hr/>https://doi.org/10.1186/s42409-019-0012-x>.
- Deif, A. M. (2011). "A system model for green manufacturing". *Journal of Cleaner Production*, Vol. 19, No. 14, pp. 1553-1559.
- Desmidt, S., and Heene, A. (2005). *Strategie en organisatie van publieke organisaties (Dutch)*. Tiel: Uitgeverij Lannoo.
- Diabat, A., and Govindan, K.(2011). "An analysis of the drivers affecting the implementation of green supply chain management". *Resources, Conservation and Recycling*, Vol. 55, No. 6, pp. 659-667. doi:<<u>https://doi.org/10.1016/j.resconrec.2010.12.002</u>>.
- Dibb, S.(1995). "Developing a decision tool for identifying operational and attractive segments". *Journal of Strategic Marketing*, Vol. 3, No. 3, pp. 189-204. doi:<10.1080/09652549500000011>.
- Digalwar, A.K., & Metri, B.A. (2004). "Performance Measurement Framework for World Class Manufacturing". *International Journal of Applied Management and Technology*, Vol. 3, No. 2, pp. 83-101.
- Do, A. D., Nguyen, Q. V., Le, Q. H., and Ta, V. L.(2020). "Green Supply Chain Management in Vietnam Industrial Zone: Province-Level Evidence". *The Journal of Asian Finance, Economics and Business*, Vol. 7, No. 7, pp. 403–412. doi:<<u>https://doi.org/10.13106/JAFEB.2020.VOL7.NO7.403</u>>.
- Dobers, P., and Wolff, R.(2000). "Competing with 'soft' issues from managing the environment to sustainable business strategies". *Business Strategy and The Environment*, Vol. 9, No. pp. 143-150. doi:
- Dodgson, M.(2000). "The Management of Technological Innovation : An International and Strategic Approach". Journal of Engineering and Technology Management, Vol. 19. doi:<https://doi.org/10.1016/S0923-4748(02)00025-5>.
- Dong, L., Sun, D., Shu, W., and Li, X.(2020). "Exploration: Safe and clean mining on Earth and asteroids". *Journal of Cleaner Production*, Vol. 257, No. pp. 120899. doi:<<u>https://doi.org/10.1016/j.jclepro.2020.120899</u>>.

- Dursun, Y. and Kocagoz, E. (2010). "Structural equation modeling and regression: A comparative analysis". *Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, Vol. 35, pp. 1–17.
- Drumwright, M. E.(1994). "Socially responsible organizational buying: environmental concern as a noneconomic buying criterion". *Journal of marketing*, Vol. 58, No. 3, pp. 1-19.
- Dyer, J., and Singh, H.(1998). "The Relational View: Cooperative Strategy and Sources of Interorganizational Competitive Advantage". *The Academy of Management Review*, Vol. 23, No. 4, pp. 660-679. doi:<10.2307/259056>.
- Elkington, J.(1994). "Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development". Vol. 36, No. 2, pp. 90-100. doi:<https://doi.org/10.2307/41165746>.
- Elkington, J.(1997). "The triple bottom line". *Environmental management: Readings cases*, Vol. 2, No. pp. 49-66.
- Eltayeb, T. K., Zailani, S., and Ramayah, T.(2011). "Green supply chain initiatives among certified companies in Malaysia and environmental sustainability: Investigating the outcomes". *Resources, Conservation and Recycling*, Vol. 55, No. 5, pp. 495-506. doi:<<u>https://doi.org/10.1016/j.resconrec.2010.09.003</u>>.
- Esfahbodi, A., Zhang, Y., and Watson, G.(2016). "Sustainable supply chain management in emerging economies: Trade-offs between environmental and cost performance". *International Journal of Production Economics*, Vol. 181, No. pp. doi:< https://doi.org/10.1016/j.ijpe.2016.02.013>.
- Fadhilah, W. K., and Ayunda, D.(2020). "Strategy Formulation Using SWOT Analysis, SPACE Matrix And QSPM: A Conceptual Framework". *International Journal of Innovative Science Research Technology*, Vol. 5, No. 5, pp. 1520-1527.
- Fahad, B. S., and Iffat, S. (2018). Unilever Sustainable Living Plan: A Critical Analysis.
- Febry, A. H., Yuli, L., Yekti, U. (2022)."The Effect of Green Supply Chain Management Practices on Sustainability Performance". *Jurnal REKOMEN (Riset Ekonomi Manajemen)*, Vol. 5, No. 1, pp. 1-16. doi:<https://doi.org/10.1108/JMTM-03-2018-0099>.
- Feng, T., Cai, D., Wang, D., and Zhang, X.(2015). "Environmental management systems and financial performance: The joint effect of switching cost and competitive intensity". *Journal* of Cleaner Production, Vol. 113, pp. 781-791.
- Feng, W., Wang, C.-Y., and Xiong, Q.-C. (2018). Linking Proactive Environmental Strategy to Green Supply Chain Management: Commentary and Future Directions. Paper presented at the 4th Annual International Conference on Management, Economics and Social Development (ICMESD 2018).
- Finlay, P. N. (2000). *Strategic management: An introduction to business and corporate strategy*. London: Pearson Education.

- Florida, R.(1996). "Lean and green: the move to environmentally conscious manufacturing". *California management review*, Vol. 39, No. 1, pp. 80-105. doi:<https://doi.org/10.2307/4116>.
- Garetti, M. and Taisch, M. (2012). "Sustainable manufacturing: trends and research challenges". Production planning & control, Vol. 23, No. 2-3, pp. 83-104. doi:<https://doi.org/10.1080/09537287.2011.591619>.
- Geffen, C. A., and Rothenberg, S.(2000). "Suppliers and environmental innovation: the automotive paint process". *International Journal of Operations Production Management*, Vol. 20, No. 2, pp. 166-186. doi:
- Geng, R., Mansouri, S. A., Aktas, E. (2017)."The relationship between green supply chain management and performance: A meta-analysis of empirical evidences in Asian emerging economies".*International Journal of Production Economics*, Vol. 183, pp. 245-258. doi:<https://doi.org/10.1016/j.ijpe.2016.10.008>.
- Gilbert, S. (2000). *Greening supply chain: Enhancing competitiveness through the top forum on enhancing competitiveness green productivity.* Retrieved from
- Govindan, K., Mathiyazhagan, K., Kannan, D., Haq, A. (2013)."Barriers analysis for Green Supply Chain Management implementation in Indian Industries Using Analytic Hierarchy Process".*International Journal of Production Economics*, Vol. 147, pp. 555-568. doi:<https://doi.org/10.1016/j.ijpe.2013.08.01>.
- GRI (Global Reporting Initiative) (2006). Sustainability Reporting Guidelines.
- Grandiere, M. D. D. L. (2019). *Optimizing Green Supply Chain Management Strategies*. (Doctor of Business Administration),
- Grandy, G., and Mills, A.(2004). "Strategy as Simulacra? A reflective look at the discipline and practice of strategy". *Journal of Management Studies*, Vol. 41, No. 7, pp. 1153-1170. doi:<https://doi.org/10.1111/j.1467-6486.2004.00470.x>.
- Grant, R. M. (2005). Contemporary Strategy Analysis. Malden: Blackwell Publishing.
- Green, K. W., Zelbst, P. J., Meacham, J., and Bhadauria, V. S.(2012). "Green supply chain management practices: impact on performance". Supply Chain Management: An International Journal, Vol. 17, No. 3, pp. 290-305. doi:<<u>https://doi.org/10.1108/13598541211227126</u>>.
- Guide, V. D. R., and Srivastava, R.(1998). "Inventory buffers in recoverable manufacturing". *Journal* of Operations Management, Vol. 16, No. 5, pp. 551-568. doi:<<u>https://doi.org/10.1016/S0272-6963(97)00024-7</u>>.
- Gunasekaran, A., Patel, C. & McGaughey, R. (2004). "A framework for supply chain performance measurement". International Journal of Production Economics, Vol. 87, No. 3, pp. 333-347.
- Gupta, M., Shri, C., and Agrawal, A. (2015). *Strategy Formulation for Performance Improvement of Indian Corrugated Industry: An Application of SWOT Analysis and QSPM Matrix.*

- Gürel, S., and Tat, M.(2017). "SWOT Analysis: A Theoretical Review". *The Journal of International Social Research*, Vol. 10, pp. 994-1006.
- Hair, J., Black, W., Babin, B., and Anderson, R. (2009). *Multivariate data analysis*. London: Prentice Hall.
- Hajikhani, M., Wahiza, N., and Idris, K.(2012). "Considering on green supply chain management drivers, as a strategic organizational development approach, malaysian perspective". *Australian Journal of Basic and Applied Sciences*, Vol. 6, pp. 246-265.
- Hall, J., and Clark, W. W.(2003). "Special Issue: Environmental innovation". Journal of Cleaner Production, Vol. 11, No. 4, pp. 343-346. doi:<<u>https://doi.org/10.1016/S0959-6526(02)00070-</u> <u>7</u>>.
- Hamdy, O., Elsayed, K., and Elahmady, B.(2018). "Impact of Sustainable Supply Chain Management Practices on Egyptian Companies' Performance". *European Journal of Sustainable Development*, Vol. 7, No. pp. doi:<https://doi.org/10.14207/ejsd.2018.v7n4p119>.
- Hamel, G., & Prahalad, C.K (1989). "Strategic Intent". *Harvard Business Review*, Vol. 67, pp. 63-76.
- Hamid, S., Ijab, M., Sulaiman, H., Md Anwar, R., Norman, A. (2017). "Social media for environmental sustainability awareness in higher education". *International Journal of Sustainability in Higher Education*, Vol. 18, pp. 474-491.
- Handfield, R. B., and Nichols, E. L. (1999). *Introduction to Supply Chain Management*: Prentice Hall.
- Harms, D., Hansen, E. G., and Schaltegger, S.(2013). "Strategies in sustainable supply chain management: an empirical investigation of large German companies". *Corporate social responsibility environmental management*, Vol. 20, No. 4, pp. 205-218. doi:<https://doi.org/10.1002/csr.1293>.
- Hart, S., and Milstein, M.(2003). "Creating Sustainable Value". *Academy of Management Executive*, Vol. 17, No. 2, pp. 56-69. doi:<https://doi.org/10.5465/AME.2003.10025194>.
- Haryani, I. H., Riskarini, D., and Ichwani, T.(2018). "Business Development Strategy Model of SMEs Through SWOT and EFE-IFE Analysis". *Shirkah: Journal of Economics and Business*, Vol. 3, No. pp. doi:<https://doi.org/10.22515/shirkah.v3i1.204>.
- Hasan, M., Sarkis, J., and Shankar, R.(2007). "A Study of Barriers to Agile Manufacturing". *International Journal of Agile Systems and Management*, Vol. 2, No. 1, pp. 1-22. doi:<https://doi.org/10.1504/IJASM.2007.015679>.
- Hassan, A., Memari, A., Rahim, A. R. A., Ahmad, R. (2016)."A literature review on green supply chain modeling for optimizing CO2 emission".International Journal of Operational Research, Vol. 26, No. 4, pp. 509-525. doi:<https://doi.org/10.1504/IJOR.2016.077725>.
- Hervani, A., Helms, M., and Sarkis, J.(2005). "Performance Measurement for Green Supply Chain Management". *Benchmarking: An International Journal*, Vol. 12, No. 4, pp. 330-353. doi:<https://doi.org/10.1108/14635770510609015>.

- Ho, J., Shalishali, M., Tseng, T., and Ang, D.(2009). "Opportunities in green supply chain management". *The Coastal Business Journal*, Vol. 8, No. 1. Available:<<u>https://digitalcommons.coastal.edu/cbj/vol8/iss1/2>.[</u>
- Holt, D., and Ghobadian, A.(2009). "An Empirical Study of Green Supply Chain Management Practices Amongst UK Manufacturers". *Journal of Manufacturing Technology Management*, Vol. 20. doi:<<u>https://doi.org/10.1108/17410380910984212</u>>.
- Hosseini, A. (2007). "Identification of Green Management of system's factors: A Conceptualized Model". *International Journal of Management Science and Engineering Management*, Vol. 2, No. 3, pp. 221-228.
- Hsu, C.-C., Tan, K.-C., and Mohamad Zailani, S. H.(2016). "Strategic orientations, sustainable supply chain initiatives, and reverse logistics: Empirical evidence from an emerging market". *International Journal of Operations Production Management*, Vol. 36, No. 1, pp. 86-110. doi:<https://doi.org/10.1108/IJOPM-06-2014-0252>.
- Hsu, C.W., & Hu, A.H. (2008). "Green Supply Chain Management in the Electronic Industry". *International Journal of Science and Technology*, Vol. 5, No. 2, pp. 205-216
- Huang, X., Tan, B. L., and Ding, X.(2012). "Green supply chain management practices: An investigation of manufacturing SMEs in China". *International Journal of Technology Management Sustainable Development*, Vol. 11, No. 2, pp. 139-153. doi:<hr/>https://doi.org/10.1386/tmsd.11.2.139_1>.
- Hugos, M. H. (2011). Essentials of supply chain management: John Wiley and Sons.
- Hussey, D. J.(2001). "Creative strategic thinking and the analytical process: critical factors for strategic success". *Strategic change*, Vol. 10, No. 4, pp. 201. doi:<https://doi.org/10.1002/jsc.537>.
- Ibrahim, A., Bartsch, K., and Sharifi, E.(2020). "Green infrastructure needs green governance: Lessons from Australia's largest integrated stormwater management project, the River Torrens Linear Park". *Journal of Cleaner Production*, Vol. 261, pp. 121202.
- Ikegwuru, M. K., and Pokubo, I. M.(2018). "Sustainable supply chain management and environmentalperformance: A study of retail fuel stations in Rivers State Nigeria". *International Journal ofGeography and Environmental Management*, Vol. 4, No. 3, pp. 42-52.
- Jaggernath, R., and Khan, Z.(2015). "Green supply chain management". World Journal of Entrepreneurship, Management Sustainable Development, Vol. 11, No. 1, pp. 37-47.
- Jauch, L. R., and Glueck, W. F. (1988). Business policy and strategic management. London: McGraw-Hill.
- Jermsittiparsert, K., Siriattakul, P., and Sangperm, N.(2019). "Predictors of environmental performance: Mediating role of green supply chain management practices". *International Journal of Supply Chain Management*, Vol. 8, No. 3, pp. 877-888.
- Johnson, G., and Scholes, K. (1999). Exploring Corporate Strategy. Prentice Hall, London.

- Joreskog, K. G. (1973). A general method for estimating a linear structural equation system. New York: Seminar.
- Jumadi, J., Perdana, R., Hariad, M. H., Warsono, W., and Wahyudi, A.(2021). "The Impact of Collaborative Model Assisted by Google Classroom to Improve Students' Creative Thinking Skills". *International Journal of Evaluation Research in Education*, Vol. 10, No. 2, pp. 396-403.
- Kannan, G., Khodaverdi, R., and Jafarian, A.(2013). "A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach". *Journal of Cleaner Production*, Vol. 47, No. pp. 345-354.
- Kannan, G., Sasikumar, P., and Devika, K.(2010). "A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling". *Applied mathematical modelling*, Vol. 34, No. 3, pp. 655-670.
- Keesling, J. W. (1972). *Maximum likelihood approaches to causal flow analysis*. (Unpublished doctoral dissertation), University of Chicago, Chicago.
- Khan, S.A.R., Yu, Z., Sharif, A., Golpira, H.(2020)."Determinants of economic growth and environmental sustainability in South Asian Association for Regional Cooperation: evidence from panel ARDL".*Environmental Science and Pollution Research*, Vol. 27. doi:<https://doi.org/10.1007/s11356-020-10410-1>.
- Kim, J. H., Youn, S., and Roh, J. J.(2011). "Green supply chain management orientation and firm performance: evidence from South Korea". *International Journal of Services Operations Management*, Vol. 8, No. 3, pp. 283-304. doi:<<u>https://doi.org/10.1504/IJSOM.2011.038973</u>>.
- Kuei, C.-h., and Lu, M. H.(2013). "Integrating quality management principles into sustainability management". *Total Quality Management and Business Excellence*, Vol. 24, No. 1-2, pp. 62-78. doi:<<u>https://doi.org/10.1080/14783363.2012.669536</u>>.
- Kumar, N., Agrahari, R., and Roy, D.(2015). "Review of Green Supply Chain Processes". *IFAC-PapersOnLine*, Vol. 48, No. 3, pp. 374-381. doi:<https://doi.org/10.1016/j.ifacol.2015.06.110>.
- Kumar, S., Teichman, S., and Timpernagel, T.(2011). "A green supply chain is a requirement for profitability". *International Journal of Production Research*, Vol. 50, No. 5, pp. 1278-1296. doi:<<u>https://doi.org/10.1080/00207543.2011.571924</u>>.
- Kusi-Sarpong, S., Sarkis, J., and Wang, X.(2016). "Assessing green supply chain practices in the Ghanaian mining industry: A framework and evaluation". *International Journal of Production Economics*, Vol. 181, pp. 325-341. doi:<<u>https://doi.org/10.1016/j.ijpe.2016.04.002</u>>.
- Laari, S. (2016). *Green supply chain management practices and firm performance: Evidence from Finland.* University of Turku.
- Labog, Russel A. (2017). "Teachers' integration of environmental awareness and sustainable development practices". Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 3, pp. 102-110.

- Lambert, D., Cooper, M., and Pagh, J.(1998). "Supply Chain Management: Implementation Issues and Research Opportunities". *International Journal of Logistics Management, The*, Vol. 9, No. 2, pp. 1-20. doi:https://doi.org/10.1108/09574099810805807>.
- Lambert, D. M., and Cooper, M. C.(2000). "Issues in supply chain management". *Industrial marketing management*, Vol. 29, No. 1, pp. 65-83.
- Laosirihongthong, T., Adebanjo, D., and Choon-Tan, K.(2013). "Green supply chain management practices and performance". *Industrial Management and Data Systems*, Vol. 113, No. 8, pp. 1088-1109. doi:<<u>https://doi.org/10.1108/IMDS-04-2013-0164</u>>.
- Laurin, F., and Fantazy, K.(2017). "Sustainable supply chain management: a case study at IKEA". *Transnational Corporations Review*, Vol., No. pp. 1-10. doi:<https://doi.org/10.1080/19186444.2017.1401208>.
- Le, T. T. (2020). "The effect of green supply chain management practices on sustainability performance in Vietnamese construction materials manufacturing enterprises". Uncertain Supply Chain Management, Vol. 8, No. 1, pp. 43-54.
- Lee, S. M., Sung Rha, J., Choi, D., and Noh, Y.(2013). "Pressures affecting green supply chain performance". *Management decision*, Vol. 51, No. 8, pp. 1753-1768. doi:<<u>https://doi.org/10.1108/MD-12-2012-0841</u>>.
- Lee, S. M., Tae Kim, S., and Choi, D.(2012). "Green supply chain management and organizational performance". *Industrial Management and Data Systems*, Vol. 112, No. 8, pp. 1148-1180. doi:<<u>https://doi.org/10.1108/02635571211264609</u>>.
- Leliga, F. J., Koapaha, J. D., and Sulu, A. C.(2019). "Analysis of Internal Factor Evaluation Matrix, External Factor Evaluation Matrix, Threats-Opportunities-Weaknesses-Strengths Matrix, and Quantitative Strategic Planning Matrix on Milk Products and Nutrition Segment of Nestlé India". *East African Scholars Journal of Economics, Business and Management*, Vol. 2, No. 4, pp. 186-191.
- Li, J., Tao, F., Cheng, Y., and Zhao, L.(2015). "Big Data in product lifecycle management". *The International Journal of Advanced Manufacturing Technology*, Vol. 81, No. pp. 667–684. doi:<https://doi.org/10.1007/s00170-015-7151-x>.
- Lin, C.-Y., and Ho, Y.-H.(2008). "An Empirical Study on Logistics Service Providers' Intention to Adopt Green Innovations". *Journal of Technology Management and Innovation*, Vol. 3, No. 1, pp. 17-26.
- Liu, X., Yang, J., Qu, S., Wang, L., Shishime, T., and Bao, C.(2012). "Sustainable production: practices and determinant factors of green supply chain management of Chinese companies". *Business strategy the Environment*, Vol. 21, No. 1, pp. 1-16. doi:<10.1002/bse.705>.
- Lummus, R. R., Krumwiede, D. W., and Vokurka, R. J.(2001). "The relationship of logistics to supply chain management: developing a common industry definition". *Industrial management and data systems*, Vol. 101, No. 8, pp. 426-432. doi:<https://doi.org/10.1108/02635570110406730>.

- Luthra, S., Garg, D., and Haleem, A.(2013). "Identifying and ranking of strategies to implement green supply chain management in Indian manufacturing industry using Analytical Hierarchy Process". *Journal of Industrial Engineering and Management*, Vol. 6, No. 4, pp. 930-962. doi:<<u>https://doi.org/10.3926/jiem.693</u>>.
- Luthra, S., Kumar, V., Kumar, S., and Haleem, A.(2011). "Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: An Indian perspective". *Journal of Industrial Engineering and Management*, Vol. 4, No. 2, pp. 231-257. doi:<10.3926/jiem..v4n2.p231-257>.
- Malti, J. N. (2021). *Green Supply Chain Management for Competitive Advantage*. (Doctor of Business Administration), Walden Dissertations and Doctoral Studies, Retrieved from <u>https://scholarworks.waldenu.edu/dissertations/10251</u>.
- Massoud, M. A., Fayad, R., El-Fadel, M., and Kamleh, R.(2010). "Drivers, barriers and incentives to implementing environmental management systems in the food industry: A case of Lebanon". *Journal of Cleaner Production*, Vol. 18, No. 3, pp. 200-209.
- Markley, M. & Davis, L. (2007). "Exploring future competitive advantage through sustainable supply chains". *International Journal of Physical Distribution & Logistics Management*, Vol. 39, No. 9, pp. 763-74.
- Mclaren, Tim S., Head, Milena M., & Yuan, Yufei (2004). "Supply Chain Management Information System Capabilities: An Exploratory Study of Electronics Manufactures". *Information* systems and E-business management, Vol. 2, No. 3, pp. 207-222. doi:<hr/>https://doi.org/10.1007/s10257-004-0035-5>.
- Mengying, F., Yu, W., Wang, X., Wong, C. Y., Xu, M., and Xiao, Z.(2018). "Green supply chain management and financial performance: The mediating roles of operational and environmental performance". *Business strategy the Environment*, Vol. 27, No. 7, pp. 811-824. doi:<https://doi.org/10.1002/bse.2033>.
- Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., and Zacharia, Z. G.(2001). "DEFINING SUPPLY CHAIN MANAGEMENT". Vol. 22, No. 2, pp. 1-25. doi:<<u>https://doi.org/10.1002/j.2158-1592.2001.tb00001.x</u>>.
- Meredith, D., Forest, D., and Fred, D.(2009). "The quantitative strategic planning matrix (QSPM) applied to a retail computer store". *The Coastal Business Journal*, Vol. 8.
- Meredith, D., Fred, D., and Forest, D.(2016). "The quantitative strategic planning matrix: a new marketing tool". *Journal of Strategic Marketing*, Vol. 25, No. pp. 1-11. doi:<https://doi.org/10.1080/0965254X.2016.1148763>.
- Min, H., and Galle, W. P.(1997). "Green purchasing strategies: trends and implications". *International Journal of Purchasing Materials Management*, Vol. 33, No. 2, pp. 10-17. doi:<https://doi.org/10.1111/j.1745-493X.1997.tb00026.x>.
- Mohanty, R., and Prakash, A.(2013). "Green supply chain management practices in India: An empirical study". *Production Planning and Control*, Vol. 25, No. 16, pp. 1322-1337. doi:<https://doi.org/10.1080/09537287.2013.832822>.

- Mudgal, R.K., Shankar, R., Talib, P., & Raj, T. (2009). "Greening the supply chain practices: an Indian perspective of enablers' relationship". *Journal of Advanced Operations Management*, Vol. 1, No. 2-3, pp. 151-176. doi:<https://doi.org/10.1504/IJAOM.2009.030671>.
- Mudgal, R.K., Shankar, R., Talib, P., & Raj, T. (2010). "Modeling the barriers of green supply chain practices: an Indian perspective". *Journal of Logistics Systems and Management*, Vol. 7, No. 1, pp. 81-107.
 Available:<http://inderscience.metapress.com/link.asp?id=8343t48231372825>.
- Mutingi, M.(2013). "Developing green supply chain management strategies: A taxonomic approach". *Journal of Industrial Engineering Management decision*, Vol. 6, No. 2, pp. 525-546. doi:<https://doi.org/10.3926/jiem.475>.
- Nawawi, H. (2005). Strategic Management of Non-Pofit Organizations in Government Sector with Illustrations in the Education Sector. Gajah Mada University Press: Yogyakarta.
- Ninlawan, C., Papong, S., Tossapol, K., and Pilada, W. (2010, 03/01). The Implementation of Green Supply Chain Management Practices in Electronics Industry. Paper presented at the Lecture Notes in Engineering and Computer Science, Hong Kong.
- Nishitani, K., Kokubu, K., and Kajiwara, T.(2016). "Does low-carbon supply chain management reduce greenhouse gas emissions more effectively than existing environmental initiatives? An empirical analysis of Japanese manufacturing firms". *Journal of Management Control*, Vol. 27, pp. 33-60.
- Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V.(2008). "Normative Social Influence is Underdetected". *Personality and Social Psychology Bulletin*, Vol. 34, No. 7, pp. 913–923. doi:
- Nunnally, J. C. J. C. d. o. m. d. A. h. (1978). *An overview of psychological measurement* (n. Edition Ed.). New York: McGraw-Hill.
- Olugu, E. U., Wong, K. Y., and Shaharoun, A. M.(2010). "Development of key performance measures for the automobile green supply chain". *Resources, Conservation and Recycling*, Vol. 55, No. 6, pp. 567-579. doi:<<u>https://doi.org/10.1016/j.resconrec.2010.06.003</u>>.
- Orlitzky, M.(2008). "Corporate Social Performance and Financial Performance: A Research Synthesis". *The Oxford Handbook of Corporate Social Responsibility*, Vol., No. pp. doi:<https://doi.org/10.1093/oxfordhb/9780199211593.003.0005>.
- Osita, I. C., Onyebuchi, R., and Justina, N. E. (2014). Organization's stability and productivity: the role of SWOT analysis an acronym for strength, weakness, opportunities and threat.
- Ososanmi, A. O., Ojo, L. D., Ogundimu, O. E., Oke, A. E.(2021)."Drivers of Green Supply Chain Management: A Close-up Study". doi:<https://doi.org/10.21203/rs.3.rs-466356/v1>.
- Owusu, O., Bansah, K. J., and Mensah, A. K.(2021). ""Small in size, but big in impact": Socioenvironmental reforms for sustainable artisanal and small-scale mining". *Journal of Sustainable Mining*, Vol. 18, No. 1, pp. 38-44. doi:<https://doi.org/10.46873/2300-3960.1073>.

- Pagell, M., and Wu, Z.(2009). "Building a more complete theory of sustainable supply chain management using case studies of 10 exemplars". *Journal of Supply Chain Management*, Vol. 45, No. 2, pp. 37-56.
- Pan, S., Ballot, E., and Fontane, F.(2013). "The reduction of greenhouse gas emissions from freight transport by pooling supply chains". *International Journal of Production Economics*, Vol. 143, No. 1, pp. 86-94. doi:<<u>https://doi.org/10.1016/j.ijpe.2010.10.023</u>>.
- Paulraj, A.(2011). "Understanding the Relationships between Internal Resources and Capabilities, Sustainable Supply Management and Organizational Sustainability". *Journal of Supply Chain Management*, Vol. 47, No. 1, pp. 19-37. doi:<<u>https://doi.org/10.1111/j.1745-493X.2010.03212.x</u>>.
- Pearce, J. A., and Robinson, R. B. (2013). *Strategic Management: Planning for Domestic and Global Competition*: McGraw-Hill.
- Peijia, W., and Siqi, L. (2013). From Green Purchasing to Green Supply Chain Management: a singlecase study of Guitang. In.
- Peng, J.(2012). "Research on the optimization of green suppliers based on AHP and GRA". *Journal* of Information and Computational Science, Vol. 9, No. 1, pp. 173-182.
- Perron, G.M. (2005). "Barriers to Environmental Performance Improvements in Canadian SMEs". *Dalhousie University, Canada*.
- Pochampally, K., Gupta, S. & Govindan, K. (2009). "Metrics for performance measurement of a reverse/closed-loop supply chain". *International Journal of Business Performance and Supply Chain Modelling*, Vol. 1, No. 1, pp. 8-32.
- Porter, M., and Van der Linde, C.(1995). "Green and competitive: ending the stalemate". The Dynamics of the eco-efficient economy: environmental regulation competitive advantage, Vol. 33, pp. 120-134.
- Pratiwa, R., and Widodob, A.(2019). "The impact of green supply chain management practices on corporate sustainability performance: Empirical evidence from the food industry of Indonesia". *International Journal of Innovation, Creativity and Change*, Vol. 9, No. 4, pp. 200-219.
- Pryshlakivsky, J., and Searcy, C.(2015). "A Heuristic Model for Establishing Trade-Offs in Corporate Sustainability Performance Measurement Systems". *Journal of Business Ethics*, Vol. 144. doi:<https://doi.org/10.1007/s10551-015-2806-y>.
- Rahimifard, S., and Clegg, A.(2007). "Aspects of sustainable design and manufacture". *International Journal of Production Research*, Vol. 45, No. 18-19, pp. 4013-4019. doi:<https://doi.org/10.1080/00207540701608511>.
- Ranganathan, J.(1998). "Sustainability Rulers: Measuring Corporate Environmental and Social Performance".

- Rao, P.(2002). "Greening the supply chain: a new initiative in South East Asia". International Journal of Operations Production Management, Vol. 22, No. 6, pp. 632-655. doi:<<u>https://doi.org/10.1108/01443570210427668</u>>.
- Rao, P.(2007). "Greening of the Supply Chain: An Empirical Study for SMES in The Philippine Context". *Journal of Asia Business Studies*, Vol. 1. doi:<10.1108/15587890780001296>.
- Rao, P., and Holt, D.(2005). "Do Green Supply Chains Lead to Economic Performance?". *International Journal of Operations and Production Management*, Vol. 25, No. pp. 898-916. doi:<https://doi.org/10.1108/01443570510613956>.
- Ravi, V., & Shankar R. (2005). "Analysis of interactions among the barriers of reverse logistics". *International Journal of Technological Forecasting & Social Change*, Vol. 72, No. 8, pp. 1011-1029.
- Rimkeviciene, J., Hawgood, J., O'Gorman, J., De Leo, D. (2017)."Construct Validity of the Acquired Capability for Suicide Scale: Factor Structure, Convergent and Discriminant Validity".*Journal of Psychopathology and Behavioral Assessment*, Vol. 39, pp. 291–302. doi:<https://doi.org/10.1007/s10862-016-9576-4>.
- Rizki, A. F., Augustine, Y. (2022)."Green supply chain management practices: direct effects sustainability performance". *Technium Social Sciences Journal*, Vol. 28, No. 1, pp. 389-407. doi:<https://doi.org/10.47577/tssj.v28i1.5795>.
- Rogers, D.S., & R.S. (1998). "Tibben- lembke, Going Backwards: Reverse Logistics Trends and Practices". *Reverse Logistics Executive Council, Pittsburgh, PA*.
- Rosaangla, M. V., Ganga, G., Filho, M., and Lucato, W.(2017). "Green supply chain management: An investigation of pressures, practices, and performance within the Brazilian automotive supply chain". *Journal of Cleaner Production*, Vol. 151, No. pp. 250-259. doi:<hr/>https://doi.org/10.1016/j.jclepro.2017.03.066>.
- Roychowdhury, S., Shroff, N., and Verdi, R. S.(2019). "The effects of financial reporting and disclosure on corporate investment: A review". *Journal of Accounting Economics*, Vol. 68, No. 2-3, pp. 101246.
- Saha, M., and Darnton, G.(2005). "Green companies or green con-panies: Are companies really green, or are they pretending to be?". *Business society Review*, Vol. 110, No. 2, pp. 117-157.
- Sarkis, J.(1999). "How green is the supply chain? Practice and research". Practice Research.
- Sarkis, J. (2009). "A Boundaries and Flows Perspective of Green Supply Chain Management". *GPMI* working papers, No. 7.
- Sarkis, J., Zhu, Q., and Lai, K.-h.(2011). "An organizational theoretic review of green supply chain management literature". *International Journal of Production Economics*, Vol. 130, No. 1, pp. 1-15. doi:<https://doi.org/10.1016/j.ijpe.2010.11.010>.
- Schmidt, C. G., Foerstl, K., and Schaltenbrand, B.(2017). "The supply chain position paradox: green practices and firm performance". *Journal of Supply Chain Management*, Vol. 53, No. 1, pp. 3-25.

- Seuring, S., and Müller, M.(2008). "From a literature review to a conceptual framework for sustainable supply chain management". *Journal of Cleaner Production*, Vol. 16, No. 15, pp. 1699-1710.
- Sezen, B., and Cankaya, Y. S.(2013). "Effects of Green Manufacturing and Eco-innovation on Sustainability Performance". *Procedia - Social and Behavioral Sciences*, Vol. 99, No. pp. 154-163. doi:<<u>https://doi.org/10.1016/j.sbspro.2013.10.481</u>>.
- Sivamoorthy, M., Nalini, R., Kumar, C. (2013). "Environmental awareness and practices among college students". International Journal of Humanities Social Science Invention, Vol. 2, No. 8, pp. 11-15.
- Shafique, M., Asghar, M., and Rahman, H.(2017). "The impact of green supply chain management practices on performance: Moderating role of institutional pressure with mediating effect of green innovation". *Business, Management Economics Engineering*, Vol. 15, No. 1, pp. 91-108.
- Shahid, M., Nadeem, M., and Bakhat, H. F.(2020). "Environmental toxicology and associated human health risks". *Environmental Science Pollution Research*, Vol. 27, No. pp. 39671-39675.
- Shipeng, Q., and Linna, D. (2011). A study on green supply chain management of enterprises based on self-locking theory. Paper presented at the 2011 International Conference on E-Business and E-Government (ICEE).
- Singh, P., and Pandey, K. K.(2012). "Green marketing: policies and practices for sustainable development". *Integral Review - A Journal of Management*, Vol. 5, No. 1, pp. 22-30. Available:<<u>https://iul.ac.in/DepartmentalData/Management/JP/P.B_Kamal.pdf</u>>.
- Srivastava, S. K.(2007). "Green supply-chain management: a state-of-the-art literature review". *International journal of management reviews*, Vol. 9, No. 1, pp. 53-80. doi:<https://doi.org/10.1111/j.1468-2370.2007.00202.x>.
- Sroufe, R.(2006). "A framework for strategic environmental sourcing". *Greening the supply chain*, Vol., No. pp. 3-23.
- Stacey, R. D. (1996). *Complexity and Creativity in Organizations*. San Francisco: Berrett-Koehler Publishers.
- Studer, S.(2016). "Volunteer management: Responding to the uniqueness of volunteers". *Nonprofit Voluntary Sector Quarterly*, Vol. 45, No. 4, pp. 688-714.
- Sung, K-S, Yi, Y. G., Shin, H-I (2019)."Reliability and validity of knee extensor strength measurements using a portable dynamometer anchoring system in a supine position".*BMC musculoskeletal disorders*, Vol. 20, No.1, pp. 1-8. doi:<https://doi.org/10.1186/s12891-019-2703-0>.
- Sungchul, C., and Alex, N.(2011). "Environmental and Economic Dimensions of Sustainability and Price Effects on Consumer Responses". *Journal of Business Ethics*, Vol. 104, No. 2, pp. 269-282. doi:<https://doi.org/10.1007/s10551-011-0908-8>.

- Swayne, L. E., Duncan, W. J., and Ginter, P. M. (2006). *Strategic Management of Health Care Organizations*. Oxford: Blackwell.
- Szwilski, T. B. J.(2000). "Using environmental management systems to systematically improve operational performance and environmental protection". *International Journal of Surface Mining, Reclamation Environmental management*, Vol. 14, No. 3, pp. 183-191.
- Tekin, M., Derya, Ö., and Aymen, K.(2020). "The Impact of Green Supply Chain Management on Operational Efficiency: A Case Study". Vol. 10, No. 2, pp. 1-17. doi:< https://doi.org/10.47147/ksuiibf.800843>.
- Thoo, A. C., Abdul Hamid, A. B., Rasli, A., and Zhang, D. W. (2014). *The moderating effect of enviropreneurship on green supply chain management practices and sustainability performance.* Paper presented at the Advanced Materials Research.
- Thoo, C., Huam, T., and Sulaiman, Z.(2015). "Green Supply Chain Management, Environmental Collaboration and Sustainability Performance". *Proceedia CIRP*, Vol. 26, No. pp. 695-699. doi:<<u>https://doi.org/10.1016/j.procir.2014.07.035</u>>.
- United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3-14 June1992.RetrievedfromUnitedNations:https://www.un.org/en/conferences/environment/rio1992
- Vachon, S., and Klassen, R.(2006). "Extending Green Practices Across the Supply Chain: The Impact of Upstream and Downstream Integration". *International Journal of Operations and Production Management*, Vol. 26, No. 7, pp. 795-821. doi:< https://doi.org/10.1108/01443570610672248>.
- Van den Broek, F.(2010). "Green supply chain management, marketing tool or revolution". *Published* on the occasion of the inaugural speech related to the lectureship Logistics Sustainability. Breda, Zoetermeer: Netherlands.
- Van Hoek, R. I.(1999). "From reversed logistics to green supply chains". *Supply Chain Management: An International Journal*, Vol. 4, No. 3, pp. 129-135. doi:<10.1108/13598549910279576>.
- Verma, D., Dixit, R. V., and Singh, K.(2018). "Green Supply Chain Management: A Necessity for Sustainable Development". *IUP Journal of Supply Chain Management*, Vol. 15, No. 1, pp. 40-58. Available:<<u>https://ssrn.com/abstract=3254898</u>>.[
- Von Hippel, E. J. M. s.(1998). "Economics of product development by users: The impact of "sticky" local information". Vol. 44, No. 5, pp. 629-644.
- Wagner, M., Schaltegger, S., and Wehrmeyer, W.(2001). "The relationship between the environmental and economic performance of firms: what does theory propose and what does empirical evidence tell us?". *Greener Management International*, Vol., No. 34, pp. 95-108.
- Walton, S. V., Handfield, R. B., and Melnyk, S. A.(1998). "The green supply chain: integrating suppliers into environmental management processes". *International Journal of Purchasing Materials Management*, Vol. 34, No. 1, pp. 2-11. doi:< https://doi.org/10.1111/j.1745-493X.1998.tb00042.x>.

- Wang, F., Xiaofan, L., and Shi, N.(2011). "A multi-objective optimization for green supply chain network design". *Decision Support Systems*, Vol. 51, No. 2, pp. 262-269. doi:<<u>https://doi.org/10.1016/j.dss.2010.11.020</u>>.
- Wang, J., and Dai, J.(2018). "Sustainable supply chain management practices and performance". *Industrial Management Data Systems*, Vol. 118, No. 1, pp. 2-21. doi:< https://doi.org/10.1108/IMDS-12-2016-0540>.
- Wang, Y. A., Rhemtulla, M. (2021)."Power Analysis for Parameter Estimation in Structural Equation Modeling: A Discussion and Tutorial". *Advances in Methods and Practices in Psychological Science*, Vol. 4, No. 1. doi:
- WCED. (1987). Report of the World Commission on Environment and Development: Our Common Future. Retrieved from United Nations General Assembly: <u>http://www.undocuments.net/our-common-future.pdf</u>
- Wei, H. L., Ju, P. H., and Angkasa, Y. A. (2016). *Implementing green supply chain management to achieve competitive advantage*. Paper presented at the 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI).
- Widiatama, Y., Hamid, A. A., and Matrono, M.(2018). "Business Environmental Analysis with Competitive Profile Matrix Method on Market Optimization in Real Estate Company (A Case Study at Tangerang Selatan Area)". *International Journal of Economics Financial Issues*, Vol. 8, No. 4, pp. 222.
- Wisdom, P., Li, W., Dogbe, C., Sarsah, S., Owusua, E. (2019)."Firm Performance and Competitive Advantage: The role of Green Supply Chain Management Practices". *Journal of Business Management and Economics*, Vol. 7, No. 8, pp. 10-22. doi:<https://doi.org/10.15520/jbme.v7i08.2671>.
- Wittstruck, D., and Teuteberg, F.(2012). "Understanding the Success Factors of Sustainable Supply Chain Management: Empirical Evidence from the Electrics and Electronics Industry". *Corporate Social Responsibility and Environmental Management (formerly Eco-Management and Auditing)*, Vol. 19, No. 3, pp. 141-158. doi:< https://doi.org/10.1002/csr.261>.
- Wong, C., Lai, K.-h., Shang, k.-c., and Lu, C.-S.(2013). "Uncovering the Value of Green Advertising for Environmental Management Practices". *Business Strategy and The Environment*, Vol. 23, No. 2, pp. 117-130. doi:< https://doi.org/10.1002/bse.1776>.
- Xie, Y. and Breen, L. (2012), "Greening community pharmaceutical supply chain in UK: a cross boundary approach", *Supply Chain Management*, Vol. 17, No. 1, pp. 40-53. doi:<https://doi.org/10.1108/13598541211212195>.
- Yang, C.-L., Lin, S.-P., Chan, Y.-h., and Sheu, C.(2010). "Mediated effect of environmental management on manufacturing competitiveness: an empirical study". *International Journal* of Production Economics, Vol. 123, No. 1, pp. 210-220. doi:<<u>https://doi.org/10.1016/j.ijpe.2009.08.017</u>>.

- Yang, C.-S.(2017). "An analysis of institutional pressures, green supply chain management, and green performance in the container shipping context". *Transportation Research Part D: Transport and Environment*, Vol. 61, No. pp. 246-260. doi:<<u>https://doi.org/10.1016/j.trd.2017.07.005</u>>.
- Yassine, F.L.Y.A. (2022)."The impact of green supply chain management practices on business performance of extractive industries in Jordan". *Academy of Entrepreneurship Journal*, Vol. 28, No.S4, pp. 1-12. Available:<jordan.pdf>.
- Yenipazarli, A.(2017)."To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain". *European Journal of Operational Research*, Vol. 260, No. 2, pp. 571-587.
- Yu, L. C.(2007). "Adoption of Green Supply Chain Practices in Taiwan's Logistics Industry". Journal of International Management Studies, Vol. 2, No. pp. 90-98. doi:< https://doi.org/10.4028/0-87849-430-8.90>.
- Yu, L. C., & Hui Ho, Y. (2008). "An Empirical Study on Logistics services provider, intention to adopt Green Innovations". *Journal of Technology, Management and Innovation*, Vol. 3, No. 1, pp. 17-26. Available:<www.redalyc.uaemex.mx/pdf/847/84730103.pdf>.
- Yu, W., Chavez, R., Feng, M., and Wiengarten, F.(2013). "Integrated green supply chain management and operational performance". *Supply Chain Management*, Vol. 19, No. 5/6, pp. 683-696. doi:<<u>https://doi.org/10.1108/SCM-07-2013-0225</u>>.
- Yu, W., and Ramanathan, R.(2015). "An empirical examination of stakeholder pressures, green operations practices and environmental performance". *International Journal of Production Research*, Vol. 53, No. 21, pp. 6390-6407. doi:< https://doi.org/10.1080/00207543.2014.931608>.
- Zahid, S. M. (2016). Green Supply Chain Management Practices and Determinant Factors: A Quantitative Study on Small and Medium Enterprises Using Structural Equation Modeling North Dakota State University,
- Zailani, S., Jeyaraman, K., Vengadasan, G., and Premkumar, R.(2012). "Sustainable supply chain management (SSCM) in Malaysia: A survey". *International Journal of Production Economics*, Vol. 140, No. 1, pp. 330-340. doi:<<u>https://doi.org/10.1016/j.ijpe.2012.02.008</u>>.
- Zhu, Q., Feng, Y., and Choi, S.-B.(2017). "The role of customer relational governance in environmental and economic performance improvement through green supply chain management". *Journal of Cleaner Production*, Vol. 155, No. pp. 46-53. doi:< https://doi.org/10.1016/j.jclepro.2016.02.124>.
- Zhu, Q., and Geng, Y.(2001). "Integrating environmental issues into supplier selection and management: A study of large and medium-sized state-owned enterprises in China". *Greener Management International*, Vol. 35, pp. 27-40.

- Zhu, Q., and Sarkis, J.(2004). "Relationships Between Operational Practices and Performance Among Early Adopters of Green Supply Chain Management Practices in Chinese Manufacturing Enterprises". *Journal of Operations Management*, Vol. 22, No. 3, pp. 265-289. doi:<https://doi.org/10.1016/j.jom.2004.01.005>.
- Zhu, Q., Sarkis, J., and Geng, Y.(2005). "Green supply chain management in China: pressures, practices and performance". *International Journal of Operations and Production Management*, Vol. 25, No. 5, pp. 449-468. doi:<<u>https://doi.org/10.1108/01443570510593148</u>>.
- Zhu, Q., Sarkis, J., and Lai, K.-h.(2007a). "Initiatives and outcomes of green supply chain management implementation by Chinese manufacturers". *Journal of Environmental Management*, Vol. 85, No. 1, pp. 179-189. doi:<https://doi.org/10.1016/j.jenvman.2006.09.003>.
- Zhu, Q., Sarkis, J., and Lai, K.-h.(2007b). "Green supply chain management: pressures, practices and performance within the Chinese automobile industry". *Journal of Cleaner Production*, Vol. 15, No. 11, pp. 1041-1052. doi:<<u>https://doi.org/10.1016/j.jclepro.2006.05.021</u>>.
- Zhu, Q., Sarkis, J., and Lai, K.-h.(2008). "Confirmation of a measurement model for green supply chain management practices implementation". *International Journal of Production Economics*, Vol. 111, No. 2, pp. 261-273. doi:<<u>https://doi.org/10.1016/j.ijpe.2006.11.029</u>>.
- Zhu, Q., Sarkis, J., and Lai, K.-h.(2012). "Examining the Effects of Green Supply Chain Management Practices and Their Mediations on Performance Improvements". *International Journal of Production Research*, Vol. 50, No. 5, pp. 1377-1394. doi:<https://doi.org/10.1080/00207543.2011.571937>.
- Zhu, Q., Sarkis, J., and Lai, K.-h.(2013). "Institutional-based antecedents and performance outcomes of internal and external green supply chain management practices". *Journal of Purchasing Supply Management*, Vol. 19, No. 2, pp. 106-117.
- Zsidisin, G., and Siferd, S.(2001). "Environmental Purchasing: A Framework for Theory Development". *European Journal of Purchasing and Supply Management*, Vol. 7, pp. 61-73. doi:<https://doi.org/10.1016/S0969-7012(00)00007-1>.
- Zulkarnain, A., Wahyuningtias, D., and Putranto, T.(2019). "Analysis of IFE, EFE and QSPM matrix on business development strategy". *IOP Conference Series: Earth and Environmental Science*, Vol. 126. doi:<https://doi.org/10.1088/1755-1315/126/1/012062>.

APPENDICES

1. Questionnaire

No.:	

Questionnaire For The Relationship Between Green Supply Chain and Sustainability Performance

Dear Sir / Madam,

My name is _____, and I am international business student at FPT University. I am doing research on the relationship between GSCM and SP. I need to collect approximately 600 respondents to carry out my thesis.

In the next pages you will find a short questionnaire related to sustainable development. There are some questions on basic information such as your age and gender. Most questions will obviously focus on GSCM and SP. Hopefully, you can spare 5-7 minutes to complete this questionnaire. Your help is necessary and will be very much appreciated!

PART 1: GENERAL INFORMATION

1. Full name:				
2 . Age: Female		3. Gender:	□ Male	
4. Marriage:	□ Single	□ Married	□ Other:	
5. Your level of	of education is:			
□High □Colle □Unive □Other	school ge ersity r (please specify)	:		
6. Your major	is:			

\Box Economics	
□Hospitality management	
□Media communication	
□Tourism	
□Information technology	
□Other (please specify):	

PART 2: SUSTAINABILITY PERFORMANCE

Please read the following statement and indicate your opinion. Please only mark X in the one column that you have chosen for each statement

$1 = \text{totally disagree} \qquad 2 = \text{disagree } 3 = \text{no idea} 4 = \text{agree} \qquad 5 = \text{completely agree})$								
Scale	1	2	3	4	5			
Why should enterprises carry out their business strategy towards sustainability?								
1.Reduce cost for environmentally friendly input procurement								
2.Reduce cost of delivery and inventory								
3.Reduce fee to waste discharge								
4.Reduce fine for environment accidents								
5.Increase demand flexibility, delivery flexibility, and production flexibility								
6.Ensure procurement and delivery on time								
7.Optimize process for waste and emission reduction, pollution control								
8.Recognize products of ecolabeling, recycled material, and design-for-assembly								
9. Save energy consumption and recycling process								
10.Encourage green and clean technologies use								
11.Increase social and environmental responsibility								
12.Increase organizational capability								
13.Increase employees' motivation, health and safety								
14.Increase customer interest and satisfaction from green products								
15.Promote green image, global marketing and competitiveness								

16.Capture demand for environmentally friendly product market					
17.Obtain certificate for green product warranty					
18.Attract investors and shareholders					
19.Increase green business strategies					
20.Increase efficiency in scarcity of resources, higher waste generation and waste disposal problem					
21.Adapt to global climate pressure and ecological change					
22.Contribute to government rules and legislation system related to sustainability					
23.Support from green movement activism by non-government organization					
24.Create trust to society or public					
25.Get government support for enforcement					
Which main barriers must enterprises confront with when the	ey co	ondu	ict b	usin	ess
strategy towards sustainability?	1	1	1	1	<u> </u>
26.Constrain finance/capital					
27.Lack organization encouragement					
28.Lack IT implementation					
29.Hesitate to convert to new systems					
30.Hesitate to change GSCM from supplier					
31.Lack sustainable guidance					
32.Lack sustainability training courses/consultancy/mentor					
33.Lack corporate social responsibility					
34.Lack top management commitment					
35.Do not want technology advancement adoption					
36.Impact economic uncertainty					
37.Impact market competition					
38.Need big investment					
39.Poor legislation related to sustainability					
40.Lack effective environmental measures					

41.Lack government support system			
42.Weak pressure from society			
43.Lack quality human resources			

PART 3: GREEN SUPPLY CHAIN

Green supply chain in this study focuses on internal environment management, green procurement, green manufacturing, green distribution, environmental education

Please only mark \mathbf{X} in the one column that you have chosen for each statement

(1 = totally disagree; 2 = disagree; 3 = no idea; 4 = agree; 5 = completely agree)

Scale	1	2	3	4	5
Internal environment management					
44.Commit GSCM from senior managers					
45.Support to GSCM from mid-level managers					
46.Establish cross-functional cooperation team					
47. Take criteria to measure green quality					
Green procurement					
48.Ensure suppliers meet their environmental objectives					
49.Require suppliers to have ISO 14000					
50.Purchase materials with green attributes					
51.Purchase equipment that saves energy					
52.Purchase goods with eco-labeling					
Green manufacturing					
53.Ensure product have recyclable contents					
54.Minimize the use of materials in packaging					
55.Encourage reuse of products and recycled materials					
56.Use Life Cycle Assessment to evaluate environmental load					
Green distribution					
57.Recyclable whether reusable package or containers in logistics					

58.Reuse of valuable components of an end-of life product			
59.Select a method about cleaner transportation			
60.Use routing systems to reduce travel activity			
61.Identify defective merchandise to reuse			
Environmental education			
62.Participate in non-government and government subsidized program about GSCM and sustainability			
63.Participate training courses on GSCM and sustainability for executives			
64.Participate training courses on GSCM and sustainability for managers and members			

Thank you for your answer!

2. Letter of Acceptance

 Myasnitskaya sir, Moszow 101000, Russia. Tel., +7(495) 621-40-38. E-mail: forcelphi-journal lase ra. Web: http://forcelphi-journal.lase.ra

Kiet Hong Vo Tuan Truong,

Lecturer, FPT University, Can Tho campus, Vietnam

ARTICLE ACCEPTANCE LETTER

Title of the journal: Ferenight and STI Genermance

Article Title: Corporate Strategy for Sustainability: Thinking of Prospective Businesspeople

Corresponding Author: Kiet Hong Vo Tuan Truong

All Authors: Van Pham Huynh, Kiet Hong Vo Tuan Truong, Huy Dang Nguyen, Huyen My Ngo, Yen Bao Ho, Qui Van Le

Article Type: Original Article

Dear Mr. Kiet Hong Vo Tuan Truong,

Thank you very much for your submission to our journal. Herewith we inform that your paper is generally approved for publishing. After revision according to the reviewer proposals, it is scheduled for the Issue 2 of 2023, and will be published in June 2023.

Thank you for making the journal a vehicle for your research interests.

Best Wishes, Marina Boykova Executive Editor Foresight and STI Governance

18.04.2023

CBSs	GLOBAL CONFERENCE ON BUSINESS AND SOCIAL SCIENCES SERIES	GATR Clade Heating of Tenning and Cloured	
	LETTER OF ACCEPTANCE		
The second	15th Global Conference on Business & Social Sciences		
10 YEARS	"Contemporary Issues in Management and Social Sciences Research" Dates: 14-15 SEPTEMBER 2023 (IN-PERSON & ONLINE)		
Streete	NOVOTEL BANGKOK PLATINUM PRATUNAM, BANGKO	NOVOTEL BANGKOK PLATINUM PRATUNAM, BANGKOK, THAILAND Date: 9th April 2023	

Authors: Huy Dang Nguyen, Van Pham Huynh,

Affiliation: Department of Business Administration, FPT University, Can Tho City, Vietnam.

Paper Title: Understanding of Economic Student On The Relationship Between Green Supply Chain Management And Sustainability.

Dear Huy Dang Nguyen,

Congratulations! We are pleased to confirm that the GCBSS committee has accepted your submitted paper abstract based on a double-blind peer review for an oral presentation at the 15th Global Conference on Business and Social Sciences in Novotel Bangkok Platinum Pratunam, Bangkok, Thailand.

Please note the following important guidelines:

- Your paper abstract number is CIMSSR-00225, and please quote this number for all future correspondence. Please double-check the accuracy of the abstract title, address, and spelling of the author's name and name of the university and send us the corrected abstract, if necessary, by <u>10th April 2023</u>.
- Your paper abstract will be published in the Refereed Conference Proceedings, which will be published online and in a CD form with ISBN 978-967-13147-0-8. All submitted conference full papers will go through a doubleblind peer-review process by two to three competent reviewers. <u>All accepted</u> full articles would be published in any <u>WOS/Scopus/A-Category-indexed</u> journals with revisions. (Journals list available at <u>Publication</u> <u>Opportunity</u>).
- You must send us the enclosed completed registration form and a payment slip on or before 3rd May 2023 to avail early bird fee discount. For more details, click here
- 4. The 15th GCBSS conference program will be sent to registered participants after 6th September 2023. Two parallel presentations: Abstract-based presentation duration is 12-15 Minutes, including Discussions, and the full paper-based presentation duration is 15-20 minutes, including discussions. Please bring your flash drive, pen drive, or USB containing PowerPoint slides. We will provide an LCD projector and a computer at the venue for in-person guests. All online presentations will be conducted through Zoom.
- Please visit the <u>15th GCBSS</u> web and read all information related to <u>Venue</u>, <u>Accommodation</u>, <u>Academic</u> <u>Discussion Session</u>, Publishing in <u>ABS & ABDC Workshop</u>, and all other details. We look forward to meeting you at the conference.

3. Data fields

DESCRIPTIVE STATISTIC

Q3. Gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	196	36.7	36.7	36.7
	2	338	63.3	63.3	100.0
	Total	534	100.0	100.0	

Q7. Major

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	IB/BA	393	73.6	73.6	73.6
	НМ	46	8.6	8.6	82.2
	MC	95	17.8	17.8	100.0
	Total	534	100.0	100.0	

Gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Male	75	73.5	73.5	73.5
	Female	27	26.5	26.5	100.0
	Total	102	100.0	100.0	

Marital status

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not Married	15	14.7	14.7	14.7
	Get Married	87	85.3	85.3	100.0
	Total	102	100.0	100.0	

Academic level

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	University	11	10.8	10.8	10.8
	Master	35	34.3	34.3	45.1
	PhD Degree	43	42.2	42.2	87.3
	4	13	12.7	12.7	100.0
	Total	102	100.0	100.0	

Type Scholar

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Domestic Scholer	57	55.9	55.9	55.9
	Foreign scholar	23	22.5	22.5	78.4
	Transporter/Logistics	22	21.6	21.6	100.0
	Total	102	100.0	100.0	

F.IEM								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1546	.70854	.03574	4.0843	4.2248	1.00	5.00
НМ	46	4.3804	.41076	.06056	4.2585	4.5024	3.00	5.00
MC	95	4.4237	.58354	.05987	4.3048	4.5426	2.75	5.00
Total	534	4.2219	.67549	.02923	4.1645	4.2793	1.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
F.IEM	Based on Mean	7.875	2	531	.000
	Based on Median	7.861	2	531	.000
	Based on Median and with adjusted df	7.861	2	510.002	.000
	Based on trimmed mean	7.943	2	531	.000

ANOVA

F.IEM

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	6.805	2	3.403	7.643	.001
Within Groups	236.398	531	.445		
Total	243.204	533			

Robust Tests of Equality of Means

F.IEM

Statistic ^a		df1	df2	Sig.
Welch	10.005	2	126.022	.000

F.GP								
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1064	.81715	.04122	4.0253	4.1874	1.00	5.00
НМ	46	4.0565	.78843	.11625	3.8224	4.2907	2.00	5.00
MC	95	4.1789	.83206	.08537	4.0094	4.3484	1.20	5.00
Total	534	4.1150	.81655	.03534	4.0456	4.1844	1.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
F.GP	Based on Mean	.467	2	531	.627
	Based on Median	.520	2	531	.595
	Based on Median and with adjusted df	.520	2	527.354	.595
	Based on trimmed mean	.467	2	531	.627

ANOVA

F.GP

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.575	2	.288	.430	.651
Within Groups	354.805	531	.668		
Total	355.380	533			

Robust Tests of Equality of Means							
F.GP	Double-click to						
	Statistic ^a	df1	df2	Sig	activate		
Welch	.426	2	103.443		654		

F.GM								
					95% Confiden Me	ce Interval for an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.0776	.76350	.03851	4.0019	4.1533	1.00	5.00
НМ	46	4.0978	.78613	.11591	3.8644	4.3313	1.00	5.00
MC	95	4.2105	.71115	.07296	4.0657	4.3554	2.00	5.00
Total	534	4.1030	.75672	.03275	4.0387	4.1673	1.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
F.GM	Based on Mean	.303	2	531	.739
	Based on Median	.647	2	531	.524
	Based on Median and with adjusted df	.647	2	521.166	.524
	Based on trimmed mean	.576	2	531	.562

ANOVA

F.GM Sum of F Squares df Mean Square Sig. Between Groups 1.353 2 1.182 .307 .676 Within Groups 303.857 531 .572 Total 305.210 533

Robust Tests of Equality of Means

F.GM

•

	Statistic ^a	df1	df2	Sig.
Welch	1.292	2	103.245	.279

F.GD								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1491	.74069	.03736	4.0757	4.2226	1.00	5.00
НМ	46	4.3130	.56040	.08263	4.1466	4.4795	3.00	5.00
MC	95	4.1853	.84261	.08645	4.0136	4.3569	1.00	5.00
Total	534	4.1697	.74656	.03231	4.1062	4.2331	1.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
F.GD	Based on Mean	1.332	2	531	.265
	Based on Median	1.156	2	531	.316
	Based on Median and with adjusted df	1.156	2	503.597	.316
	Based on trimmed mean	1.345	2	531	.261

Post Hoc Tests

Multiple Comparisons

Dependent Variable: F.GD Tukey HSD

		Mean Difference (I-			95% Confide	ence Interval
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	16393	.11633	.337	4374	.1095
	MC	03615	.08535	.906	2368	.1644
НМ	IB/BA	.16393	.11633	.337	1095	.4374
	MC	.12778	.13410	.607	1874	.4429
MC	IB/BA	.03615	.08535	.906	1644	.2368
	НМ	12778	.13410	.607	4429	.1874

F.EE								
					95% Confider Me	nce Interval for ean		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1561	.80704	.04071	4.0760	4.2361	1.00	5.00
НМ	46	4.1739	.73950	.10903	3.9543	4.3935	2.33	5.00
MC	95	4.2456	.79925	.08200	4.0828	4.4084	1.00	5.00
Total	534	4.1735	.79937	.03459	4.1056	4.2415	1.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
F.EE	Based on Mean	.016	2	531	.984
	Based on Median	.008	2	531	.992
	Based on Median and with adjusted df	.008	2	525.112	.992
	Based on trimmed mean	.002	2	531	.998

ANOVA

F.EE

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.614	2	.307	.479	.620
Within Groups	339.972	531	.640		
Total	340.586	533			

Robust Tests of Equality of Means

F.EE

	Statistic ^a	df1	df2	Sig.
Welch	.475	2	105.132	.623

Post Hoc Tests

Multiple Comparisons								
Dependent Variable: F.EE Tukey HSD								
		Mean Difference (l-			95% Confide	ence Interval		
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound		
IB/BA	НМ	0178	uble-click to	.989	3109	.2752		
	MC	0895	activate	.591	3046	.1255		
НМ	IB/BA	.01785	.12469	.989	2752	.3109		
	MC	07170	.14373	.872	4095	.2661		
MC	IB/BA	.08955	.09148	.591	1255	.3046		
	НМ	.07170	.14373	.872	2661	.4095		

PHÂN TÍCH ANOVA SUSTAINBILITY PERFORMANCE

LEP Descriptives					otives	Double-click t activate	to	
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.0906	.57648	.02908	4.0334	4.1478	1.00	5.00
НМ	46	3.9391	.56783	.08372	3.7705	4.1078	2.40	5.00
MC	95	4.1800	.53566	.05496	4.0709	4.2891	2.50	5.00
Total	534	4.0934	.57065	.02469	4.0449	4.1420	1.00	5.00

		Levene Statistic	df1	df2	Sig.
I.EP	Based on Mean	.127	2	531	.880
	Based on Median	.138	2	531	.871
	Based on Median and with adjusted df	.138	2	525.725	.871
	Based on trimmed mean	.150	2	531	.861

ANOVA

I.EP					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.810	2	.905	2.798	.062
Within Groups	171.757	531	.323		
Total	173.567	533			

Robust Tests of Equality of Means

I.EP

	Statistic ^a	df1	df2	Sig.	
Welch	2.922	2	104.257	.058	

a. Asymptotically F distributed.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: I.EP Tukey HSD

		Mean Difference (l-			95% Confide	ence Interval
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.15145	.08863	.203	0568	.3598
	MC	08941	.06502	.355	2422	.0634
HM	IB/BA	15145	.08863	.203	3598	.0568
	MC	24087*	.10216	.049	4810	0008
MC	IB/BA	.08941	.06502	.355	0634	.2422
	НМ	.24087	.10216	.049	.0008	.4810

*. The mean difference is significant at the 0.05 level.

I.ENP								
					95% Confiden Me	ice Interval for an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.0465	.55985	.02824	3.9910	4.1021	2.00	5.00
НМ	46	3.9783	.45572	.06719	3.8429	4.1136	2.29	4.71
MC	95	4.2316	.52765	.05414	4.1241	4.3391	2.86	5.00
Total	534	4.0736	.55038	.02382	4.0268	4.1204	2.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
I.ENP	Based on Mean	3.513	2	531	.031
	Based on Median	3.528	2	531	.030
	Based on Median and with adjusted df	3.528	2	526.690	.030
	Based on trimmed mean	3.627	2	531	.027

ANOVA

I.ENP

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.077	2	1.539	5.158	.006
Within Groups	158.380	531	.298		
Total	161.457	533			

Robust Tests of Equality of Means

I.ENP

	Statistic ^a	df1	df2	Sig.	
Welch	5.689	2	109.310	.004	

Post Hoc Tests

Multiple Comparisons									
Dependent Variable: I.ENP									
Tukey HSD									
Mean 95% Confidence Interval									
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound			
IB/BA	НМ	.06827	.08511	.702	1318	.2683			
	MC	18505	.06244	.009	3318	0383			
НМ	IB/BA	06827	.08511	.702	2683	.1318			
	MC	25332	.09810	.027	4839	0220 Doubl			
MC	IB/BA	.18505	.06244	.009	.0383	.33 ad			
	НМ	.25332	.09810	.027	.0228	.4839			
*. The mean difference is significant at the 0.05 level.									

Homogeneous Subsets

I.SP

Descriptives

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1287	.50544	.02550	4.0786	4.1788	2.43	5.00
НМ	46	4.1025	.49273	.07265	3.9562	4.2488	2.29	4.86
MC	95	4.2271	.47081	.04830	4.1312	4.3230	3.29	5.00
Total	534	4.1439	.49903	.02160	4.1015	4.1863	2.29	5.00

		Levene Statistic	df1	df2	Sig.
I.SP	Based on Mean	.084	2	531	.919
	Based on Median	.065	2	531	.937
	Based on Median and with adjusted df	.065	2	523.226	.937
	Based on trimmed mean	.069	2	531	.933

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.827	2	.414	1.665	.190
Within Groups	131.907	531	.248		
Total	132.734	533			

Robust Tests of Equality of Means

I.SP

I.SP

	Statistic ^a	df1	df2	Sig.
Welch	1.807	2	104.460	.169

a. Asymptotically F distributed.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: I.SP Tukey HSD

		Mean Difference (l-			95% Confide	ence Interval
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.02620	.07767	.939	1563	.2087
	MC	09839	.05698	.196	2323	.0355
HM	IB/BA	02620	.07767	.939	2087	.1563
	MC	12458	.08953	.346	3350	.0858
MC	IB/BA	.09839	.05698	.196	0355	.2323
	HM	.12458	.08953	.346	0858	.3350

E.EP								
					95% Confiden Me	ce Interval for an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1792	.58309	.02941	4.1214	4.2370	1.00	5.00
НМ	46	4.0248	.45306	.06680	3.8903	4.1594	2.86	5.00
MC	95	4.2526	.49507	.05079	4.1518	4.3535	2.71	5.00
Total	534	4.1790	.56002	.02423	4.1314	4.2266	1.00	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
E.EP	Based on Mean	1.270	2	531	.282
	Based on Median	1.148	2	531	.318
	Based on Median and with adjusted df	1.148	2	501.738	.318
	Based on trimmed mean	1.121	2	531	.327

ANOVA

E.EP

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.608	2	.804	2.579	.077
Within Groups	165.552	531	.312		
Total	167.161	533			

Robust Tests of Equality of Means

E.EP

	Statistic ^a	df1	df2	Sig.
Welch	3.682	2	112.354	.028

Post Hoc Tests

		Multiple	e Comparis	sons				
Dependent Variable: E.EP								
Tukey HSD								
		Mean Difference (l-			95% Confide	ence Interval		
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound		
IB/BA	НМ	.15436	.08701	.179	0501	.3589		
	MC	07342	.06384	.484	2235	.0766		
НМ	IB/BA	15436	.08701	.179	3589	.0501		
	MC	22779	.10030	.061	4635	.0079		
MC	IB/BA	.07342	.06384	.484	0766	.2235		
	НМ	.22779	.10030	.061	0079	.4635		
			Double	click to				

Double-click to

PHÂN TÍCH ANOVA E.ENP

Descriptives

E.ENP								
					95% Confider Me	ice Interval for ean		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1378	.64130	.03235	4.0742	4.2014	1.43	5.00
НМ	46	4.0963	.49309	.07270	3.9498	4.2427	2.71	5.00
MC	95	4.3113	.56952	.05843	4.1953	4.4273	2.29	5.00
Total	534	4.1651	.62045	.02685	4.1123	4.2178	1.43	5.00

	Test of Hom	ogeneity of V	ariances		
		Levene Statistic	df1	df2	Sig.
E.ENP	Based on Mean	1.723	2	531	.180
	Based on Median	1.811	2	531	.165
	Based on Median and	1.811	2	517.948	.165
	Based on trimmed mean	1.799	Doul	ble-click to octivate	.166

		ANOVA			
E.ENP					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2.541	2	1.271	3.330	.037
With Double-click to	202.644	531	.382		
Tota	205.186	533			

Robust Tests of Equality of Means

 E.ENP
 Statistic^a
 df1
 df2
 Sig.

 Welch
 3.906
 2
 112.090
 .023

Post Hoc Tests

Multiple Comparisons

Dependent Variable: E.ENP Tukey HSD

		Mean Difference (I-			95% Confide	ence Interval
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.04149	.09627	.903	1848	.2678
	MC	17351	.07063	.038	3395	0075
НМ	IB/BA	04149	.09627	.903	2678	.1848
	MC	21500	.11097	.129	4758	.0458
MC	IB/BA	.17351	.07063	.038	.0075	.3395
	НМ	.21500	.11097	.129	0458	.4758

*. The mean difference is significant at the 0.05 level.

E.SP								
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1374	.54027	.02725	4.0838	4.1910	1.40	5.00
НМ	46	4.1261	.47396	.06988	3.9853	4.2668	3.00	4.80
MC	95	4.2905	.48358	.04961	4.1920	4.3890	3.00	5.00
Total	534	4.1637	.52761	.02283	4.1188	4.2085	1.40	5.00

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
E.SP	Based on Mean	.504	2	531	.604
	Based on Median	.552	2	531	.576
	Based on Median and with adjusted df	.552	2	521.196	.576
	Based on trimmed mean	.482	2	531	.618

ANOVA

E.SP

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.865	2	.932	3.379	.035
Within Groups	146.510	531	.276		
Total	148.375	533			

Robust Tests of Equality of Means

E.SP

	Statistic ^a	df1	df2	Sig.
Welch	3.836	2	107.765	.025

Post Hoc Tests

		Multiple	e Comparis	sons			
Dependent Va	ariable: E.SP						
Tukey HSD							
		Mean Difference (l-			95% Confid	ence Interval	
(I) Q7. Major	(J) Q7. Major	J)	Std. Error	Sig.	Lower Bound	Upper Bound	
IB/BA	НМ	.01132	.08185	.990	1811	.2037	-
	MC	15312	.06005	.030	2943	0120	-
НМ	IB/BA	01132	.08185	.990	2037	.1811	Double-clic
	MC	16444	.09435	.190	3862	.0573	activate
MC	IB/BA	.15312	.06005	.030	.0120	.2943	-
	НМ	.16444	.09435	.190	0573	.3862	-
*. The mea	n difference is s	ignificant at the O.	05 level.				-

Descriptives

I.EP								
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.0906	.57648	.02908	4.0334	4.1478	1.00	5.00
НМ	46	3.9391	.56783	.08372	3.7705	4.1078	2.40	5.00
MC	95	4.1800	.53566	.05496	4.0709	4.2891	2.50	5.00
Dometic Scholar	57	3.8456	.48737	.06455	3.7163	3.9749	2.20	4.70
Foreign Scholar	23	4.5565	.33416	.06968	4.4120	4.7010	3.90	5.00
Tranporter/Logistic	22	3.9364	.55338	.11798	3.6910	4.1817	2.80	4.80
Total	636	4.0825	.56771	.02251	4.0383	4.1268	1.00	5.00

		Levene Statistic	df1	df2	Sig.
I.EP	Based on Mean	1.176	5	630	.319
	Based on Median	1.214	5	630	.301
	Based on Median and with adjusted df	1.214	5	612.763	.301
	Based on trimmed mean	1.189	5	630	.313

ANOVA

I.EP					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	10.711	5	2.142	6.958	.000
Within Groups	193.946	630	.308		
Total	204.656	635			

Robust Tests of Equality of Means

I.EP

	Statistic ^a	df1	df2	Sig.	
Welch	12.879	5	94.480	.000	

a. Asymptotically F distributed.

Beat Lies Tests

Post Hoc Tests

		Multiple Cor	nparisons			
Dependent Variable: Tukey HSD	I.EP					
		Mean			95% Confide	ence Interval
(I) Type Scholar	(J) Type Scholar	J) JImerence	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.15145	.08646	.498	0957	.3986
	MC	08941	.06343	.721	2707	.0919
	Dometic Scholar	.24497	.07864	.024	.0202	.4698
	Foreign Scholar	46594	.11903	.001	8062	125
	Tranporter/Logistic	.15422	.12156	.802	1933	.501
НМ	IB/BA	15145	.08646	.498	3986	.095
	MC	24087	.09966	.152	5258	.044
	Dometic Scholar	.09352	.10997	.958	2208	.407
	Foreign Scholar	61739	.14169	.000	-1.0224	212
	Tranporter/Logistic	.00277	.14382	1.000	4084	.413
MC	IB/BA	.08941	.06343	.721	0919	.270
	НМ	.24087	.09966	.152	0440	.525
	Dometic Scholar	.33439	.09296	.005	.0687	.600
	Foreign Scholar	37652	.12894	.042	7451	007

Dometic Scholar	IB/BA	24497	.07864	.024	4698	0202
	НМ	09352	.10997	.958	4079	.2208
	MC	33439	.09296	.005	6001	0687
	Foreign Scholar	71091	.13706	.000	-1.1027	3191
	Tranporter/Logistic	09075	.13926	.987	4888	.3073
Foreign Scholar	IB/BA	.46594	.11903	.001	.1257	.8062
	НМ	.61739	.14169	.000	.2124	1.0224
	MC	.37652	.12894	.042	.0079	.7451
	Dometic Scholar	.71091	.13706	.000	.3191	1.1027
	Tranporter/Logistic	.62016	.16546	.003	.1472	1.0931
Tranporter/Logistic	IB/BA	15422	.12156	.802	5017	.1933
	НМ	00277	.14382	1.000	4139	.4084
	MC	24364	.13128	.431	6189	.1316
	Dometic Scholar	.09075	.13926	.987	3073	.4888
	Foreign Scholar	62016	.16546	.003	-1.0931	1472
*. The mean differ	rence is significant at th	ne 0.05 level.				

Anova I.ENP STUDENT AND SCHOLAR.

Descriptives								
I.ENP								
					95% Confider Me	ice Interval for ean		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.0465	.55985	.02824	3.9910	4.1021	2.00	5.00
НМ	46	3.9783	.45572	.06719	3.8429	4.1136	2.29	4.71
MC	95	4.2316	.52765	.05414	4.1241	4.3391	2.86	5.00
Dometic Scholar	57	4.1529	.49107	.06504	4.0226	4.2832	2.29	5.00
Foreign Scholar	23	4.5466	.26430	.05511	4.4323	4.6609	3.86	5.00
Tranporter/Logistic	22	3.9935	.48591	.10360	3.7781	4.2089	2.86	5.00
Total	636	4.0950	.54239	.02151	4.05 Dou	uble-click to 372	2.00	5.00
						activate		

		Levene Statistic	df1	df2	Sig.
I.ENP	Based on Mean	3.648	5	630	.003
	Based on Median	3.489	5	630	.004
	Based on Median and with adjusted df	3.489	5	612.199	.004
	Based on trimmed mean	3.682	5	630	.003

ANOVA

I.ENP

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	8.430	5	1.686	5.955	.000
Within Groups	178.379	630	.283		
Total	186.809	635			

Robust Tests of Equality of Means

I.ENP

	Statistic ^a	df1	df2	Sig.
Welch	14.810	5	97.360	.000

a. Asymptotically F distributed.

Post Hoc Tests

Post Hoc Tests

		Multiple Con	nparisons			
Dependent Variable: Tukey HSD	I.ENP					
		Mean Difference (l-			95% Confide	ence Interval
(I) Type Scholar	(J) Type Scholar	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.06827	.08292	.963	1688	.3053
	MC	18505	.06084	.029	3589	0112
	Dometic Scholar	10635	.07542	.721	3219	.1092
	Foreign Scholar	50006	.11415	.000	8264	1737
	Tranporter/Logistic	.05302	.11658	.998	2802	.3863
НМ	IB/BA	06827	.08292	.963	3053	.1688
	MC	25332	.09558	.087	5265	.0199
	Dometic Scholar	17462	.10546	.562	4761	.1268
	Foreign Scholar	56832	.13589	.000	9568	1799
	Tranporter/Logistic	01525	.13793	1.000	4095	.3790
MC	IB/BA	.18505	.06084	.029	.0112	.3589
	НМ	.25332	.09558	.087	0199	.5265
	Dometic Scholar	.07870	.08915	.951	1761	.3335
	Foreign Scholar	31500	.12366	.112	6685	.0385
	Tranporter/Logistic	.23807	.12590	.409	1218	.5980

Dometic Scholar	IB/BA	.10635	.07542	.721	1092	.3219
	НМ	.17462	.10546	.562	1268	.4761
	MC	07870	.08915	.951	3335	.1761
	Foreign Scholar	39370*	.13145	.034	7694	0180
	Tranporter/Logistic	.15938	.13356	.840	2224	.5411
Foreign Scholar	IB/BA	.50006	.11415	.000	.1737	.8264
	НМ	.56832	.13589	.000	.1799	.9568
	MC	.31500	.12366	.112	0385	.6685
	Dometic Scholar	.39370*	.13145	.034	.0180	.7694
	Tranporter/Logistic	.55308	.15868	.007	.0995	1.0067
Tranporter/Logistic	IB/BA	05302	.11658	.998	3863	.2802
	НМ	.01525	.13793	1.000	3790	.4095
	MC	23807	.12590	.409	5980	.1218
	Dometic Scholar	15938	.13356	.840	5411	.2224
	Foreign Scholar	55308	.15868	.007	-1.0067	0995

ANOVA I.SP STUDENT AND SCHOLAR

Descriptives

I.SP								
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1287	.50544	.02550	4.0786	4.1788	2.43	5.00
НМ	46	4.1025	.49273	.07265	3.9562	4.2488	2.29	4.86
MC	95	4.2271	.47081	.04830	4.1312	4.3230	3.29	5.00
Dometic Scholar	57	4.0551	.41716	.05525	3.9445	4.1658	2.86	4.86
Foreign Scholar	23	4.4472	.30550	.06370	4.3151	4.5793	3.71	4.86
Tranporter/Logistic	22	3.9935	.55500	.11833	3.7474	4.2396	2.86	4.71
Total	636	4.1417	.49256	.01953	4.1034	4.1801	2.29	5.00

		Levene Statistic	df1	df2	Sig.
I.SP	Based on Mean	1.746	5	630	.122
	Based on Median	1.625	5	630	.151
	Based on Median and with adjusted df	1.625	5	606.996	.151
	Based on trimmed mean	1.673	5	630	.139

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
I.SP	Based on Mean	1.746	5	630	.122
	Based on Median	1.625	5	630	.151
	Based on Median and with adjusted df	1.625	5	606.996	.151
	Based on trimmed mean	1.673	5	630	.139

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.887	5	.777	3.261	.006
Within Groups	150.174	630	.238		
Total	154.060	635			

Post Hoc Tests

I.SP

Multiple Comparisons

Dependent Variable: I.SP Tukey HSD

		Mean Difference (l-			95% Confide	ence Interval
(I) Type Scholar	(J) Type Scholar	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.02620	.07608	.999	1913	.2437
	MC	09839	.05582	.491	2579	.0612
	Dometic Scholar	.07354	.06920	.896	1243	.2713
	Foreign Scholar	31852	.10474	.029	6179	0191
	Tranporter/Logistic	.13517	.10697	.805	1706	.4409
НМ	IB/BA	02620	.07608	.999	2437	.1913
	MC	12458	.08770	.715	3753	.1261
	Dometic Scholar	.04735	.09677	.997	2293	.3240
	Foreign Scholar	34472	.12468	.065	7011	.0117
	Tranporter/Logistic	.10898	.12656	.955	2528	.4707
MC	IB/BA	.09839	.05582	.491	0612	.2579
	НМ	.12458	.08770	.715	1261	.3753
	Dometic Scholar	.17193	.08180	.288	0619	.4058
	Foreign Scholar	22014	.11346	.379	5445	.1042
	Tranporter/Logistic	.23356	.11552	.331	0966	.5638

Dometic Scholar	IB/BA	07354	.06920	.896	2713	.1243
	НМ	04735	.09677	.997	3240	.2293
	MC	17193	.08180	.288	4058	.0619
	Foreign Scholar	39207*	.12061	.015	7368	0473
	Tranporter/Logistic	.06163	.12254	.996	2887	.4119
Foreign Scholar	IB/BA	.31852	.10474	.029	.0191	.6179
	НМ	.34472	.12468	.065	0117	.7011
	MC	.22014	.11346	.379	1042	.5445
	Dometic Scholar	.39207	.12061	.015	.0473	.7368
	Tranporter/Logistic	.45370	.14560	.023	.0375	.8699
Tranporter/Logistic	IB/BA	13517	.10697	.805	4409	.1706
	НМ	10898	.12656	.955	4707	.2528
	MC	23356	.11552	.331	5638	.0966
	Dometic Scholar	06163	.12254	.996	4119	.2887
	Foreign Scholar	45370	.14560	.023	8699	0375
*. The mean diffe	rence is significant et l	e o oc lenel.				
	a	ctivate				

Anova E.EP STUDENT AND SCHOLAR

			De	scriptives				
E.EP								
					95% Confiden Me	ice Interval for an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1792	.58309	.02941	4.1214	4.2370	1.00	5.00
НМ	46	4.0248	.45306	.06680	3.8903	4.1594	2.86	5.00
MC	95	4.2526	.49507	.05079	4.1518	4.3535	2.71	5.00
Dometic Scholar	57	4.1529	.39389	.05217	4.0484	4.2574	3.14	4.86
Foreign Scholar	23	4.5280	.28387	.05919	4.4052	4.6507	3.86	5.00
Tranporter/Logistic	22	3.9675	.59465	.12678	3.7039	4.2312	2.57	4.71
Total	636	4.1819	.54537	.02163	4.1395	4.2244	1.00	5.00

		Levene Statistic	df1	df2	Sig.
E.EP	Based on Mean	3.322	5	630	.006
	Based on Median	2.807	5	630	.016
	Based on Median and with adjusted df	2.807	5	576.746	.016
	Based on trimmed mean	3.055	5	630	.010

ANOVA

E.EP					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.426	5	1.085	3.727	.002
Within Groups	183.439	630	.291		
Total	188.865	635			

Robust Tests of Equality of Means

E.EP

	Statistic ^a	df1	df2	Sig.
Welch	8.404	5	96.799	.000

Post Hoc Tests

Multiple Comparisons

Dependent Variable: E.EP Tukey HSD

Takey Hob						
		Mean Difference (l-			95% Confide	ence Interval
(I) Type Scholar	(J) Type Scholar	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.15436	.08409	.443	0860	.3947
	MC	07342	.06169	.842	2498	.1029
	Dometic Scholar	.02633	.07648	.999	1923	.2449
	Foreign Scholar	34874	.11576	.032	6796	0178
	Tranporter/Logistic	.21168	.11822	.473	1263	.5496
НМ	IB/BA	15436	.08409	.443	3947	.0860
	MC	22779	.09693	.176	5049	.0493
	Dometic Scholar	12804	.10695	.838	4338	.1777
	Foreign Scholar	50311	.13780	.004	8970	1092
	Tranporter/Logistic	.05731	.13987	.999	3425	.4571
MC	IB/BA	.07342	.06169	.842	1029	.2498
	НМ	.22779	.09693	.176	0493	.5049
	Dometic Scholar	.09975	.09041	.880	1587	.3582
	Foreign Scholar	27532	.12540	.241	6338	.0831
	Tranporter/Logistic	.28510	.12767	.224	0799	.6501
Dometic Scholar	IB/BA	02633	.07648	.999	2449	.1923
	НМ	.12804	.10695	.838	1777	.4338
	MC	09975	.09041	.880	3582	.1587
	Foreign Scholar	37507	.13330	.057	7561	.0060
	Tranporter/Logistic	.18535	.13544	.746	2018	.5725

Dometic Scholar	IB/BA	02633	.07648	.999	2449	.1923
	НМ	.12804	.10695	.838	1777	.4338
	MC	09975	.09041	.880	3582	.1587
	Foreign Scholar	37507	.13330	.057	7561	.0060
	Tranporter/Logistic	.18535	.13544	.746	2018	.5725
Foreign Scholar	IB/BA	.34874	.11576	.032	.0178	.6796
	НМ	.50311	.13780	.004	.1092	.8970
	MC	.27532	.12540	.241	0831	.6338
	Dometic Scholar	.37507	.13330	.057	0060	.7561
	Tranporter/Logistic	.56042	.16092	.007	.1004	1.0204
Tranporter/Logistic	IB/BA	21168	.11822	.473	5496	.1263
	НМ	Double-click to	.13987	.999	4571	.3425
	MC	activate	.12767	.224	6501	.0799
	Dometic Scholar	18535	.13544	.746	5725	.2018
	Foreign Scholar	56042	.16092	.007	-1.0204	1004

ANOVA E.ENP STUDEN AND SCHOLAR.

E.ENP								
					95% Confiden Me	ce Interval for an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
IB/BA	393	4.1378	.64130	.03235	4.0742	4.2014	1.43	5.00
НМ	46	4.0963	.49309	.07270	3.9498	4.2427	2.71	5.00
MC	95	4.3113	.56952	.05843	4.1953	4.4273	2.29	5.00
Dometic Scholar	57	4.0426	.42513	.05631	3.9298	4.1554	3.29	5.00
Foreign Scholar	23	4.6584	.24646	.05139	4.5518	4.7650	4.14	5.00
Tranporter/Logistic	22	4.1104	.49277	.10506	3.8919	4.3289	2.86	5.00
Total	636	4.1700	.59953	.02377	4.1234	4.2167	1.43	5.00

Descriptives

		Levene Statistic	df1	df2	Sig.
E.ENP	Based on Mean	4.469	5	630	.001
	Based on Median	4.729	5	630	.000
	Based on Median and with adjusted df	4.729	5	578.257	.000
	Based on trimmed mean	4.547	5	630	.000

ANOVA

E.ENP					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.044	5	1.809	5.198	.000
Within Groups	219.201	630	.348		
Total	228.244	635			

R	obust Test	ts of Equa	ality of Me	ans	
E.ENP					
	Statistic ^a	df1	df2	Sig.	
Welch	18.570	5	100.839	.000	
a. As	ymptotically F	distributed.		Double-clic activate	k to

Multiple Comparisons

Dependent Variable: E.ENP Tukey HSD

		Mean Difference (I-			95% Confide	ence Interval
(I) Type Scholar	(J) Type Scholar	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.04149	.09192	.998	2213	.3042
	MC	17351	.06744	.106	3663	.0193
	Dometic Scholar	.09516	.08360	.865	1438	.3341
	Foreign Scholar	52062	.12654	.001	8823	1589
	Tranporter/Logistic	.02738	.12923	1.000	3420	.3968
НМ	IB/BA	04149	.09192	.998	3042	.2213
	MC	21500	.10595	.327	5179	.0879
	Dometic Scholar	.05367	.11691	.997	2805	.3879
	Foreign Scholar	56211	.15064	.003	9927	1315
	Tranporter/Logistic	01412	.15290	1.000	4512	.4230
MC	IB/BA	.17351	.06744	.106	0193	.3663
	НМ	.21500	.10595	.327	0879	.5179
	Dometic Scholar	.26867	.09883	.073	0138	.5512
	Foreign Scholar	34711	.13708	.116	7389	.0447
	Tranporter/Logistic	.20089	.13956	.703	1981	.5998
Dometic Scholar	IB/BA	09516	.08360	.865	3341	.1438

Dometic Scholar	IB/BA	09516	.08360	.865	3341	.1438
	НМ	05367	.11691	.997	3879	.2805
	MC	26867	.09883	.073	5512	.0138
	Foreign Scholar	61578	.14571	.000	-1.0323	1993
	Tranporter/Logistic	06778	.14805	.997	4910	.3554
Foreign Scholar	IB/BA	.52062	.12654	.001	.1589	.8823
	НМ	.56211	.15064	.003	.1315	.9927
	MC	.34711	.13708	.116	0447	.7389
	Dometic Scholar	.61578	.14571	.000	.1993	1.0323
	Tranporter/Logistic	.54800	.17591	.023	.0452	1.0508
Tranporter/Logistic	IB/BA	02738	.12923	1.000	3968	.3420
	НМ	.01412	.15290	1.000	4230	.4512
	MC	20089	.13956	.703	5998	1001
	Dometic Scholar	.06778	.14805	.997	3554	Double-click t
	Foreign Scholar	54800	.17591	.023	-1.0508	0452

ANOVA E.SP STUDENT VÀ SCHOLAR.

Descriptives									
E.SP	E.SP								
95% Confidence Interval for Mean									
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
IB/BA	393	4.1374	.54027	.02725	4.0838	4.1910	1.40	5.00	
НМ	46	4.1261	.47396	.06988	3.9853	4.2668	3.00	4.80	
MC	95	4.2905	.48358	.04961	4.1920	4.3890	3.00	5.00	
Dometic Scholar	57	4.1789	.45148	.05980	4.0592	4.2987	3.20	5.00	
Foreign Scholar	23	4.5043	.37596	.07839	4.3418	4.6669	3.60	5.00	
Tranporter/Logistic	22	4.0273	.61812	.13178	3.7532	4.3013	2.80	5.00	
Total	636	4.1726	.52341	.02075	Double-click to	4.2134	1.40	5.00	
					activate				

		Levene Statistic	df1	df2	Sig.
E.SP	Based on Mean	1.089	5	630	.365
	Based on Median	1.105	5	630	.356
	Based on Median and with adjusted df	1.105	5	603.305	.356
	Based on trimmed mean	1.050	5	630	.387

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.906	5	.981	3.656	.003
Within Groups	169.058	630	.268		
Total	173.964	635			

Robust Tests of Equality of Means

E.SP

E.SP

	Statistic ^a	df1	df2	Sig.
Welch	5.113	5	92.830	.000

a. Asymptotically F distributed.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: E.SP Tukey HSD

		Mean Difference (h			95% Confide	ence Interval
(I) Type Scholar	(J) Type Scholar	J)	Std. Error	Sig.	Lower Bound	Upper Bound
IB/BA	НМ	.01132	.08072	1.000	2194	.2421
	MC	15312	.05922	.102	3224	.0162
	Dometic Scholar	04154	.07342	.993	2514	.1683
	Foreign Scholar	36694	.11113	.013	6846	0493
	Tranporter/Logistic	.11013	.11349	.927	2143	.4345
НМ	IB/BA	01132	.08072	1.000	2421	.2194
	MC	16444	.09305	.488	4304	.1015
	Dometic Scholar	05286	.10267	.996	3463	.2406
	Foreign Scholar	37826	.13229	.050	7564	0001
	Tranporter/Logistic	.09881	.13428	.977	2850	.4827
MC	IB/BA	.15312	.05922	.102	0162	.3224
	НМ	.16444	.09305	.488	1015	.4304
	Dometic Scholar	.11158	.08679	.793	1365	.3597
	Foreign Scholar	21382	.12038	.482	5579	.1303
	Tranporter/Logistic	.26325	.12257	.264	0871	.6136

FPT UNIVERSITY | GRADUATION THESIS

Dometic Scholar	IB/BA	.04154	.07342	.993	1683	.2514	
	НМ	.05286	.10267	.996	2406	.3463	
	MC	11158	.08679	.793	3597	.1365	
	Foreign Scholar	32540	.12797	.113	6912	.0404	
	Tranporter/Logistic	.15167	.13002	.853	2200	.5233	
Foreign Scholar	IB/BA	.36694	.11113	.013	.0493	.6846	
	НМ	.37826	.13229	.050	.0001	Double-click	
	MC	.21382	.12038	.482	1303	activate	
	Dometic Scholar	.32540	.12797	.113	0404	.6912	
	Tranporter/Logistic	.47708	.15448	.026	.0355	.9187	
Tranporter/Logistic	IB/BA	11013	.11349	.927	4345	.2143	
	НМ	09881	.13428	.977	4827	.2850	
	MC	26325	.12257	.264	6136	.0871	
	Dometic Scholar	15167	.13002	.853	5233	.2200	
	Foreign Scholar	47708	.15448	.026	9187	0355	

CROBACH APPHA.

Reliability Statistics

Cronbach's Alpha	N of Items
.937	7

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
EP1	24.77	22.483	.816	.925
EP2	24.84	22.267	.826	.924
EP3	24.81	22.189	.807	.926
EP4	24.80	22.526	.813	.926
EP5	24.91	22.405	.760	.931
EP6	24.74	22.949	.767	.930
EP7	24.82	22.702	.775	.929

FPT UNIVERSITY | GRADUATION THESIS

Cronbach's Alpha	N of Items
.828	5

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
ENP1	16.20	8.642	.672	.781
ENP2	16.39	8.899	.603	.800
ENP3	16.32	8.722	.640	.790
ENP4	16.25	8.441	.681	.777
ENP5	16.27	9.232	.531	.820

Reliability Statistics

Cronbach's	Nofitems
	14 01 1161 113
.820	6

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
SP1	20.96	9.516	.606	.787
SP2	20.90	9.828	.626	.784
SP3	20.92	9.913	.622	.785
SP4	20.94	9.640	.633	.781
SP5	21.00	9.908	.443	.827
SP6	20.94	9.627	.616	.785

Cronbach's Alpha	N of Items
.834	4

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted	
IEM1	12.63	4.407	.686	.782	
IEM2	12.69	4.365	.683	.783	
IEM3	12.64	4.316	.678	.784	
IEM4	12.71	4.245	.617	.815	

Reliability Statistics

Cronbach's Alpha	N of Items
.929	5

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
GP1	16.49	10.900	.802	.915
GP2	16.47	10.857	.809	.914
GP3	16.42	11.036	.827	.911
GP4	16.47	10.583	.823	.911
GP5	16.45	10.909	.808	.914

Cronbach's Alpha	N of Items
.826	4

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
GM4	12.23	5.894	.560	.820
GM2	12.37	5.324	.673	.770
GM3	12.33	5.194	.714	.751
GM1	12.31	5.398	.659	.777

Cronbach's Alpha	N of Items
.914	5

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
GD1	16.70	9.361	.745	.903
GD2	16.72	8.908	.760	.900
GD3	16.66	9.258	.775	.897
GD4	16.68	9.206	.798	.892
GD5	16.64	8.809	.833	.884

Reliability Statistics

Cronbach's	
Alpha	N of Items
.904	3

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
EE1	8.31	2.720	.802	.869
EE2	8.34	2.705	.821	.853
EE3	8.39	2.611	.805	.867

Analysis EFE GSCM and Sustainbility performance

Rotated Component Matrix^a

Component								
	1	2	3	4	5	6	7	8
EP2	.817							
EP5	.796							
EP1	.794							
EP4	.788							
EP3	.768							
EP7	.697							
EP6	.685							
GP4		.809						
GP3		.795						
GP2		.792						
GP1		.781						
GP5		.777						
GD5			.894					
GD4			.863					
GD3			.848					
GD2			.840					
GD1			.815					
SP2				.771				
SP3				.720				
SP1				.707				
SP4				.684				
SP6				.683				
SP5				.509				
ENP4					.779			
ENP1					.768			
ENP3					.762			
ENP2					.689			
ENP5					.680			

IEM1			.821		
IEM2			.769		
IEM3			.761		
IEM4			.634		
EE2				.837	
EE1				.813	
EE3				.810	
GM3					.823
GM2					.735
GM1					.723

Extraction Method: Principal Component Analysis.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	.908	
Bartlett's Test of	Approx. Chi-Square	12969.596
Sphericity	df	703
	Sig.	.000

Total Variance Explained											
	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings				
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	9.376	24.674	24.674	9.376	24.674	24.674	5.052	13.294	13.294		
2	5.750	15.131	39.806	5.750	15.131	39.806	3.960	10.421	23.715		
3	3.603	9.481	49.286	3.603	9.481	49.286	3.833	10.087	33.801		
4	2.793	7.349	56.636	2.793	7.349	56.636	3.326	8.753	42.554		
5	1.665	4.382	61.017	1.665	4.382	61.017	3.113	8.193	50.747		
6	1.238	3.257	64.274	1.238	3.257	64.274	2.811	7.396	58.143		
7	1.142	3.005	67.280	1.142	3.005	67.280	2.348	6.179	64.323		
8	1.113	2.928	70 Doubl	e-click to 3	2.928	70.208	2.236	5.885	70.208		

			Estimate	S.E.	C.R.	Р	Label
EP	<	GP	.723	.054	13.401	***	
ENP	<	GD	082	.047	-1.754	.079	
SP	<	IEM	.354	.096	3.669	***	
EP	<	EE	054	.052	-1.044	.297	
ENP	<	EE	242	.070	-3.459	***	
SP	<	EE	237	.053	-4.503	***	
EP	<	GM	188	.062	-3.026	.002	
ENP	<	GM	203	.083	-2.450	.014	
SP	<	GM	212	.062	-3.391	***	
EP	<	IEM	.125	.093	1.336	.181	
ENP	<	IEM	.379	.128	2.973	.003	
ENP	<	GP	.316	.060	5.244	***	
SP	<	GP	.327	.047	7.028	***	
EP	<	GD	121	.035	-3.437	***	
SP	<	GD	033	.034	945	.345	
EP5	<	EP	1.000				

Squared Multiple Correlations: (Group number 1 - Default model)

	Estimate
ENP	.109
SP	.194
EP	.541