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Abstract 

Machine learning and deep learning recently have many big achievements in computer 

vision and there is a trend to apply deep learning in diagnostic medical images, for 

example, Chest-Xray classification. Since most large-scale image classification 

benchmarks contain single-label images with a mostly balanced distribution of labels, 

many standard deep learning methods fail to accommodate the class imbalance and co-

occurrence problems posed by the long-tailed multi-label nature of tasks like disease 

diagnosis such as Chest-Xray classification. Compared to conventional single-label 

classification problem, multi-label recognition is often more challenging due to issues 

called the dominant of negative samples (when we treat multi-label classification as 

series of binary classification) and the long tail distribution of positive samples. In this 

thesis, we modified the orignial binary cross entropy loss to get a new loss function called 

class-aware balanced loss which can solve two previous problems in ChestXray14 

dataset. We train Swin Transformer model on Chest-Xray14[1] dataset with our new loss 

and archive the best AUC score compared to other SOTA algorithms. 

Keywords: Multi-Label, Chest X-ray, Long-tailed distribution, Class-Aware Loss 
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1. Introduction 
1.1. Problem & Motivation 

Improving the speed and accuracy of clinical diagnostics in the medical field has always 

been a matter of concern at all the times, now due to the limited number of professionally 

trained staff and the cost that the diagnosis is made. guess there are many disadvantages. 

In recent years, with remarkable development and being applied in many fields, deep 

learning (DL) has emerged as a powerful tool in medical image diagnosis. With recent 

advances in representation learning, DL can automatically learn and extract meaningful 

features from large datasets, making them particularly well-suited to analyzing complex 

medical images and has shown promising results when applied to a wide range of 

medical image modalities. Chest Xray image classificatioin using deep learning is one of 

the most concern problem now, however, unlike traditional image classification tasks, 

where the image is single-label and label distribution is relatively balanced, chest X-ray 

classification in real-world applications is a multi-label classification task which mean an 

image can have multiple labels due to the fact that a patient can have several pathologies 

at a time and there are also correlation between pathologies (Figure 1 show an example of 

chest Xray disease recognition as multi-label classification problem). To model the 

correlation of different labels is a challenge in deep learning.  
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Figure 1: Multi label chest Xray classification (red is positive label, other is 

negative) 

Another challenge in medical image classification is the negative dominant issue 

(illustrate in Figure 2), positive samples always appear with very small frequency 

compared to negative samples, thus leading to the imbalance between negative and 
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positive samples within a class. In multi-label context, negative dominant issues even 

become worse if every class is imbalanced. 

 

Figure 2: Illustration of negative dominant issue 

Besides that, Chest Xray classification also suffers from long tail label distribution 

(Figure 3), meaning a small portion of classes account for massive training samples. In 

contrast, other classes have only a few numbers of training data. The imbalanced class 

distribution eventually makes the model easily biased to head classes with a large portion 

of training data, leading to poor performance on tail classes as well as the overall 

performance of the system. This issue is a challenge for applying deep learning in the real 

world, therefore, a massive number of studies have been conducted in recent years. 
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Figure 3: Long-tail distribution demonstration on the Chest Xray14 dataset 

 

1.2. Related Works 

1.2.1. Multi-label Chest X-ray 
Because of the large amount of chest radiography, many researchers have done a lot of 

study to apply deep learning to identify thorax disorders on chest radiograph. For 

instance, Bar et al. [2] colleagues investigated the ability of DCNN models to distinguish 

between various pathologies and used these models to categorize eight thoracic disorders 

on a limited dataset of chest x-rays. Majdi et al. [3] suggested a fine-tuned DenseNet-121 

to categorize CXR pictures into lung nodules and cardiomegaly disorders. The 

experiment made use of images from the CheXpert dataset. This model has outstanding 

results in detecting lung nodules and enlarged heart. Cicero et al. [4] classified frontal 

chest radiograph pictures into the following categories using the GoogleNet model: 

normal, consolidation, cardiomegaly, pulmonary edema, pneumothorax, and pleural 

effusion. The study demonstrated that the DCNN model may perform well even when 

trained on a small medical dataset. Rasheed et al. [5] used a logistic regression classifier 

with CXR images to investigate the utility of Machine Learning for the diagnosis of 

COVID-19. To accelerate learning and choose the characteristics that would produce the 
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best potential accuracy (ACC), they thought of using a dimensionality reduction strategy. 

Wang et al. [1] used multiple multi-label DCNN losses and various pooling algorithms to 

provide a unified weakly supervised multi-label classification framework. Allaouzi and 

Ahmed [6] conducted experiments using the ChestX-ray14 and CheXpert datasets. Using 

transfer learning, they extract the features from the pre-trained DenseNet-121. 

Additionally, a variety of issue transformation approaches are used, including classifier 

chains, binary relevance, and label powersets. Ait Nasser et al. [7] used ensemble 

learning to categorize CXR pictures into three categories (normal, lung illness, and heart 

disease).  Data-augmentation techniques were used to enhance the number of samples 

and prevent overfitting. When combined with data-augmentation approaches, the 

suggested ensemble learning methodology performed well. Yao et al. [8] employed 

DenseNet and LSTM to extract features and exploit the statistical label dependencies, 

respectively, and thus achieved improved diagnosis. Grewal et al. [9] presented a 

cascaded deep neural network, as well as modeling label dependencies, and examined the 

selection of loss functions in training as well as the efficiency of cascading. Rajpurkar et 

al. [10] colleagues built a deep model that combines both dense connections and batch 

normalization, and it outperformed expert radiologists in identifying pneumonia. Kim et 

al. [11] classified CXR pictures into three groups (normal, pneumonia, and 

pneumothorax) using EfficientNet-V2M with transfer learning as an end-to-end 

technique. Before generating the feeding data to the used model, preprocessing 

procedures were applied to the pictures from the ChestX-ray14 dataset. Blais and 

Akhloufi [12] used various models with binary relevance to diagnose chest illnesses in 

the CheXpert dataset. When combined with Adam optimizer, the Xception DCNN model 

outperformed other models. Li et al. [13] suggested a unified technique that performs 

simultaneous illness detection and pathological pattern localization using multi-instance 

learning and a minimal number of bounding boxes of disease patterns. Guendel et al. [14] 

introduced the DNetLoc model to increase classification accuracy, which uses high-

resolution data and includes pathological pattern spatial information into the 

classification technique. This method has so far acquired the best average AUC score 

after being trained on both the PLCO and ChestX-Ray14 datasets. Guan et al. [15] and 

Wang et al. [16] introduced attention guided solutions exploiting the mutual relationship 

between labels and the locations of diseases.  

 

1.2.2. Long tail issue.  

In many real-world applications, especially in medical image diagnostics, datasets usually 

follow long-tail distributions, where the number of samples per class varies with a large 

imbalance factor. This terrible issue limits the applicability of visual recognition in the 
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medical field. To address this problem, many studies have been conducted in recent 

years. 

The first attempt to re-balance label distribution is the re-sampling [17,18,19] technique. 

Re-sampling re-balanced classes by adjusting the number of samples per class. Many 

sampling strategies have been developed until now. Re-sampling is the most widely used 

method [20] in processing long-tailed distribution image classification in depth learning, 

mainly including over-sampling [21], under-sampling [22] and mixed sampling [23]. By 

adding more samples from the tail class, the oversampling approach primarily balances 

out the disparity between the head class and the tail class. In response to this, Gupta et al. 

devised the repeated factor sampling approach [24], which adjusts the training data's 

balance by raising the tail image's sample frequency. To address the issue of class 

imbalance, Peng et al. [25] presented the soft box sampling approach, which use class 

perception sampling to determine the replication factor for each picture based on the 

distribution of labels and replicates the images in accordance with the predetermined 

number of times. Mixed sampling [23] is a method of achieving sample balance by 

mixing oversampling and under-sampling. In 2020, Ding et al. [26] proposed a KA 

integration method of under-sampling and oversampling, under-sampling the majority of 

classes using the kernel-based adaptive synthesis method and over-sampling the minority 

classes at the same time, generating a set of balanced datasets to train the corresponding 

classifiers separately. All these trained classifiers will then vote on the results. Random-

balanced sampling includes over sampling and under sampling. Over sampling repeats 

the samples from minority classes to balance class distribution before training. Under 

sampling is in the opposite manner, it reduces the number of majority class. Besides 

random strategy, other sampling methods such as square-root sampling [27] and 

progressively-balanced sampling [28] have also been developed. However, in multi label 

context, re-sampling method seem not really balance classes distribution due to label co-

occurrence. 

Re-weighting attempts to adjust the training loss values for different classes by 

multiplying them with different weights. The most intuitive method is to directly use 

label frequencies of training samples for loss. However, this approach may not work well 

for long-tail issues. Class-Balanced loss (CB) [29] introduced a novel concept of effective 

number to approximate the expected sample number of different classes, an exponential 

function of their training label number. Following this, CB loss enforces a class-balanced 

re-weighting term, inversely proportional to the effective number of classes. Besides 

class-driven re-weight, Lin et al. [30] propose an instance-driven loss called Focal loss, 

which improves cross-entropy loss by down-weight losses assigned to well-classes 

examples. So, it can assign higher weights to the harder tail classes but lower weights to 
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the easier head classes. Hermans et al. [31] suggested the triplet loss function and 

employed gradient descent to train samples with subtle variations in 2017. Cao et al. [32] 

presented label-distribution-aware margin loss (LDAM) in 2019, in which the model 

learns the original feature representation before re-weighting. A novel tolerance 

regularization approach to mitigate gradient over suppression was developed in 2020 to 

alleviate distribution balance loss [33]. In the year 2021, an enhancement to equalization 

loss, known as equalization loss v2 [34], was developed. This version introduced a novel 

method of adjusting gradient weights, which involves boosting the importance of positive 

gradients while diminishing the significance of negative gradients during model training 

for individual subtasks. The seesaw loss [35] method readjusts the gradients of different 

classes by employing factors that mitigate and compensate for imbalances. In the case of 

LADE [36], a loss related to label distribution decoupling is introduced. This serves to 

separate the learning model from the skewed distribution seen during training, allowing 

the model to be fine-tuned for varying test class distributions based on available test label 

frequencies. 

Inspired by the intuition that regardless of re-sampling or re-weighting, the final result is 

making the change in model parameters, Cui et al [37] propose a new idea of re-

balancing directly in parameter space. Decoupling [30] introduces decoupled learning 

scheme that separately trains the representation module and classifier. Experimental 

results show that imbalance issues might not affect representation learning, so we can 

achieve a robust recognition model by only fine-tuning the classifier. 

1.3 Contribution 
In this thesis, we focus on solving the negative impact of long-tail imbalanced data on 

Chest X-ray image classification tasks. We will try several methods to find the best 

approach robust to class imbalance on Chest X-ray images. Our contribution is that we 

modified the original loss function to get a new loss function that adapt with long tail 

distribution in ChestXray14 dataset and get higher performance compared to other 

previous works. 
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2. Methodology 

Image classification is a supervised learning problem: define a set of target classes 

(objects to identify in images) and train a model to recognize them using labeled example 

photos. Early computer vision models relied on raw pixel data as the input to the 

model. However, raw pixel data alone doesn't provide a sufficiently stable representation 

to encompass the myriad variations of an object as captured in an image. The position of 

the object, background behind the object, ambient lighting, camera angle, and camera 

focus all can produce fluctuation in raw pixel data; these differences are significant 

enough that they cannot be corrected for by taking weighted averages of pixel RGB 

values. To model objects more flexibly, classic computer vision models added new 

features derived from pixel data, such as color histograms, textures, and shapes. The 

downside of this approach was that feature engineering became a real burden, as there 

were so many inputs to tweak.  

 

A breakthrough in building models for image classification came with the discovery that 

a convolutional neural network (CNN) could be used to progressively extract higher- and 

higher-level representations of the image content. Instead of preprocessing the data to 

derive features like textures and shapes, a CNN takes just the image's raw pixel data as 

input and "learns" how to extract these features, and ultimately infer what object they 

constitute. Various types of CNN architecture have been proposed to extract better 

features and improve the task’s performance. CNN was SOTA architecture in vision task 

until 2020, when a mechanism called ‘attention’ was applied to vision task by the 

introduction of vision transformer models. These transformers have become one of the 

best backbones used in image classification now. 

 

2.1. Overview pipeline 

In this thesis, we using base version of Swin Transformer as feature extractor. Model can 

be divided into two parts include feature extractor and heads of classification. Input 

images go through Swin Transformer to extract image embedding, then these embeddings 

continue go through a fully connected network as in normal image classification 

framework to get predicted probability. Pipeline as in Figure 4: 

 

 

 

 

https://wikipedia.org/wiki/Color_histogram
https://developers.google.com/machine-learning/crash-course/representation/feature-engineering
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Figure 4: Pipeline of model 

 

For training the network, we use decoupling strategy which means feature extractor and 

classifier are trained separately. First, for training the feature extractor, we run model util 

model become converges. After that, we freeze the features extractor and then train the 

head of classifier. These strategy is proved to improve model performance in [20]. 

  

2.2. Swin Transformer 

2.2.1 Transformer Architecture 

The transformer is a powerful architecture and was first introduced in [38] in the domain 

of natural language processing by Google Brain. Since its first appearance, researchers 

have developed a variety of variants that have achieved SOTA. Architecture of 

transformer that introduced in [38] is in Figure 5. 
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Figure 5: Transformer architecture 

 

Position and order of words are the essential parts of any language. They define the 

grammar and thus the actual semantics of a sentence. But the Transformer architecture, 

each word in a sentence simultaneously flows through the Transformer’s stack, The 

model itself doesn’t have any sense of position or order for each word. Consequently, 

there is still the need for a way to incorporate the order of the words into our model. 

One possible solution to give the model some sense of order is to add a piece of 

information to each word about its position in the sentence which is called positional 

encoding. The positional encoding mechanism used in the original paper is as in Figure 6. 
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Figure 6: Example of 128-dimentional positional encoding for a sentence with max 

length of 50. 

 

2.2.2 Swin Transformer 

With the breakthrough success of transformer in the field of natural language processing, 

researchers have continued to find ways to apply this mechanism to many other fields 

such as computer vision, signal processing, and so on. The ViT [39] model introduced 

Transformers to computer vision. The standard transformer receives an 1D token 

embeddings as input. To apply transformer to 3D images, an image is split into fixed size 

of patches, then transform each patch by linear projection after flattening and then add 

positional embedding to create input vector. ViT architecture overview is shown in 

Figure 7. There is a slight modification in the basic transformer block structure of ViT 

with layer norm is the first layer. 
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Figure 7: ViT overview [39] 

 

ViT shows its excellent performance in image classification compared to SOTA CNN 

model with the same amount of data. However, because ViT calculates self-attention for 

all patches in the entire feature layer, it is not efficient when dealing with high-resolution 

images.  

 

Liu et al [40] proposed an improved version of vision transformer called Swin 

Transformer that can solve weakness of ViT when calculated high-resolution images. 

Swin is an acronym that stands for Shifted window (illustrated in Figure 8b). This shifted 

window concept is not new to the research community. It has been used in CNNs for 

many years. It is one of the CNN features that has made it excel in the computer vision 

realm as it brought about great efficiency. However, it had not been used in Transformers 

before and Swin Transformer is the first transformer model that applied shifted window 

mechanism. 

Swin Transformer still uses patches as in the ViT model. However, instead of performing 

global self-attention for all patches of images as in previous work, Swin Transformer uses 

a local window and performs attention for patches within the window. Shifted windows 

reduce computational complexity compared to ViT and thus, can be applied to high-

resolution images. 



 
 

17 
 

Besides, instead of using fixed size of patches as in ViT (16 × 16𝑝𝑥), the Swin 

Transformer first starts with small patches (4𝑝𝑥 × 4𝑝𝑥) in the first layer merges into 

bigger ones in the deeper layers (as shown in Figure 8a). Patches merging help to 

gradually integrate information of patches that without local window at early layer. As 

the model gets deeper patches size is bigger, thus attention is performed on bigger pieces 

of images. Swin Transformer now serve as the most popular backbone for both image 

classification and dense recognition tasks. 

 

Figure 8: Patches merging(a) and shifted window(b) in Swin Transformer 

architecture [39] 

 

2.2.3. Activation function 

Rectified Linear Unit (ReLU) [41] activation is commonly used in feed-forward neural 

networks. The definition of ReLU is:  

 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)                                                       (1) 

The ReLU function has several advantages over other activation functions. It is simple to 

compute, requiring only a single comparison operation, which makes it faster to evaluate 

than other activation functions. Additionally, the ReLU function does not suffer from the 

vanishing gradient problem, which can make it easier to train deep networks. Because of 

these advantages, the ReLU function has become one of the most widely used activation 

functions in neural networks. 
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One weakness of ReLU is that it can produce output values that are either 0 or positive, 

but never negative. This can make it difficult for the network to model data with negative 

values. Additionally, the ReLU function can suffer from the so-called "dying ReLU" 

problem, where some of the neurons in the network can become "dead" and stop 

producing any output. This can happen when the neurons always receive negative input 

and are therefore always outputting 0, which can make it difficult for the network to 

learn.  

Gaussian Error Linear Unit (GELU) [22] combines the effect of ReLU, zone out, and 

dropout. One of ReLU’s limitations is that it’s non-differentiable at zero - GELU resolves 

this issue, and routinely yields a higher test accuracy than other activation functions. 

GELU is now quite popular and is the activation function used in many vision and 

language models, Swin Transformer architecture use GELU as activation function. Figure 

9 shows the comparison of GELU others activation function. 

 

𝐺𝐸𝐿𝑈(𝑥) = 𝑥𝑃(𝑋 ≤ 𝑥) = 𝑥𝜑(𝑥)                                            (2) 

 ≅ 0.5𝑥(1 + tanh [√
2

𝜋
(𝑥 + 0.044715𝑥3)] 

 
 

 

Figure 9: Illustration of GELU compared to ReLU and ELU [42] 
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2.3. Class-Aware Loss 

The most popular way to consider multi-label classification is a series of binary 

classifications, so binary cross entropy is usually used as loss function.  

𝐵𝐶𝐸 =  −𝑦𝐿+ − (1 − 𝑦)𝐿−                                                     (3) 

 

Where  {
𝐿+ = log (𝑝)

𝐿− = log (1 − 𝑝)
 and 𝐿+, 𝐿− are respectively positive and negative loss parts. 

And the total classification loss is sum of binary loss from C labels. 

𝐿𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐿(𝑝𝑖 ,  𝑦𝑖)                                                           𝐶
𝑖=1 (4) 

Where p is the prediction probability of the model, y is the ground truth of a sample. BCE 

loss optimizers each label independently and does not consider the dependent co-

occurrences of labels in each sample. Besides that, BCE loss does not consider the issue 

of imbalanced data distribution. Furthermore, this loss is symmetric, therefore, negative 

labels and positive labels will be treated equally and will lead to over-suppression on the 

negative sides [43], in other words, the model tend to predict all sample as negative, thus 

decreasing the recall of the models. One possible solution is multiplying loss with its 

class frequency, but it seems inefficient in case of long-tail distribution. 

Another way to solve imbalance is focusing on positive labels, Lin et al [30] introduce 

focal loss that weighted according to its prediction probability. The definition of focal 

loss is: 

 

{
𝐿+ = (1 − 𝑝)𝛾log (𝑝)
𝐿− =  𝑝𝛾log (1 − 𝑝)

                                                      (5) 

Focal loss reweights loss of an example according to its predicted probability, thus focus 

more on hard sample and down weight loss of easy sample, however, this loss also 

symmetric and in negative dominant context, despite of the small value loss for negative 

samples, their large number of negative samples still lead the total contribution of 

negative sample dominate total loss. 

Asymmetric loss (ASL) [44] is an improvement of focal loss that introduces two separate 

gamma coefficients: 𝛾−, 𝛾+  
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{
𝐿+ = (1 − 𝑝)𝛾+log (𝑝)

𝐿− =  𝑝𝛾−log (1 − 𝑝)
                                                  (6) 

 

Different gamma coefficient can treat the positive class and negative class differently due 

to the nature of imbalanced data, thus they set 𝛾− > 𝛾+ to account for more contribution of 

positive labels. However, this loss does not consider the imbalance between positive 

labels of different classes.  

 

Figure 10: Negative (left) and positive (right) loss of different class. 

 

Figure 11: Negative (left) and positive (right) loss of different loss functions. 

In the long-tail distribution, serious imbalance of positive sample of head classes 

compared to tail class lead to the dominate of positive samples of head classes, thus 

reduce the performance of model on tail classes. Inspired by focal loss and re-weight 

method that balanced loss contribution by multiply each sample with the probability of its 

class, we propose a new loss function called Class-Aware loss that weighted sample 
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according to their skewness between positive and negative and their predicted 

probability. Loss of a class is calculated as follow: 

 

{
𝐿+ = 𝑤+𝑙𝑜𝑔(𝑝)

𝐿− = 𝑤− log(1 − 𝑝)
                                                 (7) 

 

𝑤+ =  (1 − 𝛼𝑖
1−𝑝) 

𝑤− =  1 − (1 − 𝛼𝑖)𝑝 

𝛼𝑖 =  
𝑃𝑖

𝑃𝑖 + 𝑁𝑖

 

 

Where 𝑃𝑖, 𝑁𝑖  is the number of positive samples and negative samples of class 𝑖. 

With this definition, positive and negative samples of each class are weighted with 

different focus level according to its class imbalanced. Finally, total loss is the weighted 

sum of each class loss, 𝑤𝑖 is the weighted factor and base on the ratio of positive samples 

between different classes. Therefore, positive, and negative labels as well as positive 

labels of different classes are treated differently. 

  

𝐿𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑤𝑖𝐿(𝑝𝑖 ,  𝑦𝑖)                               𝐶
𝑖=1                   (8) 

 

Figure 10 shows that the class with more frequent has lower loss value and loss value of 

positive sample inversely proportional to its class frequency while negative samples have 

almost same loss value for all class. Beside that, negative and positive loss of the same 

class are also different but negative loss of different classes are almost the same. This is 

totally suitable with multi-label long-tailed situation, while positive loss of different class 

should be different due to the long tailed distribution and negative loss of different class 

should be the same as the number of negative samples of each class is approximately 

equal as we observed in Chest Xray14 [1] dataset. As a result, class-aware loss equals the 

contribution of each label in total loss, thus enhancing the prediction probability for 

positive sample. Figure 11 show the comparison of our loss function with previous loss 

function used in multi label classification problem, we can see positive loss of our  

method as the combination of BCE and FL loss, weight loss by the prediction probability 

while keeping loss of high confidence samples. Compared to other loss functions, our 

loss function treats negative samples very differently from positive samples to reduce the 

impact of negative dominant issues, loss of negative samples is very small. 
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Figure 12: Average prediction probability when using BCE loss(top) and our 

loss(bottom) 

 

As we can see in Figure 12, the BCE loss lead model focuses more on negative samples, 

thus prediction is usually low confidence probability and negative average probability is 

much bigger than positive average probability. While our loss pays attention to both 

positive and negative samples, negative average probability and positive average 

probability are approximately equal. 

In negative dominant context, model usually prediction with low confident probability, 

[44] proposed an asymmetric mechanism called probability shifting or negative 

probability margin that performs hard thresholding of easy negative samples when 

probability is under a constant value. Shifted probability is define as: 
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𝑝𝑚 = max (𝑝 − 𝑚, 0) 

 

Where m is negative probability threshold. Combining shifted probability with our loss, 

Eq (7) become: 

 

{
𝐿+ = 𝑤+𝑙𝑜𝑔(𝑝)

𝐿− = 𝑤− log(1 − 𝑝𝑚)
                                                 (9) 
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3. Experiment results and conclusions 
3.1 Data Preparation 
 

    
    

Figure 13: Sample image of Chest Xray14 dataset 

 

For multi-label chest Xray classification, the widely used benchmark Chest-Xray14 

[1] is used in the following experiments. Chest-Xray14 has 112,120 frontal X-ray 

images with disease labels from 30,805 unique patients. Image is grayscale and size 

of 1024x1024 (example images show in Figure 13). The labels are collected by 

analyzing radiology reports and are expected to have over 90% accuracy. For a more 

accurate and objective comparison, we apply the official patient-wise split gathered 

by Wang et al. [1]. Data distribution is displayed in Figure 14, we can see the long-

tailed phenomenon in the positive samples’ distribution and the negative dominant 

phenomenon in negative distribution.  

 

 

Figure 14: Distribution of negative samples(left) and positive sample(right) of each 

class. 
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In multi-label classification, each sample can have one or more positive labels. Figure 

15 demonstrates the distribution of the number of positive labels per image. From this 

distribution, we can see that approximately 70% of samples have no positive labels, 

the remaining 30% have positive labels include one label and two labels, very rare 

samples have three labels, almost no image have more than four labels. 

 

 

Figure 15: Distribution of number of labels per image 

 

In nature, there are correlations between different diseases, that means one disease can 

lead to the appearance of other diseases. Figure 16 shows the co-occurrence of 14 

classes in the dataset. As we can see, pathology belonging to head classes usually 

have high co-occurrence to these in tail classes. 
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Figure 16: Co-occurrence of labels 

 

3.2 Experiments 

3.2.1 Evaluation metric  

We use AUC score as the measurement metric which is usually use in Chest Xray 

classification. To understand AUC, we first need to know about the receiver operating 

characteristic curve (ROC curve). The ROC curve plots the true positive rate (TPR) 

against the false positive rate (FPR) at different classification thresholds, as shown in 

Figure 16. TPR can be written as: 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Where TP, FN are the number of true positives and false negatives. 

FPR is: 
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𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 

 

Where FP, TN are the number of false positives and true negatives. 

 

Figure 17: Illustration of ROC curve 

 

AUC is an abbreviation for the area under the ROC curve. AUC measures the 

likelihood that true positive samples are ranked higher than true negative samples by 

the magnitude of the area under the ROC curve at all classification thresholds. 

 

Beside AUC, we also use mAP as the second metric to evaluate model performance. 

The average precision (AP) is a way to summarize the precision-recall curve into a 

single value representing the average of all precisions. The precision-recall curve, 

commonly plotted on a graph, shows how recall changes for a given precision and 

vice versa in a computer vision model. A large area under the curve means that a 

model has both strong recall and precision, whereas a smaller area under the curve 

means weaker recall or precision. The AP is calculated according to the next equation. 
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Using a loop that goes through all precisions/recalls, the difference between the 

current and next recalls is calculated and then multiplied by the current precision. In 

other words, the AP is weighted average of precision at each threshold, with the 

different in recall from the preceding threshold serving as the  

weight. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐴𝑃 =  ∑[𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑛−1] ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛

𝑛

 

Where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙𝑠𝑛 is the respective precision and recall at threshold index 

n. This value is equivalent to the area under the precision-recall curve (AUPRC). 

 

Mean Average Precision (mAP) for muti-label classification is the mean of APs for 

all classes in the mAP. 

𝑚𝐴𝑃 =  
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 

𝐴𝑃𝑘: 𝑡ℎ𝑒 𝐴𝑃 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘 

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

The mAP incorporates the trade-off between precision and recall and considers both 

false positive and false negatives. This property makes mAP a suitable metric for 

most classification and detection applications. 

 

 

3.2.2 Experiment result 
 

We use Swin Transformer pretrained weights on ImageNet as initial weights and fine-

tune on Chest Xray14 dataset. Data augmentation for training includes resizing the 

original image from 1024x1024 to 256x256 then center crop with size of 224, 

horizontal flip and random rotation. Dataset is separated as follows: 70% for training, 

10% for validation and 20% for testing, test set is official patient-wise split as in [1]. 

We use a 2-step scheduler and Adam optimizer. The model was implemented using 

PyTorch and train on A6000 GPUs. Hyperparameters set as in table 1. 
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Table 1: The parameters of model 

Hyper parameters Value 

batch size 32 

num epoch 30 

initial learning rate 1e-4 

optimizer Adam 

weight decay 0.0005 

p_margin 0.2 

 

 

 

Figure 18: Training and validation loss (left) and AUC score (right) 

 

The changing of loss and AUC per epoch is shown in Figure 17. Table 2 show our 

model performance across all classes and compare with other previous works. As we 

can see, our model performs better than other previous models, improving 11.3% 

AUC score compared to the best model training with the same dataset and 6.4% 

compared to model training with extra dataset. The ROC curve of our model is shown 

in Figure 18.  
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Table 2: AUC score using our method on the official ChestX-ray14 test set. 

Method Wang et al.[1] Yao et al. [8] DNet [14]* Our 

Atelectasis 0.7003 0.733 0.767 0.8395 

Cardiomegaly 0.81 0.856 0.883 0.9365 

Effusion 0.77 0.806 0.828 0.8721 

Infiltration 0.6614 0.673 0.709 0.7642 

Mass 0.6933 0.718 0.821 0.9131 

Nodule 0.6687 0.777 0.758 0.8669 

Pneumonia 0.6580 0.684 0.731 0.7999 

Pneumothorax 0.7993 0.805 0.846 0.9183 

Consolidation 0.7032 0.711 0.745 0.8062 

Edema 0.8052 0.806 0.835 0.8898 

Emphysema 0.8330 0.842 0.895 0.9520 

Fibrosis 0.7859 0.743 0.818 0.9008 

Pleural Thick 0.6835 0.724 0.761 0.8497 

Hernia 0.8717 0.775 0.896 0.9231 

Mean 0.7451 0.761 0.807 0.874 

 

*The method represented in [7] was trained by using more than 180,000 images from the 

PLCO dataset [45] as extra training data. 

Table 3: Comparison of different loss function 

Loss function AUC score mAP 

BCE 0.804 0.268 

Focal 0.821 0.272 

Asymmetric 0.835 0.293 

Our w/o decoupling 0.870 0.319 

Our w/o margin 0.868 0.312 

Our with decoupling and 

margin 

0.874 0.338 

 

Table 3 compares model performance when using others loss function with our loss 

function. As we can see, our loss function performs better than BCE, Focal, and 

Asymmetric loss, the best result is archive when combining shifted negative probability 

and decoupling strategy.  
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Figure 19: ROC curve of each class 

 

4. Conclusion 

In this study, we modify traditional loss function to get a new loss function to address the 

problem of class imbalance in image classification. The modified loss function was 

applied on the Swin Transformer model with pretrained weights on the ImageNet dataset, 

using the base version of Swin Transformer, Swin-B. Our experimental results showed 

that our loss function achieved the best performance compared to previous loss functions. 

Our research successfully achieved the initial goal and addressed the research question of 

solving the problem of class imbalance in image classification. We demonstrated that our 

loss function can significantly improve the performance of image classification tasks.  

However, there are still some limitations to our research. Due to the equipment limitation, 

we only used the Swin-B version, future research can explore bigger version. 

Additionally, we only evaluated our loss function on Chest-Xray14 datasets and did not 

examine its performance on other long-tailed datasets. We hope that our research can 

inspire further studies in this field and contribute to the development of more effective 

solutions for class imbalance in image classification. 
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