

Capstone Project Report

Mining Correlated High-Utility Itemsets Using

the Cosine Measure

Students 1. Huynh Anh Duy (HE153764)

2. Huynh Anh Khoa (HE153759)

Supervisor Associate Professor Phan Duy Hung

Bachelor of Artificial Intelligence

Fpt University – Hoa Lac Campus

Summer 2023

2

Acknowledgement

This project is the result of our dedicated work over an extended period. We would like to

express our sincerest gratitude to Associate Professor Phan Duy Hung, who has enthusiastically

guided us and provided us with opportunities to engage in scientific research. This project

would not have been completed without the valuable knowledge and experiences gained from

these wonderful opportunities. We thank Dr. Tran Van Ha, the lecturer of Data Mining, for his

dedicated assistance whenever we had questions related to the subject. We also extend our

thanks to FPT University for providing us with excellent learning resources and a high-quality

academic environment. Additionally, we are deeply grateful to our families and loved ones for

their unwavering support. Despite our utmost efforts, we acknowledge that this project may

still have some shortcomings. Our team is more than willing to embrace any feedback and

suggestions to continuously improve ourselves.

Thank you very much!

3

Abstract

High utility itemset mining (HUIM) is a problem posed to find itemsets in transaction database

with high utility. However, using only utility as selection criterion makes most of the found

itemsets have a very low correlation between their items, therefore it cannot be effectively

applied in practice. Fast correlation high-utility itemset miner (FCHM) is an efficiency

algorithm that applies correlation to HUIM problem to discover correlated high-utility itemsets

(CHIs). The correlation measures used in FCHM include bond and all-confidence. This thesis

proposes a new version of FCHM algorithm by using cosine measure to calculate correlation

between items which is FCHM𝑐𝑜𝑠𝑖𝑛𝑒 . Experimental results on three benchmark real-life

datasets show that the proposed algorithm not only significantly reduces weakly correlated

itemsets but also improves running time and memory consumption.

Keywords: high-utility itemset mining, correlated high-utility itemsets, correlation, cosine

measure

4

Table content

CHAPTER 1. INTRODUCTION ... 7

1.1 Basic concepts ... 7
1.2 Problem Definition .. 8
1.2.1 Frequent Itemset Mining... 8
1.2.2 High Utility Itemset Mining.. 10
1.2.3 Key Properties of the Problem of High Utility Itemset Mining 13
1.2.4 Correlated High Utility Itemset Mining .. 15
1.3 Related works and contribution ... 17

CHAPTER 2. ALGORITHMS AND METHODOLOGY ... 18

2.1 The FHM algorithm... 18
2.2 The FCHM algorithm .. 23
2.2.1 The 𝐹𝐶𝐻𝑀𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 Algorithm ... 24

2.2.2 The 𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑 Algorithm ... 25
2.3 Cosine measure ... 27
2.4 Proposed approach .. 28
2.4.1 Proof for anti-monotonicity property .. 28
2.4.2 Calculation of cosine measure .. 28

CHAPTER 3. EXPERIMENT AND DISCUSSION .. 29

3.1 Data .. 29
3.1.1 Mushroom dataset .. 29
3.1.2 Retail dataset .. 29
3.1.3 Foodmart dataset .. 30
3.2 Analyze ... 30
3.2.1 Effective Analysis .. 30
3.2.2 Efficiency Analysis .. 33
3.2.3 Memory Analysis ... 35
3.3 Conclusion and Perspectives ... 36

REFERENCES .. 37

5

List of Figures

Figure 1.1. An example for search space of high utility itemset mining 14
Figure 1.2. Demonstrate search space when using data in Table 1.1 to solve frequent itemset

mining... 15
Figure 2.1. Construct utility-list of {𝑥1, 𝑥4} from utility list of {𝑥1} and {𝑥4} 19
Figure 2.2. The co-occurrence structure for estimated-utility .. 22
Figure 2.3. Matrix of support value .. 25
Figure 3.1. Compare pattern count with other versions (varying minUtil, fixing minCore) . 32
Figure 3.2. Compare pattern count with other versions (varying minCore, fixing minUtil) . 32
Figure 3.3. Compare runtime with FHM (varying minUtil, fixing minCore) 33
Figure 3.4. Compare runtime with FHM (varying minCore, fixing minUtil) 33
Figure 3.5. Compare runtime with other versions (varying minUtil, fixing minCore) 34
Figure 3.6. Compare runtime with other versions (varying minCore, fixing minUtil) 34
Figure 3.7. Compare memory with FHM and other versions (varying minUtil, fixing minCore)

 ... 35
Figure 3.8. Compare memory with FHM and other versions (varying minCore, fixing minUtil)

 ... 36

6

List of Tables

Table 1.1. An example of transaction database ... 8
Table 1.2. List frequent itemsets satisfy minsup = 3 .. 8
Table 1.3. An example of quantitative transaction database .. 9
Table 1.4. An example for external utility of item ... 10
Table 1.5. List of high utility itemsets satisfy minutil = 25 .. 12
Table 1.6. Quantitative transaction database corresponds to the database depicted in Table 1.1

 ... 12
Table 1.7. The external utility values associated with the database presented in Table 1.6... 13
Table 1.8. Correlated high-utility itemsets satisfy min_bond=0.6 and minutil=25 16
Table 3.1. Dataset’s characteristic ... 29
Table 3.2. Compare patterns count with FHM... 31

7

Chapter 1. Introduction

1.1 Basic concepts
The primary objective of data mining is to extract patterns or develop models from databases

to comprehend historical trends or make future predictions. Various data mining algorithms

have been proposed for data analysis [1]. Some algorithms generate models that function as

black boxes, such as certain types of neural networks that exhibit high predictive accuracy but

lack interpretability for humans. To extract knowledge from data that can be understood by

humans, pattern mining algorithms are designed. The goal is to discover patterns in data that

are interesting, useful, and/or unexpected. One advantage of pattern mining over several other

data mining approaches is that discovering patterns is a type of unsupervised learning as it does

not require labeled data. Patterns can be directly extracted from raw data and used to understand

data and support decision-making. Pattern mining algorithms have been designed to extract

various types of patterns, each providing different information to the user, and for extracting

patterns from different types of data. Popular types of patterns include sequential patterns [3],

itemsets [4], clusters, trends, outliers, and graph structures [2].

 Research on pattern mining algorithms started in the 1990s with algorithms aimed at

discovering frequent patterns in databases. The first algorithm for frequent pattern mining is

Apriori [5]. It is designed to discover frequent itemsets in customer transaction databases. A

transaction database is a set of records (transactions) indicating the items purchased by

customers at different times. A frequent itemset refers to a group of values (items) that is

frequently purchased by customers and appears in many transactions within a transaction

database. For example, a frequent itemset in a database may be that many customers buy the

items "noodles" and "spicy sauce." Such patterns are easily understandable by humans and can

be used to support decision-making. For instance, the pattern {noodles, spicy sauce} can be

utilized to make marketing decisions, such as co-promoting noodles with spicy sauce. The

discovery of frequent itemsets is a well-studied data mining task and has applications in

numerous domains. It can be viewed as the general task of analyzing a database to find co-

occurring values (items) in a set of database records (transactions) [6–13].

 Although frequent pattern mining is useful, it relies on the assumption that frequent patterns

are inherently interesting. However, this assumption does not hold for numerous applications.

For example, in a transaction database, the pattern {milk, bread} may be highly frequent but

uninteresting as it represents a common purchase behavior that may yield low profitability. On

the other hand, several patterns such as {caviar, champagne} may not be frequent but can yield

higher profits. Hence, to identify interesting patterns in data, other aspects such as profit or

utility can be considered.

 To overcome the limitations of frequent itemset mining, there has been a growing research

focus on the exploration of high utility patterns in databases [14–21]. The objective of utility

mining is to identify patterns that possess significant utility or importance to the user, where

the utility of a pattern is expressed through a utility function. This function can be defined

based on various criteria such as the profitability generated by an item's sale or the amount of

time spent on webpages. Numerous types of high utility patterns have been investigated, with

a particular emphasis on high utility itemsets [19]. Mining high utility itemsets can be viewed

as an extension of the frequent itemset mining problem. In this case, the input is a transaction

database where each item is assigned a weight representing its importance, and items can have

non-binary quantities in transactions. This generalized problem formulation enables the

modeling of various tasks, such as discovering itemsets that yield substantial profits in

transaction databases, identifying sets of webpages where users spend a significant amount of

time, or finding all frequent patterns as in traditional frequent pattern mining. In general, high

utility itemset mining is currently a highly active research area.

8

1.2 Problem Definition
In this section, we begin by introducing the concept of frequent itemset mining, followed by

an exploration of its generalization known as high utility itemset mining. We subsequently

delve into the key properties of the problem of high utility itemset mining, highlighting the

distinctions it holds in comparison to frequent itemset mining.

1.2.1 Frequent Itemset Mining
The task of frequent itemset mining involves extracting patterns from a transaction database,

where each transaction is a collection of items or symbols. More formally, a transaction

database D is defined as a set of records (transactions), represented as 𝐷 = {𝑇1, 𝑇2, … , 𝑇𝑛},
where each transaction 𝑇𝑞 is a subset of items 𝑇𝑞 ⊆ 𝐼 and is uniquely identified by its TID

(Transaction IDentifier) q. For example, consider Table 1.1, which represents a customer

transaction database with five transactions labeled as 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5. In Table 1.3, transaction

𝑇3 indicates that a customer made a purchase involving items 𝑥1, 𝑥3 and 𝑥4.

Table 1.1. An example of transaction database

 TID Transaction

𝑇1 {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}

𝑇2 {𝑥2, 𝑥3, 𝑥4, 𝑥5}

𝑇3 {𝑥1, 𝑥3, 𝑥4}

𝑇4 {𝑥1, 𝑥3, 𝑥5}

𝑇5 {𝑥2, 𝑥3, 𝑥5}

Table 1.2. List frequent itemsets satisfy minsup = 3

Itemset Support

{𝑥1 3

{𝑥2} 3

{𝑥3} 5

{𝑥4} 3

{𝑥5} 4

{𝑥1, 𝑥3} 3

{𝑥2, 𝑥3} 3

{𝑥3, 𝑥4} 3

{𝑥2, 𝑥5} 3

{𝑥3, 𝑥5} 4

{𝑥2, 𝑥3, 𝑥5} 3

9

Table 1.3. An example of quantitative transaction database

TID Transaction

𝑇1 (𝑥1, 1), (𝑥2, 5), (𝑥3, 1), (𝑥4, 3), (𝑥5, 1)

𝑇2 (𝑥2, 4), (𝑥3, 3), (𝑥4, 3), (𝑥5, 1)

𝑇3 (𝑥1, 1), (𝑥3, 1), (𝑥4, 1)

𝑇4 (𝑥1, 2), (𝑥3, 6), (𝑥5, 2)

𝑇5 (𝑥2, 2), (𝑥3, 2), (𝑥5, 1)

The primary objective of frequent itemset mining is to identify itemsets (sets of items) that

exhibit high support, meaning they appear frequently. Mathematically, an itemset X is a finite

collection of items, denoted as 𝑋 ⊆ 𝐼. The notation |𝑋| represents the cardinality of the itemset,

indicating the number of items it contains. Specifically, an itemset X is considered a k-itemset

if it comprises k items |𝑋| = 𝑘. For instance, {𝑥1, 𝑥2, 𝑥3} is a 3-itemset, while {𝑥1, 𝑥2} is a 2-

itemset. The support measure is defined as follows.

Definition 1 (Support value): The support (frequency) of an itemset X in a transaction database

D is represented as sup(X) and is defined as 𝑠𝑢𝑝(𝑋) = |{𝑇|𝑋 ⊆ 𝑇⋀𝑇 ∈ 𝐷}|, which means it is

the count of transactions that contain the itemset X. For instance, in the given Table 1.3

database, the support of the itemset {𝑥1, 𝑥3} is 3 because it appears in three transactions (𝑇1,

𝑇3 and 𝑇4). This definition of support value is known as relative support. Another equivalent

definition is to express the support as a percentage of the total number of transactions, which

is referred to as absolute support. In the case of {𝑥1, 𝑥3}, 3 in total 5 transactions has this

itemset, so the absolute support is 60%. The problem of frequent itemset mining is defined as

follows:

Definition 2 (Frequent itemset): Considering a user-defined threshold minsup > 0, an itemset

X is classified as a frequent itemset if its support sup(X) is equal to or exceeds the minsup

threshold (i.e., 𝑠𝑢𝑝(𝑋) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝). If the support is below the minsup threshold, X is

categorized as an infrequent itemset.

Definition 3 (Problem definition): The objective of frequent itemset mining is to identify all

itemsets that meet the frequency criterion in a transaction database D, using the minsup

threshold specified by the user.

 As an example, considering Table 1.3 database with a minsup of 3, there are a total of 11

itemsets that qualify as frequent, as shown in Table 1.2.

 Over the past few decades, researchers have extensively studied the problem of frequent

itemset mining. Several algorithms have been suggested for effectively identifying frequent

patterns, such as Apriori [5], FP-Growth [22], Eclat [23], LCM [24], and H-Mine [25]. While

frequent itemset mining finds applications in various domains, it assumes that frequent patterns

are inherently useful or interesting to the user, which is not always the case. To overcome this

constraint, traditional frequent pattern mining has been expanded to high utility itemset mining.

This approach involves assigning numerical values to items and selecting patterns based on a

utility function defined by the user.

10

1.2.2 High Utility Itemset Mining
The task of high utility itemset mining involves discovering patterns in a specialized type of

transaction database known as a quantitative transaction database. This type of database

provides additional information, such as the quantities of items in transactions and weights

indicating the relative importance of each item to the user.

 In precise terms, a quantitative transaction database D is defined as follows. Consider the

set I, which represents all items, expressed as 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚}. A quantitative transaction

database D comprises a collection of transactions denoted as 𝐷 = {𝑇0, 𝑇1, … , 𝑇𝑛} . Each

transaction 𝑇𝑞 is a set of items (i.e., 𝑇𝑞 ⊆ 𝐼) and possesses a unique identifier q known as its

TID (Transaction IDentifier). Every item i ∈ I is linked to a positive number p(i), referred to as

its external utility, indicating its relative significance for the user. Moreover, for each item k

that appears in a transaction 𝑇𝑑, there exists a positive number 𝑞(𝑘, 𝑇𝑑) known as its internal

utility, representing the quantity of item k in transaction 𝑇𝑑.

 To illustrate these definitions, let's consider a practical example of a customer transaction

database presented in Table 1.3, which will serve as a running example. In this scenario, the

item set I consists of {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, representing various products sold in a retail store,

such as milk, bread, chicken, chocolates and coffee. The given database in Table 1.3 comprises

five transactions (𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5). For instance, transaction 𝑇4 indicates the purchase of items

𝑥1, 𝑥3, and 𝑥5, with respective purchase quantities (internal utilities) of 2, 6, and 2. External

utilities, denoting the unit profits of the items, are provided in Table 1.4. In this case, the profit

obtained from selling one unit of items 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5 is $5, $2, $1, $2, and $3,

respectively.

Table 1.4. An example for external utility of item

Item External utility

𝑥1 5

𝑥2 2

𝑥3 1

𝑥4 2

𝑥5 3

 The objective of high utility itemset mining is to identify sets of items, known as itemsets,

that are present in a quantitative database and exhibit high utility, such as generating substantial

profits. The utility of an itemset serves as a gauge of its significance within the database and is

calculated using a utility function. While the utility measure is typically defined as stated

below, alternative measures have also been proposed [19]. In the given example, the utility

measure is understood as the profit amount generated by each set of items.

11

Definition 4 (Utility value)

 The utility of item i in transaction 𝑇𝑘 is denoted and calculated as

𝑢(𝑖, 𝑇𝑘) = 𝑝(𝑖) × 𝑞(𝑖, 𝑇𝑘)
where 𝑞(𝑖, 𝑇𝑘) is the internal utility of item i in transaction 𝑇𝑘 and 𝑝(𝑖) is the

 external utility of the item

 The utility of itemset X in transaction 𝑇𝑘 is denoted and calculated as

𝑢(𝑋, 𝑇𝑘) =∑ 𝑢(𝑖, 𝑇𝑘)
𝑖∈𝑋

 The utility of itemset X in transaction database D is denoted and calculated as

𝑢(𝑋) =∑ 𝑢(𝑋, 𝑇𝑘)
𝑇𝑘∈𝐷

For instance, let's consider item 𝑥1 in transaction 𝑇4 . The utility of 𝑥1 is calculated as

𝑢(𝑥1, 𝑇4) = 5 × 2 = 10. Now, let's examine the utility of the itemset {𝑥1, 𝑥3} in 𝑇4. It can be

calculated as 𝑢({𝑥1, 𝑥3}, 𝑇4) = 𝑢(𝑥1, 𝑇4) + 𝑢(𝑥3, 𝑇4) = 5 × 2 + 1 × 6 = 16 . Moving to the

utility of the itemset {𝑥1, 𝑥3} in the entire database, denoted as 𝑢({𝑥1, 𝑥3}), it is determined by

adding up the individual utilities of 𝑥1 and 𝑥3 across all relevant transactions. Therefore,

𝑢({𝑥1, 𝑥3}) = 𝑢(𝑥1) + 𝑢(𝑥3) = 𝑢(𝑥1, 𝑇1) + 𝑢(𝑥1, 𝑇3) + 𝑢(𝑥1, 𝑇4) + 𝑢(𝑥3, 𝑇1) + 𝑢(𝑥3, 𝑇3) +
𝑢(𝑥3, 𝑇4) = 5 + 5 + 5 + 10 + 1 + 1 + 6 = 28

 Consequently, the utility of {𝑥1, 𝑥3} in the database can be interpreted as the total profit

generated when both items a and c are purchased together. The problem of high utility itemset

mining can be defined as follows:

Definition 5 (High-utility itemset)

An itemset X is considered a high-utility itemset when its utility, denoted as u(X), exceeds a

minimum utility threshold specified by the user (i.e., u(X) ≥ minutil). If the utility of X falls

below this threshold, X is classified as a low-utility itemset.

Definition 6 (High-utility itemset mining problem)

The objective of high-utility itemsets mining is to identify and uncover all itemsets with

significant utility, based on a user-defined minimum utility threshold (minutil) [19].

 It should be noted that in certain research studies, the utility of an itemset is presented as a

proportion or percentage of the overall utility in the database. This approach, known as absolute

utility [26], is equivalent to the definition mentioned earlier and yields the same patterns.

 High utility itemset mining has a wide range of applications. In the context of market basket

analysis, the high-utility itemset mining problem can be understood as identifying all item sets

that have generated profits equal to or greater than the minutil. For instance, in our example, if

minutil is set to 25, the set of High Utility Itemsets (HUIs) is presented in Table 1.5. Numerous

algorithms have been proposed to discover high utility itemsets, which will be discussed in the

following section.

12

Table 1.5. List of high utility itemsets satisfy minutil = 25

Itemset Utility

{𝑥1, 𝑥3} 28

{𝑥1, 𝑥3, 𝑥5} 31

{𝑥1𝑥2, 𝑥3, 𝑥4, 𝑥5} 25

{𝑥2, 𝑥3} 28

{𝑥2, 𝑥3, 𝑥4} 34

{𝑥2, 𝑥3, 𝑥4, 𝑥5} 40

{𝑥2, 𝑥3, 𝑥5} 37

{𝑥2, 𝑥4} 30

{𝑥2, 𝑥4, 𝑥5} 36

{𝑥2, 𝑥5} 31

{𝑥3, 𝑥5} 27

A noteworthy observation is that the problem of mining high utility itemsets encompasses the

problem of mining frequent itemsets, making any algorithm designed for high utility itemset

discovery applicable to frequent itemset mining in a transaction database as well. To achieve

this, the following steps can be followed:

1. The transaction database is transformed into a quantitative transaction database. In this

process, every item i in the item set I is assigned an external utility value of 1, denoted as p(i)

= 1, to signify equal importance among all items. Additionally, for each item i and transaction

𝑇𝑐, if i is present in 𝑇𝑐, q(i, 𝑇𝑐) is set to 1. On the other hand, if i is not found in 𝑇𝑐, q(i, 𝑇𝑐) is

set to 0.

2. Next, the quantitative transaction database obtained is subjected to a high utility mining

algorithm using the minutil set to the value of minsup. This process aims to extract the frequent

itemsets from the database.

 For instance, the database presented in Table 1.1 can be converted into a quantitative

database, resulting in the transaction databases shown in Tables 1.6 and 1.7. Subsequently,

frequent itemsets can be extracted from this database by employing a high utility itemset

mining algorithm. However, while a high utility itemset mining algorithm can be used to mine

frequent itemsets, it may be more advantageous to utilize frequent itemset mining algorithms

in situations where performance is crucial, as these algorithms are specifically optimized for

this task.

Table 1.6. Quantitative transaction database corresponds to the database depicted in Table 1.1

TID Transaction

𝑇1 (𝑥1, 1), (𝑥2, 1), (𝑥3, 1), (𝑥4, 1), (𝑥5, 1)
𝑇2 (𝑥2, 1), (𝑥3, 1), (𝑥4, 1), (𝑥5, 1)
𝑇3 (𝑥1, 1), (𝑥3, 1), (𝑥4, 1)
𝑇4 (𝑥1, 1), (𝑥3, 1), (𝑥4, 1)
𝑇5 (𝑥2, 1), (𝑥3, 1), (𝑥5, 1)

13

Table 1.7. The external utility values associated with the database presented in Table 1.6

Item External utility

𝑥1 1

𝑥2 1

𝑥3 1

𝑥4 1

𝑥5 1

1.2.3 Key Properties of the Problem of High Utility Itemset Mining
The problem of mining high utility itemsets always has a unique solution, which involves

listing all patterns from a given quantitative database that have a utility value higher than or

equal to the minimum utility threshold specified by the user.

 The difficulty in high utility itemset mining arises from two main factors. Firstly, the sheer

number of itemsets that need to be considered can be extremely large in order to identify those

with high utility. In general, if a database contains m distinct items, there are 2𝑚 − 1 possible

itemsets (excluding the empty set). For instance, if we have 𝐼 = {𝑥1, 𝑥2, 𝑥3}, the possible

itemsets would be {𝑥1}, {𝑥2}, {𝑥3}, {𝑥1, 𝑥2}, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, and {𝑥1, 𝑥2, 𝑥3}, resulting

in a total of 23 − 1 = 7 itemsets. As a result, the number of itemsets can grow exponentially,

making it impractical to count the utilities of all possible itemsets by scanning the entire

database.

 The inefficiency of the naive approach becomes evident when dealing with a large number

of items, such as in a retail store with 10,000 items (m = 10,000). In such cases, the naive

approach would require calculating the utilities for 210,000 − 1 possible itemsets, which is

unmanageable. Notably, even small databases can pose challenges in high utility itemset

mining. For example, a database with a single transaction of 100 items would result in 2100 −
1 possible itemsets. Hence, the search space, or the number of possible itemsets, can be

substantial even when the number of transactions is low. The size of the search space is

influenced by factors such as the database's transaction similarity, utility values, and the user's

chosen minimum utility threshold.

 Another reason that contributes to the difficulty of high utility itemset mining is the

scattered distribution of high utility itemsets within the search space. Consequently, an

algorithm must evaluate numerous itemsets before identifying the actual high utility itemsets.

To visually demonstrate this point, Figure 1.1 presents a Hasse diagram as a graphical

representation of the search space using a running example. In Hasse diagram, each potential

itemset is depicted as a node, beside that an arrow connects an itemset X to another itemset Y

if and only if X ⊆ Y and |𝑋|+ 1 = |𝑌|. In Figure 1.1, light gray nodes depict high utility itemsets,

while white nodes represent low utility itemsets. The diagram also provides the utility value

for each itemset. A significant insight from the depicted figure is that the utility of an itemset

can be greater, equal or even lower to the utility of any of its supersets or subsets. For instance,

the itemset {𝑥2, 𝑥3} has the utility value of 28, whereas the utility of its supersets {𝑥2, 𝑥3, 𝑥4}

is 34 and {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} is 25. This observation leads to the conclusion that the utility

measure does not exhibit a monotone or anti-monotone behaviour.

14

Figure 1.1. An example for search space of high utility itemset mining

Property 1. The utility measure is not characterized by either monotonicity or anti-

monotonicity.

When considering two itemsets, X and Y, where X is a subset of Y (𝑋 ⊂ 𝑌), their utility

relationship can fall into one of three possibilities: the utility of X is less than the utility of Y

(𝑢(𝑋) < 𝑢(𝑌)), the utility of X is greater than the utility of Y (𝑢(𝑋) > 𝑢(𝑌)), or the utilities

of X and Y are equal (𝑢(𝑋) = 𝑢(𝑌)) [19].

 Due to this characteristic, the high utility itemsets are dispersed throughout the search

space, as evident in Figure 1.1. This is the primary factor that makes high utility itemset mining

more challenging compared to frequent itemset mining. When dealing with frequent itemset

mining problem, the support measure exhibits the desirable property of monotonicity [5]. This

means that the support of an itemset is always greater than or equal to the frequency of any of

its supersets.

Property 2. The support measure is monotonic.

When considering two itemsets, X and Y, where X is a subset of Y (𝑋 ⊂ 𝑌), it can be concluded

that the support of X is greater than or equal to the support of Y (sup(𝑋) ≥ sup⁡(𝑌)).
 For instance, consider the database provided in Table 1.1, where the support of {𝑥2, 𝑥3} is

3, and the support of its supersets {𝑥2, 𝑥3, 𝑥4} and {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} is 2 and 1, respectively.

The support measure's monotonicity simplifies the identification of frequent patterns by

ensuring that if an itemset is infrequent, all of its supersets are also infrequent. This property

allows a frequent itemset mining algorithm to eliminate all supersets of an infrequent itemset

from the search space. As an illustration, when the algorithm identifies that the itemset {𝑥1, 𝑥4}

is infrequent, it can immediately eliminate all supersets of {𝑥1, 𝑥4}, resulting in a substantial

reduction in the search space. The visualization of the search space in Figure 1.2, based on the

example database in Table 1.1, clearly depicts a distinct boundary between frequent itemsets

and infrequent itemsets, demonstrating the anti-monotonic characteristic of the support

measure. Property 2, referred to as the anti-monotonicity property, Apriori property or

downward-closure property represents this particular feature. Although it applies to the support

measure, it does not extend to the utility measure used in high utility itemset mining.

Consequently, Figure 1.1 does not facilitate a clear differentiation between low utility itemsets

and high utility itemsets.

15

Figure 1.2. Demonstrate search space when using data in Table 1.1 to solve frequent itemset

mining

Given the extensive search space involved in high utility itemset mining, it is crucial to develop

rapid algorithms that can circumvent the necessity of examining every possible itemset. These

algorithms should process each itemset within the search space with optimal efficiency while

ensuring the identification of all high utility itemsets. Furthermore, since the utility measure

lacks monotonicity and anti-monotonicity, effective strategies employed to reduce the search

space in frequent itemset mining cannot be directly applied to address the challenges of high

utility itemset mining.

1.2.4 Correlated High Utility Itemset Mining
One drawback of traditional algorithms used for mining high utility itemsets is their tendency

to uncover itemsets with high profitability that consist of weakly correlated items. Such

itemsets can be misleading or unhelpful for making marketing decisions. For instance, let's

consider a transaction database from a retail store. Existing algorithms might identify the

purchase of a high-end smartphone and a pack of chewing gum as a high-utility itemset due to

the overall profitability when these two items are sold together. However, it would be a mistake

to utilize this pattern to promote high-end smartphones to customers who buy chewing gum

because, upon closer examination, it is evident that these two items are rarely purchased

together. The explanation for why this pattern can still be classified as a high utility itemset,

despite the minimal correlation between high-end smartphones and chewing gum, is due to the

high cost of the smartphones. As a result, almost any item combined with a high-end

smartphone has the potential to be considered a high utility item. The significance of this

drawback in conventional high utility itemset mining algorithms cannot be overlooked. A

comprehensive experimental study demonstrated that a significant majority, less than 1%, of

the patterns generated by traditional high utility itemset mining algorithms exhibit strong

correlations among the items.

 Different measures have been utilized to gauge the correlation between items within an

itemset, such as the bond [27], all-confidence [28], and affinity [29, 30] measures, aiming to

address this issue. The general problem of extracting correlated high utility itemsets using the

bond measure and all-confidence measure can be described as follows. The detail about

16

correlated high utility itemset mining algorithms using these measures will also be discussed

in the next chapter.

Definition 7 The bond measure

Consider an itemset X. The disjunctive support of itemset X in database D, represented as

dissup(X), is defined as follow:
|{𝑇𝑘 ∈ 𝐷|𝑋 ∩ 𝑇𝑘 ≠ ∅}|

The bond measure of itemset X, denoted as bond(X), is calculated as:

𝑏𝑜𝑛𝑑(𝑋) =
𝑠𝑢𝑝(𝑋)

𝑑𝑖𝑠𝑠𝑢𝑝(𝑋)

The bond measure falls within the interval [0,1] and demonstrates monotonicity [31].

Definition 8 Using the bond measure to find correlated high utility itemset

Given a quantitative transaction database and user-defined thresholds for minimum bond

(min_bond) and minutil, the challenge in discovering correlated high utility itemsets using the

bond measure is to identify and output all itemset X that satisfies both two conditions

 𝑏𝑜𝑛𝑑(𝑋) ≥ 𝑚𝑖𝑛_bond

 𝑢(𝑋) ≥ 𝑚𝑖𝑛𝑢𝑡𝑖𝑙
 For example, when using a minimum utility threshold of 25 and a minimum bond threshold

of 0.6, the correlated high utility itemsets are displayed in Table 1.8. Let's take the high utility

itemset {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} as an illustration. It is deemed uncorrelated due to its bond value of

0.2.

Table 1.8. Correlated high-utility itemsets satisfy min_bond=0.6 and minutil=25

Itemset Utility Bond value

{𝑥1, 𝑥3} 1 0.6

{𝑥2, 𝑥3} 1 0.6

{𝑥3, 𝑥5} 1 0.8

{𝑥2, 𝑥3, 𝑥5} 1 0.6

 In order to effectively identify correlated high-utility itemsets using the bond measure, the

𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑 algorithm [27] was introduced as an extension of the FHM algorithm. Experimental

findings have demonstrated that FCHM outperforms the FHM algorithm significantly by

efficiently pruning a large number of weakly correlated high utility itemsets. Furthermore, an

alternative correlation measure called all-confidence was integrated into the

𝐹𝐶𝐻𝑀𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 algorithm [32]. The all-confidence measure is demonstrated as follows.

Definition 9 The all-confidence measure

The all-confidence measure of itemset X can be calculated as

𝑎𝑙𝑙 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋) =
sup⁡(𝑋)

𝑎𝑟𝑔𝑚𝑎𝑥{sup⁡(𝑌)|∀⁡Y ⊂ X ∧ Y ≠ ∅}

 The all-confidence measure of an itemset is a numerical value that falls within the [0, 1]

range, with a higher value indicating a stronger correlation between the items. For instance,

consider the itemset {𝑥1, 𝑥4}. The all-confidence of this itemset is computed as

𝑎𝑙𝑙 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒({𝑥1, 𝑥4}) =
sup({𝑥1,𝑥4})

𝑎𝑟𝑔𝑚𝑎𝑥{sup({𝑥1}),sup({𝑥4})}
=

2

3
= 0.67

17

1.3 Related works and contribution
Correlated high utility itemset mining is a field that has received significant attention in recent

years. Therefore, in addition to the FCHM algorithm, there have been numerous other

algorithms and prune strategies proposed. Some of these works are described below:

 Paper [33] is the first paper that use a null-invariant measure to find high utility itemsets.

The author developed an algorithm named CoHUIM based on a project-based approach to

reduce search space and memory usage. The measure used is Kulczynsky measure (Kulc).

Although this measure does not have an anti-monotonicity property, the author has introduced

another property that can also help prune candidates effectively which is the sorted downward

closure property. Experimental results show that the algorithm returns a smaller number of

itemsets but carries more valuable information to the user. Runtime and memory of this

algorithm are also within acceptable thresholds.

 In [34], the author proposes CoUPM algorithm to find itemsets that satisfy both utility

threshold and correlation threshold using Kulc measure. The author has taken advantage of the

downward closure property of Kulc measure to increase the performance of the algorithm. In

addition, CoUPM also introduces revised utility list, which helps the algorithm does not need

to go through the entire database several times. Experiments on many real-world datasets show

that CoUPM works well in terms of both effectiveness and efficiency.

 The author in [35] proposed a single phase algorithm named CoHUI-Miner to find

correlated high utility patterns. This algorithm uses the database projection mechanism to

reduce the database size. Beside that a new concept is introduced called the prefix utility of

projected transactions. This new concept helps to effectively eliminate patterns which do not

meet the minimum threshold during the mining process. Experiments on many datasets of

different types show that the proposed algorithm has better performance than the CoHUIM

algorithm [33].

 Paper [36] introduces a novel pattern mining algorithm called CoHAI miner, which is based

on correlation and average-utility. The algorithm aims to discover patterns with strong

correlations and high average-utility. Unlike previous methods, CoHAI miner uses the

correlation factor Kulc to ensure the presence of strong correlations in the patterns. The

algorithm is designed as a single-phase process and utilizes a vertical list structure called SAU

list for efficient pruning and average-utility calculation. Notably, the SAU list of an itemset

can be constructed by combining the SAU lists of its subsets without the need for additional

dataset scans. The author conducted comprehensive experiments to compare the performance

of CoHAI miner with an existing algorithm called EHAUPM. The results indicate that CoHAI

miner exhibits significant improvements in runtime and generates more meaningful patterns

compared to EHAUPM.

 From all above study, it can be seen that the common point of correlated high utility itemset

mining algorithms is that the measure must satisfy some properties that support the process of

pruning candidates. Besides, it is also necessary to apply suitable strategies for each different

measure to improve the performance of the algorithm. Therefore, finding other measures that

satisfy the above conditions will help expand the limit of usable measures, thereby facilitating

the improvement of both effectiveness and efficiency of the correlated high utility itemset

mining algorithms in general.

 In this thesis, we propose a new version of the FCHM algorithm called 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 .

Specifically, we demonstrate that the cosine measure possesses the anti-monotonicity property,

thereby proving its suitability for integration with the FCHM algorithm to create the

𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 algorithm, similar to the previous integration of the bond measure and all-

confidence measure.

18

Chapter 2. Algorithms and methodology

2.1 The FHM algorithm
To address the main challenge in high utility itemset mining, it is crucial to establish a

monotonically increasing measure that serves as an upper-bound for the utility measure. This

measure is used to effectively reduce the search space while ensuring that no high utility

itemsets are overlooked. The proposed measure in this context is the TWU (Transaction

Weighted Utilization) measure, which is defined as follows.

Definition 10 (TWU measure)

The transaction utility (TU) of a transaction 𝑇𝑐 is calculated by summing up the utilities of all

the items in 𝑇𝑐, denoted as TU(𝑇𝑐) = ∑ 𝑢(𝑥, ⁡𝑇𝑐)𝑥∈𝑇𝑐 for each item x in 𝑇𝑐. On the other hand,

the TWU of an itemset X is defined as the total sum of transaction utilities from transactions

that contain X. Mathematically, TWU(X) = ∑ 𝑇𝑈(⁡𝑇𝑐)⁡𝑇𝑐∈𝑔(𝑋) for each transaction ⁡𝑇𝑐 in the set

of transactions g(X) that contain X.

 For example, consider the transaction utilities of⁡𝑇1, ⁡𝑇2, ⁡𝑇3, ⁡𝑇4, and ⁡𝑇5, which are 25, 20,

8, 22, and 9, respectively. The TWU values for the individual items 𝑥1, 𝑥2, 𝑥3, 𝑥4⁡𝑎𝑛𝑑⁡𝑥5 are

55, 54, 84, 53, and 76, respectively. If we consider the itemset {𝑥3, 𝑥4}, the TWU is calculated

as TWU({𝑥3, 𝑥4}) = TU(⁡𝑇0) + TU(⁡𝑇1) + TU(⁡𝑇2) = 25 + 20 + 8 = 53. It is important to note

that the TWU measure serves as an upper-bound on the utility measure and exhibits

monotonicity. This property formalizes the relationship between TWU and utility measures.

Property 3 (The TWU measure serves as an upper-bound on the utility measure and exhibits

monotonicity)

For any itemset X, the TWU of X is equal to or greater than its utility (TWU(X) ≥ u(X)).

Additionally, the TWU of X is equal to or greater than the utility of its supersets (TWU(X) ≥

u(Y) for all Y that are supersets of X). This property has been proven in [18]. Essentially, the

TWU of X represents the sum of utilities in transactions where X is present, ensuring that it is

at least as high as the utility of X itself and any of its supersets.

 The TWU measure is useful for reducing the search space in itemset mining. To facilitate

this, a specific property has been proposed.

Property 4 (Pruning the search space based on the TWU)

From Property 3, it follows that if the TWU of an itemset X is less than the minutil, then X and

all its supersets are considered low-utility itemsets.

 For instance, consider the itemset {𝑥1, 𝑥2, 𝑥3, 𝑥4} with a utility of 20 and a TWU of 25.

According to Property 4, any supersets of {𝑥1, 𝑥2, 𝑥3, 𝑥4} cannot have a TWU or utility value

greater than 25. Therefore, if the user sets the minimum utility threshold to a value higher than

25, all supersets of {𝑥1, 𝑥2, 𝑥3, 𝑥4} can be pruned from the search space since it is guaranteed

by Property 4 that their utilities cannot exceed 25.

 Another commonly used approaches for high utility itemset mining algorithms is the utility-

list structure. This structure was initially introduced in the HUI-Miner algorithm [17], which is

a generalized version of the tid-list structure [23] that is used for frequent itemset mining. Over

time, several faster utility-list based algorithms have been proposed, including FHM [14],

mHUIMiner [37], and ULB-Miner [38]. Additionally, extensions have been made to address

different variations of the high utility itemset mining problem. One of the reasons for the

popularity of utility-list based algorithms is their speed and ease of implementation. In this

subsection, we focus on the FHM algorithm, which is a representative utility-list based

algorithm that has been shown to be up to seven times faster than HUI-Miner. This algorithm

has been widely used and extended by many researchers.

 The FHM algorithm is a one-phase algorithm that utilizes a depth-first search to explore

the search space of itemsets. As the algorithm traverses the search space, it generates a utility-

19

list for each visited itemset. The utility-list for an itemset contains information regarding the

utility of the itemset in transactions where it occurs, as well as information about the utilities

of the remaining items in those transactions. Utility-lists enable quick calculation of the utility

of an itemset and provide upper-bounds on the utility of its super-sets without the need to scan

the entire database. Additionally, utility-lists for k-itemsets (k > 1) can be efficiently generated

by combining the utility-lists of shorter patterns. The utility-list structure is formally defined

as follows:

Definition 11 (Utility-list)

Let X be an itemset and D be a quantitative database. It is assumed, without loss of generality,

that a total order, denoted by ≻, is defined on the set of items I appearing in the database. The

utility-list ul(X) for X in a quantitative database D is a set of tuples. For each transaction 𝑇𝑡𝑖𝑑

containing X, there is a tuple (tid, iutil, rutil). The iutil element of the tuple represents the utility

of X in 𝑇𝑡𝑖𝑑, i.e., u(X, 𝑇𝑡𝑖𝑑). The rutil element of the tuple is defined as the summation of the

utilities of all items i in 𝑇𝑡𝑖𝑑 that appear before any item in X in the total order defined by
∑ 𝑢(𝑖, 𝑇𝑡𝑖𝑑)𝑖∈𝑇𝑡𝑖𝑑⁡∧𝑖≻𝑥∀𝑥∈𝑋

 Assuming a total order ≻ is defined on the set of items in a quantitative database D, the

utility-lists of three itemsets {𝑥1}, {𝑥4}, and {𝑥1, 𝑥4} are presented in Figure 2.1 as an example.

The utility-list of {𝑥1} contains three tuples corresponding to transactions 𝑇1, 𝑇3, and 𝑇4,

where {𝑥1} appears. The second column of the utility-list (iutil values) of {𝑥1} displays that

the utility of {𝑥1} in 𝑇1, 𝑇3, and 𝑇4, is 5, 5, and 10, respectively. The third column of the utility-

list of {𝑥1} presents that the rutil values of {𝑥1} for transactions 𝑇1, 𝑇3, and 𝑇4 are 20, 3, and

10, respectively.

Figure 2.1. Construct utility-list of {𝑥1, 𝑥4} from utility list of {𝑥1} and {𝑥4}

 The FHM algorithm creates the utility-lists for single items by scanning the database once.

To create utility-lists for larger itemsets, it joins the utility-lists of smaller itemsets. The join

operation for single items involves creating a tuple for each pair of tuples in the utility-lists of

x and y, where x and y are items such that x comes before y in the total order. The utility-list of

a larger itemset P ∪ {x, y}, where x and y are items such that x comes before y in the total order,

is created by subtracting the utility of P from the sum of the utilities of x and y in each tuple

that has the same transaction ID in the utility-lists of x, y, and P. This can be done without

scanning the database, for example, the utility-list of {𝑥1, 𝑥4} can be obtained by joining the

utility-lists of {𝑥1} and {𝑥4} shown in Figure 2.1.

The utility-list structure is a valuable tool because it enables the retrieval of an itemset's utility

without having to search the entire database.

Property 5 (Determining the utility of an itemset by utilizing the utility-list structure associated

with that itemset). To calculate the utility of an itemset X, you can simply add up the iutil values

in its utility-list ul(X). This means that the utility of X is equal to the sum of all the iutil values

in ul(X) [17]. In mathematical terms, this can be expressed as: u(X) = ∑ 𝑒. 𝑖𝑢𝑡𝑖𝑙𝑒∈𝑢𝑙(𝑋)

 The utility of an itemset can be calculated by summing the values in the iutil column of its

utility-list. For example, the utility of {𝑥1, 𝑥4} can be found by adding the values 11 and 7 from

its utility-list. The utility-list is also helpful in reducing the search space by using the minimum

utility threshold and downward closure property. The minimum utility threshold is the

20

minimum utility that an itemset must have to be considered, while the downward closure

property ensures that all of an itemset's subsets are also considered if the itemset itself is

considered.

Definition 12 (Remaining utility upper-bound)

The "remaining utility upper-bound" for an itemset X is the sum of its "iutil" and "rutil" values

in its "utility-list" called "ul(X)". It is calculated by adding up the iutil and rutil values for each

transaction containing X. The purpose of this upper-bound is to limit the search space when

mining frequent itemsets. It serves as an upper-bound on the utility of X and all its extensions,

meaning that any itemset Y that is an extension of X has a utility value less than or equal to the

reu(X) value.

 To illustrate, consider the example of calculating the remaining utility upper-bound of the

itemset {𝑥1, 𝑥4} using its utility-list (shown in Figure 2.1). The upper-bound is the sum of the

iutil and rutil values in its utility-list, i.e., reu({𝑥1, 𝑥4}) = 11 + 7 = 18. Therefore, it can be

inferred that the itemset {𝑥1, 𝑥4} and all its extensions, such as {𝑥1, 𝑥4, 𝑥5}, cannot have a

utility greater than 18. When minutil = 25, as in the running example, these itemsets can be

pruned from the search space, as they are considered low-utility itemsets. This is expressed by

the following property.

Property 6 (Pruning search space based on utility-list)

To prune the search space, we can use the utility-list of an itemset X. If the sum of its iutil and

rutil values in ul(X) is less than the minutil value, which is the minimum utility threshold, then

X and all its extensions are considered low utility itemsets. In other words, if reu(X) < minutil,

X and its extensions will not meet the minimum utility threshold and can be pruned from the

search space. [17]

 The FHM algorithm (Algorithm 1) takes a quantitative transaction database and a minimum

utility threshold as input. Firstly, FHM scans the database to calculate the TWU of each item.

Then, it identifies a set of all items having a TWU no less than the minimum utility threshold,

which is named I∗. Items with TWU less than the minimum threshold are ignored, as per

Property 4. Items are then ordered based on their ascending TWU values, which is used to

create a total order on items called the ≻ order. During a database scan, items in transactions

are reordered based on the ≻ order, and the utility-list of each item in I∗ is constructed. A

structure called the EUCS (Estimated Utility Co-Occurrence Structure) is then built as a set of

triples that indicate the TWU of item pairs. The EUCS is implemented as a triangular matrix

and occupies a small amount of memory. The FHM algorithm uses the EUCS to prune the

search space. Finally, the depth-first search of itemsets starts by calling the recursive procedure

FHM Search with the empty itemset ∅, I∗, minutil, and the EUCS structure. More details about

the construction of the EUCS and implementation optimizations can be found in the paper

about FHM [14].

Algorithm 1: The FHM algorithm

input: D: a transaction database, minutil: a user-specified threshold

output: the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;

2 I*  each item i such that TWU(i) ≥ minutil;

3 Let ≻ be the total order of TWU ascending values on I*;

4 Scan D to built the utility-list of each item i ∈ I* and build the EUCS;

5 Output each item i ∈ I* such that SUM({i}.utilitylist.iutils) ≥ minutil;

6 FHMSearch(∅, I*, minutil, EUCS);

21

Algorithm 2: The FHMSearch procedure

input: P: an itemset, ExtensionOfP: a set of extensions of P, minutil: a

 user-specified threshold, EUCS: the EUCS structure

output: the set of high-utility itemsets

1 foreach itemset 𝑃𝑥 ∈ ExtensionOfP do

2 if SUM(𝑃𝑥.utilitylist.iutils)+SUM(𝑃𝑥.utilitylist.rutils) ≥ minutil then

3 ExtensionOf𝑃𝑥  ∅;

4 foreach itemset 𝑃𝑌 ∈ ExtensionOfP such that y ≻ x do

5 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil then

6 𝑃𝑥𝑦  𝑃𝑥 ∪ 𝑃𝑦;

7 Pxy .utilitylist  Construct(𝑃, 𝑃𝑥, 𝑃𝑦);

8 ExtensionOf𝑃𝑥  ExtensionOf𝑃𝑥 ∪ 𝑃𝑥𝑦;

9 if SUM(𝑃𝑥𝑦 .utilitylist.iutils) ≥ minutil then output 𝑃𝑥

10 end

11 end

12 FHMSearch(𝑃𝑥, ExtensionOf𝑃𝑥, minutil);

13 end

14 end

Algorithm 3: The Construct procedure

input: P: an itemset, 𝑃𝑥: the extension of P with an itemset x, 𝑃𝑦: the

 extension of P with an item y

output: the utility-list of 𝑃𝑥𝑦

1 UtilityListOf𝑃𝑥𝑦  ∅;

2 foreach tuple ex ∈ 𝑃𝑥.utilitylist do

3 if ∃ ey ∈ 𝑃𝑦 .utilitylist and ex.tid = exy.tid then

4 if P.utilitylist ≠ ∅ then

5 Search element e ∈ P.utilitylist such that e.tid = ex.tid;

6 exy  (ex.tid, ex.iutil + ey.iutil, ey.rutil)

7 end
8 else exy  (ex.tid, ex.iutil + ey.iutil, ey.rutil)

 UtilityListOf𝑃𝑥𝑦  UtilityListOf𝑃𝑥𝑦 ∪ {exy};

9 end

10 end

11 return UtilityListOf𝑃𝑥𝑦;

 The FHM Search algorithm (Algorithm 2) receives as input an itemset P, its extensions in

the form of 𝑃𝑧 where z is appended to P, a minimum utility value, and the EUCS. The algorithm

starts by examining each extension 𝑃𝑥 of P. If the sum of the iutil values in the utility-list of 𝑃𝑥

is greater than or equal to minutil, then 𝑃𝑥 is considered a high-utility itemset and is output (as

per Property 4). If the sum of iutil and rutil values in the utility-list of 𝑃𝑥 is greater than or equal

to minutil, then the algorithm merges 𝑃𝑥 with all extensions 𝑃𝑦 of P such that y ≻ x to create

extensions of the form 𝑃𝑥𝑦 , which contain |𝑃𝑥 | + 1 items. The utility-list of 𝑃𝑥𝑦 is obtained by

22

calling the Construct procedure to join the utility-lists of P, 𝑃𝑥, and 𝑃𝑦 . The algorithm then

performs a recursive call to the Search procedure with 𝑃𝑥𝑦 to calculate its utility and explore

its extension(s). The FHM Search algorithm recursively explores the search space of itemsets

by appending single items and only prunes the search space based on Property 6. It can be

proven that this procedure is correct and complete in discovering all high-utility itemsets.

Figure 2.2. The co-occurrence structure for estimated-utility

 The FHM algorithm utilizes a vertical database representation in the form of a utility-list

structure. This structure provides a list of transactions where each itemset appears, which is

different from a horizontal database representation where each entry is a transaction showing

the items it contains.

 One of the advantages of utility-list based algorithms is that they are simple to implement

and are efficient. In comparison to two-phase algorithms, utility-list based algorithms can be

more than two orders of magnitude faster [14, 17, 21]. However, these algorithms have some

significant drawbacks. Firstly, since these algorithms create itemsets by combining other

itemsets and not by reading the database, they may explore itemsets that do not actually exist

in the database, leading to the wastage of time in constructing utility-lists. Secondly, these

algorithms can consume a lot of memory because they need to build a utility-list for each

itemset in the search space. The utility-list of an itemset can be quite large, and in the worst-

case scenario, it can contain a tuple for every transaction in the database. Additionally, the join

operation can be expensive, as it requires the comparison of two or three utility-lists to construct

the utility-list of each k-itemset (k > 1).

 To decrease the memory usage of utility-list based algorithms, a new algorithm called

ULB-Miner [38] has been developed by expanding upon the HUI-Miner and FHM algorithms.

ULB-Miner uses a buffer to conserve memory used for storing utility-lists. This approach has

demonstrated an improvement in both runtime and memory usage. Another enhancement to

HUI-Miner is HUI-Miner* [39], which utilizes an improved utility list* structure to accelerate

HUI-Miner.

23

2.2 The FCHM algorithm
As mentioned in the previous chapter, traditional high utility itemset mining algorithms may

have a drawback of discovering itemsets with high profitability but containing weakly related

items. Such itemsets may be misleading or not useful for making marketing decisions. For

example, in a retail store's transaction database, an algorithm may identify the purchase of a

50-inch plasma television and a pen as a high-utility itemset due to high profitability when sold

together. However, this pattern may not be suitable for promoting plasma televisions to pen

buyers as these two items are rarely sold together. The reason for this is that expensive items

such as plasma televisions can lead to almost any items combined with them being considered

a high utility itemset, even if there is a low correlation between them. Traditional high utility

itemset mining algorithms are limited in that they often discover itemsets with high profits that

include weakly correlated items, making such itemsets misleading or unhelpful for making

marketing decisions. Empirical evidence shows that in many cases, less than 1% of the patterns

discovered by these algorithms contain strongly correlated items. Different measures have been

proposed to deal with this issue of traditional high utility itemset mining algorithms. These

measures include the bond [27], all-confidence [28], and affinity measures [29, 30]. They are

used to measure the level of correlation between items in an itemset.

Algorithm 4: The FCHM algorithm

input: D: a transaction database, minutil: a user-specified threshold,

 min_measure: a user-specified threshold for all-confidence or

 bond measure

output: the set of correlated high-utility itemsets

1 Scan D to calculate the TWU of single items;

2 I*  each item i such that TWU(i) ≥ minutil;

3 Let ≻ be the total order of TWU ascending values on I*;

4 Scan D to built the utility-list of each item i ∈ I* and build the EUCS;

5 Output each item i ∈ I* such that SUM({i}.utilitylist.iutils) ≥ minutil;

6 FHMSearch(∅, I*, minutil, EUCS, min_measure);

24

Algorithm 5: The FCHMSearch procedure

input: P: an itemset, ExtensionOfP: a set of extensions of P, minutil: a

 user-specified threshold, EUCS: the EUCS structure, min_measure: a

 user-specified threshold for all-confidence or bond measure

output: the set of high-utility itemsets

1 foreach itemset 𝑃𝑥 thuoc ExtensionOfP do

2 if SUM(𝑃𝑥.utilitylist.iutils)+SUM(𝑃𝑥.utilitylist.rutils) ≥ minutil then

3 ExtensionOf𝑃𝑥  ∅;

4 foreach itemset 𝑃𝑌 ∈ ExtensionOfP such that y ≻ x do

5 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil then

6 𝑃𝑥𝑦  𝑃𝑥 ∪ 𝑃𝑦;

7 𝑃𝑥𝑦 .utilitylist  Construct(𝑃, 𝑃𝑥, 𝑃𝑦);

8 if 𝑃𝑥𝑦 .measure ≥ min_measure then

9 ExtensionOf𝑃𝑥  ExtensionOf𝑃𝑥 ∪ 𝑃𝑥𝑦;

10 if SUM(𝑃𝑥𝑦 .utilitylist.iutils) ≥ minutil then output 𝑃𝑥

11 end

12 end

13 end

14 FCHMSearch(𝑃𝑥, ExtensionOf𝑃𝑥, minutil);

15 end

16 end

Property 7 (Anti-monotonicity with the bond measures, all-confident).

If X and Y are two itemsets such that X is a subset of Y, then the bond value of X is always

greater than or equal to the bond value of Y and the all-confidence value of X is always greater

than or equal to the all-confidence value of Y.

2.2.1 The 𝐅𝐂𝐇𝐌𝒂𝒍𝒍−𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 Algorithm

The all-confidence of an itemset X can be calculated by dividing its support with the maximum

support of its subsets, which is always equal to the support of an item in X. In order to calculate

the all-confidence of X, it is necessary to find the support of X and its items. The support of X

can be obtained by determining the size of its utility list, which is created at line 4 of Algorithm

4. The support of single items can be obtained from their respective utility lists. With this

information, it is simple to find the maximum support of the subsets of an itemset X and

calculate its all-confidence. Specifically, the all-confidence of an itemset X can be calculated

as |utility-list(X)| divided by argmax{|utility-list(i)|} for all i in X. For instance, the all-

confidence of the itemset ab can be determined as |utility-list(ab)| divided by argmax{utility-

list(a), utility-list(b)}.

 The process of finding the maximum support of items in an itemset X involves |X|-1

comparisons, which can be time-consuming. One way to reduce the number of comparisons is

to store the maximum support of subsets of each itemset in its utility-list. Then, when

constructing the utility-list of an itemset 𝑃𝑥𝑦 , the maximum support of its subsets can be

obtained with just one comparison by using the formula maxSubset(𝑃𝑥𝑦) =

argmax{maxSubset(𝑃𝑥), maxSubset(𝑃𝑦)}. To further improve the performance of

FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 , three strategies are presented in the following paragraphs for more

efficiently discovering CHIs.

25

Strategy 1. Directly Ouputting Single items (DOS). High utility itemsets that consist of only

one item are immediately returned as output because they have an all-confidence value of 1.

Strategy 2. Pruning Supersets of Non correlated itemsets (PSN). If the all-confidence of an

itemset 𝑃𝑥𝑦 is lower than a minimum threshold value, then according to the anti-monotonic

property of the all-confidence measure (Property 7), there is no need to explore any further

extensions of 𝑃𝑥𝑦 .

Strategy 3. Pruning with Upper-Bound (PUB) version 1. The third approach aims to avoid

constructing the utility-list of an itemset 𝑃𝑥𝑦 . and pruning all its extensions. To achieve this, a

novel structure called Support Matrix is created during the second scan of the database. This

structure stores the support of all itemsets that contain two items from the set I∗, and its design

is similar to that of the EUCS structure. The Support Matrix is defined formally as follows.

The Support Matrix is a collection of triples in the form (a, b, c) where a and b are from the set

I∗, and c is a real number indicating the support of the itemset {a, b}. The Support Matrix only

stores the triples where c is not equal to 0. For example, the Support Matrix for the given

example is shown in Figure 2.3. To improve the FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 algorithm, Line 5 of

Algorithm 4 is modified to include a condition that the utility-list of 𝑃𝑥𝑦 . is only created if:

𝑀𝑖𝑛{𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝑥), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝑦), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥𝑦)}

𝑀𝑎𝑥{𝑚𝑎𝑥𝑆𝑢𝑏𝑠𝑒𝑡(𝑃𝑥),𝑚𝑎𝑥𝑆𝑢𝑏𝑠𝑒𝑡(𝑃𝑦)}
⁡≥ 𝑚𝑖𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒⁡

This pruning technique ensures the accuracy and completeness of the FCHM algorithm.

Figure 2.3. Matrix of support value

2.2.2 The 𝐅𝐂𝐇𝐌𝒃𝒐𝒏𝒅 Algorithm
To calculate the bond of a high utility itemset, a simple but inefficient approach is to scan the

database for each high utility itemset and calculate its support and disjunctive support.

However, in FCHM, a more efficient approach is used. This involves appending a structure

called disjunctive bit vector [31] to each utility-list, which can quickly calculate the disjunctive

support of any itemset.

 The bond measure can be computed inefficiently by scanning the database for each high

utility itemset and calculating its support and disjunctive support. However, FCHM uses a more

efficient approach by appending a disjunctive bit vector to each utility-list, denoted as bv(X),

which contains |D| bits. If the j-th bit is set to 1, it means that there exists an item i in X such

that i is in the transaction 𝑇𝑗. Otherwise, it is set to 0. The disjunctive bit vector of each item is

created during the first database scan. Then, the disjunctive bit vector of any larger itemset 𝑃𝑥𝑦

explored by the search procedure can be obtained efficiently by performing the logical OR

operation between the bit vectors of 𝑃𝑥 and 𝑃𝑦 . The cardinality of the disjunctive bit vector of

an itemset 𝑃𝑥𝑦 is equal to its disjunctive support, while the cardinality of its utility-list is equal

to its conjunctive support. Thus, the bond of an itemset can be computed by dividing the

cardinality of its utility-list by the cardinality of its disjunctive bit vector, which is obtained

using the utility-list and the disjunctive bit vector.

26

The property mentioned earlier can be used to calculate the bond of any itemset produced by

the search process after constructing its utility-list. This leads to the 𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑⁡algorithm,

which is accurate and thorough in finding CHIs. To further enhance FCHM's efficiency, the

following paragraphs introduce additional methods for discovering CHIs. 𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑⁡
implements Strategies 1 and 2 from 𝐹𝐶𝐻𝑀𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡 , adjusts Strategy 3, and introduces

three methods called Strategies 4, 5 and 6.

Strategy 3. Pruning with the Upper-Bound (PUB) version 2.

This approach is similar to the PUB version 1 strategy and uses the Support Matrix. In

𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑, a modification is made to Line 5 of Algorithm 4 to include a condition that the

utility-list of 𝑃𝑥𝑦 is constructed only if

𝑀𝑎𝑥{𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝑥), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝑦), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥𝑦)}

𝑀𝑖𝑛{𝑑𝑖𝑠𝑠𝑢𝑝(𝑃𝑥), 𝑑𝑖𝑠𝑠𝑢𝑝(𝑃𝑦), 𝑑𝑖𝑠𝑠𝑢𝑝(𝑥𝑦)}
⁡≥ 𝑚𝑖𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒

Here, 𝑑𝑖𝑠𝑠𝑢𝑝(𝑥𝑦) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) + 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑦) - 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥𝑦) , and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥𝑦)⁡ is

obtained from the Support Matrix. It is evident that this pruning condition maintains the

accuracy and completeness of FCHM because the left-hand side of the inequality provides an

upper-bound on the bond(𝑃𝑥𝑦).

Strategy 4. Abandoning Utility-List construction early (AUL). The fourth strategy proposed

in FCHM is to halt the process of building the utility-list of an itemset when a particular

condition is satisfied, implying that the itemset is unlikely to be a correlated high utility itemset.

This approach is founded on a new discovery:

Property 8 (conjunctive support of an extension 𝑷𝒙𝒚)

An itemset 𝑃𝑥𝑦 can only be considered as correlated if its support is greater than or equal to the

lower bound value of lowerBound(𝑃𝑥𝑦), which is calculated as the product of the minimum

measure and the cardinality of the disjunctive support of 𝑃𝑥𝑦 , then take the ceiling function of

the result just found.

 The property that an itemset 𝑃𝑥𝑦 is correlated only if its support is no less than the value

lowerBound(𝑃𝑥𝑦), can be directly derived from the bond measure definition. To construct the

utility-list of itemset 𝑃𝑥𝑦 in the Construct procedure (Algorithm 3), some modifications are

made. First, the disjunctive bit vector of 𝑃𝑥𝑦 is obtained by performing the OR operation with

the bit vectors of 𝑃𝑥 and 𝑃𝑦 . This helps obtain the value of support(𝑃𝑥𝑦). Second, a variable

called maxSupport is initialized to the conjunctive support of⁡𝑃𝑥. Third, the utility-list of 𝑃𝑥𝑦 is

constructed by checking if each tuple in the utility-lists of 𝑃𝑥 appears in the utility-list of 𝑃𝑦 .

For each tuple not appearing in 𝑃𝑦 , the variable maxSupport is decremented by 1. If

maxSupport is smaller than lowerBound(𝑃𝑥𝑦), the construction of the utility-list of 𝑃𝑥𝑦 can be

stopped because the support of 𝑃𝑥𝑦 will not be higher than lowerBound(𝑃𝑥𝑦), and thus 𝑃𝑥𝑦 is

not a correlated high utility itemset by Property 8, and its extensions can be ignored by Property

6. This pruning strategy is very effective and reduces execution time and memory usage by

stopping utility-list construction early. Another similar pruning strategy called the LA-prune

strategy, based on the utility of itemset 𝑃𝑥𝑦 instead of the bond measure, is also integrated into

FCHM. [40].

27

Strategy 5. (LA-Prune)
Given two itemsets X and Y, if:

∑ 𝑈(𝑋,𝑇𝑖) + 𝑅𝑈(𝑋, 𝑇𝑖) −⁡
∀𝑇𝑖𝜖𝐷

∑ 𝑈(𝑋, 𝑇𝑗) + 𝑅𝑈(𝑋, 𝑇𝑗) < 𝑚𝑖𝑛𝑢𝑡𝑖𝑙
∀𝑇𝑗𝜖𝐷,𝑋⊆𝑇𝑗⁡𝑎𝑛𝑑⁡𝑌⊈𝑇𝑗

then ∀𝑌′ ⊇ 𝑌 and X’ ⊇ X, X’Y’ ∉⁡HUI,.

 The lemma condition consists of two parts. The first part calculates the total utility value

of itemset X from transactions where X is present, regardless of the presence of Y. This includes

all utility values associated with X. The second part subtracts the utility values of itemset X in

transactions where X is present but Y is not. The sum of these two parts provides a more

accurate upper bound on the utility of transactions where XY is likely to be present. If this

resulting upper bound is lower than the minutil, then neither itemset XY nor any of its

descendants can be considered as a HUI. Additionally, the utility value calculations are specific

to itemset X, so none of its descendants that contain Y can be classified as HUIs either.

Strategy 6. Pruning Utility-List by upper-bound (PUL).

𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑 can generate a utility-list and a bit vector for each itemset 𝑃𝑥𝑦 . The bit vector can

be obtained by scanning the database (for single items) or by performing the OR operation with

two bit vectors. The bit vector of an itemset 𝑃𝑥𝑦 can then be used to determine 𝑑𝑖𝑠𝑠𝑢𝑝(𝑃𝑥𝑦).

The construction of the utility-list of 𝑃𝑥𝑦 is skipped if the condition

𝑀𝑎𝑥{𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝑥), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝑦), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥𝑦)}

⁡𝑑𝑖𝑠𝑠𝑢𝑝(𝑃𝑥𝑦)
< 𝑚𝑖𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒

is satisfied. This is because the left-hand side of the inequality serves as an upper-bound on

bond(𝑃𝑥𝑦).

2.3 Cosine measure

Cosine measure is a measure used to calculate correlation between items. The formula of cosine

measure is defined as in [44] and [2].

 In the case we have two items 𝐴1 and 𝐴2, the cosine measure of these two items is

calculated as:

𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2) =
𝑃(𝐴1 ∪ 𝐴2)

√𝑃(𝐴1) × 𝑃(𝐴2)
=

sup⁡(𝐴1 ∪ 𝐴2)

√sup⁡(𝐴1) × sup⁡(𝐴2)

𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2) calculates the probability of 𝐴1 and 𝐴2 co-occurring and divides it by the

square root of the product of the probabilities of 𝐴1 and 𝐴2 individually. The square root

ensures that the cosine value is solely determined by the support values of 𝐴1, 𝐴2, and their

intersection 𝐴1 ∪ 𝐴2 ,without being influenced by the total number of transactions. This

characteristic makes the cosine measure null-invariant, as it remains unaffected by the presence

of null transactions. In large datasets, where null transactions are common, the cosine-type

measure delivers improved outcomes due to its ability to handle such scenarios effectively

 In the case we have more than two items, the cosine measure is extended as:

𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2, … , 𝐴𝑛) =
𝑃(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛)

√𝑃(𝐴1) × 𝑃(𝐴2) × …× 𝑃(𝐴𝑛)

=
𝑠𝑢𝑝(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛)

√𝑠𝑢𝑝(𝐴1) × 𝑠𝑢𝑝(𝐴2) × …× 𝑠𝑢𝑝(𝐴𝑛)

28

2.4 Proposed approach
This thesis proposes another version of the FCHM algorithm named FCHM𝑐𝑜𝑠𝑖𝑛𝑒 , which uses

the cosine measure as the correlation measure for the FCHM algorithm. The two main reasons

the cosine measure is preferred in this thesis are:

 Cosine measure is a null-invariant measure. [2,45]

 Cosine measure has the anti-monotonicity property (1)

2.4.1 Proof for anti-monotonicity property
From definition, we have

𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2, … , 𝐴𝑛) =
𝑠𝑢𝑝(𝐴1∪𝐴2∪…∪𝐴𝑛)

√𝑠𝑢𝑝(𝐴1)×𝑠𝑢𝑝(𝐴2)×…×𝑠𝑢𝑝(𝐴𝑛)
 (*)

𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2, … , 𝐴𝑛 , 𝐴𝑛+1) =
𝑠𝑢𝑝(𝐴1∪𝐴2∪…∪𝐴𝑛∪𝐴𝑛+1)

√𝑠𝑢𝑝(𝐴1)×𝑠𝑢𝑝(𝐴2)×…×sup⁡(𝐴𝑛)×sup⁡(𝐴𝑛+1)
 (**)

Since 𝑠𝑢𝑝(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛) ≥ 𝑠𝑢𝑝(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛 ∪ 𝐴𝑛+1) and

√𝑠𝑢𝑝(𝐴1) × 𝑠𝑢𝑝(𝐴2) × …× 𝑠𝑢𝑝(𝐴𝑛) ≤

√𝑠𝑢𝑝(𝐴1) × 𝑠𝑢𝑝(𝐴2) × …× sup(𝐴𝑛) × sup(𝐴𝑛+1) then we can conclude that (*) ≥

(**). (2)

Denote minimum cosine threshold as 𝛼, from (2) we have:

 𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2, … , 𝐴𝑛) < 𝛼 ⇒ 𝑐𝑜𝑠𝑖𝑛𝑒(𝐴1, 𝐴2, … , 𝐴𝑛 , 𝐴𝑛+1) < 𝛼

This means if the itemset does not satisfy minimum cosine 𝛼, it is no need to traverse its

superset.

2.4.2 Calculation of cosine measure
From the definition, the calculation of the cosine(A) value of an itemset A is depend on the

two factors:

 product of support value of all 1-items in itemset A:

𝑠𝑢𝑝(𝐴1) × 𝑠𝑢𝑝(𝐴2) × …× sup⁡(𝐴𝑛)
 the support value of itemset A:

𝑠𝑢𝑝(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛)
 To optimize performance, the product is calculated during the construction of the utility

lists in FCHM algorithm. Specifically, in the Construct procedure , when the utility-list of

itemset Pxy is constructed from utility-list of Px and utility-list of Py, this product can be

calculated as

 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑥𝑦) = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑥) × 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑦) if prefix P is null

 else 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑥𝑦) =
𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑥)×𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑦)

𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃)
.

 Since support value of itemset X can be derived easily from utility list, the cosine(X) can

be obtained efficiently.

 These two following strategies from previous version of FCHM are also applied to further

improve the performance of the FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm: DOS and PSN.

29

Chapter 3. Experiment and discussion

In this thesis, three benchmark datasets in the field of high utility itemset mining, namely

foodmart, mushroom, and retail, are utilized to evaluate the experimental results of the

proposed algorithm. Each dataset exhibits different characteristics that represent various types

of data that algorithms may encounter in real life, thereby providing a more comprehensive

assessment of the results. The general comparison between these three data sets is shown in

Table 3.1. Also, the details of these three datasets are presented below.

Table 3.1. Dataset’s characteristic

Dataset No. of

distinct items

No. of

transactions

Average

transaction

length

Type Has real

utility

value?

Foodmart 21,556 1,559 4.4 sparse with

short

transactions

Yes

Mushroom 88,162 16,470 23 dense No

Retail 88,162 16,470 10.3 sparse with

many items

No

3.1 Data

3.1.1 Mushroom dataset
The mushroom dataset consists of descriptions of hypothetical samples that represent 23

species of gilled mushrooms belonging to the Agaricus and Lepiota Family. Each species is

categorized as either definitely edible, definitely poisonous, or of unknown edibility and not

recommended. The dataset combines the latter class with the poisonous category. It is

important to note that the accompanying Guide explicitly states that there is no straightforward

rule for determining the edibility of a mushroom.

 This is a benchmark dataset that has been widely used in the field of frequent itemset

mining. In order to further leverage this real-life dataset for advanced tasks such as high utility

itemset mining, the internal utility values have been generated using a uniform distribution

ranging from 1 to 10. The original version of the dataset can be easily downloaded from the

UCI Machine Learning Repository [41] or the Frequent Itemset Mining Dataset Repository

[42], while the version with synthetic utility values can be obtained from the SPMF open-

source data mining library [43].

3.1.2 Retail dataset
The retail dataset consists of market basket data obtained from an undisclosed Belgian retail

supermarket. The data were collected during three separate time periods that were not

consecutive. The first period spans from mid-December 1999 to mid-January 2000. The second

period covers the duration from 2000 to early June 2000. The third and final period extends

from late August 2000 to the end of November 2000. Regrettably, there is no available data

between these periods. Consequently, the dataset encompasses approximately 5 months of data,

with a total of 88,162 collected receipts.

 Every entry in the dataset provides details such as the purchase date (recorded as 'date'),

the receipt number (recorded as 'receipt nr'), the article number (recorded as 'article nr'), the

quantity of items purchased (recorded as 'amount'), the article price in Belgian Francs (recorded

as 'price' with 1 Euro equivalent to 40.3399 BEF), and the customer number (recorded as

30

'customer nr'). It's important to note that the article price in the dataset represents the unit price

of the article multiplied by the quantity of items purchased.

 Throughout the entire duration of data collection, the retail supermarket store stocks a total

of 16,470 distinct Stock Keeping Units (SKU's). However, certain SKU's are only available

seasonally, such as Christmas items. While the majority of products are identified by a unique

barcode, some article numbers in the dataset represent a category or group of products rather

than a specific individual item. This is evident with items like fruits, vegetables, meat, and a

few others. During the data collection period, a total of 5,133 customers made at least one

purchase at the supermarket.

 Similar to the mushroom dataset, this is a real-life benchmark dataset in the field of frequent

itemset mining, and the internal utility values have also been generated using a uniform

distribution in the range from 1 to 10 to facilitate research in the area of high utility itemset

mining. The original version of the retail dataset can be downloaded from the Frequent Itemset

Mining Dataset Repository [42], and a version with synthetic utility values can be obtained

from the SPMF open-source data mining library [43].

3.1.3 Foodmart dataset
The foodmart dataset comprises customer transaction data obtained from a retail store,

extracted and converted from SQL-Server 2000. This dataset is also regarded as one of the

benchmark datasets in the field of both frequent itemset mining and high utility itemset mining.

The distinctive feature of this dataset compared to the Mushroom dataset and the retail dataset

is that it contains real utility values. This means that synthetic utility values are not needed,

making the problem addressed by the algorithm more realistic. This dataset can be downloaded

from the SPMF open-source data mining library [43].

3.2 Analyze

The algorithms and all experiments are carried out in the environment with the following

configuration: Intel(R) Core™ I3, 2.40GHz, memory capacity: 4 GB, operating system:

Microsoft Windows 10, programming language: Java. The experiments used three evaluation

criteria including effectiveness, runtime and memory consumption. The FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm

is in turn compared with the traditional HUIM algorithm which is FHM and some CHIM

algorithms including FCHM𝑏𝑜𝑛𝑑and FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 . Several experiments are performed

under various parameter. Specifically, paremeters are set up by fixing minUtil varying minCore

and fixing minCore varying minUtil.

3.2.1 Effective Analysis
Table 3.2 compares the number of patterns between FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm and FHM

algorithm. FCHM𝑐𝑜𝑠𝑖𝑛𝑒 with minimum correlation α is denoted as 𝐶𝛼 . The various minimum

utility value for each dataset is represented by the parameters from 𝑎1 to 𝑎5. In addition, the

comparison between patterns count of the FCHM𝑐𝑜𝑠𝑖𝑛𝑒 , FCHM𝑏𝑜𝑛𝑑 and FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is

also performed in Figure 3.1 and Figure 3.2.

31

Table 3.2. Compare patterns count with FHM

Dataset Algorithm Number of patterns

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

foodmart FHM 233,231 231,904 219,012 154,670 59,351

𝐂𝟎.𝟎𝟏 101,629 100,303 87,966 36,252 3,274

𝐂𝟎.𝟎𝟐 81,511 80,222 68,745 25,409 2,530

𝐂𝟎.𝟎𝟑 48,912 47,687 3,7667 10,546 2,063

𝐂𝟎.𝟎𝟒 41,674 40,457 30,759 7,262 1,847

𝐂𝟎.𝟏 9,659 9,453 7,804 3,486 1,676

mushroom FHM 1,045,780 585,013 273,448 179,215 92,656

𝐂𝟎.𝟎𝟎𝟓 1740 1379 921 711 435

𝐂𝟎.𝟎𝟎𝟖 501 406 303 253 178

𝐂𝟎.𝟎𝟏 207 140 85 59 37

𝐂𝟎.𝟏 161 109 63 40 20

𝐂𝟎.𝟒 160 109 63 40 20

retail FHM 14,045 13,017 12,103 11,234 10,479

𝐂𝟎.𝟏 1910 1820 1741 1651 1575

𝐂𝟎.𝟏𝟐 1852 1765 1687 1598 1523

𝐂𝟎.𝟏𝟒 1812 1728 1650 1562 1488

𝐂𝟎.𝟏𝟔 1779 1696 1619 1533 1461

𝐂𝟎.𝟒 1,490 1,482 1,470 1,455 1,445

32

Figure 3.1. Compare pattern count with other versions (varying minUtil, fixing minCore)

Figure 3.2. Compare pattern count with other versions (varying minCore, fixing minUtil)

From Table 3.2, it can be seen that the proposed algorithm helps to reduce a large number of

weakly correlated patterns compared to the traditional HUIM algorithm FHM. Besides, Figure

3.1 and Figure 3.2 show that the number of patterns generated by the proposed algorithm is

generally quite similar to the previous two versions of the FCHM algorithm. Except for the

mushroom dataset, FCHM𝑐𝑜𝑠𝑖𝑛𝑒 returns significantly less patterns at small minUtil and

minCore. This shows that the constraint set by the proposed algorithm can be considered tighter

than previous versions in some cases.

33

3.2.2 Efficiency Analysis
The runtime of FCHM𝑐𝑜𝑠𝑖𝑛𝑒 is compared with FHM (Figure 3.3, Figure 3.4) and FCHM𝑏𝑜𝑛𝑑,

FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (Figure 3.5, Figure 3.6). Parameter values from Figure 3.1 and Figure 3.2

are preserved to ensure a fair comparison. It can be noticed that the runtime of FCHM𝑐𝑜𝑠𝑖𝑛𝑒 is

much improved compared to FHM. Specifically, in case the dataset contains many weakly

correlated patterns like mushroom, the runtime of FCHM𝑐𝑜𝑠𝑖𝑛𝑒 is 20 times faster than FHM.

Besides, the runtime of the proposed algorithm is quite similar to FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 . The

reason is that although using different measures, the factors used to calculate these two

measures are the same. Therefore, similar to FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 , FCHM𝑐𝑜𝑠𝑖𝑛𝑒 is also slower

than FCHM𝑏𝑜𝑛𝑑 in the mushroom dataset because FCHM𝑏𝑜𝑛𝑑 has better prune search space

than these two algorithms. However, in the remaining datasets, the use of bit vectors makes

FCHM𝑏𝑜𝑛𝑑 slower than FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 and FCHM𝑐𝑜𝑠𝑖𝑛𝑒 .

Figure 3.3. Compare runtime with FHM (varying minUtil, fixing minCore)

Figure 3.4. Compare runtime with FHM (varying minCore, fixing minUtil)

34

Figure 3.5. Compare runtime with other versions (varying minUtil, fixing minCore)

Figure 3.6. Compare runtime with other versions (varying minCore, fixing minUtil)

35

3.2.3 Memory Analysis
This section performs a memory evaluation between the compared algorithms above.

Parameter values continue to be preserved. The results are shown in Figure 3.7 and Figure 3.8.

In general, FCHM𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 and FCHM𝑐𝑜𝑠𝑖𝑛𝑒 have lower memory consumption than FHM

algorithms because they can avoid a huge number of weakly correlated patterns and their

measures can also be efficiently calculated. Specifically, the FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm is always

in the top two algorithms with the lowest memory consumption. Besides, as mentioned above,

the use of a disjunctive bit vector structure often causes FCHM𝑏𝑜𝑛𝑑 to consume more memory

than the other two versions of FCHM and even more than FHM in some cases. However, with

the appropriate type of dataset and threshold, FCHM𝑏𝑜𝑛𝑑 can still be the algorithm has the best

memory consumption and runtime, the result on mushroom dataset is an example.

Figure 3.7. Compare memory with FHM and other versions (varying minUtil, fixing

minCore)

36

Figure 3.8. Compare memory with FHM and other versions (varying minCore, fixing

minUtil)

3.3 Conclusion and Perspectives
This thesis proposes the FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm, which is a new version of the FCHM

algorithm. The null-invariant and anti-monotonicity properties of the cosine measure are

utilized to optimize the effectiveness and efficiency of the algorithm. Two strategies DOS and

PSN from previous versions of the FCHM algorithm are also applied to effectively support the

process of prune search space.

 Experimental results show that the FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm significantly reduces weakly

correlated patterns compared with the traditional HUIM algorithm. Besides, in general, the

proposed algorithm has a stable runtime with memory consumption and in some cases better

than the previous two versions of the FCHM algorithm.

 In future study, the performance of the FCHM𝑐𝑜𝑠𝑖𝑛𝑒 algorithm can be further improved by

developing some new pruning strategies that are suitable for the cosine measure. In addition,

the study of some other measures, especially the null-invariant measures, may also produce

interesting results.

37

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Heidelberg (2015)

2. Han, J., Kamber, M., Pei, J.: Data mining concepts and techniques third edition, The

Morgan Kaufmann Series in Data Management Systems (2011)

3. Fournier-Viger, P., Lin, J.C.-W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of

sequential pattern mining. Data Sci. Pattern Recognit. 1(1), 54–77 (2017)

4. Fournier-Viger, P., Lin, J.C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H. B.: A survey of itemset

mining. WIREs Data Mining and Knowledge Discovery, pp. e1207 (2017)

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of

the 20th International Conference Very Large Data Bases, pp. 487–499. Morgan Kaufmann

(1994)

6. Brauckhoff, D., Dimitropoulos, X., Wagner, A., Salamatian, K.: Anomaly extraction in

backbone networks using association rules. IEEE/ACM Trans. Netw. 20(6), 1788–1799

(2012)

7. Duan, Y., Fu, X., Luo, B., Wang, Z., Shi, J., Du, X.: Detective: automatically identify and

analyze malware processes in forensic scenarios via DLLs. In: Proceedings of the 2015

IEEE International Conference on Communications, pp. 5691–5696. IEEE (2015)

8. Fernando, B., Elisa F., Tinne T.: Effective use of frequent itemset mining for image

classification. In: Proceedings of the 12th European Conference on Computer Vision, pp.

214–227. Springer (2012)

9. Glatz, E., Mavromatidis, S., Ager, B., Dimitropoulos, X.: Visualizing big network traffic

data using frequent pattern mining and hypergraphs. Computing 96(1), 27–38 (2014)

10. Liu, Y., Zhao, Y., Chen, L., Pei, J., Han, J.: Mining frequent trajectory patterns for activity

monitoring using radio frequency tag arrays. IEEE Trans. Parallel Distrib. Syst. 23(11),

2138– 2149 (2012)

11. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In:

Proceedings of the 21st International Conference on World Wide Web, pp. 191–200. ACM

(2012)

12. Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Baudouin, R.: A dynamic questionnaire

to further reduce questions in learning style assessment. In: Proceedings of the 10th

International Conference Artificial Intelligence Applications and Innovations, pp. 224–235.

Springer (2014)

13. Naulaerts, S., Meysman, P., Bittremieux, W., Vu, T.N., Berghe, W.V., Goethals, B.,

Laukens, K.: A primer to frequent itemset mining for bioinformatics. Brief. Bioinform.

16(2), 216–231 (2015)

14. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S.: FHM: Faster high-utility itemset

mining using estimated utility co-occurrence pruning. In: Proceedings of the 21st

International Symposium Methodologies for Intelligent Systems, pp. 83–92. Springer

(2014)

15. Lin, J.C.-W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility

itemsets. Expert Syst. Appl. 38(6), 7419–24 (2011)

16. Lin, Y.C., Wu, C.W., Tseng, V.S.: Mining high utility itemsets in big data. In: Proceedings

of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 649–661.

Springer (2015)

17. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings

of the 21st ACM International Conference Information and knowledge management, pp.

55–64. ACM (2012)

38

18. Liu, Y., Liao, W.K., Choudhary, A.N.: A two-phase algorithm for fast discovery of high

utility itemsets. In: Proceedings of the 9th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pp. 689–695. Springer (2005)

19. Yao, H., Hamilton, H.J., Geng, L.: A unified framework for utility-based measures for

mining itemsets. In: Proceeidngs of the ACM SIGKDD Workshop on Utility-Based Data

Mining, pp. 28–37. ACM (2006)

20. Yun, U., Ryang, H., Ryu, K.H.: High utility itemset mining with techniques for reducing

overestimated utilities and pruning candidates. Expert Syst. Appl. 41(8), 3861–3878 (2014)

21. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.W., Tseng, V.S.: EFIM: a highly efficient

algorithm for high-utility itemset mining. In: Proceedings of the 14th Mexican International

Conference Artificial Intelligence, pp. 530–546. Springer (2015)

22. Han, J., Pei, J., Ying, Y., Mao, R.: Mining frequent patterns without candidate generation:

a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

23. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng.

12(3), 372–390 (2000)

24. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for

frequent/closed/maximal itemsets. In: Proceedings of the ICDM’04 Workshop on Frequent

Itemset Mining Implementations. CEUR (2004)

25. Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: hyper-structure mining of

frequent patterns in large databases. In: Proceedings of the 2001 IEEE International

Conference Data Mining, pp. 441–448. IEEE (2001)

26. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu., P.S.: Efficient algorithms for mining high utility

itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786

(2013)

27. Fournier-Viger, P., Lin, J.C.-W., Dinh, T., Le, H.B.: Mining correlated high-utility itemsets

using the bond measure. In: Proceedings of the International Conference Hybrid Artificial

Intelligence Systems, pp. 53–65. Springer (2016)

28. Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE

Trans. Knowl. Data Eng. 15(1), 57–69 (2003)

29. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Choi, H.J.: A framework for mining interesting

high utility patterns with a strong frequency affinity. Inf. Sci. 181(21), 4878–4894 (2011)

30. Lin, J.C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Chao, H.-C.: FDHUP: fast

algorithm for mining discriminative high utility patterns. Knowl. Inf. Syst. 51(3), 873–909

(2016)

31. Bouasker, S., Ben Yahia, S.: Key correlation mining by simultaneous monotone and

antimonotone constraints checking. In: Proceedings of the 30th Symposium on Applied

Computing, pp. 851–856. ACM (2015)

32. Philippe, F.-V., Lin J.C.W., Dinh, T., Le, H.B.: Mining correlated high-utility itemsets

using various measures. In: Logic Journal of the IGPL, Volume 28, Issue 1, Pages 19-32

(2020)

33. Gan, W., Lin, J.C.W., Philippe, F.-V., Chao, H.C., Fujita, H.: Extracting non-redundant

correlated purchase behaviors by utility measure. In: Knowl.- Based Syst., vol. 143, pp. 30-

41(2018)

34. Gan, W., Lin, J.C.W., Chao, H.C., Fujita, H., Yu, P.S.: Correlated utility-based pattern

mining. In: Information Sciences, volume 504, pages 470-486, ISSN 0020-0255 (2019)

35. Vo, B. et al.: Mining Correlated High Utility Itemsets in One Phase. In: IEEE Access, vol.

8, pp. 90465-90477 (2020)

36. Sethi, K.K., Ramesh, D. (2021). Correlated High Average-Utility Itemset Mining. In:

Bhateja, V., Peng, SL., Satapathy, S.C., Zhang, YD. (eds) Evolution in Computational

39

Intelligence. Advances in Intelligent Systems and Computing, vol 1176. Springer,

Singapore. (2021)

37. Peng, A.X., Koh, Y.S., Riddle, P.: mHUIMiner: a fast high utility itemset mining algorithm

for sparse datasets. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pp. 196–207 (2017)

38. Duong, Q.H., Fournier-Viger, P., Ramampiaro, H., Norvag, K., Dam, T.-L.: Efficient high

utility itemset mining using buffered utility-lists. Appl. Intell. 48(7), 1859–1877 (2017)

39. Qu, JF., Liu, M., Fournier-Viger, P.. Efficient Algorithms for High Utility Itemset Mining

Without Candidate Generation. In: Fournier-Viger, P., Lin, JW., Nkambou, R., Vo, B.,

Tseng, V. (eds) High-Utility Pattern Mining. Studies in Big Data, vol 51. Springer, Cham.

(2019)

40. S. Krishnamoorthy. Pruning strategies for mining high utility itemsets. Expert Systems with

Applications, 42, 2371–2381. (2015)

41. UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets/mushroom.

Accessed 21/5/2023

42. Frequent Itemset Mining Dataset Repository, http://fimi.uantwerpen.be/data/. Accessed

16/5/2022

43. Philippe, F.-V., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java

Open-Source Pattern Mining Library. In: Journal of Machine Learning Research, 15, 3389-

3393 (2014)

44. Bagui, S., Just, J., Bagui, S.C., Hemashinha, R.: Using a cosine-type measure to derive

strong association mining rules. In: Int. J. Knowl. Eng. Data Min. 1, 1, 69-83 (2010)

45. Tianyi, W., Yuguo, C., Jiawei, H.: Association Mining in Large Databases: A Re-

Examination of Its Measures. In: Proceedings of the Int. Conf. Principles and Practice of

Knowledge Discovery in Databases (PKDD’07) (2007)

https://archive.ics.uci.edu/ml/datasets/mushroom
http://fimi.uantwerpen.be/data/

