

Mining Correlated High-Utility Itemsets using the Cosine Measure

Students: Huynh Anh Duy, Huynh Anh Khoa Supervisor: Assoc. Prof. Phan Duy Hung

Agenda

- Introduction
- Algorithms
- Methodology
- Experiment and analyze
- Conclusion and perspectives

Introduction

Basic concepts Problem definition Related works and contribution

Basic concepts

What is a transaction database ?

• Let be a set of items {a, b, c, d, e,...} sold in a store

- A *transaction* is a set of items bought by a customer.
- Example:

Transaction	Item
T1	{a, b, c, d, e}
T2	{a, b, e}
Т3	$\{c, d, e\}$
T4	$\{a, b, d, e\}$

Problem Definition

Discovering Frequent Patterns

- The task of *frequent patern mining* was proposed by Agrawal (1993).
- **Input**: a transaction database and a parameter $minsup \ge 1$.
- **Output**: the *frequent itemsets* (all sets of item appearing in at least *minsup* transactions).

Transaction database

Transaction	Item	
T_1	${a, b, c, d, e}$	•
T_2	{a, b, e}	minsup = 2
T_3	$\{c, d, e\}$	
T_4	{a, b, d, e}	

Frequent itemsets

	Itemset	Support	
	{e}	4	Bread and Butter
2	{d, e}	3	
-	$\{b, d, e\}$	2	OFFER 50% OFF

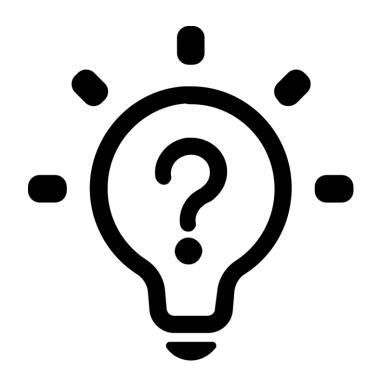
How to solve this problem?

The naïve approach:

- Scan the database to count the frequency of each possible itemset.
 eg: {a}, {a,b}, {a,c}, {a,d}, {a, e}, {a,b,c}, {a,b,d}, ... {b}, {b,c}, ... {a,b,c,d,e}
- If **n** items, then $2^n 1$ possible itemsets.
- Thus, inefficient.

Several efficient algorithms:

• Apriori, FPGrowth, H-Mine, LCM, etc.



Problem Definition

The "Apriori" property

Property (anti-monotonicity).

Let be itemsets X and Y. If $X \subset Y$, then the support of Y is less than or equal to the support of X.

Transaction	Item
T_1	{a, b, c, d, e}
T_2	{a, b, e}
T_3	$\{c, d, e\}$
T_4	{a, b, d, e}

Example

The support of $\{a,b\}$ is 3. Thus, supersets of $\{a,b\}$ have support ≤ 3 .

Problem Definition

Limitations of frequent patterns

- Frequent pattern mining has many applications.
- However, it has important limitations
 - many frequent pattern are not interesting
 - quantities of items in transactions must be 0 or 1
 - all items are considered as equally important (having the same weight)

High Utility Itemset Mining

A generalization of frequent pattern mining:

- Items can appear more than once in a transaction (e.g. a customer may buy 3 bottles of milk)
- Items have a unit profit (e.g. a bottle of mile generates 1\$ of profit)
- The goal is to find **patterns that generate a high profit**
- **Example:**
- {caviar, wine} is a pattern that generates a high profit, although it is rare

High Utility Itemset Mining

Input

A transaction database

TID	Transaction
$ \begin{array}{c} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{array} $	$\begin{array}{l} (a,1), (b,5), (c,1), (d,3), (e,1), (f,5) \\ (b,4), (c,3), (d,3), (e,1) \\ (a,1), (c,1), (d,1) \\ (a,2), (c,6), (e,2), (g,5) \\ (b,2), (c,2), (e,1), (g,2) \end{array}$

A unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

Output

All high-utility itemsets (itemsets having a *utility* \geq *minutil*) For example, if *minutil* = 33\$, the high-utility itemsets are:

{b,d,e} 36\$ 2 transactions	<pre>{b,c,d} 34\$ 2 transactions</pre>
{b,c,d,e} 40\$ 2 transactions	<pre>{b,c,e} 37\$ 3 transactions</pre>

Utility calculation

A transaction database

TID	Transaction
T_1	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
T_2	(b,4), (c,3), (d,3), (e,1)
T_3	(a,1), (c,1), (d,1)
T_4	(a,2), (c,6), (e,2), (g,5)
T_{5}	(b,2), (c,2), (e,1), (g,2)

A unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The **utility** of itemset {b,d,e} is calculated as follows:

 $u({b,d,e}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = 36$

Utility in	Utility in
transaction T_1	transaction T_2

Problem Definition

A difficult task !

Why?

- Because *utility* is **not** *anti-monotonic* (i.e. does not respect the *Apriori property*)
- Example:

 $u({a}) = 20$ $u({a,e}) = 24$ $u({a,b,c}) = 16$

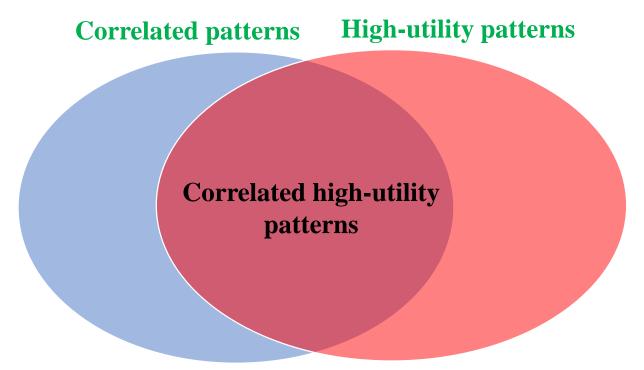
• Thus, frequent iemset mining algorithms cannot applied to this problem

Correlation problem

High-utility itemset mining

- Is useful for discovering profitable itemsets.
- But may discover many itemsets that are weakly correlated.
- E.g. bread with caviar has a high profit

We need a new type of patterns:



Solve high utility itemset mining problems

- Algorithms
 - Two-Phase (PAKDD 2005),
 - IHUP (TKDE 2010),
 - UP-Growth (KDD 2011),
 - HUI-Miner (CIKM 2012),
 - FHM (ISMIS 2014),
 - EFIM (MICAI 2015),
 - mHUIMiner (PAKDD 2017)
- **Key idea**: calculate an upper-bound on the utility of itemsets (e.g. the TWU) that respects the Apriori property to be able to prune the search space.

Related works and contribution

Solve correlated high utility itemset mining problems

- Algorithms
 - FCHM (HAIS 2016)
 - CoHUIM (Knowledge-Based Systems 2018)
 - CoUPM (Information Sciences 2019)
 - CoHUI-Miner (IEEE Access 2020)
- **Key idea**: The correlation measure must satisfy some properties that support the process of pruning candidates.

Propose a new version of FCHM algorithm which uses cosine measure to evaluate correlation between itemsets

The FHM algorithm The FCHM algorithm

The *TWU* upper bound

TWU of an itemset: the sum of the transaction utility for transactions containing the itemset

TID	Transaction
T_1 T_2	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5) (b,4), (c,3), (d,3), (e,1)
$\begin{bmatrix} & T_3 \\ & T_4 \end{bmatrix}$	(a,1), (c,1), (d,1) (a,2), (c,6), (e,2), (g,5)
T_5	(b,2), (c,2), (e,1), (g,2)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Example:

 $TWU(\{a,e\}) = TU(T_1) + TU(T_4) = 30\$ + 27\$ = 57\$$ $TWU(\{a,e\}) = 57\$ \ge u(\{a,e\}) = 24\$$ and the utility of any superset of $\{a,e\}$

Utility-list structure

Create a vertical structure named *Utility-List* for each item

Trans.	Items
<i>T</i> ₁	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
<i>T</i> ₂	(b,4), (c,3), (d,3), (e,1)
<i>T</i> ₃	(a,1), (c,1), (d,1)
<i>T</i> ₄	(a,2), (c,6), (e,2), (g,5)
<i>T</i> ₅	(b,2), (c,2), (e,1), (g,2)

Item	a	b	c	d	e	f	g	
Profit	5	2	1	2	3	1	1	

Example: The utility-list of {d}:

Trans.	util	rutil
<i>T</i> ₁	6	8
<i>T</i> ₂	6	3
T ₃	2	0

The first column is the **list of transactions** containing the itemset

Utility-list structure

Create a vertical structure named *Utility-List* for each item

Trans.	Items
<i>T</i> ₁	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
<i>T</i> ₂	(b,4), (c,3), (d,3) $(e,1)$
<i>T</i> ₃	(a,1), (c,1), (d,1)
T_4	(a,2), (c,6), (e,2), (g,5)
<i>T</i> ₅	(b,2), (c,2), (e,1), (g,2)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Example: The utility-list of {d}:

Trans.	util	rutil
<i>T</i> ₁	6	8
<i>T</i> ₂	6	3
T ₃	2	0

The second column is the **utility** of **the itemset in** these transactions

Utility-list structure

Create a vertical structure named *Utility-List* for each item

Trans.	Items
<i>T</i> ₁	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
<i>T</i> ₂	(b,4), (c,3), (d,3) $(e,1)$
<i>T</i> ₃	(a,1), (c,1), (d,1)
T_4	(a,2), (c,6), (e,2), (g,5)
<i>T</i> ₅	(b,2), (c,2), (e,1), (g,2)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Example: The utility-list of {d}:

Trans.	util	rutil
<i>T</i> ₁	6	8
<i>T</i> ₂	6	3
T ₃	2	0

Property 1. The sum of the second column gives the utility of the itemset. $u(\{d\}) = 6 + 6 + 2 = 14$ \$

Utility-list structure

Create a vertical structure named *Utility-List* for each item

Trans.	Items				
<i>T</i> ₁	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)				
<i>T</i> ₂	(b,4), (c,3), (d,3) $(e,1)$				
<i>T</i> ₃	(a,1), (c,1), (d,1)				
<i>T</i> ₄	(a,2), (c,6), (e,2), (g,5)				
<i>T</i> ₅	(b,2), (c,2), (e,1), (g,2)				

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Example: The utility-list of {d}:

Trans.	util	rutil
<i>T</i> ₁	6	8
<i>T</i> ₂	6	3
T ₃	2	0

The third column is the **remaining utility**, that is utility of items appearing after the itemset in the transactions.

Utility-list structure

Create a vertical structure named *Utility-List* for each item

Trans.	Items
<i>T</i> ₁	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
<i>T</i> ₂	(b,4), (c,3), (d,3) $(e,1)$
<i>T</i> ₃	(a,1), (c,1), (d,1)
<i>T</i> ₄	(a,2), (c,6), (e,2), (g,5)
<i>T</i> ₅	(b,2), (c,2), (e,1), (g,2)

Item	a	b	c	d	e	f g
Profit	5	2	1	2	3	1 1

Example: The utility-list of {d}:

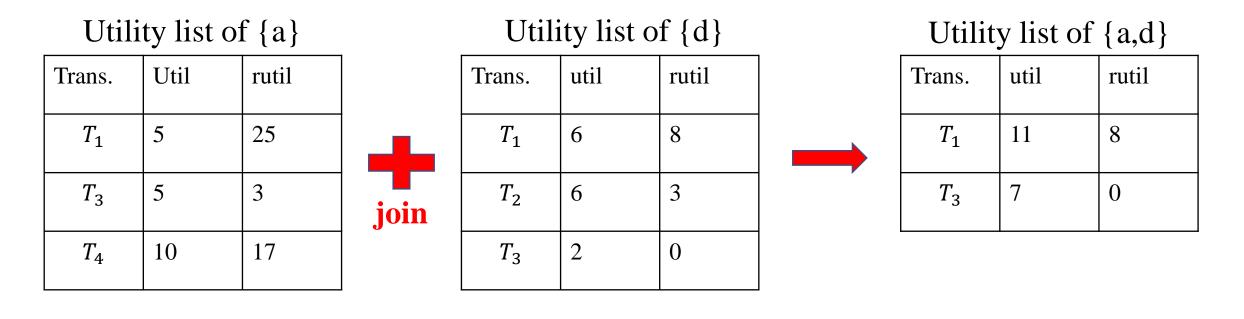
Trans.	util	rutil
T_1	6	8
<i>T</i> ₂	6	3
<i>T</i> ₃	2	0

Property 2: The sum of all numbers is an upper bound on the utility of the itemset and its extensions.

$$6 + 6 + 2 + 8 + 3 + 0 = 25$$
 \$

Utility-list structure

Utility-list can be *joined* to calculate utility-list of large itemsets

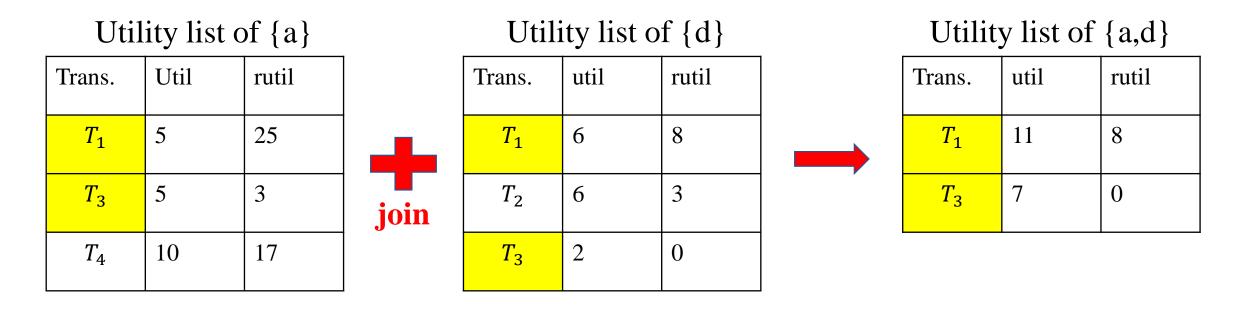


 $u(\{a\}) = 20$ \$ $u(\{d\}) = 14$ \$

 $u({a,d}) = 18$ \$

Utility-list structure

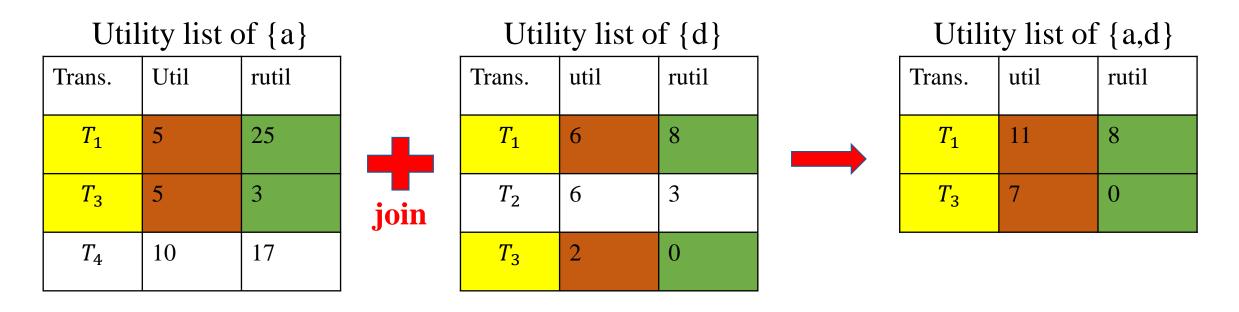
Utility-list can be *joined* to calculate utility-list of large itemsets



 $u(\{a\}) = 20$ \$ $u(\{d\}) = 14$ \$ $u(\{a,d\}) = 18$ \$

Utility-list structure

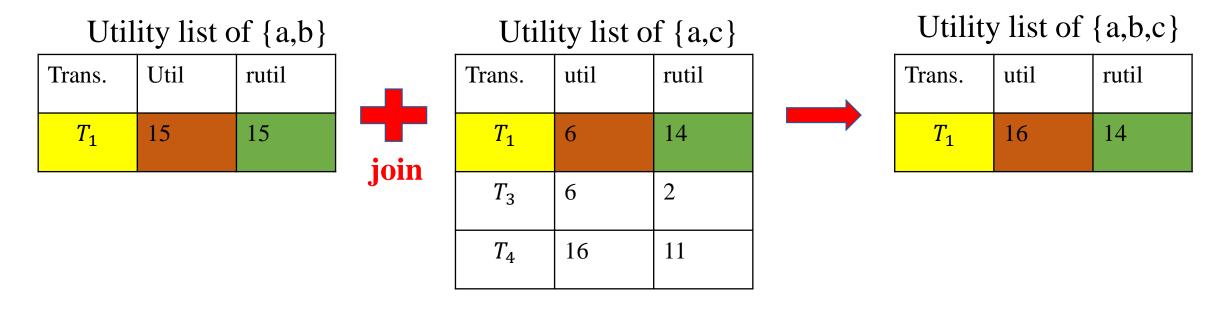
Utility-list can be *joined* to calculate utility-list of large itemsets



$$u(\{a\}) = 20$$
 \$ $u(\{d\}) = 14$ \$ $u(\{a,d\}) = 18$ \$

Utility-list structure

Construct utility-list of *k*-itemsets ($k \ge 3$)



$$u(\{a,b\}) = 15$$
 \$ $u(\{a,c\}) = 28$ \$ $u(\{a,b,c\}) = 16$ \$

Observation: Join operations are very costly in terms of execution time

We need to reduce the number of join operations

Estimated Utility Co-occurrence pruning (EUCS)

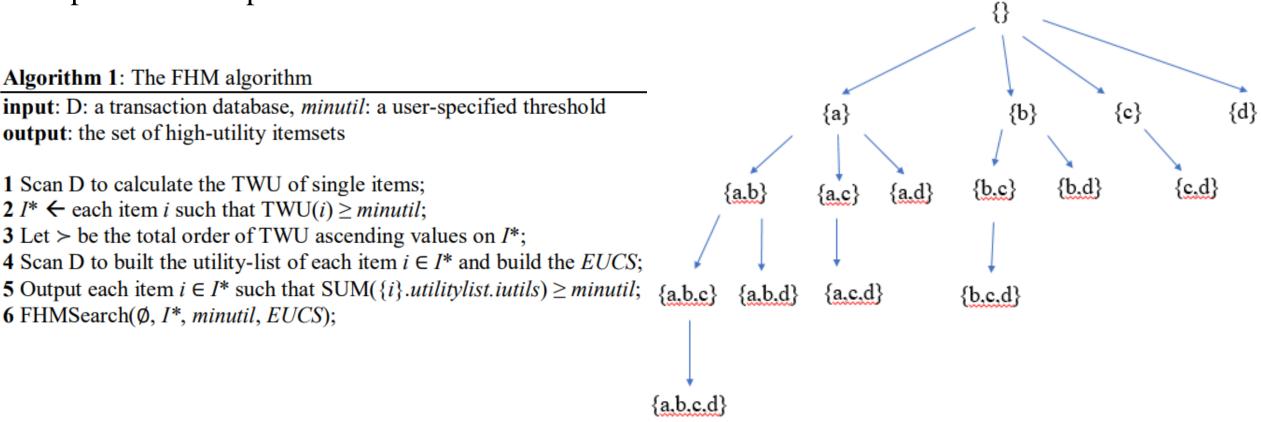
- We pre-calculate the TWU of all pairs of items and store it in a structure named EUCS
- During the search, consider that we need to calculate the utility list of an itemset X.
- If X contains a pair of items i and j such that TWU({i,j}) < minutil, then X is low utility as well as all its extensions.
- In this case, we can avoid performing the join.

	a	b	с	d
b	25			
с	55	54		
d	33	45	53	
e	47	54	76	45

EUCS can be implemented as (1) a triangular matrix or (2) a hashmap of hashmaps

General idea

- An algorithm for mining high utility itemsets
- It performs a depth-first search



• It prune the search space using the utility measures

How to detect if items are correlated?

- Several approachs:
- Using *statistical tests* to find productive itemsets (Webb et al., 2010)
- The *affinity* measure (Ahmed et al.2011)
- The *bond* measure (Bouasker et al.2015)
- The *all-confidence* measure (Omiecinski et al.2003)

The *bond* of an itemset

- The **conjunctive support** of an itemset X in a database is the number of transactions that **contains X**.
- The **disjunctive support** of an itemset X in a database is the number of transactions that **contains any item from X**.
- The *bond* of an item X is defined as:

$$bond(X) = \frac{conj_sup(X)}{disj_sup(X)}$$

Property (Anti-monotonicity of the bond measure). Let X and Y be two item-sets such that $X \subseteq Y$. It followes that bond(X) \geq bond(Y)

The *all-confidence* of an itemset

The all-confidence of an item X is defined as:

$$all - confidence(X) = \frac{supp(X)}{max_{x \in X}(supp(x))}$$

Where $max_{x \in X}(supp(x))$ is the support of the item with the highest support in X

Property (Anti-monotonicity of the all-confidence measure). Let X and Y be two item-sets such that $X \subseteq Y$. It followes that all-confidence(X) \geq all-confidence(Y)

Problem definition of FCHM

- Discovering all correlated high utility itemsets, that is itemsets:
 - Having a **utility** no less than a threshold **min_util**
- Having a **bond** no less than a threshold **min_bond** or having an **all-confidence** no less than a threshold **min_all-confidence**

A transaction database

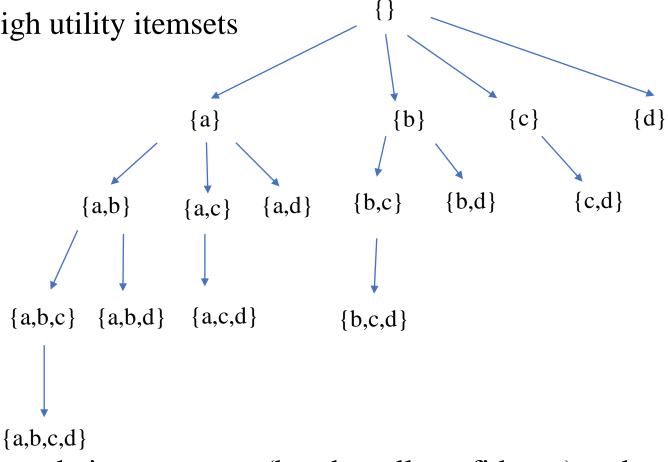
TID	Transaction	Item	a b c d e f g
T_1	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)	Profit	5 2 1 2 3 1 1
T_2	(b,4), (c,3), (d,3), (e,1)		1
T_3	(a,1), (c,1), (d,1)		
T_4	(a,2), (c,6), (e,2), (g,5)		
T ₅	(b,2), (c,2), (e,1), (g,2)		

For example, if **minutil = 30** and **minbond = 0.5**, correlated high utility itemsets are:

- $\{b,d\}$ util = 30 bond = 2/4 = 0.5
- $\{b,e\}$ util = 31 bond = 3/4 = 0.75
- $\{b,c,e\}$ util = 37 bond = 3/5 = 0.6

General idea

- An algorithm for mining correlated high utility itemsets
- It performs a depth-first search



- It prune the search space using the correlation measures (bond or all-confidence) and utility measures
- Key challenge: how to calculate the bond and all-confidence of an itemset

Calculation of Bond measure

Each itemset **X** is annotated with a **disjunctive bit vector** that stores the union of all items in X, denoted as bv(X)

- e.g. the disj. bitvector of {a} is $T_1, T_3, T_4 \rightarrow bv(a) = 10110$ the disj. bitvector of {b} is $T_1, T_2, T_5 \rightarrow bv(b) = 11001$ the disj. bitvector of {a,b} is bv(a) OR $bv(b) \rightarrow 10110$ OR $11001 \rightarrow 11111$ The bond of X can be calculated as $\frac{|ul(X)|}{|bv(X)|}$ where:
- |ul(X)| is the number of elements in the utility list of X
- |bv(X)| is the number of elements in the disjunctive bit vector

Calculation of All-confidence measure

- The support of X can be obtained by the size of its utility-list
- The support of single items can be obtained from their respective utility-list

Additional optimization for FCHM_{all-confidence}

- Directly Outputting Single items (DOS)
- Pruning supersets of Non correlated itemsets (PSN)
- Pruning with Upper-Bound (PUB) version 1.

Additional optimization for FCHM_{bond}

- Directly Outputting Single items (DOS)
- Pruning supersets of Non correlated itemsets (PSN)
- Pruning with Upper-Bound (PUB) version 2
- Abandoning Utility-list construction early (AUL)
- LA-Prune
- Pruning Utility-list by upper-bound (PUL)

Methodology

The Cosine measure Proposes approach

The Cosine measure

• Cosine measure for two items:

$$cosine(A_1, A_2) = \frac{P(A_1 \cup A_2)}{\sqrt{P(A_1) \times P(A_2)}} = \frac{\sup(A_1 \cup A_2)}{\sqrt{\sup(A_1) \times \sup(A_2)}}$$

• Cosine measure for more than two items:

$$cosine(A_1, A_2, \dots, A_n) = \frac{P(A_1 \cup A_2 \cup \dots \cup A_n)}{\sqrt{P(A_1) \times P(A_2) \times \dots \times P(A_n)}} = \frac{\sup(A_1 \cup A_2 \cup \dots \cup A_n)}{\sqrt{\sup(A_1) \times \sup(A_2) \times \dots \times \sup(A_n)}}$$

- Null-invariant measure
- Anti-monotonicity property

Proposes *FCHM_{cosine}* algorithm

The Cosine measure

38

Null-invariant property

- A null-transaction is a transaction that does not contain any of the itemsets being examined
- Null-(transaction) invariance is crucial for correlation analysis

	[Ν	leasure		Definition	1	Range	Null-Invariant	t	
						>	$\chi^2(a,b)$	$\sum_{i,j=0}$	$0,1 \frac{(e(a_i,b_j)-e(a_i))}{e(a_i)}$	$(a_i, b_j))^2$	$[0,\infty]$	No	
Table	Table 6.8 2 × 2 Contingency Table for Two Items					L	Lift(a, b)		$rac{P(ab)}{P(a)P(b)}$		$[0,\infty]$	No	
	milk milk		milk	Σ_{row}	Σ _{row} All		b) $\frac{1}{m}$	$\frac{sup(ab)}{max\{sup(a), sup(b)\}}$		[0, 1]	Yes		
	$\begin{array}{ccc} coffee & mc & \overline{m}c \\ \hline coffee & m\overline{c} & \overline{m}c \\ \hline \end{array}$		$\overline{m}c$	c C		Coherence(a, b)		$\frac{sup(ab)}{sup(a)+sup(b)-sup(ab)}$		[0, 1]	Yes		
				ī	Co	Cosine(a, b)		$\frac{sup(ab)}{\sqrt{sup(a)sup(b)}}$		[0, 1]	Yes		
	Σ_{col}	Σ_{col} m \overline{m} Σ			K	Kulc(a, b)		$\frac{sup(ab)}{2}\left(\frac{1}{sup(a)} + \frac{1}{sup(b)}\right)$			Yes	-	
	Null-transactions w.r.t. m and c					Ma:	^{xConf} (a Tabl e	,b) <i>mas</i>	(- L)			Yes nitions.	Null-invariant
	Data set	mc	\overline{mc}	\overline{ms}	\overline{mc}	χ^2	Lift	AllConj	f Coherer	ice Cos	ine K	ule MaxCo	onf
		10,000		,	00,000		9.26	0.91	0.83	0.9		.91 0.91	
-	-	10,000 100	1,000 1,000	1,000	$100 \\ 100,000$	0 670	$\frac{1}{8.44}$	0.91	0.83	0.9		.91 0.91	
F	D_3 D_4	1,000	1,000 1,000	1,000	2	24740		0.09	0.03	0.		0.09 0.08	
-	D_5	1,000	100	,	100,000	8173	9(18	0.09	0.09	0.		0.5 0.91	
, [D_6	1,000	10		100,000	965	1.97	-0.01	0.01			0.5 0.99	
•				i	Table	2. Ex	tampl	e data.	sets.	Subtl	<u>e: Th</u>	ey disagro	ee _

Proposed approach

Proof for anti-monotonicity property

$$cosine(A_1, A_2, \dots, A_n) = \frac{\sup(A_1 \cup A_2 \cup \dots \cup A_n)}{\sqrt{\sup(A_1) \times \sup(A_2) \times \dots \times \sup(A_n)}}$$

$$cosine(A_1, A_2, \dots, A_n, A_{n+1}) = \frac{\sup(A_1 \cup A_2 \cup \dots \cup A_n \cup A_{n+1})}{\sqrt{\sup(A_1) \times \sup(A_2) \times \dots \times \sup(A_n) \times \sup(A_{n+1})}}$$

Since $\sup(A_1 \cup A_2 \cup \dots \cup A_n) \ge \sup(A_1 \cup A_2 \cup \dots \cup A_n \cup A_{n+1})$ and

 $\sqrt{\sup(A_1) \times \sup(A_2) \times \cdots \times \sup(A_n)} \le \sqrt{\sup(A_1) \times \sup(A_2) \times \cdots \times \sup(A_n) \times \sup(A_{n+1})}$

$$cosine(A_1, A_2, \dots, A_n) \ge cosine(A_1, A_2, \dots, A_n, A_{n+1})$$

if the itemset does not satisfy minimum cosine α , it is no need to traverse its superset

Proposed approach

Calculation of cosine measure

• Product of support value of all 1-items is calculated during the construction of the utility list in FCHM algorithm:

 $product(Pxy) = product(Px) \times product(Py) \text{ if prefix } P \text{ is null}$ else $product(Pxy) = \frac{product(Px) \times product(Py)}{product(P)}$

• Support value of itemset X can be derived from utility list.

Additional optimization

- Directly Outputting Single items (DOS)
- Pruning Supersets of Non correlated itemsets (PSN)

Experiment and Analyze

Data Effectiveness Analysis Efficiency Analysis Memory Analysis Data

Dataset	No. of distinct items	No. of transactions	Average transaction length	Туре
Foodmart	21,566	1,599	4.4	Sparse with short transactions
Mushroom	88,162	16,470	23	Dense
Retail	88,162	16,470	10.3	Sparse with many items

Effectiveness Analysis

Table 4. Compare patterns count with FHM								
Dataset	Algorithm	Number of patterns						
		<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	a_5		
foodmart	FHM	233,231	231,904	219,012	154,670	59,351		
	C _{0.01}	101,629	100,303	87,966	36,252	3,274		
	C _{0.02}	81,511	80,222	68,745	25,409	2,530		
	C _{0.03}	48,912	47,687	3,7667	10,546	2,063		
	C _{0.04}	41,674	40,457	30,759	7,262	1,847		
	C _{0.1}	9,659	9,453	7,804	3,486	1,676		
mushroom	FHM	1,045,780	585,013	273,448	179,215	92,656		
	C _{0.005}	1740	1379	921	711	435		
	C _{0.008}	501	406	303	253	178		
	C _{0.01}	207	140	85	59	37		
	C _{0.1}	161	109	63	40	20		
	C _{0.4}	160	109	63	40	20		
retail	FHM	14,045	13,017	12,103	11,234	10,479		
	C _{0.1}	1910	1820	1741	1651	1575		
	C _{0.12}	1852	1765	1687	1598	1523		
	C _{0.14}	1812	1728	1650	1562	1488		
	C _{0.16}	1779	1696	1619	1533	1461		
	C _{0.4}	1,490	1,482	1,470	1,455	1,445		

Reduce a large number of weakly correlated patterns compared to FHM algorithm

Effectiveness Analysis

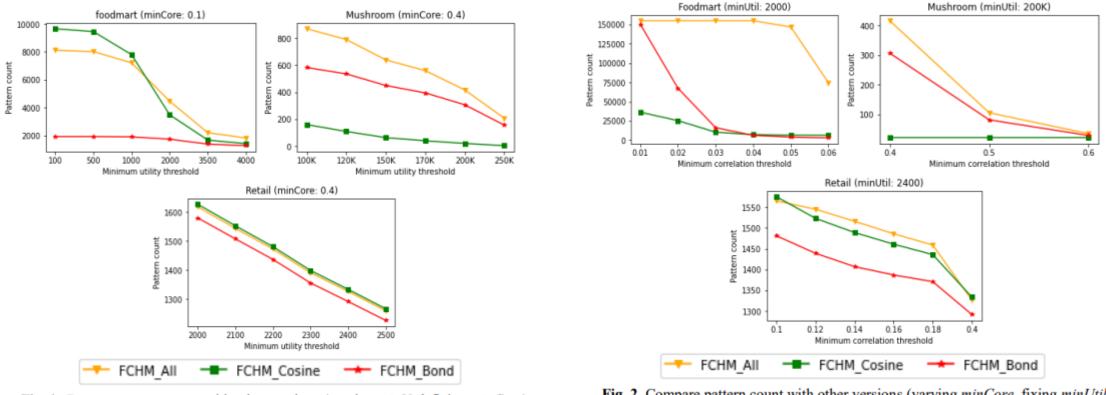
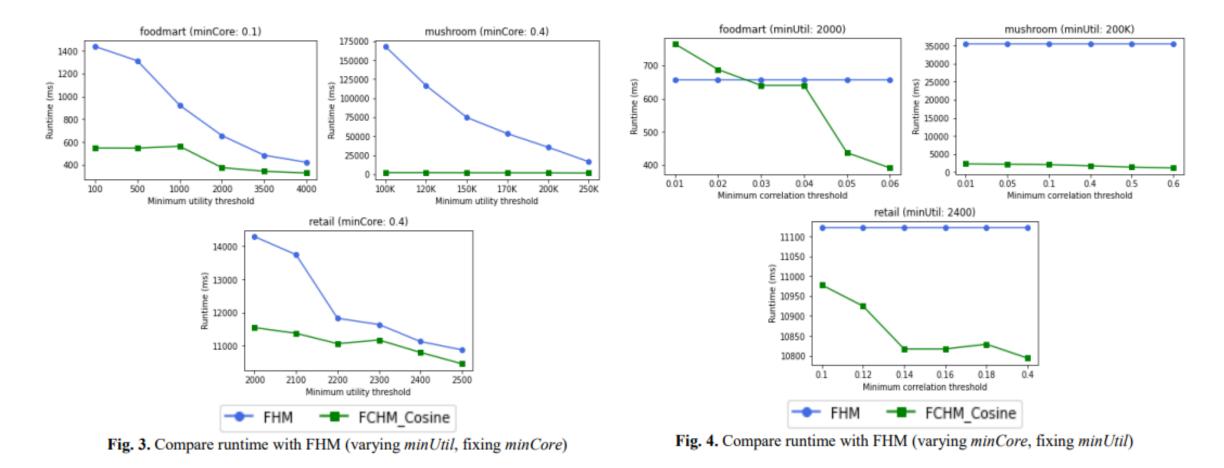


Fig. 1. Compare pattern count with other versions (varying *minUtil*, fixing *minCore*)

Fig. 2. Compare pattern count with other versions (varying minCore, fixing minUtil)

The constraint set by the proposed algorithm can be considered tighter than previous versions in some cases

Efficiency Analysis



• The runtime of *FCHM_{cosine}* is much improved compared to FHM

Efficiency Analysis

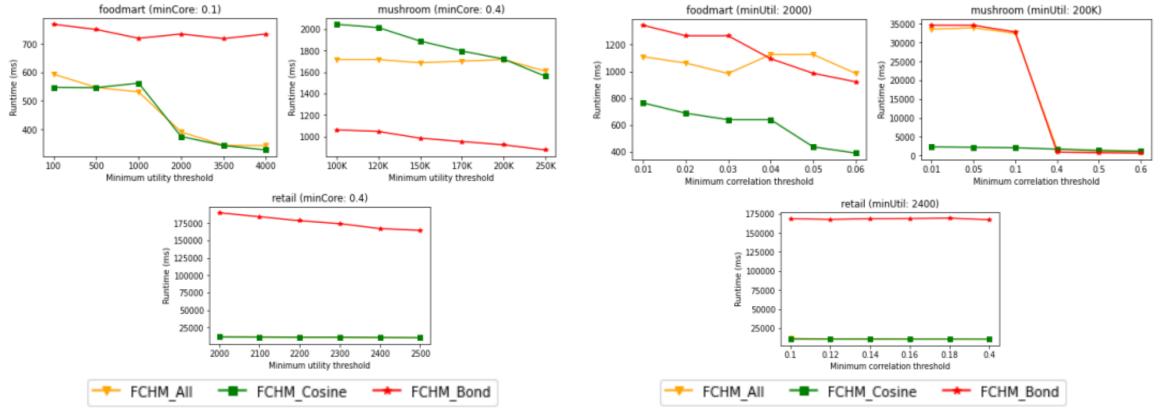


Fig. 5. Compare runtime with other versions (varying minUtil, fixing minCore)

Fig. 6. Compare runtime with other versions (varying minCore, fixing minUtil)

- The runtime of $FCHM_{cosine}$ is quiet similar to $FCHM_{all-confidence}$
- The runtime of $FCHM_{cosine}$ is better than $FCHM_{bond}$ except for mushroom dataset

Memory Analysis

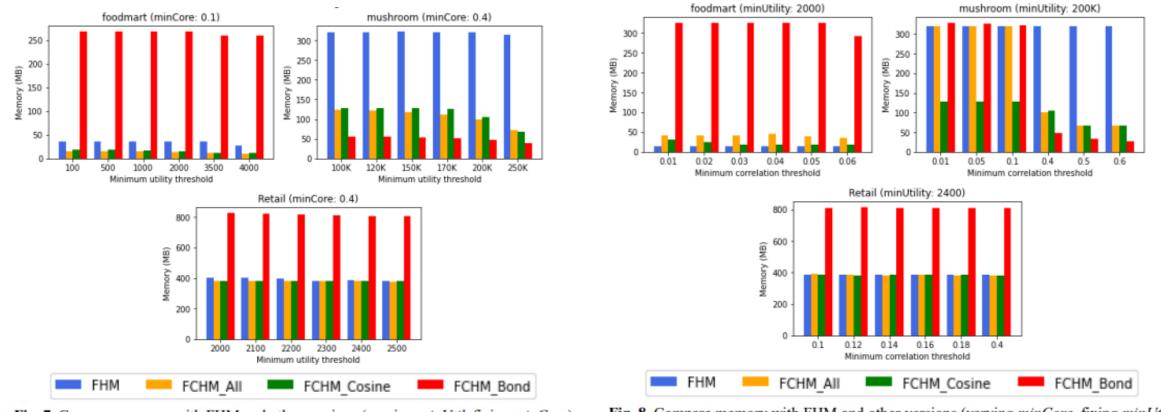


Fig. 7. Compare memory with FHM and other versions (varying minUtil, fixing minCore)

Fig. 8. Compare memory with FHM and other versions (varying minCore, fixing minUtil)

The *FCHM_{cosine}* is always in the top two algorithms with the lowest memory consumption

Conclusion and perspectives

Conclusion

- Proposes the $FCHM_{cosine}$ algorithm, which is a new version of the FCHM algorithm
- *FCHM_{cosine}* significantly reduces weakly correlated patterns compared with the traditional HUIM algorithm
- $FCHM_{cosine}$ has a stable runtime with memory consumption and in some cases better than the previous two versions of the FCHM algorithm

Future works

- Developing new pruning strategies which suitable for cosine measure
- Research more on other null-invariant measures

Thanks for your attention !

Q & **A**