
Mining Correlated High-Utility Itemsets
using the Cosine Measure

Students: Huynh Anh Duy, Huynh Anh Khoa

Supervisor: Assoc. Prof. Phan Duy Hung

Agenda

• Introduction

• Algorithms

• Methodology

• Experiment and analyze

• Conclusion and perspectives

Introduction

Basic concepts

Problem definition

Related works and contribution

What is a transaction database ?

• Let be a set of items {a, b, c, d, e,…} sold in a store

Transaction Item

T1 {a, b, c, d, e}

T2 {a, b, e}

T3 {c, d, e}

T4 {a, b, d, e}

• A transaction is a set of items bought by a customer.

• Example:

Basic concepts

Discovering Frequent Patterns

• The task of frequent patern mining was proposed by Agrawal (1993).

• Input: a transaction database and a parameter minsup ≥ 1.

• Output: the frequent itemsets (all sets of item appearing in at least minsup

transactions).

Problem Definition

Transaction Item

𝑇1 {a, b, c, d, e}

𝑇2 {a, b, e}

𝑇3 {c, d, e}

𝑇4 {a, b, d, e}

Itemset Support

{e} 4

{d, e} 3

{b, d, e} 2

… …

minsup = 2

Transaction database Frequent itemsets

How to solve this problem?

The naïve approach:

• Scan the database to count the frequency of each possible itemset.

eg: {a}, {a,b}, {a,c}, {a,d}, {a, e}, {a,b,c}, {a,b,d}, …{b}, {b,c}, … {a,b,c,d,e}

• If n items, then 𝟐𝒏 − 𝟏 possible itemsets.

• Thus, inefficient.

Several efficient algorithms:

• Apriori, FPGrowth, H-Mine, LCM, etc.

Problem Definition

The “Apriori” property

Property (anti-monotonicity).

Let be itemsets X and Y. If X ⊂Y, then the support of Y is less than or

equal to the support of X.

Transaction Item

𝑇1 {a, b, c, d, e}

𝑇2 {a, b, e}

𝑇3 {c, d, e}

𝑇4 {a, b, d, e}

Example

The support of {a,b} is 3.

Thus, supersets of {a,b} have support ≤ 3.

Problem Definition

Limitations of frequent patterns

• Frequent pattern mining has many applications.

• However, it has important limitations

- many frequent pattern are not interesting

- quantities of items in transactions must be 0 or 1

- all items are considered as equally important (having the same weight)

Problem Definition

High Utility Itemset Mining

A generalization of frequent pattern mining:

- Items can appear more than once in a transaction (e.g. a customer may buy 3 bottles

of milk)

- Items have a unit profit (e.g. a bottle of mile generates 1$ of profit)

- The goal is to find patterns that generate a high profit

Example:

- {caviar, wine} is a pattern that generates a high profit, although it is rare

Problem Definition

High Utility Itemset Mining

TID Transaction

𝑇1
𝑇2
𝑇3
𝑇4
𝑇5

(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

(b,4), (c,3), (d,3), (e,1)

(a,1), (c,1), (d,1)

(a,2), (c,6), (e,2), (g,5)

(b,2), (c,2), (e,1), (g,2)

Item a b c d e f g

Profit 5 2 1 2 3 1 1

Input
A transaction database A unit profit table

minutil: a minimum utility threshold

set by the user (a positive integer)

Output

{b,d,e} 36$

2 transactions

{b,c,d} 34$

2 transactions

{b,c,d,e} 40$

2 transactions

{b,c,e} 37$

3 transactions

All high-utility itemsets (itemsets having a utility ≥ minutil)

For example, if minutil = 33$, the high-utility itemsets are:

Problem Definition

Utility calculation

TID Transaction

𝑇1
𝑇2
𝑇3
𝑇4
𝑇5

(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

(b,4), (c,3), (d,3), (e,1)

(a,1), (c,1), (d,1)

(a,2), (c,6), (e,2), (g,5)

(b,2), (c,2), (e,1), (g,2)

Item a b c d e f g

Profit 5 2 1 2 3 1 1

A transaction database A unit profit table

The utility of itemset {b,d,e} is calculated as follows:

u({b,d,e}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = 36$

Utility in

transaction 𝑇1

Utility in

transaction 𝑇2

Problem Definition

A difficult task !
Why ?

• Because utility is not anti-monotonic (i.e. does not respect the Apriori property)

• Example:

u({a}) = 20 $

u({a,e}) = 24 $

u({a,b,c}) = 16 $

• Thus, frequent iemset mining algorithms cannot applied to this problem

Problem Definition

Correlation problem

High-utility itemset mining

- Is useful for discovering profitable itemsets.

- But may discover many itemsets that are weakly correlated.

- E.g. bread with caviar has a high profit

We need a new type of patterns:

Correlated patterns High-utility patterns

Correlated high-utility

patterns

Problem Definition

Solve high utility itemset mining problems

• Algorithms

- Two-Phase (PAKDD 2005),

- IHUP (TKDE 2010),

- UP-Growth (KDD 2011),

- HUI-Miner (CIKM 2012),

- FHM (ISMIS 2014),

- EFIM (MICAI 2015),

- mHUIMiner (PAKDD 2017)

• Key idea: calculate an upper-bound on the utility of itemsets (e.g. the TWU) that respects

the Apriori property to be able to prune the search space.

Related works and contribution

Related works and contribution

Solve correlated high utility itemset mining problems

• Algorithms

- FCHM (HAIS 2016)

- CoHUIM (Knowledge-Based Systems 2018)

- CoUPM (Information Sciences 2019)

- CoHUI-Miner (IEEE Access 2020)

• Key idea: The correlation measure must satisfy some properties that support the process

of pruning candidates.

Propose a new version of FCHM algorithm which uses cosine measure to evaluate

correlation between itemsets

Algorithms

The FHM algorithm

The FCHM algorithm

The TWU upper bound

TID Transaction

𝑇1
𝑇2
𝑇3
𝑇4
𝑇5

(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

(b,4), (c,3), (d,3), (e,1)

(a,1), (c,1), (d,1)

(a,2), (c,6), (e,2), (g,5)

(b,2), (c,2), (e,1), (g,2)

Item a b c d e f g

Profit 5 2 1 2 3 1 1

TWU of an itemset: the sum of the transaction utility for transactions containing the itemset

Example:

TWU({a,e}) = TU(𝑇1) + TU(𝑇4) = 30$ + 27$ = 57$

TWU({a,e}) = 57$ ≥ u({a,e}) = 24$ and the utility of any superset of {a,e}

The FHM algorithm

Utility-list structure

Create a vertical structure named Utility-List for each item

Item a b c d e f g

Profit 5 2 1 2 3 1 1

Example: The utility-list of {d}:

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

The first column is the list of transactions

containing the itemset

Trans. Items

𝑇1 (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

𝑇2 (b,4), (c,3), (d,3), (e,1)

𝑇3 (a,1), (c,1), (d,1)

𝑇4 (a,2), (c,6), (e,2), (g,5)

𝑇5 (b,2), (c,2), (e,1), (g,2)

The FHM algorithm

Create a vertical structure named Utility-List for each item

Item a b c d e f g

Profit 5 2 1 2 3 1 1

Example: The utility-list of {d}:

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

The second column is the utility of the

itemset in these transactions

Trans. Items

𝑇1 (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

𝑇2 (b,4), (c,3), (d,3), (e,1)

𝑇3 (a,1), (c,1), (d,1)

𝑇4 (a,2), (c,6), (e,2), (g,5)

𝑇5 (b,2), (c,2), (e,1), (g,2)

The FHM algorithm
Utility-list structure

Create a vertical structure named Utility-List for each item

Item a b c d e f g

Profit 5 2 1 2 3 1 1

Example: The utility-list of {d}:

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

Property 1. The sum of the second column

gives the utility of the itemset.

u({d}) = 6 + 6 + 2 = 14 $

Trans. Items

𝑇1 (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

𝑇2 (b,4), (c,3), (d,3), (e,1)

𝑇3 (a,1), (c,1), (d,1)

𝑇4 (a,2), (c,6), (e,2), (g,5)

𝑇5 (b,2), (c,2), (e,1), (g,2)

Utility-list structure
The FHM algorithm

Create a vertical structure named Utility-List for each item

Item a b c d e f g

Profit 5 2 1 2 3 1 1

Example: The utility-list of {d}:

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

The third column is the remaining utility,

that is utility of items appearing after the

itemset in the transactions.

Trans. Items

𝑇1 (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

𝑇2 (b,4), (c,3), (d,3), (e,1)

𝑇3 (a,1), (c,1), (d,1)

𝑇4 (a,2), (c,6), (e,2), (g,5)

𝑇5 (b,2), (c,2), (e,1), (g,2)

Utility-list structure
The FHM algorithm

Create a vertical structure named Utility-List for each item

Item a b c d e f g

Profit 5 2 1 2 3 1 1

Example: The utility-list of {d}:

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

Property 2: The sum of all numbers is an

upper bound on the utility of the itemset and

its extensions.

6 + 6 + 2 + 8 + 3 + 0 = 25 $

Trans. Items

𝑇1 (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

𝑇2 (b,4), (c,3), (d,3), (e,1)

𝑇3 (a,1), (c,1), (d,1)

𝑇4 (a,2), (c,6), (e,2), (g,5)

𝑇5 (b,2), (c,2), (e,1), (g,2)

Utility-list structure
The FHM algorithm

Utility-list can be joined to calculate utility-list of large itemsets

Trans. Util rutil

𝑇1 5 25

𝑇3 5 3

𝑇4 10 17

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

Trans. util rutil

𝑇1 11 8

𝑇3 7 0

Utility list of {a} Utility list of {d} Utility list of {a,d}

u({a}) = 20 $ u({d}) = 14 $ u({a,d}) = 18 $

join

Utility-list structure
The FHM algorithm

Utility-list can be joined to calculate utility-list of large itemsets

Trans. Util rutil

𝑇1 5 25

𝑇3 5 3

𝑇4 10 17

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

Trans. util rutil

𝑇1 11 8

𝑇3 7 0

Utility list of {a} Utility list of {d} Utility list of {a,d}

u({a}) = 20 $ u({d}) = 14 $ u({a,d}) = 18 $

join

Utility-list structure
The FHM algorithm

Utility-list can be joined to calculate utility-list of large itemsets

Trans. Util rutil

𝑇1 5 25

𝑇3 5 3

𝑇4 10 17

Trans. util rutil

𝑇1 6 8

𝑇2 6 3

𝑇3 2 0

Trans. util rutil

𝑇1 11 8

𝑇3 7 0

Utility list of {a} Utility list of {d} Utility list of {a,d}

u({a}) = 20 $ u({d}) = 14 $ u({a,d}) = 18 $

join

Utility-list structure
The FHM algorithm

Construct utility-list of k-itemsets (k ≥ 3)

Trans. Util rutil

𝑇1 15 15

Trans. util rutil

𝑇1 6 14

𝑇3 6 2

𝑇4 16 11

Trans. util rutil

𝑇1 16 14

Utility list of {a,b} Utility list of {a,c} Utility list of {a,b,c}

u({a,c}) = 28 $ u({a,b,c}) = 16 $

join

Observation: Join operations are very costly in terms of execution time

We need to reduce the number of join operations

Utility-list structure
The FHM algorithm

u({a,b}) = 15 $

• We pre-calculate the TWU of all pairs of items and store it in a structure

named EUCS

• During the search, consider that we need to calculate the utility list of an

itemset X.

• If X contains a pair of items i and j such that TWU({i,j}) < minutil, then X is

low utility as well as all its extensions.

• In this case, we can avoid performing the join.

a b c d

b 25

c 55 54

d 33 45 53

e 47 54 76 45

EUCS can be implemented as

(1) a triangular matrix or

(2) a hashmap of hashmaps

Estimated Utility Co-occurrence pruning (EUCS)

The FHM algorithm

General idea

The FHM algorithm

• An algorithm for mining high utility itemsets

• It performs a depth-first search

• It prune the search space using the utility measures

How to detect if items are correlated?

Several approachs:

• Using statistical tests to find productive itemsets

(Webb et al., 2010)

• The affinity measure (Ahmed et al.2011)

• The bond measure (Bouasker et al.2015)

• The all-confidence measure (Omiecinski et

al.2003)

The FCHM algorithm

The bond of an itemset

• The conjunctive support of an itemset X in a database is the number of

transactions that contains X.

• The disjunctive support of an itemset X in a database is the number of

transactions that contains any item from X.

• The bond of an item X is defined as:

𝑏𝑜𝑛𝑑 𝑋 =
𝑐𝑜𝑛𝑗_sup(𝑋)

𝑑𝑖𝑠𝑗_sup(𝑋)

Property (Anti-monotonicity of the bond measure). Let X and Y be two

item-sets such that X ⊆ Y. It followes that bond(X) ≥ bond(Y)

The FCHM algorithm

Property (Anti-monotonicity of the all-confidence measure). Let X and Y be two

item-sets such that X ⊆ Y. It followes that all-confidence(X) ≥ all-confidence(Y)

The all-confidence of an item X is defined as:

𝑎𝑙𝑙 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 =
𝑠𝑢𝑝𝑝 𝑋

𝑚𝑎𝑥𝑥∈𝑋 𝑠𝑢𝑝𝑝 𝑥

Where 𝑚𝑎𝑥𝑥∈𝑋 𝑠𝑢𝑝𝑝 𝑥 is the support of the item with the highest support in

X

The all-confidence of an itemset

The FCHM algorithm

TID Transaction

𝑇1
𝑇2
𝑇3
𝑇4
𝑇5

(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)

(b,4), (c,3), (d,3), (e,1)

(a,1), (c,1), (d,1)

(a,2), (c,6), (e,2), (g,5)

(b,2), (c,2), (e,1), (g,2)

Item a b c d e f g

Profit 5 2 1 2 3 1 1

A transaction database

For example, if minutil = 30 and minbond = 0.5, correlated high utility itemsets are:

{b,d} util = 30 bond = 2/4 = 0.5

{b,e} util = 31 bond = 3/4 = 0.75

{b,c,e} util = 37 bond = 3/5 = 0.6

The FCHM algorithm

• Discovering all correlated high utility itemsets, that is itemsets:

- Having a utility no less than a threshold min_util

- Having a bond no less than a threshold min_bond or having an all-confidence no less

than a threshold min_all-confidence

Problem definition of FCHM

General idea

{}

{a} {b} {c} {d}

{a,b,c}

{a,c} {a,d} {b,d} {c,d}{b,c}{a,b}

{a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

The FCHM algorithm

• An algorithm for mining correlated high utility itemsets

• It performs a depth-first search

• It prune the search space using the correlation measures (bond or all-confidence) and

utility measures

• Key challenge: how to calculate the bond and all-confidence of an itemset

Calculation of Bond measure

Calculation of All-confidence measure

• The support of X can be obtained by the size of its utility-list

• The support of single items can be obtained from their respective utility-list

Each itemset X is annotated with a disjunctive bit vector that stores the union of all

items in X, denoted as bv(X)

e.g. the disj. bitvector of {a} is 𝑇1 , 𝑇3, 𝑇4 bv(a) = 10110

the disj. bitvector of {b} is 𝑇1 , 𝑇2, 𝑇5 bv(b) = 11001

the disj. bitvector of {a,b} is bv(a) OR bv(b) 10110 OR 11001 11111

The bond of X can be calculated as
𝑢𝑙(𝑋)

𝑏𝑣(𝑋)
where:

• 𝑢𝑙(𝑋) is the number of elements in the utility list of X

• 𝑏𝑣(𝑋) is the number of elements in the disjunctive bit vector

The FCHM algorithm

Additional optimization for 𝑭𝑪𝑯𝑴𝒂𝒍𝒍−𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

• Directly Outputting Single items (DOS)

• Pruning supersets of Non correlated itemsets (PSN)

• Pruning with Upper-Bound (PUB) version 1.

Additional optimization for 𝑭𝑪𝑯𝑴𝒃𝒐𝒏𝒅

• Directly Outputting Single items (DOS)

• Pruning supersets of Non correlated itemsets (PSN)

• Pruning with Upper-Bound (PUB) version 2

• Abandoning Utility-list construction early (AUL)

• LA-Prune

• Pruning Utility-list by upper-bound (PUL)

The FCHM algorithm

Methodology

The Cosine measure

Proposes approach

• Cosine measure for two items:

𝑐𝑜𝑠𝑖𝑛𝑒 𝐴1, 𝐴2 =
𝑃(𝐴1 ∪ 𝐴2)

𝑃(𝐴1) × 𝑃(𝐴2)
=

sup(𝐴1 ∪ 𝐴2)

sup(𝐴1) × sup(𝐴2)

• Cosine measure for more than two items:

𝑐𝑜𝑠𝑖𝑛𝑒 𝐴1, 𝐴2, … , 𝐴𝑛 =
𝑃(𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛)

𝑃 𝐴1 × 𝑃 𝐴2 ×⋯× 𝑃(𝐴𝑛)
=

sup(𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛)

sup 𝐴1 × sup 𝐴2 ×⋯× sup(𝐴𝑛)

• Null-invariant measure

• Anti-monotonicity property
Proposes 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 algorithm

The Cosine measure

August 23, 2023 Data Mining: Concepts and Techniques
38

• A null-transaction is a transaction that does not contain any of the itemsets being examined

• Null-(transaction) invariance is crucial for correlation analysis

Null-transactions
w.r.t. m and c

Null-invariant

Subtle: They disagree

The Cosine measure

Null-invariant property

𝑐𝑜𝑠𝑖𝑛𝑒 𝐴1, 𝐴2, … , 𝐴𝑛 =
sup(𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛)

sup 𝐴1 × sup 𝐴2 ×⋯× sup(𝐴𝑛)

𝑐𝑜𝑠𝑖𝑛𝑒 𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴𝑛+1 =
sup(𝐴1 ∪ 𝐴2 ∪ ⋯∪ 𝐴𝑛 ∪ 𝐴𝑛+1)

sup 𝐴1 × sup 𝐴2 ×⋯× sup(𝐴𝑛) × sup(𝐴𝑛+1)

Since sup(𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛) ≥ sup(𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛 ∪ 𝐴𝑛+1) and

sup 𝐴1 × sup 𝐴2 ×⋯× sup(𝐴𝑛) ≤ sup 𝐴1 × sup 𝐴2 ×⋯× sup(𝐴𝑛) × sup(𝐴𝑛+1)

𝑐𝑜𝑠𝑖𝑛𝑒 𝐴1, 𝐴2, … , 𝐴𝑛 ≥ 𝑐𝑜𝑠𝑖𝑛𝑒 𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴𝑛+1

if the itemset does not satisfy minimum cosine α, it is no need to traverse its superset

Proof for anti-monotonicity property

Proposed approach

Calculation of cosine measure

• Product of support value of all 1-items is calculated during the construction of the

utility list in FCHM algorithm:
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑥𝑦 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑥 × 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑦 if prefix P is null

else 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑥𝑦 =
𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑥)×𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃𝑦)

𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑃)

• Support value of itemset X can be derived from utility list.

Additional optimization

• Directly Outputting Single items (DOS)

• Pruning Supersets of Non correlated itemsets (PSN)

Proposed approach

Experiment and Analyze

Data

Effectiveness Analysis

Efficiency Analysis

Memory Analysis

Dataset No. of distinct

items

No. of

transactions

Average

transaction

length

Type

Foodmart 21,566 1,599 4.4 Sparse with

short

transactions

Mushroom 88,162 16,470 23 Dense

Retail 88,162 16,470 10.3 Sparse with

many items

Data

Reduce a large number of weakly

correlated patterns compared to

FHM algorithm

Effectiveness Analysis

The constraint set by the proposed algorithm can be

considered tighter than previous versions in some cases

Effectiveness Analysis

The runtime of 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 is much improved compared to FHM

Efficiency Analysis

• The runtime of 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 is quiet similar to 𝐹𝐶𝐻𝑀𝑎𝑙𝑙−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

• The runtime of 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 is better than 𝐹𝐶𝐻𝑀𝑏𝑜𝑛𝑑 except for mushroom dataset

Efficiency Analysis

The 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 is always in the top two algorithms with the lowest memory consumption

Memory Analysis

• Developing new pruning strategies which suitable for cosine measure

• Research more on other null-invariant measures

• Proposes the 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 algorithm, which is a new version of the FCHM algorithm

• 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 significantly reduces weakly correlated patterns compared with the
traditional HUIM algorithm

• 𝐹𝐶𝐻𝑀𝑐𝑜𝑠𝑖𝑛𝑒 has a stable runtime with memory consumption and in some cases better
than the previous two versions of the FCHM algorithm

Conclusion and perspectives

Conclusion

Future works

Thanks for your attention !

Q & A

