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AUTHOR’S CONTRIBUTIONS 

 To begin with, we propose an efficient algorithm named TKC-E, which relies on all the 

proposed techniques to mine cross-level HUIs in taxonomy quantitative databases. 

       Next, the TKC-E algorithm introduces an efficient technique to reduce the cost of 

database scans named Database Projection. These techniques, respectively, perform database 

projections identical in each projected database using a linear time and space implementation 

that reduce the size of the database as larger itemsets are explored, and thus considerably 

decrease the cost of database scans. 

       Based on the concept of item taxonomy and item generalization, we are applied  2 novel 

pruning strategies named revised sub-tree utility and local utility, which rely on a series of upper 

bounds and properties to discard unpromising itemsets. They are also mathematically proven to 

safely reduce the search space, which can considerably reduce the runtime and memory 

consumption. 

       Finally, the TKC-E algorithm introduces a new method to compute the utility of 

generalized items at the same time as specialized items. It also helps to accurately reevaluate 

the upper bounds to prune cross-level candidates. 
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ABSTRACT 

 High utility itemset (HUI) mining extracts frequent itemsets with high utility values from 

transactional databases. Traditional algorithms have limitations in detecting relationships 

between items and categories across multiple levels of a taxonomy-based database. Multi-level 

and cross-level algorithms have been proposed to address this issue while top-k algorithms find 

the top-k HUIs with the highest utility values. FEACP and TKC algorithms were proposed for 

HUI mining with high efficiency. However, they suffer from scalability and efficiency issues 

when dealing with large datasets. To overcome these limitations, we propose a new algorithm 

called TKC-E (Efficient Top-K Cross-level high utility itemset miner), which combines the 

strengths of FEACP and TKC while applying efficient strategies to identify cross-level HUIs in 

taxonomy-based databases, resulting in significantly improved scalability and efficiency. 

Experimental results show that TKC-E outperforms TKC in terms of processing speed and 

memory usage, with up to 4 times memory and 60 times runtime improvements on sparse and 

dense datasets, respectively. 

Keywords: TKC-E, High utility itemset, Top-k, Cross-level, taxonomy 
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1. Introduction 

 Data mining plays an important role in the field of knowledge discovery. By analyzing 

the characteristics of a dataset, data mining algorithms can reveal useful information for users. 

The discovered characteristics, called itemsets, help us understand the data better and support 

decision-making for many real-world applications [1]. A research method focused on finding 

frequently occurring sets of items, called Frequent Itemset Mining (FIM), was proposed by 

Agrawal and Skirant in 1994 [2]. FIM algorithms rely on a support framework to discover 

itemsets that appear no less frequently than the minimum support threshold. However, FIM 

treats all items of the transaction database equally, assuming that they are all equally important. 

This assumption is a major drawback of FIM, as for many real-world applications, items in the 

transaction database may have different levels of importance. For example, essential daily 

groceries are purchased more frequently than electronic devices. As a result, the FIM algorithm 

will provide a list of itemsets that frequently occur in the data, which may not be suitable in 

practice, as many items with low occurrence frequency may actually generate high profits [3]. 

 The Association Rule Mining (ARM) method was introduced by R. Agrawal in 1993 [1] 

to search for association rules among itemsets in transactional databases. This method helps to 

discover relationships and dependencies among itemsets, thereby revealing potential 

relationships between items and customers. The two important measures in ARM are support 

and confidence. Support measures the frequency of occurrence of itemsets in transactional data, 

while confidence measures the degree of certainty of combined rules. ARM uses support and 

confidence thresholds to filter out uninteresting rules and focus on more important ones. 

However, ARM also has some limitations. One similar disadvantage to FIM is the assumption 

that all items in the transactional database are equally important, which may not be true in many 

real-world situations. Additionally, ARM can generate a large number of combined rules, which 

may be difficult to explain and may not be relevant to the current issue [4]. 

 Some practical issues in knowledge discovery from transactional data cannot be fully 

addressed by FIM and ARM techniques. Particularly, efficiently searching for high utility 

itemsets in transactional databases needs to be addressed [3] [4]. To solve this problem, High 

Utility Itemsets (HUI) methods have been developed. HUI methods search for itemsets with 

higher total utility values than a given threshold and contribute significantly to knowledge 

discovery from transactional data [5]. 

 HUI algorithms use utility values to measure the value of each itemset in the database. 

These values can be calculated using different algorithms such as Apriori-based, Pattern-
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growth-based, or Tree-based [6]. Then, HUI algorithms use appropriate search methods to find 

itemsets with higher utility values than a predetermined threshold. 

 HUI algorithms have high practical applications and are widely applied in fields such as 

retail, banking, insurance, healthcare, and many others [7]. In retail, HUI algorithms are used to 

search for high utility products and services, helping businesses increase sales and improve 

customer experience. In banking and insurance, HUI algorithms help to search for high utility 

customers, helping organizations optimize marketing strategies and provide suitable products 

and services. In healthcare, HUI algorithms can be used to detect high-risk patients or potential 

symptoms, thereby making appropriate treatment decisions. 

 Some popular HUI algorithms include Two-Phase [8], d2HUP [9] [10], UP-Growth [11], 

HUI-Miner [12], FHM [13] and EFIM [14]. Although most of these algorithms are effective, 

they ignore the fact that items in transaction databases are often organized into categories and 

subcategories of a taxonomy. 

 

Fig. 1. A taxonomy of food. 

 For example, Fig. 1 shows the classification of food items sold in a supermarket. The 

categories of vegetables and eggs are classified as essential foods, while sausages and instant 

noodles are grouped under fast food. In addition, essential foods and fast food are subcategories 

of the broader category of general food. Taxonomy can play an important role in mining itemsets 

in a database, as it allows grouping of items semantically into generalized itemsets, i.e., itemsets 

that contain generalized items (categories). In Fig. 1, the generalized items are Food, Essential 

food, and Fast food. As traditional High Utility Itemsets Miner (HUIM) algorithms ignore 

classification information, they can only discover itemsets containing items that appear at the 

lowest level of the transaction database's classification tree (Vegetable, Egg, Sausage, Instant 



 

9 
 

noodle). Therefore, items such as Food, Essential food, and Fast food cannot be found in the 

output of these algorithms, even if they are HUI. 

 Recently, numerous studies have been conducted to address the problem of mining multi-

level and cross-level high utility itemsets (HUIs). Examples include ML-HUI Miner [15], 

MLHMiner [16], CLH-Miner [17], FEACP [18]. These studies have focused on proposing 

various ways to preprocess and organize data and developing new algorithms to simultaneously 

search for multi-level and cross-level HUIs while improving runtime and memory usage. 

 The Top-k approach is a variant of HUIM that is particularly useful when users are 

interested in finding the most important itemsets, rather than all high utility itemsets. In this 

approach, the objective is to discover the top-k high utility itemsets, where k is a parameter 

specified by the user [19]. This technique can effectively reduce the number of itemsets that 

need to be examined and is more suitable for applications that focus on the most important 

itemsets. The top-k method is a powerful and flexible technique capable of addressing different 

user options and application requirements in mining high utility itemsets. 

 In this thesis, we propose a new algorithm called TKC-E (Efficient Top-K Cross-level 

high utility itemset miner) to address the above problem. Through experiments, TKC-E has 

demonstrated improved performance and high efficiency, while discovering multi-level and 

cross-level relationships in the data. 

 The rest of this thesis is organized as follows. Section 2 reviews the literature on HUIM 

and Top-K. Section 3 provides an overview and definition of the problem. Section 4 presents 

the proposed data pruning and processing strategies and the TKC-E algorithm for mining cross-

level HUIs. Section 5 then reports the results from an extended evaluation. Finally, Section 6 

provides conclusions and plans for future work. 
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2. Related work 

Below is a summary table of the algorithms that we will discuss in this section to 

provide an overview of the research methods that have been applied in the related field. 

Table 1. Summary table of algorithms. 

Author Year of 

publication 

Algorithm 

abbreviation 

Algorithm name Type 

Tseng et al. 2010 UP-Growth 

[11] 

Utility Pattern-

Growth 

Mining High 

utility itemsets 

Liu & Qu 2012 HUI-Miner 

[12] 

High Utility Itemset 

Miner 

Mining High 

utility itemsets 

Fournier-Viger 

et al. 

2014 FHM [13] Frequent High 

Utility Itemset 

Mining 

Mining High 

utility itemsets 

Zida et al. 2016 EFIM [14] Efficient high-utility 

Itemset Mining 

Mining High 

utility itemsets 

Luca Cagliero et 

al. 

2017 ML-HUI 

Miner [15] 

Multiple-Level 

High-Utility Itemset 

Miner 

Mining Multiple-

Level High utility 

itemsets 

N.T. Tung et al. 2021 MLHMiner 

[16] 

Multiple-Level 

HMiner 

Mining Multiple-

Level High utility 

itemsets 

Fournier-Viger 

et al. 

2020 CLH-Miner 

[17] 

Cross-level high 

utility itemset 

mining 

Mining Cross-

Level High utility 

itemsets 

N.T. Tung et al. 2021 FEACP [18] Fast and Efficient 

Algorithm for Cross-

level high-utility 

Pattern mining 

Mining Cross-

Level High utility 

itemsets 

Cheng-Wei Wu 

et al. 

2012/2016 TKU [20] 

[21] 

Top-K High Utility 

Itemset Miner 

Mining Top-k 

HUIs 

Vincent S. 

Tseng et al. 

2016 TKO [21] Top-K High Utility 

Itemset Miner in 

One Phase 

Mining Top-k 

HUIs 

Mourad 

Nouioua et al. 

2020 TKC [22] Top-K Cross- 

level high utility 

itemset miner 

Mining Cross-

level Top-k HUIs 
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FIM and ARM are two important algorithms in the field of data mining related to the 

relationships among items in a dataset. FIM is the process of searching for sets of items that 

frequently appear together in transactions of the dataset. ARM is the process of searching for 

association rules between items in frequent itemsets, providing recommendations or information 

relevant to the dataset. 

Although FIM and ARM have been widely used in many fields and have many effective 

applications, they only focus on searching for frequent itemsets and association rules, while 

ignoring the utility value of the items in those frequent itemsets. Therefore, HUIM was proposed 

to focus on searching for frequent itemsets with high utility values, based on information related 

to value, quantity, or the combination of items. 

HUIM is a data mining method for exploring a set of items that, when purchased 

together, provides higher utility value than buying individual items. Utility can be measured 

using some metrics such as total revenue, profit, or the number of products sold [5]. The high 

utility itemset mining algorithm can be performed using methods such as UP-Growth [11], HUI-

Miner [12], FHM [13] and EFIM [14]. 

UP-Growth is an efficient algorithm designed for mining high-utility itemsets from 

transaction databases. It utilizes the UP-Tree data structure to maintain information about high-

utility itemsets and achieves high mining performance. By applying four utility reduction 

strategies, UP-Growth effectively reduces the search space and candidate itemsets. The UP-

Growth algorithm requires only two passes through the transaction database to generate 

potential high-utility itemsets from the UP-Tree. The mining performance is improved by using 

utility reduction strategies, which enhance efficiency and reduce memory usage during the 

mining process. Experimental results have demonstrated that UP-Growth is particularly 

effective when dealing with databases containing long transactions. 

The drawback of the UP-Growth algorithm is that it generates a large number of 

candidates, while the number of high-utility itemsets is much smaller. To address this issue, the 

HUI-Miner algorithm was proposed in 2012. Unlike UP-Growth, HUI-Miner can mine high-

utility itemsets without generating candidate itemsets. This is achieved by using a specialized 

data structure called the utility-list, which stores information about the value of itemsets and 

provides crucial information for pruning the search space. HUI-Miner directly mines high utility 

itemsets from the utility-list constructed from the previously mined database. This not only 

saves running time but also consumes less memory. 

FHM is a method based on the HUI-Miner algorithm. The major difference lies in the 

improved search space pruning process. FHM utilizes a mechanism called EUCP (Estimated 
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Utility Co-occurrence Pruning). EUCP operates by constructing a new structure called EUCS 

(Estimated Utility Co-occurrence Structure). During the search process, EUCP checks the 

following condition: if there does not exist a triplet (x, y, c) in EUCS such that c ≥ minutil, then 

EUCP immediately prunes a low-value projected extension Pxy and all its indirect extensions. 

This is accomplished without the need to construct a utility-list, saving time and resources. The 

purpose of EUCP is to eliminate low-value itemsets without having to check each individual 

element within them. This ensures that only itemsets with higher potential are further mined, 

enhancing algorithm efficiency. As a result, FHM can reduce the search space by up to 95% and 

achieve speeds up to 6 times faster than HUI-Miner. 

Runtime and memory are always important issues and need to be improved so that the 

algorithms give results in less time. Therefore, in 2016, Zida et al. proposed a new algorithm 

called EFIM, which introduces several new ideas to more efficiently discover high-utility 

itemsets [14]. Specifically, EFIM relies on two new upper bounds named revised sub-tree utility 

and local utility to prune the search space, and uses a novel array-based utility counting 

technique called Fast Utility Counting to calculate these upper bounds in linear time and space. 

To reduce the cost of database scans, EFIM proposes efficient database projection and 

transaction merging techniques named High-utility Database Projection and High-utility 

Transaction Merging. Experimental results show that EFIM is generally two to three orders of 

magnitude faster than previous algorithms, and its key advantage is low memory consumption. 

However, traditional HUIM algorithms do not consider information about hierarchical 

databases, meaning databases with multiple levels of classification. This makes the algorithms 

only able to mine HUIs at the same data level and unable to analyze the association between 

items at different levels in the hierarchical database. This can cause us to miss important HUIs 

and not fully exploit the characteristics of the data, affecting planning and business processes in 

practice. To address this issue, some algorithms for mining hierarchical and cross-level HUIs 

have been proposed, such as ML-HUI Miner [15], MLHMiner [16], CLH-Miner [17] and 

FEACP [18]. 

The ML-HUI Miner algorithm, proposed by Cagliero et al. in 2017 [15], focuses on 

identifying Generalized High-Utility Itemsets (GHUI) - sets of items with high total profit. This 

algorithm utilizes classification information to enhance the data and explore various levels of 

abstraction. The process of generating GHUI in ML-HUI Miner is recursive, starting with 

individual items and then considering pairs of items to form GHUI sets. This recursive process 

is similar to the FHM algorithm. Moreover, ML-HUI Miner has the capability to extract 

profitable items and avoid generating uninteresting combinations of items. 
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The MLHMiner algorithm is a multi-level HUI mining algorithm proposed by 

N.T.Tung and colleagues in 2020 [16]. This algorithm is designed to address the problem of 

traditional algorithms in mining large itemsets. MLHMiner uses a multi-level structure to store 

high utility itemsets, which helps to speed up mining and reduce memory. The MLHMiner 

algorithm has two main stages: the mining stage and the multi-level structure construction stage. 

In the mining stage, the algorithm uses a recursive mining method to search for high utility 

itemsets. In the multi-level structure construction stage, the algorithm uses a criterion to classify 

high utility itemsets into different levels of the multi-level structure. The MLHMiner algorithm 

also uses several pruning techniques to reduce the search space, including pruning based on the 

total utility value of itemsets and pruning based on the total weight of itemsets. Experimental 

results show that MLHMiner is more efficient than ML-HUI Miner in both of runtime and 

memory. 

One limitation of the ML-HUI Miner and MLHMiner is its inability to find itemsets 

with items from different classification levels (cross-level HUIs), which may result in missing 

interesting HUIs. Additionally, the ML-HUI Miner algorithm does not utilize classification to 

reduce the search space, as it mines each separate classification level. 

To overcome the above limitations, CLH-Miner has defined a new problem called 

Cross-Level High Utility Itemsets (CLHUIs) mining and developed an efficient algorithm to 

extract all CLHUIs. The CLH-Miner algorithm integrates new pruning strategies to reduce the 

search space by leveraging the relationships between different abstraction levels. This helps 

reduce the time and computational resources required to extract CLHUIs from the data. In the 

original paper [17], the algorithm has discovered interesting patterns from real-world retail data. 

However, experimental results have shown that CLH-Miner takes more runtime compared to 

HUI-Miner and ML-HUI Miner. Additionally, it also consumes more memory on certain 

datasets. 

Continuing the improvement of CLH-Miner in 2021, N.T. Tung, Loan T.T. Nguyen, 

and colleagues proposed the FEACP algorithm [18]. FEACP is an algorithm for mining high-

level cross-level utility itemsets in quantitative databases. This algorithm operates by scanning 

through the database three times, from general computation to classification, while applying 

search space reduction techniques. To find all Cross-Level HUIs, FEACP performs a deep 

search based on DFS to recursively traverse the search space and expand the initial frequent 

itemsets. This algorithm relies on the local utility and sub-tree utility techniques to calculate the 

utility value for itemsets and their sub-branches. By using upper bounds on utility and pruning 
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strategies, FEACP can reduce the number of itemsets to be considered in the search space, 

increase mining efficiency, and find useful information itemsets. 

Although the above algorithms can reveal interesting patterns, one issue is that setting 

the minimum utility threshold is not intuitive and greatly affects the number of patterns found 

as well as the algorithm's performance. If the user sets the threshold too low, a large number of 

patterns will be found, and the runtime may be very long, while if the threshold is set too high, 

very few patterns will be found. Therefore, users often have to run the algorithm multiple times 

to find a suitable threshold value to obtain just enough patterns. This is why the Top-K algorithm 

is proposed. The Top-K algorithm allows users to set the number of patterns k to be explored 

instead of setting a minimum utility threshold. This task is more intuitive for users because they 

can directly choose the number of patterns without using a minimum utility threshold, which is 

difficult to set and depends on the hidden characteristics of the database. 

Several algorithms have been developed for top-k HUIM, such as TKU [20] [21] and 

TKO [21]. These algorithms typically operate by cutting down the search space based on utility 

limits, effectively reducing the computation cost and improving the efficiency of the mining 

process. The top-k method is a powerful and flexible technique that can address various user 

options and application requirements in mining high-utility itemsets. 

The TKU algorithm was proposed in 2012 by the author team Cheng Wei Wu, Bai-En 

Shie, Philip S. Yu, Vincent S. Tseng [20]. This method is an extension of UP-Growth [11]. TKU 

uses the UP-Tree structure of UP-Growth to maintain information about transactions and top-k 

HUIs. The framework of TKU consists of three parts: (1) construction of UP-Tree, (2) 

generation of potential top-k high utility itemsets (PKHUIs) from the UP-Tree, and (3) 

identification of top-k HUIs from the set of PKHUIs. 

In 2015, TKU continued to be improved by Philippe Fournier-Viger and his colleagues, 

combined with a new algorithm called TKO [21]. The new TKU algorithm used a new pruning 

technique to reduce the number of candidate items that needed to be evaluated, while also using 

an algorithm to generate fewer candidate itemsets than the previous algorithm. In addition, the 

way TKU utility was calculated has also changed, making it more efficient than before. 

TKO is a one-phase algorithm, meaning it exploits top-k high utility itemsets in one 

pass [21]. This makes it significantly faster than other top-k algorithms. TKO uses a utility-list 

data structure to store utility information of itemsets in the database. It also uses a two-level 

pruning strategy to prune the search space and improve the efficiency of the algorithm. 

However, both TKU and TKO have the drawback of using non-categorical data 

structures - meaning unclassified data. This limits their ability to exploit High Utility Items 
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across different data levels, reducing the effectiveness in extracting complex patterns and 

potentially missing opportunities to exploit potential data patterns. 

To address this issue, in 2020, Philippe Fournier-Viger and his colleagues proposed a 

new algorithm called TKC [22]. TKC uses a Tax-utility-lists data structure which consists of a 

list of itemsets sorted in a similar order to a taxonomy table and containing information about 

the utility value and utility limit of each itemset. Using tax-utility-lists allows for quick 

computation of the utility value of itemsets without having to scan the database, helping to 

increase mining speed and reduce processing time. The TKC algorithm starts searching from 

single items and uses a priority queue to keep track of the current top-k patterns found. When a 

new cross-level HUI is found, it is inserted into the priority queue and if the queue contains at 

least k patterns, the minutil threshold is increased to the utility value of the kth pattern in the 

queue. All patterns that do not meet the new minutil threshold are removed from the queue. 

Optimization is used to speed up the increase of the minutil value by raising the minutil 

threshold with the kth largest utility value in the priority queue. Thus, TKC helps reduce the 

search space and ensure that all top-k cross-level HUIs are found. However, the runtime and 

memory usage of TKC are almost indistinguishable. In fact, TKC usually consumes more 

memory than CLH-Miner. 

 In this thesis, we proposed a new algorithm named TKC-E, which analyzes the 

quantitative database data structure. Additionally, TKC-E utilizes the priority queue of TKC to 

maintain the current top-k found patterns, and an optimization is used to increase the speed of 

minutil value growth. The TKC-E algorithm also effectively applies the local utility and sub-

tree utility techniques of the FEACP algorithm to optimize and reduce the search space. 

Experimental results show that TKC-E significantly improves performance compared to TKC 

and FEACP on real datasets and is confirmed to be effective in exploiting high-level and 

cross-level utility itemsets on different datasets. 
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3. Preliminaries and Problem Definition 

 The type of databases considered in this thesis are quantitative transaction databases with 

a taxonomy that is used in retail stores. It’s quite general and can be used to represent data in 

many other applications. In this section, we first define the problem and main definition for  

Cross-level HUIM.  

Definition 1 (Transaction database)[16]: Let I be a finite set of items I = {i1, i2,..., im}. A 

transaction database is a multiset of transactions D = {T1, T2,..., Tm} such that for each transaction 

Tc is a set of items i ⊆ I  and Tc has a unique identifier c called its Transaction ID(TID). Each 

item i ∈ I is associated with a positive number p(i), called its external utility (e.g. unit profit). 

For each item i in Tc there is a positive number q(i, Tc) associated with it, which represents its 

internal utility or purchase quantity in that transaction.  

Example 1: Consider the database in Table 2, which will be used as the running example. It 

contains seven transactions (T1, T2, …, T7). Transaction T2 indicates that items a, c, e and g 

appear in this transaction with an internal utility of respectively 2, 6, 2 and 5. Table 3 indicates 

that the external utility of these items are respectively 5, 1, 3 and 1. 

          Table 2.  A transaction database           Table 3.  External utility values 

TID Transaction      Item Unit Profit 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

(a, 1),(c, 1),(d, 1) 

(a, 2),(c, 6),(e, 2),(g, 5) 

(a, 1),(b, 2),(c, 1),(d, 6),(e, 1),(f, 5) 

(b, 4),(c, 3),(d, 3),(e, 1) 

(b, 2),(c, 2),(e, 1),(g, 2) 

(a, 2),(c, 6),(e, 2) 

(c, 1),(d, 2),(e, 1) 

 
a 

b 

c 

d 

e 

f 

g 

5 

2 

1 

2 

3 

1 

1 

 

Definition 2 (Taxonomy)[14-18]: A taxonomy τ is a tree(a directed acyclic graph) defined 

for a transaction database D. Leaf nodes of the taxonomy represent the different items of I , 

while internal nodes represent categories of items, which are called generalized items or abstract 

items. Generalized items represent an abstract category that groups all descendant leaf 

nodes(items) or all descendant categories into one higher-level category. A child-parent edge 

between two (generalized) items i, j in τ represents an is-a relationship.  
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Definition 3 (The sets of generalized items and all items)[17]: The set containing all these 

generalized items is denoted as GI, and the set containing both generalized and leaf items is 

denoted as AI = GI ∪ I. 

Definition 4 (Generalization relationship)[17]: Let there be a relation LR ⊆ GI × I such 

that (g, i) ∈ LR if there is a path from g to i. And, let there be a relation GR ⊆ AI × AI such that 

(d, j) ∈ GR if there is a path from d to j. 

Definition 5 (Leaf / Descendant)[16]: Consider a taxonomy τ and a generalized item g in τ. 

The leaf items of a generalized item g are all leaves that can be reached by following paths 

starting from g defined as Leaf(g, τ) ={i | (g, i) ∈ LR}. The descendant items of a (generalized) 

item d is the set Desc(d, τ) = {j | (d, j) ∈ GR}. The level denotes the number of edges to be 

traversed to reach an item d starting from the root node of τ. 

Example 2: In the taxonomy of Fig. 2, we can see that Leaf({X}, τ) = {a, b, c} and Desc({X},τ) 

= {Y, a, b, c}, the itemset {Y, d} is a descendant of {X, Z}, and level(c) = 2. 

 

      Fig. 2. A taxonomy of items. 

Definition 6 (Utility of an item/itemset)[17]: The utility of item i in transaction Tc is defined 

as u(i,𝑇𝑐) = q(i, 𝑇𝑐) × p(i). Similarly, the utility of an itemset P (a group of items i ⊆ I) in 

transaction 𝑇𝑐 is defined as 𝑢(𝑃, 𝑇𝑐)  = ∑  𝑢(𝑖, 𝑇𝑐).𝑖 ∈ 𝑃  Finally, let g(P) is the set of transactions 

containing X in D, the utility of an itemset X in a database is defined as 𝑢(𝑃)  =

∑  𝑢(𝑃, 𝑇𝑐).𝑇𝑐 ∈ 𝑔(𝑃)  

Example 3: The utility of a in 𝑇1 is u(a, 𝑇1)= 1 × 5 = 5. The utility of {a, c} in 𝑇2 is u({a, c}, 

T2) = u(a, T2) + u(c, T2)= 2 × 5 + 6 × 1 = 16. The utility of {b, c} in the database D is u({b, c})= 

u({b, c}, T3) + u({b, c}, T4) + u({b, c}, T5)= 5 + 11 + 6= 22. 

Definition 7 (Utility of a generalized item/itemset)[17]: The utility of generalized item g 

in transaction Tc is defined as 𝑢(𝑔, 𝑇𝑐)   = ∑  𝑞(𝑖, 𝑇𝑐) × 𝑝(𝑖)  𝑖 ∈ 𝐿𝑒𝑎𝑓(𝑔,𝜏)  .Similarly, let g(GP) is 
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the set of transactions containing P in D, the utility of a generalized itemset GP in a transaction 

Tc is calculated by 𝑢(𝐺𝑃, 𝑇𝑐) = ∑  𝑢(𝑑, 𝑇𝑐)𝑑 ∈ 𝐺𝑃  .The utility of an itemset P in a database is 

calculated by 𝑢(𝐺𝑃) = ∑  𝑢(𝐺𝑃, 𝑇𝑐)𝑇𝑐∈ 𝑔(𝐺𝑃)  where g(GP) = {𝑇𝑐 ∈ D | ∃ P ⊆ Tc ∧ P is a 

descendant of GP}. 

Example 4: In the taxonomy of Fig. 1, Z is a generalized item and u(Z, 𝑇4) = u(d, 𝑇4) +       

u(e, 𝑇4) =3 × 2 + 1 × 3 = 9. The utility of the generalized itemset {Z, b} in 𝑇4 is u({Z, b}, 𝑇4) = 

u(Z, 𝑇4) + u(b, 𝑇4) = (6 + 3) + 8 = 17. The utility of the generalized itemset {Z, b} in the database 

is u({Z, b}) = u({Z, b}, 𝑇3) + u({Z, b}, 𝑇4) + u({Z, b}, 𝑇5) = 17 + 19 + 7 = 43. 

Definition 8 (Cross-level high utility mining)[16]: The problem of cross-level high utility 

mining is defined as finding all cross-level high-utility itemsets(CLHUIs). A (generalized) 

itemset X is called a CLHUI if u(X) ≥ µ where µ is minutil threshold. 

Example 5: If  µ = 70, the cross-level high utility itemsets in the database of the running 

example are: {X,e}, {Z, X}, {Z, Y}, {Z, Y, c}, {Z, c, a},{e, Y, c} with respectively a utility of 84, 

114, 87, 106, 73 ,80. 

Definition 9 (Top-K cross-level high utility mining)[22]: Consider a transaction database 

D and a user-defined parameter k which indicates the desired number of cross-level high utility 

itemsets. An itemset X ⊆ AI is called a top-k cross-level high utility itemset (top-k CLHUI) if X 

in k-th itemsets in D whose utilities are largest. Mining top-k cross-level high utility itemsets 

consists of identifying top-k CLHUI having the highest utility in database D. 

Example 6: If k = 3, the top-k cross-level high utility itemsets are: {Z, X}, {Z, Y, c}, {Z, Y } 

with a utility of 114, 106, and 87. 

 

4. Proposed Algorithm 

4.1. Search space exploration and pruning techniques 

 To be able to explore the search space of all itemsets in a systematic way, a processing 

order ≻ is defined on items of AI. According to that total order, two distinct items a, b ∈ AI are 

ordered as a ≻ b if level(a) < level(b), or if level(a) = level(b) ∧ TWU(a) > TWU(b). This 

ordering between levels ensures that the algorithm considers generalized items before their 

descendant items, which is important as it enables itemset pruning in the search space. This 

ordering is defined based on the TWU measure as follows. 

Definition 10 (Transaction Weighted Utilization – TWU)[16]: A transaction 𝑇𝑐 has its 

transaction utility defined as 𝑇𝑈(𝑇𝑐) = ∑  𝑢(𝑖, 𝑇𝑐)𝑖 ∈ 𝑇𝑐
. For an itemset P ⊆ I, the TWU is 
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computed as 𝑇𝑊𝑈 (𝑃) = ∑ 𝑇𝑈(𝑇𝑐)𝑇𝑐 ∈ 𝑔(𝑃) . Similarly,  an itemset GP ⊆ GI, the TWU is 

computed as: 𝑇𝑊𝑈(𝐺𝑃) = ∑ 𝑇𝑈(𝑇𝑐)𝑇𝑐 ∈ 𝑔(𝑖 ∈ 𝐿𝑒𝑎𝑓(𝐺𝑃,𝜏)) . 

Example 7: the TU values of transactions T1 to T7 for Table 2 are: 8, 27, 30, 20, 11, 22 and 8, 

respectively.   TWU ({a}) = TU(T1) + TU(T2) + TU(T3) + TU(T6)  = 8 + 27 + 30 + 22 = 87, 

TWU ({Y}) = TU(T1) + TU(T2) + TU(T3) + TU(T4)  + TU(T5)  + TU(T6)  = 8 + 27 + 30 + 20 + 

11 + 22 = 118. 

      Property 1: (Pruning search space using TWU). For any itemset X, if TWU(X) < minutil, 

then X is a low-utility itemset as well as all its supersets. 

Definition 11 (Extension)[16]:An extension of an itemset P is an itemset obtained by adding 

an item i to P. The set of all extensions of P is defined as E(P) = {i | i ∈ AI ∧ w ≻ i  and ∀ w∈ 

P, i ∉ Desc(w, τ )} 

Example 8: If the total order is X ≻ Z ≻ c ≻  Y ≻  e ≻ d ≻ a ≻ b ≻ g ≻ f, E(X)= {Z, c, e, d}, 

E{Z,c}= {Y, a, b}, E{c,e}= {d, a, b}. 

Definition 12 (Remaining utility)[16]:The remaining utility of an itemset P in a transaction 

𝑇𝑐 is defined as 𝑟𝑒(𝑃, 𝑇𝑐)  = ∑ 𝑢(𝑖, 𝑇𝑐)𝑖 ∈ 𝑇𝑐 ∧ 𝑖 ∈ 𝐸(𝑃) . 

Example 9: If the total order is X ≻ Z ≻ c ≻  Y ≻  e ≻ d ≻ a ≻ b ≻ g ≻ f, re(X, T2) = 6 +5   

= 11, re({c, e}, T4) = 8+6 = 14. 

Definition 13 (Utility-list)[16]: The utility-list of an itemset X in a database D is a set of 

tuples such that there is a tuple (c, iutil, rutil) for each transaction containing X. The iutil and 

rutil elements of a tuple respectively are the utility of X in 𝑇𝑐 (u(X, 𝑇𝑐)) and the remaining utility 

of X in 𝑇𝑐 (re(X, 𝑇𝑐)). 

Example 10: If the total order is X ≻ Z ≻ c ≻  Y ≻  e ≻ d ≻ a ≻ b ≻ g ≻ f, then the itemset 

{X,d} has the utility-list: {(1,8,0),(3,22,5),(4,17,0)}. 

Definition 14 (Projected database)[17,19]: The set of items obtained by projecting a 

transaction 𝑇𝑐 over an itemset P is denoted as (𝑇𝑐)𝑝 and defined as (𝑇𝑐)𝑃 =  {𝑘 |𝑘 ∈  𝑇 ∧   𝑘 ∈

 𝐸(𝑃)}. The multiset obtained after projecting itemset P over all transactions in D, denoted DP, 

is calculated as 𝐷𝑃  =  {(𝑇𝑐)𝑃 |𝑇𝑐 ∈  𝐷 ∧  (𝑇𝑐)𝑃  ≠ Ø)}. 

Example 11: for the database D given in Table 2 and P ={d}, the database DP  can be 

constructed by the following transactions: (𝑇1)𝑃={a}, (𝑇3)𝑃={a,b}, (𝑇4)𝑃={b}. 

Definition 15 (Local utility)[17]: Let P be an itemset. Consider an item i ∈ E(P). The local 

utility of i w.r.t itemset P is defined as 𝑙𝑢 (𝑃, 𝑖) = ∑ [𝑢(𝑃, 𝑇𝑐) +  𝑟𝑒(𝑃, 𝑇𝑐)]𝑇𝑐 ∈ 𝑔(𝑃 ∪ {𝑖}) . 

Similarly, if item z is a generalized item in taxonomy, the local utility of z w.r.t itemset P is 

calculated as 𝑙𝑢 (𝑃, 𝑧) = ∑ [𝑢(𝑃, 𝑇𝑐) +  𝑟𝑒(𝑃, 𝑇𝑐)]𝑇𝑐 ∈ 𝑔(𝑃 ∪ 𝑗∈ 𝐿𝑒𝑎𝑓(𝑧,𝜏))  . 

Example 12: Consider the running example and P = {c}. We have that lu(P, a)= 8 + 22 + 25 

+ 22 = 77, lu(P, d) = 8 + 25 + 20 + 8 = 61 and lu(P, e) =106. 
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Theorem 1: (Pruning an item from all sub-trees using the local utility): Let be an itemset P and 

an item i ∈ E(P). If lu(P, i) < µ, then all extensions of P containing i are low-utility. So, item i 

can be ignored when exploring all sub-trees of P. 

Definition 16 (Sub-tree utility)[17]: Let P be an itemset. Consider an item i ∈ E(P). The 

local utility of i w.r.t itemset P is defined as follows: 

 𝑠𝑢 (𝑃, 𝑖) = ∑ [𝑢(𝑃, 𝑇𝑐) + 𝑢(𝑖, 𝑇𝑐) + ∑ 𝑢(𝑗, 𝑇𝑐)𝑗 ∈ 𝑇𝑐 ∧ 𝑗 ∈ 𝐸(𝑃 ∪ {𝑖}) ]𝑇𝑐 ∈ 𝑔(𝑃 ∪ {𝑖})   

Similarly, if item z is a generalized item in taxonomy, the local utility of z w.r.t itemset P is 

calculated as follows:  

𝑠𝑢 (𝑃, 𝑧) = ∑ [𝑢(𝑃, 𝑇𝑐) + ∑ 𝑢(𝑗, 𝑇𝑐)𝑗∈ 𝐿𝑒𝑎𝑓(𝑧,𝜏) +𝑇𝑐 ∈ 𝑔(𝑃 ∪ 𝑗 ∈ 𝐿𝑒𝑎𝑓(𝑧,𝜏))

∑ 𝑢(𝑗, 𝑇𝑐)𝑗 ∈ 𝑇𝑐 ∧ 𝑗 ∈ 𝐸(𝑃 ∪ {𝑧}) ] . 

Example 13: Consider the running example and P = {c}. We have that su(P, a) = 6 + 16 + 

10 + 16 = 48, su(P, d) = 8 + 22 + 17 + 5 = 52 and su(P, e) = 22 + 25 + 20 + 9 + 22 + 8 = 106. 

Theorem 2: (Pruning a sub-tree using the sub-tree utility): Let be an itemset P and an item z ∈ 

E(P). If su(P, z) < µ , then the single item extension P ∪ {z} and its extensions are low-utility. 

In other words, the sub-tree of P ∪ {z} in the set-enumeration tree can be pruned. 

     Definition 17 (Primary and secondary items) [17]: Let be an itemset P. The primary items 

of P is the set of items defined as Primary(P) = {z | z ∈ E(P) ∧ su(P, z) ≥  µ}. The secondary 

items of P is the set of items defined as Secondary(P) = {z | z ∈ E(P) ∧  lu(p, z) ≥  µ}. Because 

lu(p, z) ≥ su(P, z), Primary(P) ⊆ Secondary(P).  

Definition 18 (Utility-Bin array) [17,19]: Consider the set AI containing all distinct items 

in D and generalized items in GI. The utility-bin array U is an array of length AI that has an 

entry denoted as U(z) for each z ∈ AI called a utility-bin. Each utility-bin can be used to hold a 

utility value and is initialized to zero. 

An algorithm can utilize a utility-bin array to determine the TWU of any item when scanning 

item z in each transaction 𝑇𝑐 is updated as U[z] = U[z] + TU(𝑇𝑐). For each item z ∈ T ∩ E(P) 

the sub-tree utility w.r.t. an itemset P as 𝑠𝑢[𝑧] = 𝑠𝑢[𝑧] + 𝑢(𝑃, 𝑇𝑐)  +  𝑢(𝑧, 𝑇𝑐)  +
∑ 𝑢(𝑗, 𝑇𝑐)𝑗 ∈ 𝑇𝑐 ∧ 𝑗≻𝑧 ] . It also supports the calculation of the local utility w.r.t. an itemset P as 

𝑙𝑢[𝑧] = 𝑙𝑢[𝑧] + 𝑢(𝑃, 𝑇𝑐)  + 𝑟𝑒(𝑃, 𝑇𝑐)  

In this thesis we extend this array to store and calculate the value of TWU, sub-tree utility 

and local utility of generalized items in the set GI. When scanning the database to calculate the 

upper bound, the Utility-Bin array regards generalized items as specialized items. In traditional 

HUIM algorithms, the upper bounds usually contain only the utility of the promising items. In 

CLHUI mining, if the upper bounds only contain the utility of the promising specialized items, 

they will miss out on several generalized items. This is because the utility of these generalized 

items is aggregated from the unpromising leaf items, which were previously discarded.  
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4.2. TKC-E Algorithm 

 The proposed TKC-E algorithm is presented in Algorithm 1. It accepts three input 

parameters that are a database D, a taxonomy τ, and the user-defined number of patterns to be 

found k.  

Algorithm 1: The TKC-E algorithm 

input: D: a transaction database, τ: a taxonomy, k: the number of patterns to be found. 

output: the top-k cross-level HUIs. 

1. Initializes µ = 0, P = {Ø} a priority queue Q with the top-k cross-level HUIs from AI; 

2. Read τ and D and use a utility-bin array to calculate to compute lu (P, z) of each 

(generalized) item z ∈ AI; 

3. Secondary(P) = {z | z ∈ AI ∧ lu(P, z) ≥  µ}; 

4. Compute ≺, the total order on items from Level and TWU values on Secondary(P); 

5. Scan D to store each generalized item g ∈ Secondary(P) in each transaction, discard 

every item i ∉ Secondary(P) from transactions,sort items in each transaction, delete 

empty transactions, and then build and store the utility-list of each generalized item; 

6. Compute the sub-tree utility su(P, z) of each item z ∈ Secondary(P); 

7. Primary(P) = {z | z ∈ AI ∧ su(P, z) ≥  µ}; 

8. SEARCH (P, D, Primary(P) , Secondary(P) , k , µ ,Q); 

 

The overall process is done as follows: 

Line #1: Initializes µ = 0, the current itemset P to the empty set (Ø) and priority queue Q. In 

the case TWU(Y ) = lu(P, z). 

Line #2: Scan taxonomy τ and database D to calculate to compute lu(P, z) of each 

(generalized) item z ∈ AI and store it using a utility-bin array. 

Line #3: The algorithm compares the local utility of each item to construct the set of all 

secondary items of P. 

Then line #4: P is sorted based on the total order ≺ of levels and the TWU . 

At line #5: The algorithm performs another database scan of D using taxonomy τ to find all 

generalized items corresponding to secondary items in each transaction, discard every item i ∉ 

Secondary(P) from transactions are removed from the transaction to reduce memory usage,sort 

items in each transaction, delete empty transactions, and then build and store the utility-list of 

each generalized item of the database in a variable UtilityList; 

Line #6: Performs a third scan of the database and taxonomy to compute the sub-tree utility 

of every item in Secondary(P) using Definition 16. 

Based on Definition 17, line #7 constructs the primary set with respect to the itemset 

P;  Primary(P). 
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With all the necessary information gathered, the DFS-based Search procedure (Algorithm 2) 

is executed at line #8 to traverse the search space recursively and extend the initial itemset P to 

find all top-k CLHUIs. 

Algorithm 2: The SEARCH procedure 

input: P: itemset, DP: P-projected database, Primary(P): primary items of P, Secondary(P): 

secondary items of P, k: the number of patterns to find, µ: the 

internal threshold, Q: the top-k patterns until now. 

output: Q is updated with top-k CLHUIs that are transitive extensions of P. 

FOR EACH item z ∈ Primary(P) DO: 

1. N = P ∪{z} , Secondary(P)’ = {x ∈ Secondary(P) | x ∉ Desc(z, τ)}; 

2. Scan DP to determine u(N), construct DN, remove every item ∈  Desc(z, τ) and remove 

empty transactions; 

3. IF u(N) > µ THEN Insert z into Q; 

4. IF Size of Q > k THEN:  

      Raises  to the k-th largest utility value in Q; 

      Remove from Q all patterns with utility less than µ; 

5. Scan DN to compute su(N,w), lu(N,w) for every item w ∈ Secondary(P)’;  

6. Primary(N) = {x ∈ Secondary(P)’ ∧ su(N, z) ≥ µ}; 

7. Secondary(N) = {x ∈ Secondary(P)’∧ lu(N, z) ≥ µ};  

8. SEARCH (N, DN, Primary(N) , Secondary(N) , k, µ , Q);    

END 

 

Algorithm 2 accepts seven arguments as input: an itemset P to be extended, the projected 

database DP of P, the set of primary and secondary items of P, the minimum utility threshold , 

the number of patterns to find k. The details of the depth-first search process to further explore 

a given itemset are described as follows. 

Lines #1 to #8 form a loop to examine every single-item extension of P using each item  z ∈ 

Primary(P) base on Definition 8, that is of the form N=P ∪ {z} , which is given in line #1. 

Lines #2: Perform a database scan to determine the utility of N and construct N’s projected 

database DN remove every item ∈  Desc(z, τ) and remove empty transactions. 

Line #3 and #4 Check whether N has a utility greater than µ. If so, then N is added in priority 

queue Q. If size of Q > k then raises  to the k-th largest utility value in Q and removes from Q 

all patterns with utility less than µ. 

In this case, DN is scanned once more at line #5 to determine the sub-tree and local utility of 

each item w that could be used to extend N. This step is required to construct Primary(N) and 

Secondary(N) at lines #6 and #7, respectively. 

At line #8, the Search algorithm is then recursively invoked to continue exploring the search 

space to extend N. 
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4.3. A descriptive example 

 This subsection offers a detailed walkthrough of how the proposed TKC-E algorithm 

discovers top k CLHUIs.  

 To begin with, the proposed TKC-E algorithm(Algorithm 1) accepts three input parameters 

that are a database D of Table 2 and Table 3, a taxonomy τ in Fig. 2, the user-defined number of 

patterns to be found k = 3 and is executed by 8 steps follows: 

Step 1: Initializes µ = 0, the current itemset P to the empty set (Ø) and priority queue Q. 

Step 2: For every item z ∈ AI, the value of lu(P, z) is determined. The lu (P, z) values are given in 

Table 4. 

Table 4. The lu (P,z) value of each z ∈ AI for P = Ø. 

Item a b c d e X Y Z 

lu 87 61 123 66 115 123 115 123 

Step 3: Using the calculated lu(P, z) values of every item, the set Secondary(P) is constructed. In 

this case, Secondary(P) ={a,b,c,d,e,X,Y,Z}.  

Step 4: The set Secondary(P) is sorted in ascending order of level and then descending order of 

lu (P,z) values. Thus, Secondary(P) ={X,Z,c,e,Y,d,a,b}. 

Step 5: Every transaction in D is then sorted by the order of Secondary(P). The result is the 

database given in Table 5. All items not in Secondary(P) are removed from all transactions since 

they cannot be part of a HUI. 

Table 5. The preprocessed database. 

TID Items 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

(c, 1),(d, 1), (a, 1) 

(c, 6),(e, 2), (a, 2) 

(c, 1),(e, 1),(d, 6),(a, 1),(b, 2) 

(c, 3), (e, 1),(d, 3), (b, 4) 

(c, 2),(e, 1),(b, 2) 

(c, 6),(e, 2),(a, 2) 

(c, 1),(e, 1),(d, 2) 

Step 6: For every secondary item z, su(P, z) is computed for P = {Ø}. The results are given in 

Table 6. 

Table 6. The calculated su(P, z) value of each item z ∈ AI for P = {Ø}. 

Item X Z c e Y d a b 

su 114 114 114 87 66 46 34 16 
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Step 7: Using the values obtained from the previous step, the set Primary(P) is constructed as 

Primary(P) ={X,Z,c,e,Y,d,a,b}. 

Step 8: The algorithm is then recursively invoked to explore search space by execute DFS-based 

Search procedure(Algorithm 2) and extend the initial itemset P to find all top-k CLHUIs with the 

following parameters:  

Search(P = {Ø}, D, Primary(P) ={X,Z,c,e,Y,d,a,b}, Secondary(P) ={X,Z,c,e,Y,d,a,b}, µ = 0,  

Q = {Ø}, k = 3). 

 Next, the Search procedure(Algorithm 2) accepts seven input parameters in step 8 of 

Algorithm 1 and is executed by 8 steps bellows: 

Step 1: The item X is first processed by the Search function, 1. N = P ∪ {X} = {X}, then each 

item of Desc(N) is removed. The result is Secondary(P)’ = {Z,e,d}. 

Step 2:Scan database D to calculate u(N) = 66, and the projected database DN is constructed and 

remove every item ∈  Desc(N, τ), which is shown in Table 7. 

Table 7. Projecting database N = {X}on D.. 

TID Items 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

(d, 1) 

(e, 2) 

(e, 1),(d, 6) 

(e, 1),(d, 3) 

(e, 1) 

(e, 2) 

(e, 1),(d, 2) 

Step 3: Since u(N) > µ, so {X} is inserted  into Q. 

Step 4: Because size of Q < k , then nothing change in this step. 

Step 5: Scan database DN to calculate su(N,w), lu(N,w) for every item w ∈ Secondary(P)’. The 

result is given in Table 8. 

Table 8. The calculated values of su(N,w), lu(N,w) for N = {X}. 

Item Z e d 

lu 114 106 61 

su 114 106 52 

Step 6 and step 7 : Given that µ = 0, the constructed sets Primary(P) and Secondary(P) with 

respect to N are Primary(P) ={Z,e,d} and Secondary(P) = {Z,e,d} respectively. 
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Step 8: the Search function is recursively invoked to discover CLHUIs using the following 

parameters: Search(P = {X}, DN, Primary(P) ={Z,e,d}, Secondary(P) ={Z,e,d},  µ = 0, Q = {X}, 

k = 3). 

 With N ={X,Z}, it is found that u(N) =114 > µ .Thus, this itemset is a CLHUI and inserted 

to Q. Moreover, Q = {{X}, {X,Z}} and DN is empty. 

 With N ={X,e}, it is found that u(N) = 84 > µ .Thus, this itemset is a CLHUI and inserted 

to Q. In this case, T1, T2, T5 and T6 are removed since they are now empty transactions. 

The result returned is shown in Table 9 and Table 10. Note that, Q = {{X}, {X,Z}, {X,e}} 

and the Search function continue with N ={X,e,d}. 

Table 9. Projecting database N = {X,e}on DN. 

TID Items 

T3 

T4 

T7 

(d, 6) 

(d, 3) 

(d, 2) 

Table 10. The calculated values of su(N,w), lu(N,w) for N = {X,e}. 

Item d 

lu 53 

su 53 

 With N ={X,e,d}, it is found that u(N) = 53 > µ. Thus, this itemset is a CLHUI and 

inserted to Q. In this case, size of Q > k so µ raises  to the k-th largest utility value in Q 

(µ = 66) and remove from Q all patterns with utility less than µ. Moreover, Q = {{X}, 

{X,Z}, {X,e}} and DN is empty. 

 With N ={X,d}, it is found that su(N) =52 < µ. Thus, this itemset is not a CLHUI. At this 

step, the TKC-E algorithm has now finished processing item X and the next item in the 

set Secondary(P) is then considered. 

 Finally, when the TKC-E algorithm has now finished processing all item, the result of top-

k CLHUIs is given in Table 11. 

Table 11. All found top-k CLHUIs. 

CLHUIs Utility 

{X, Z} 114 

{Z, Y, c} 106 

{Z, Y } 87 
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5. Experiment and Results 

5.1. Data Collection 

 Various categories of actual data sets were utilized in the experiments. We have 2 

definitions that need to be clarified: Sparse database and Dense database. These are the two 

types of databases that will be focused on comparing and analyzing the effectiveness of the 

algorithm. Sparse databases refer to databases that are designed to handle sparse data, which is 

data that has many missing or empty values. In a sparse database, only non-empty values are 

stored, which can help to reduce storage requirements and improve query performance. Sparse 

databases are commonly used in applications where data is sparsely populated, such as in 

scientific research, financial data analysis, and social network analysis. They can also be useful 

for handling large datasets where the majority of the data is empty or missing.  

 Dense database is a database designed to handle highly dense data, meaning that all 

values are stored and not missing or empty. The applications of dense databases are often in 

places that require detailed and complete data storage, such as warehouse management systems, 

retail systems, and financial applications. A dense database can consume more storage space 

than a sparse database, which may affect query performance. However, if designed and 

optimized properly, a dense database can provide high query performance and reliability. To 

the thesis’s databases, Liquor and Fruithut are sparse databases. It contains transactions from 

US liquor stores and grocery stores. The next two databases are Chess and Accident. In 

comparison to the previous database, all of them exhibit a higher level of data density. Table 12 

shows the detailed characteristics of datasets we used in the experiments.  

Table 12. Database characteristics 

Database |D| |I| |GI| MaxLevel |TMAX| |TAVG| Density 

Liquor 9284 4026 78 7 11  7.87 Sparse 

Fruithut 181.970 1.265 43 4 36 3.58 Sparse 

Chess 3.196 75 30 3 37 37.00 Dense 

Accident 10.000 468 216 6 51 33.80 Dense 

 

 The Table 12 includes various parameters such as transaction count of D represented by 

|D|, number of distinct items represented by |I|, generalized item count represented by |GI|, 

maximum traction length represented by |TMAX|, average transaction length represented by 

|TAVG| maximum level in each database represented by MaxLevel and the density of each 

database represented in the last column.  
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 Important to notice that: the |TMAX| and |TAVG| values in the table represent the maximum 

and average depths of the databases, respectively. These values can have an impact on the 

density of the database, but they are not the primary factors that determine whether a database 

is dense or sparse. A database with a high |TMAX| value indicates that it has a high maximum 

depth, which means that it has a large number of levels or hierarchies within the data. This can 

increase the complexity of the database and make it more difficult to analyze, but it does not 

necessarily make the database dense or sparse. Similarly, a high |TAVG| value indicates that the 

database has a high average depth, which means that it is structured in a complex way. Again, 

this can make the database more difficult to analyze, but it does not necessarily make it dense 

or sparse. In contrast, the density of a database is primarily determined by the amount of data 

stored within a given physical space. A database is considered dense if it contains a high amount 

of data within a small physical space, regardless of its depth or complexity 

 A glance at the above-mentioned table reveals the all-detailed characteristics of 4 

databases, each of database will have 7 attributes. Overall, what stands out from the table is that 

Fruithut is the largest of all database, containing almost 182 K transactions and 1.2 K number 

of distinct items. In terms of size, the databases vary significantly. The Chess database is the 

smallest, with just 3,196 transactions and 75 items, while the Fruithut database is considerably 

larger, with almost 182,000 transactions and 1,265 items. The Liquor and Accident databases 

are relatively small, with 9,284 transactions and 4026 items, and 10,000 transactions and 468 

items, respectively. This suggests that each database may have different use cases, depending 

on the size and complexity of the data it handles. Regarding structure, the databases differ in 

the number of generalized items (GI) and maximum number of abstraction levels (MaxLevel). 

The Fruithut database has the highest number of generalized items (43), indicating a high level 

of abstraction and grouping of items. On the other hand, the Liquor database has the lowest 

number of generalized items (78), indicating a less complex structure. However, Liquor has the 

highest maximum number of abstraction levels (7), suggesting that its structure is more complex 

than the other databases. The Chess database has the lowest maximum number of abstraction 

levels (3), indicating that it has a simpler structure compared to the other databases. Finally, the 

density of the databases can be compared. Liquor and Fruithut are classified as sparse, which 

means they have a lower concentration of data. Sparse databases typically have many 

transactions with fewer items per transaction. In contrast, Chess and Accident are considered 

dense databases, meaning they have a higher concentration of data. Dense databases typically 

have fewer transactions with more items per transaction. This suggests that the processing and 

analysis techniques used for sparse and dense databases may differ, depending on their unique 
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characteristics. In conclusion, the given table provides a comprehensive comparison of four 

different databases based on their size, structure, and density. Each database has unique 

properties that can provide valuable insights into its intended use case and suitability for the 

TKC and TKC-E algorithms. 

5.2. Experiments 

 In the section, we evaluate the performance of the proposed algorithm. We do the 

experiments on a computer with an Intel Core-i7TM processor clocked at 4.5GHz and 16 GB of 

RAM, running on the Windows 11 operating system. We compared the performance of the 

algorithm in terms of execution time and peak memory usage for mining our proposed algorithm 

and TKC algorithm. The compared algorithms were implemented using the Java programming 

language with version JDK 11, the runtime and memory usage were measured using the Java 

API. 

5.3. Result and analysis          

 First, we evaluated how the runtime and memory of each algorithm is influenced by the 

K threshold on the test datasets for various K threshold values. The results show that TKC-E 

has better performance than TKC for almost K threshold values. The Figure 3 is represented for 

two first datasets are Liquor and Fruithut, these are sparse databases. That means the maximum 

transaction length and average transaction length is low, Liquor only has several 11 for |TMAX| 

and 2.7 for |TAVG|, Fruithut also has 36, 3.58 respectively. The K value for sparse datasets will 

be measured on a 50-point scale, where the minimum value is 50 and the largest is 1000. To 

begin testing the algorithms, they were first run on the test databases using a low value for the 

K threshold. The threshold was then gradually increased until one of the following conditions 

occurred: the test algorithms took too much time to execute, encountered an error due to 

insufficient memory, or one of the algorithms clearly outperformed the others. 

The execution times of the tested algorithms are presented in Fig. 3b and Fig. 3d for Liquor, 

Fruithut database. The results indicate that TKC-E outperformed TKC significantly for almost 

values of the K threshold. When it comes to first K threshold values, such as 50 and 100, the 

efficiency of the two algorithms is almost the same. With the Liquor database, both algorithms 

use approximately 20 seconds to process the datasets. When the K value = 50, TKC terminated 

in 17seconds and TKC-E completed its work in 19 seconds. And the outcome is equivalent 

when reaching the threshold K = 100. Along with Fruithut database, both algorithms showed 

similar levels of performance and there was no clear advantage of one over the other. 
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 The main difference between the two algorithms is evident in the next K values, the 

reasoning behind this is evidently rooted in the definitions of sub-tree utility and local utility. 

There are two upper bound measures used to calculate the utility of items in a database. The 

first measure is the local utility bound, which is equivalent to the upper bound of utility for an 

item in the HUP (High Utility Itemset Mining using Pattern-growth) algorithm. The second 

measure is the sub-tree utility upper bound, which is calculated using the remaining utility upper 

bound and the upper bound of fixed pattern extension (uBfpe) in the HUI-Miner algorithm. As 

for example, on the Liquor database (Fig. 3b), TKC-E finished in 20s and TKC required 25s. 

With K =500, TKC-E took considerably less time to complete processing on this database 

compared to TKC, specifically 2 times less time. Especially at the latest K value, the 

performance of TKC-E algorithm was significantly better than that of TKC on the Fruithut 

database, showcasing a substantial increase in performance, surpassing the previous level by a 

significant margin. This suggests that TKC-E is much more efficient than TKC on runtime when 

processing the Fruithut database. 

 Similar results were observed on the Fruithut database, which is a large and sparse 

database with over 200,000 transactions. The performance of TKC-E was significantly better 

than that of TKC. In terms of speed, TKC-E demonstrated a similar level of improvement as on 

Liquor, with a performance gain of 1:2 to 1:8 times better. Despite the Fruithut database being 

large and sparse, with short transactions and three abstraction levels and nearly 1.3K generalized 

items, the algorithm was still able to handle it efficiently. 

 To assess the impact of the K threshold on memory usage, the algorithms' peak memory 

consumption was recorded and presented in Figure 3a and Figure 3c. In general, for both of the 

first two databases, TKC-E consistently demonstrated lower memory usage than TKC due to its 

ability to narrow down the search space more effectively using the sub-tree utility. This is 

similar to the runtime evaluations on the Liquor database shown in Figure 3a, where TKC-E 

had much lower memory usage than TKC, thanks to the effective use of upper bounds for 

pruning the search space. At K=200, TKC-E reduced memory consumption by 25% compared 

to TKC, and at K=500, the reduction was 52%. At the final K value, TKC-E reduced memory 

consumption by 70% compared to TKC. 

 On the large and sparse Fruithut database, TKC-E still demonstrated better memory 

consumption compared to TKC. During the initial K values, TKC-E showed only a slight 

improvement over TKC, with a performance gain of around 25-45%. However, the most 

significant difference was observed at K=1000, where TKC-E used less than half of the memory 

utilized by TKC. This indicates that TKC-E is more memory-efficient than TKC, particularly 
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when handling larger values of K. On average TKC-E consumed 30% less memory than TKC 

across all K thresholds. It is concluded that TKC-E is an efficient algorithm because it had a 

better performance compared with TKC on both runtime and memory usage. 

 

                    

           (a)                      (b)  

                    

           (c)                       (d)  

Fig. 3. Runtime, memory usage comparison in sparse datasets. 

 Next, we show the performance on the Chess and Accident database. They all have high 

density compared to the previous databases. The results are shown in Figure 4. The "Chess" and 

"Accident" databases are considered dense because they have a high amount of information or 

data stored within a relatively small physical space. In the case of the "Chess" database, it has a 

small size of 3.196 units, but it contains 75 individual items and a maximum level of 37. This 

indicates that the database is densely populated with data, with each item containing a lot of 

information. Similarly, the "Accident" database has a size of 10,000 units, but it contains 468 

individual items and a maximum level of 51. This indicates that the database is densely 

populated with data, with each item containing a significant amount of information.  
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 The TKC-E algorithm demonstrated its effectiveness on the Chess database, which is a 

dense database, by utilizing its tight sub-tree utility pruning technique and achieving an 

extremely low runtime compared to TKC. At K=10 and beyond, TKC's execution time exceeded 

200 seconds, so no further testing was conducted as TKC-E only took between 12.37 to 20.46 

seconds at the same K thresholds. As a result, TKC-E's runtime was outperformance than TKC. 

The same trend was observed in the Accident database, where TKC-E was faster than TKC by 

2 to 3 times at different K thresholds. Among all the databases, the Chess database demonstrated 

the highest increase in speed for FEACP. TKC-E finished the work in 6.34 to 20.46 seconds at 

all tested K thresholds, while TKC took 383 to 1,218 seconds to finish the same task within the 

same K range. Based on the results, TKC-E was found to be 12 to 60 times faster than TKC, 

highlighting the efficiency of TKC-E's pruning strategies, which can eliminate many candidates 

found in dense databases and significantly reduce mining time. Overall, based on this 

evaluation, the TKC-E algorithm demonstrated the highest mining performance on dense 

databases. 

 In terms of memory usage, there was a slight difference between TKC-E and TKC. In 

both the Chess and Accident datasets, TKC-E was found to use slightly more memory compared 

to TKC. In the case of the Chess dataset (Figure 4a), which was the smallest dataset in the 

evaluation, TKC-E's memory usage remained as high as 15% of TKC's usage at high K 

thresholds, and up to 25% lower at K=50. Therefore, TKC-E used more memory than TKC at 

every K value, but the difference was not significant. The amount of memory used by both 

algorithms increased proportionally at a ratio of 1.5. The memory usage of TKC-E was deemed 

acceptable to compensate for the increase in runtime. In the case of the Accident dataset (Figure 

4c), TKC-E also had higher memory usage compared to TKC on average. Memory sacrifice 

was observed in the Accident dataset, with TKC-E using almost 3 times as much memory as 

TKC at K=20. The difference in memory usage between the two algorithms appeared at the first 

K level, with TKC-E's usage being more than 2 times that of TKC, and the difference continued 

to increase at subsequent K levels. 

 Although at the first K threshold, the TKC-E algorithm is still limited in that it uses a lot 

of memory, the trade-off with it is the processing time of the algorithm. The reason is that it 

applies efficient pruning strategies managed to keep the average memory usage low by 

eliminating unpromising candidates from the search space when mining cross-level itemset.  

 Overall, the test results have shown that the TKC-E algorithm we developed is time 

efficient and also optimal in terms of memory usage. TKC-E had achieved a substantial speed 

boost and has more effective memory consumption. The reason is that it applies efficient 
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pruning strategies managed to keep the average memory usage low by eliminating unpromising 

candidates from the search space when mining cross-level itemset. 

                    

           (a)                      (b)  

                    

           (c)                                    (d)  

Fig. 4. Runtime, memory usage comparison in dense datasets. 
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6. Conclusion 

In this work, a novel algorithm called TKC-E was presented to efficiently discover 

cross-level high-utility itemsets in transaction databases. The algorithm takes as input a 

transaction database with an item taxonomy that describes categories and subcategories of 

items. TKC-E uses the method of keeping items in a priority queue of the TKC algorithm and 

the min utility threshold strategy to quickly eliminate patterns and narrow the search space. 

Additionally, we combined a new pruning strategy from FEACP that uses local utility and sub-

tree utility techniques to create upper bounds for each category in the classification system, 

which significantly improves the time required to search for HUIs. Experimental evaluations 

demonstrated that TKC-E outperforms its predecessor, the TKC algorithm, in terms of time and 

memory consumption. The runtime and memory consumption were improved up to 4 times on 

sparse datasets. However, on dense datasets, TKC-E exhibited higher from 2.0 to 3.0 times 

memory usage than TKC. Nevertheless, TKC-E was up to 60 times more efficient than TKC in 

terms of runtime on dense datasets. For future work, we will focus on improving the memory 

usage of TKC-E for both sparse and dense datasets. Parallel computing frameworks will be 

studied to reduce mining time, as well as enable computation with larger databases. 
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