MINING TOP-K CROSS-LEVEL HIGH UTILITY ITEMSETS

AIP490_G8

TEAM MEMBER

Nguyễn Đức Chính HE150974

Nguyễn Tuấn Trường HE150138

Nguyễn Khắc Tuệ HE150066

OUTLINE

1. Problem and Motivation

Profit

- Profit is the ultimate goal in business.
- The way sales campaigns, advertising, and product displays are operated greatly impact revenue.

Need a way to support operations team to increase profits

2. Related Works

Several itemset can yield a high profit but not frequently could be overlooked.

High Utility

Summary table of algorithms

Author	Year of publication	Algorithm abbreviation	Algorithm name	Туре	
Tseng et al.	2010	UP-Growth	Utility Pattern-Growth	Mining High utility itemsets	
Liu & Qu	2012	HUI-Miner	High Utility Itemset Miner	Mining High utility itemsets	
Fournier-Viger et al.	2014	FHM	Frequent High Utility Itemset Mining	Mining High utility itemsets	
Zida et al.	2016	EFIM	Efficient high-utility Itemset Mining	Mining High utility itemsets	
Luca Cagliero et al.	2017	ML-HUI Miner	Multiple-Level High-Utility Itemset Miner	Mining Multiple-Level High utility itemsets	
N.T. Tung et al.	2021	MLHMiner	Multiple-Level HMiner	Mining Multiple-Level High utility itemsets	
Fournier-Viger et al.	2020	CLH-Miner	Cross-level high utility itemset mining	Mining Cross-Level High utility itemsets	
N.T. Tung et al.	2021	FEACP	Fast and Efficient Algorithm for Cross-level high-utility Pattern mining	Mining Cross-Level High utility itemsets	
Cheng-Wei Wu et al.	2012/2016	TKU	Top-K High Utility Itemset Miner	Mining Top-k HUIs	
Vincent S. Tseng et al.	2016	ТКО	Top-K High Utility Itemset Miner in One Phase	Mining Top-k HUIs	
Mourad Nouioua et al.	2020	TKC	Top-K Cross-level high utility itemset miner	Mining Cross-level Top-k HUIs	

3. Objective

4. Methods

 Table 1. A transaction database

22
(f, 5)

Table 2. External utility values.

Item	a	b	c	d	e	f	g
Unit Profit	5	2	1	2	3	1	1

Fig. 1. A taxonomy of items.

Utility of an item/itemsets:

$$u(i,T_c) = p(i) \times q(i, T_c)$$
$$u(P,T_c) = \sum_{i \in P} u(i,T_c).$$
$$u(P) = \sum_{T_c \in g(P)} u(P,T_c)$$

Example 1: The utility of a in is $u(a,)= 1 \times 5 = 5$. The utility of $\{a, c\}$ in is $u(\{a, c\}, T_{\gamma}) = u(a, T_{\gamma}) + u(c, T_{\gamma}) = 2 \times 5 + 6 \times 1 = 16$. The utility of $\{b, c\}$ in the database D is $u(\{b, c\}) = u(\{b, c\}, T_3) + u(\{b, c\}, T4) + u(\{b, c\}, T_5) = 5 + u(\{b, c\}, T_5) = 0$ 11 + 6 = 22.

Utility of a generalized item/itemsets:

$$u(g, T_c) = \sum_{i \in Leaf(g,\tau)} p(i) \times u(GP, T_c) = \sum_{d \in GP} u(d, T_c)$$
$$u(GP, T_c) = \sum_{d \in GP} u(d, T_c)$$

Example 2: In the taxonomy of Fig. 1, Z is a generalized item and $u(Z,T_A) =$ $u(d, T_A) + u(e, T_A) = 3 \times 2 + 1 \times 3 = 9$. The utility of the generalized itemset {Z, b} in T_A is $u(\{Z, b\}, T_A) = u(Z, T_A) + u(b, T_A) = (6 + 3) + 8 = 17$. The utility of the generalized itemset {Z, b} in the database is $u(\{Z, b\}) = u(\{Z, b\}, T_3) +$ $u({Z, b}, T_{4}) + u({Z, b}, T_{5}) = 17 + 19 + 7 = 43.$

$\langle q(i,T_c)$

Transaction Weighted Utilization – TWU:

$$TU(T_c) = \sum_{i \in T_c} u(i, T_c)$$
$$TWU(P) = \sum_{T_c \in g(P)} TU(T_c)$$
$$TWU(GP) = \sum_{T_c \in g(i \in Leaf(GP, c))} U(F_c)$$

Example 3: the TU values of transactions T_1 to T_7 for Table 2 are: 8, 27, 30, 20, 11, 22 and 8, respectively. TWU ({a}) = $TU(T_1) + TU(T_2) + TU(T_3) + TU(T_6)$ = 8 + 27 + 30 + 22 = 87, TWU ({Y}) $= TU(T_1) + TU(T_2) + TU(T_3) + TU(T_4)$ $+ TU(T_5) + TU(T_6) = 8 + 27 + 30 + 20 + 11 + 22 = 118.$

 $TU(T_c)$ $\tau))$

Total order (>): Two distinct items a, $b \in AI$ are ordered as a > b if level(a) < level(b), or if level(a) = level(b) \land TWU(a) > TWU(b).

Extension:

 $E(P) = \{i \mid i \in AI \land i \geq w \text{ and } \forall w \in P, i \notin Desc(w, \tau)\}$){ Example 4: If the total order is X > Z > c > Y > e > d > a > b > g > f, $E(X) = \{Z, c, Y, e, d, a, b, g, f\}, E\{c,e\} = \{d, a, b, g, f\}.$

Remaining utility:

$$re(P,T_c) = \sum_{i \in T_c \land i \in E(P)} u$$

Example 5: Consider the running example, if the total order is X > Z > c > Y >e > d > a > b > g > f, $re(X, T_2) = 6 + 5 = 11$, $re(\{c, e\}, T_A) = 8 + 6 = 14$. Local utility:

$$lu(P,i) = \sum_{T_c \in g(P \cup \{i\})} [u(P,T_c) + re(P)]$$
$$lu(P,z) = \sum_{T_c \in g(P \cup j \in Leaf(z,\tau))} [u(P,T_c)]$$

Example 6: Consider the running example and $P = \{c\}$. We have that lu(P, a)

= 8 + 27 + 30 + 22 = 87, lu(P, d) = 8 + 30 + 20 + 8 = 66 and lu(P, e) = 115.

- $\iota(i,T_c)$

- P,T_c
- $(-) + re(P_{r}T_{c})$

Sub-tree utility:

$$su(P,i) = \sum_{T_c \in g(P \cup \{i\})} [u(P,T_c) + u(i,T_c) + 2]$$

$$su(P,z) = \sum_{T_c \in g(P \cup j \in Leaf(z,\tau))} [u(P,T_c) + \sum_{j \in T_c \land j \in E(P \cup \{z\})} u(j,T_c)]$$

Example 7: Consider the running example and $P = \{c\}$. We have that su(P, a) = 8 + 21 + 27 + 16 = 72, su(P, d) = 6 + 22 + 17 + 5 = 50 and su(P, e) = 115.

 $\sum_{j \in T_c \land j \in E(P \cup \{i\})} u(j, T_c)]$

 $u(j,T_c)$

Primary and secondary items:

 $Primary(P) = \{z \mid z \in E(P) \land su(P, z) \geq \}$ μ**{**. Secondary(P) = $\{z \mid z \in E(P) \land lu(p, z) \geq \}$ μ}

Projected database:

$$(T_c)_P = \{k \mid k \in T \land k \in$$

 $D_P = \{ (T_c)_P \mid T_c \in D \land (T_c)_P \neq \emptyset \}$

Example 11: for the database D given in Table 2 and $P = \{d\}$, the database D_{P} can be constructed by the following transactions: $(T_1)_P = \{a\}, (T_3)_P = \{a, b, e, f\},\$ $(T_4)_P = \{b\}.$

- E(P)

4.2. TKC-E Algorithm

Algorithm 1: The TKC-E algorithm

input: D: a transaction database, τ : a taxonomy, k: the number of patterns to be found. output: the top-k cross-level HUIs.

Initializes $\mu = 0, P = \{\emptyset\}$ a priority queue Q with the top-k cross-level HUIs from AI; 1.

Read τ and D and use a utility-bin array to calculate to compute lu (P, z) of each (generalized) 2. item $z \in AI$;

- Secondary(P) = $\{z \mid z \in AI \land lu(P, z) \ge \mu\};$ 3.
- Compute \leq , the total order on items from Level and *TWU* values on Secondary(*P*); 4.

5. Scan D to store each generalized item $g \in Secondary(P)$ in each transaction, discard every item $i \notin Secondary(P)$ from transactions, sort items in each transaction, delete empty transactions, and then build and store the utility-list of each generalized item;

- 6. Compute the sub-tree utility su(P, z) of each item $z \in \text{Secondary}(P)$;
- 7. Primary(P) = $\{z \mid z \in AI \land su(P, z) \geq \mu\};$
- 8. SEARCH (P, D, Primary(P), Secondary(P), k, μ , Q);

4.2. TKC-E Algorithm

Algorithm 2: The SEARCH procedure

input: P: itemset, D_p: P-projected database, Primary(P): primary items of P, Secondary(P): secondary items of P, k: the number of patterns to find, μ : the internal threshold, Q: the top-k patterns until now. **output:** Q is updated with top-k CLHUIs that are transitive extensions of P. FOR EACH item $z \in Primary(P)$ DO:

 $N = P \cup \{z\}$, Secondary(P)' = { $x \in Secondary(P) | x \notin Desc(z, \tau)$ }; 1. Scan D_p to determine u(N), construct D_N , remove every item \in Desc(z, τ) and remove empty

2. transactions;

- IF $u(N) > \mu$ THEN Insert z into Q; 3.
- IF Size of Q > k THEN: 4.

Raises to the k-th largest utility value in Q;

Remove from Q all patterns with utility less than μ ;

Scan D_N to compute su(N,w), lu(N,w) for every item w \in Secondary(P)'; 5.

Primary(N) = { $x \in \text{Secondary}(P)$ ' $\land \text{su}(N, z) \ge \mu$ }; 6.

- Secondary(N) = { $x \in \text{Secondary}(P)$ ' $\land \text{lu}(N, z) \ge \mu$ }; 7.
- SEARCH (N, D_N , Primary(N), Secondary(N), k, μ , Q); 8.

END

5. Experiment and Results

5.1. Experiments

- Configuration: Intel Core-i7 processor clocked at 4.5GHz, 16 GB of RAM and running on the Windows 11 operating system.
- Java programming language with version JDK 11.
- Evaluation parameter: Runtime and Memory usage.
- The Algorithm execute 5 times to get the average value.

5.2. Data

- Source: <u>https://www.philippe-fournier</u> viger.com/spmf/index.php?link=datasets.php.
- Description: Real-life customer transaction datasets with actual utility values.
- Suitability: It has been used in many scientific papers.

Raw data

• Dataset file:

Format: Item1 item2 item3...: TU: Util(item1) Util(item2) Util(item3)

• Example: Fruithut database 2010 2021 2032 : 897 : 199 399 299 2038 : 180 : 180 1031 2022 : 449 : 150 299

Raw data

• Taxonomy file:

Format: Item, category item belongs to

- **Example**: Fruithut database
- 1001,110 1002,150 1003,150 1004,150 1005,130 1007,120

159,150 110,100 120,100 130,100 140,100 150,100

Analyze data

Database	 D	 I	GI	MaxLevel	T _{MAX}	T _{AVG}	Density
Fruithut	181.970	1.265	43	4	36	3.58	Sparse

- |D|: transaction count of D |T max
- |I|: number of distinct items |T avg
- |GI|:generalized item count
- MaxLevel: maximum level in each database

• |T max|: maximum transaction length

• |T avg|: average transaction length

• Density: density of the databases

Analyze data

Database	 D	 I	GI	MaxLevel	T _{MAX}	T _{AVG}	Density
Liquor	9284	4026	78	7	11	7.87	Sparse
Fruithut	181.970	1.265	43	4	36	3.58	Sparse
Chess	3.196	75	30	3	37	37.00	Dense
Accident	10.000	468	216	6	51	33.80	Dense

Database characteristics

Sparse Database

6.Future work

- Improve the memory usage of TKC-E for both sparse and dense datasets.
- Apply efficient pruning strategies
- Study parallel computing frameworks to reduce mining time, as well as enable computation with larger databases.

THANK YOU!

