
 

                                                                                                                               

Bachelor of Artificial Intelligence Hoa Lac campus - FPT University 2023 

© FPT University 2023. 

All rights reserved. 

  

 

 

 

 

 Building An Automated Module for Image 

Quality Assessing from Narrow-Banding-

Imaging Endoscopy Cameras 

 

 

Pham Khac Long 

 Nguyen Thuan Thanh 

 Nguyen The Anh 

 

Supervisor: Dr. Bui Van Hieu 

  



2 

 

Acknowledgment 

 

We would like to express our deepest gratitude to our supervisor, Dr. Bui Van Hieu for his 

precious guidance and helping us to complete this project. 

Special thanks Dr. Trinh Dinh Hoan, Technological Expert at Viettel Cyberspace Center for 

providing dataset for our project. 

We had the pleasure of working with Dr. Pham Quoc Dat, Department of Endoscopy and 

Functional Exploration, K Hospital, Tan Trieu Campus, who provided us with the understanding 

necessary background information. 

Lastly, we also appreciate our families, FPT University and friends for always loving, support, 

encourage and give us the best through our work to finish this thesis.  



            

3 

 

Table of Contents: 

Acknowledgment ............................................................................................................................ 2 

Table of Contents: ........................................................................................................................... 3 

List of Figures: ................................................................................................................................ 4 

List of Tables: ................................................................................................................................. 5 

Abstract: .......................................................................................................................................... 6 

1. Introduction: ................................................................................................................................ 7 

2. Related Works:.......................................................................................................................... 11 

2.1. Full-reference image quality assessment (FR-IQA): ......................................................... 11 

2.2. Non-reference image quality assessment (NR-IQA): ........................................................ 12 

2.3. Patch-based image quality assessment: .............................................................................. 14 

3. Methods: ................................................................................................................................... 15 

3.1. Convolutional Neural Network (CNNs): ........................................................................... 17 

3.2. Resnet18: ............................................................................................................................ 18 

3.3. Implementation: ................................................................................................................. 19 

3.3.1. Patch-based classification model: ................................................................................ 19 

3.3.2. Quality assessment: ..................................................................................................... 23 

3.3.3. Inference process: ........................................................................................................ 25 

4. Data Preparation: ...................................................................................................................... 26 

5. Results: ...................................................................................................................................... 29 

5.1. Patch-based classification model: ...................................................................................... 29 

5.2. Results in practical environment: ....................................................................................... 34 

5.3. Inference process: ............................................................................................................... 35 

5.4. Storage efficiency:.............................................................................................................. 36 

6. Conclusion and Future works: .................................................................................................. 37 

References: .................................................................................................................................... 39 

 

  



4 

 

List of Figures: 

Figure 1. Differences in images obtained from endoscopic images: (a) White light endoscopic 

image; (b) NBI endoscopic image. ................................................................................................. 9 

Figure 2. The diagram of the Endoscope Image Quality Assessment model. .............................. 16 

Figure 3. Describing uneven image quality across an endoscopic image. .................................... 17 

Figure 4. The skip connections in ResNet [58]............................................................................. 18 

Figure 5. Resnet18 architecture [58] ............................................................................................. 19 

Figure 6. The key feature classes affecting NBI endoscopic image quality: (a) Brightness; (b) 

Darkness; (c) Motion blur; (d) High quality. ................................................................................ 20 

Figure 7. The improved AI model architecture for endoscope image patch quality classification.

....................................................................................................................................................... 21 

Figure 8. The relative similarity between high-quality and darkness patches: (a) High-quality patch 

and its corresponding histogram; (b) Darkness patch and its corresponding histogram. ............. 22 

Figure 9. The inference process: (a) Original way; (b) Proposed way. ........................................ 26 

Figure 10. Endoscopic image after cutting off most of the black border has size of 640x512. .... 27 

Figure 11. Demonstrate the quantity of training dataset before and after utilizing augmentation 

techniques. .................................................................................................................................... 28 

Figure 12. F1-score of the baseline and improved patch-based classification model. ................. 31 

Figure 13. t-SNE plots of patch-based classification: (a) Baseline model; (b) Improved model. 32 

Figure 14. Confusion matrixes of patch-based classification model: (a) Baseline model; (b) 

Improved model. ........................................................................................................................... 33 

Figure 15. Descriptive results evaluate image quality: (a) Bad; (b) Poor; (c) Fair; (d) Good; (e) 

Excellent. ...................................................................................................................................... 35 

  



            

5 

 

 

List of Tables: 

Table 1. The percentage of each patch type in an image. ............................................................. 24 

Table 2. Quality assessment for the entire frame. ......................................................................... 24 

Table 3. Dataset used for training patches-based classification model. ....................................... 27 

Table 4. Dataset after using the data augmentation techniques. ................................................... 28 

Table 5. Experimental results of baseline patch-based classification model. ............................... 29 

Table 6. Experimental results of patch-based classification improved model. ............................. 30 

Table 7. Time measurement of the original and the improved way. ............................................ 36 

Table 8. Describing the effectiveness of the IQA module in reducing storage capacity. ............. 36 

 

  



6 

 

Abstract: 

Gastrointestinal diseases have a significant impact on human well-being, and among them, 

gastrointestinal tumors have particularly high rates of occurrence and death. Besides traditional 

endoscopy, with the advancements in technology, endoscopic techniques nowadays such as the 

Narrow-banding-imaging (NBI) technique play a fundamental role in the quality of life for 

individuals by providing numerous imaging information for accurate diagnosis of gastrointestinal 

diseases. Although the amount of imaging data is abundant, the majority of them are substandard, 

making it extremely difficult for physicians to find quality images, therefore it is necessary to build 

an image quality control module for data cleaning. Based on the characteristics of the gastroscopy 

environment and inspired by non-reference image quality assessment (NR-IQA) methods, in this 

work, we utilized an IQA framework that assesses image quality from NBI endoscopy cameras 

that composes two stages utilizing deep learning approaches with some improvements. The first 

stage is based on a patch-based classification model to assess the quality of multiple regions of the 

image, which uses local features extracted from multi-layer of the convolutional neural network 

(CNN).  In the second stage, these results of patches will be aggregated to give the final quality 

level for the entire image. Our improved pipeline shows over 96% and 97% with respect to overall 

precision and recall respectively. In addition, the final quality level of the endoscopic images was 

clinically evaluated by medical experts from Viet Duc and K Tan Trieu hospital. The results show 

that output quality levels are highly correlated to medical professionals’ perception of endoscopic 

image quality. In terms of storage, the IQA module not only reduces nearly 90% the amount of 

storage capacity needed but also provides users a lot of flexibility depending on different scenarios. 

Finally, with the inference speed improvement method, we achieved 48 FPS in terms of frame 

rates, which is 4 times faster than the original. 

 

Keywords: Image quality assessment, narrow-banding-imaging, endoscopy, deep learning, 

automated module. 
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1. Introduction: 

Gastrointestinal diseases frequently occur in tropical countries and are often characterized by 

symptoms such as diarrhea, abdominal pain, abdominal distention, gastrointestinal bleeding, 

intestinal obstruction, malabsorption, or malnutrition. FGID, which stands for Functional 

Gastrointestinal Disorders, is commonly linked to chronic pain conditions like fibromyalgia as 

well as other functional syndromes like chronic fatigue syndrome. Moreover, two-thirds of 

individuals with FGID also experience psychological issues such as anxiety and depression [1]. 

Consequently, it is understandable that individuals with these conditions experience a significantly 

diminished quality of life, which may be even worse than those suffering from other chronic 

medical conditions such as severe congestive cardiac failure (grade III) or rheumatoid arthritis [2]. 

Gastrointestinal diseases are highly prevalent globally, affecting approximately 40% of the 

population. These conditions are more commonly observed in women compared to men and tend 

to decrease in frequency with age [3]. In primary healthcare facilities, gastrointestinal diseases 

contribute to around 12% of the overall patients, while constituting about 30% of the outpatient 

consultations in gastroenterology [4, 5]. Over 66% of individuals diagnosed with FGID have 

sought medical assistance within the past year, and approximately 40% of them rely on regular 

medication [6]. From an economic perspective, gastrointestinal diseases impose a substantial 

financial burden. In the year 2014 and 2015, treating these conditions cost the National Health 

Service (NHS) a minimum of £72.3 million. Out of this amount, two-thirds were allocated to 

expenses related to prescriptions, community care, and hospital treatments [7]. The inadequate 

quality of life experienced by individuals grappling with gastrointestinal disorders is a matter of 

great concern. If these conditions are not promptly recognized and addressed through a well-

defined scientific treatment regimen, there is a substantial risk that they may escalate in severity. 

Left unchecked, such disorders could potentially advance to the point of developing into 

gastrointestinal cancers, further exacerbating the physical, emotional, and financial toll on patients 

while also increasing healthcare expenses. It is imperative that these issues be acknowledged and 

managed effectively to prevent their progression to more critical stages. Gastrointestinal cancers 

encompass a range of tumor types affecting various organs including the colon, rectum, stomach, 

pancreas, esophagus, anus, gallbladder, liver, and bile duct. Among gastrointestinal cancers, the 

most prevalent in the United States and many Western countries are colorectal cancer, stomach 

cancer, and pancreatic cancer. In fact, according to Global Cancer Statistics, during 2020, stomach 
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cancer was identified as the fifth most diagnosed cancer worldwide and ranked as the fourth 

leading cause of death related to cancer [8]. In Vietnam, diseases of the gastrointestinal tract are 

the most common. During the Bridging Basic and Clinical Science for Gut Health conference, 

experts highlighted that 70 percent of the Vietnamese population is at risk of gastrointestinal 

diseases due to Helicobacter pylori (HP) infection [9]. These diseases, including constipation, 

digestive disorders, reflux, belching, and abdominal distension, already affect nearly 10 percent of 

the population. Moreover, more severe conditions such as cancer, peptic ulcer, irritable bowel 

syndrome, and enteritis are prevalent. Gastric cancer ranks as the country's third most common 

cancer, following liver and lung cancers. According to the Global Cancer Organization 

(GLOBOCAN), Vietnam witnessed over 14,000 new cases of colorectal cancer and more than 

7000 deaths from it in 2018 [9]. The compromised quality of life endured by those afflicted with 

gastrointestinal disorders is indeed a pressing issue. Without swift recognition and intervention via 

a precisely outlined scientific treatment plan, there looms a significant peril of these conditions 

intensifying in seriousness. If allowed to fester, these disorders have the potential to evolve into 

full-fledged gastrointestinal cancers, compounding the already substantial physical, emotional, and 

financial burdens on patients. This, in turn, contributes to an escalation in healthcare costs. It is of 

paramount importance to duly recognize and adeptly address these concerns to avert their 

progression towards more critical phases. Gastrointestinal cancers have received extensive 

research attention and molecular characterization over the past two decades, particularly among 

solid cancers. Despite significant progress in understanding the molecular mechanisms behind 

these cancers, it is paradoxical that they continue to rank among the leading causes of death from 

cancer in Western countries. The initial stages of gastrointestinal cancers often present with non-

specific symptoms, making early diagnosis challenging. As a result, many cases are diagnosed at 

advanced stages, where symptoms like bleeding, pain, or obstructions have already manifested, 

leading to 5-year survival rates below 30% [10, 11]. Therefore, the early detection of metastatic 

spread in gastrointestinal malignancies and early lesions in digestive tract diseases is crucial for 

stratifying patients for aggressive surgical interventions and guiding the use of additional therapies. 
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          (a)       (b)  

Figure 1. Differences in images obtained from endoscopic images: (a) White light endoscopic 

image; (b) NBI endoscopic image. 

To screen and track the spread of pathological gastroenterology signs, endoscopic imaging is the 

main method. White light endoscopy (WLE) is the initial method used for examining the 

gastrointestinal tract and remains an essential step in clinical examinations. However, WLE alone 

is not sufficient for accurately diagnosing gastrointestinal diseases due to its poor correlation with 

histopathological diagnosis. Moreover, WLE is prone to misdiagnosis, particularly in detecting 

early lesions of digestive diseases, as clear endoscopic visualization may be lacking. Therefore, 

diagnostic accuracy primarily relies on the expertise of the endoscopist [12]. In recent years, 

advanced endoscopic techniques have emerged to enhance detection accuracy. Narrow banding 

imaging (NBI) is one such method that improves the contrast between capillaries and submucosal 

vessels by manipulating the light source through specialized filters. By using narrow bands of light 

at specific wavelengths (415 nm - blue and 540 nm – green [13, 14]), NBI enables better 

visualization of vascular structures. The absorption peak of hemoglobin occurs at these 

wavelengths, which darkens the appearance of blood vessels and enhances their visibility. This 

facilitates the identification of other surface structures and enables observation of diseases 

associated with microvasculature. NBI has gained wide usage in the detection of gastrointestinal 

diseases. It allows for preliminary histological diagnosis of early esophageal lesions and assists in 

guiding targeted biopsies of lesions. Compared to WLE, NBI provides clearer images of capillaries 

or lesions and displays deeper structures under the mucosa of the digestive system, resulting in a 

higher detection rate for intestinal metaplasia of local lesions in the stomach [15]. 
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However, despite many advancements of technologies and the abundance of medical images data 

from gastroscopy, endoscopic methods still have many challenges, for instance, image quality 

control is a key issue. Image quality can be negatively impacted or degraded for a variety of reasons. 

Some of them are related to clinical or anatomical aspects, such as the visibility of the 

transformation zone where gastric precancerous lesions tend to arise, and the presence of occlusion 

from vaginal tissue, blood, mucus and medical devices like a speculum, cotton, swab, or 

intrauterine device [16]. On the other hand, some of these including blur, noise, low contrast, etc. 

are related to the technical aspects of imaging instruments and lighting conditions, which depend 

heavily on the specific environment [17]. While it is crucial to train medical technologist how to 

capture high-quality photos, it is also pivotal to provide automated methods for limiting, 

controlling, and eliminating the image quality issue both in already-existing datasets and during 

acquisition. Specifically, in gastroscopy, each case usually takes approximately 15 to 45 minutes 

[18], with high resolution to serve the observation and diagnosis of the technician. In most cases, 

for the purpose of reviewing and subsequent treatment, each endoscopic video is recorded and 

stored as a series of image frames or a video in Picture Archiving and Communication system 

(PACS). Besides that, the recordings are supporting materials for explanations to the patients and 

valuable sources of information to be utilized for training young surgeons [19]. Due to the very 

high-resolution endoscopic videos, this procedure requires an extremely large and dedicated 

storage facility. In addition, the percentage of satisfactory frames accounts for a very small 

percentage of the entire video because the endoscopic video usually contains a lot of blurred and 

noisy frames. There are two fundamental reasons for this. First, the endoscopist moves the 

endoscope with his hands, which causes blurred and unstable frames because the lens of the 

endoscope has a high zoom factor. Additionally, the limited and fixed focus of the endoscopic 

camera makes it difficult to see the area that is currently out of focus. Second, a lot of frames have 

noise from fluid flushing, blood draining or tissue being cut by the endoscopist. Therefore, storing 

the entire video during endoscopy is wasteful and unnecessary. Furthermore, it makes extremely 

difficult and time-consuming for healthcare professionals to extract high-quality frames. Therefore, 

image quality assessment (IQA) has a crucial function in providing precise information to 

healthcare professionals, allowing them to detect, prevent, and monitor diseases at an early stage 

[20]. 
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In this paper, the main contribution of our work is: we utilized the two-stages approach for 

assessing image quality from NBI endoscopy cameras. Firstly, the entire image is divided into 

non-overlap patches and classified into four categories that largely affect the endoscopic image 

quality according to medical professionals: Brightness, Darkness, Motion-blur and High-

quality. Secondly, the aggregation process based on the statistical method is implemented to 

output the final quality level for the image with respect to five levels: Bad, Poor, Fair, Good and 

Excellent. We show that our method not only performs impressive in terms of statistical views but 

also has a high correlation with medical professional’s perception of endoscopic image quality. 

2. Related Works: 

The goal of IQA is using computational models to simulate Human Visual System (HVS) to 

predict the quality of an image. Current IQA methods can be categorized into two groups based 

on different scenarios and conditions [21]. Full-reference (FR) and Non-reference (NR) IQA. 

2.1. Full-reference image quality assessment (FR-IQA): 

FR-IQA methods require two types of input: distorted and reference images to estimate their 

perceptual similarity. FR-IQA methods can be further divided into two categories: conventional 

evaluation metrics and learning-based models. The conventional metrics are based on a set of prior 

knowledge related to the HVS’s characteristics. However, as visual perception is a complex 

process, it is challenging to imitate the HVS with a few hand-crafted elements. In contrast, 

learning-based FR-IQA models generate many general features from training data using various 

kinds of deep networks without the assistance of experts. In terms of metrics for optimization, the 

most commonly and widely used are PSNR and SSIM [22]. 

For learning-based methods, with the advent of deep learning and CNNs for specific, DeepQA [23] 

utilized CNN-based models to regress the sensitivity map to the subjective score that was produced 

from distorted and error maps. Ding et al. [24] developed a Deep Image Structure and Texture 

Similarity metric (DISTS) based on an injective mapping function, taking advantage of SSIM-like 

structure and texture similarity measurements. Siamese-Difference neural networks equipped with 

spatial and channel-wise attention were proposed by Ayyoubzadeh et al. [25] to predict the quality 

score. Most computer vision tasks, including IQA, have relied heavily on CNNs in recent years. 
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Unfortunately, the CNN-based models are unable to fully utilize the information across all regions 

of image since their internal limitation in capturing global features and their severe locality bias 

[26]. Following the success of vision transformer (VIT) [27], which employs Transformers [28] to 

capture the global dependencies of features, considerable advancements in a variety of computer 

vision tasks have been made. For the quality prediction task in IQA, IQT [29] used the reference 

and distortion picture characteristics derived by CNNs as the input of Transformer. To resolve the 

incompatibility of various input image sizes during training and testing, MUSIQ [30] employed 

Transformer to encode three scales of distortion image features. 

However, due to the difficulty of collecting information about the references image in most 

practical scenarios, especially in the medical imaging field, NR-IQA, also known as blind image 

quality assessment (BIQA) are more useful in most practical applications [31]. 

2.2. Non-reference image quality assessment (NR-IQA): 

The goal of NR-IQA is to provide a solution when a reference image is not available. In recent 

years, image quality assessment problems are attracting more and more attention from researchers 

because they objectively estimate the perceived quality of images without requiring a reference 

image for comparison. Besides, due to the lack of reference images, NR-IQA is also more 

challenging compared to FR-IQA. Ma et al. [32] proposed a multi-stage network that trains in two 

stages for distortion classification and quality prediction. In order to compensate for the lack of a 

true reference, Hallucinated-IQA [33] proposed an NR-IQA method based on generative 

adversarial models. To estimate the quality score, they paired the information from the hallucinated 

reference with the distorted image. Zhu et al. [34] proposed a model to capture the prior knowledge 

that is shared among various distortion types by leveraging meta-learning. Su et al. [35] proposed 

a model that predicts image quality by extracting content features from the deep model at multiple 

scales. In Hyper-IQA [36], the features were divided into low-level and high-level features, with 

the latter being transformed to redirect the former. Yunhong Li et al. [37] propose an unsupervised 

deep clustering method for non-reference IQA. Their 13-layer network upgrades fully connected 

layers to generate adaptive-sized high-level features. They also introduce a contracted regular term 

and a contracted autoencoder into the clustering loss function to form a quality model reflecting 

the data's clustering structure. Xiangfei Kong et al. [38] present two novel non-reference image 

quality metrics suitable for state-of-the-art image and video denoising algorithms, enabling auto-
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denoising. The metrics are designed to handle homogeneous regions and highly structured regions 

independently. However, the stability of these metrics is limited to scenarios with relatively low 

noise levels. Xialei Liu et al. [39] tackle the issue of a restricted IQA dataset size by employing a 

Siamese Network, a neural network architecture, to rank images according to their image quality. 

They utilize synthetically generated distortions with known relative image quality to train the 

network. This strategy aims to enhance IQA performance despite the limitations imposed by a 

small dataset. 

Although widely used because does not depend on the reference image, it is very challenging for 

NR-IQA methods to find the suitable metric for assessing image quality with respect to each 

specific environment and condition. This is equivalent to finding the salient features of the image 

that are related to the quality. Therefore, it is necessary for searching an appropriate approach to 

extract feature depend on each specific domain. In the environment of gastroscopy, the quality in 

different image regions is very different, which usually heavily depends on external conditions 

such as uneven lighting, the motion speed of cameras, etc. While seeking to enhance endoscopy 

images, Tomoya Sato [40] shows that endoscopic images often have uneven lighting because of 

the way the endoscope is shaped and how its light shines. This uneven lighting can make it hard 

to see things clearly, especially in far-off areas that may look darker. Meanwhile, the research by 

Eric W. et al. [41] provides an insightful demonstration of endoscopy operations, elucidating how 

the underlying operational principles can lead to issues of excessive darkness or brightness within 

certain areas of the captured imagery. Also, to improve endoscopic images, Wei Tan et al. [42] 

found that clinical endoscopic images frequently suffer from problems such as uneven lighting, 

loss of fine details, and reduced contrast. These issues arise due to various factors, including the 

influence of light sources, hardware components, and different setup configurations used during 

clinical image capture. In the effort to improve endoscopic images to aid doctors in examining, 

diagnosing, and treating issues in the digestive system (esophagus, stomach, and intestines), Yang 

et al. [43] identified two primary factors contributing to the decline in image quality: motion 

blurring and low image resolution. Based on these studies, it has become evident that key factors 

requiring attention in endoscopic imagery include too bright, too dark, and motion blur. Thus, 

imputing the whole image into the image quality assessment model may not be optimal. 
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2.3. Patch-based image quality assessment: 

To be able to take advantage of the local features of each region on the image, instead of inputting 

the whole image in the quality prediction model, there several approaches that divide the image 

randomly or consecutively into small patches and then aggregate the features of those patches to 

output the final image quality result. Gao et al. [44] first measured the local similarities of the 

feature maps from VGGNet layers between the reference and distorted images. The final quality 

score is then calculated by adding up all the local similarities. Similarly, by utilizing the learnt 

perceptual image patch similarity (LPIPS) metric, Zhang el al. [45] suggested using it for FR-IQA 

and demonstrated that deep features generated by using pre-trained DNNs outperform earlier 

traditional metrics by significant margin. A general end-to-end deep neural network called 

WaDIQaM [46] is proposed for the cooperative learning of local quality and local weights.  

Image quality classification is a variant of the IQA problem depending on different contexts and 

conditions. [47] utilize a pre-trained CNN model, and the Support Vector Machine (SVM) is 

trained as an image quality classifier with inputs that are normalized features retrieved by the CNN 

model. Golchubian et al. [48] proposed a new dataset and an end-to-end pipeline using the CNN 

approach to classify images into six categories: bad lighting, Gaussian blur, motion blur, JPEG 

2000, white-noise, and high-quality reference images. In terms of medical images, in order to 

identify between retinal fundus images of high and low quality, [49] proposed an algorithm that 

combines unsupervised features from saliency maps and supervised features coming from CNNs, 

which then are fed to the SVM for classification. [50] dealing with image quality control by 

classifying images into four quality categories: unusable, unsatisfactory, limited, and evaluable in 

order to enhance the effectiveness of automated visual assessment (AVE) for cervical precancer 

screening. An algorithm that combines both unsupervised features from a saliency map and 

supervised features from convolutional neural networks (CNN) was proposed by [51, 52]. These 

features are then utilized to train the SVM with the goal of automatically distinguishing between 

high-quality and poor-quality retinal fundus images. The integration of unsupervised and 

supervised features in this approach allows for more effective and automated image quality 

detection in the context of retinal fundus images. In 2020, Wang et al. [53] proposed a two-stage 

strategy for assessing the liver MRI image based on a classification problem. Each patch 

determined by radiologist to be diagnostic or non-diagnostic is utilized to train a CNN for 

segmentation purposes. Therefore, this method can focus on the regions of interest (ROIs). Then 
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another CNN is used to classify the quality of extracted patches. Finally, the quantity of non-

diagnostic patches over the liver patches of the images is used to evaluate the overall image quality. 

With respect to endoscopy imaging, Schoeffmann et al. [54] statistical method mainly based on 

the characteristics of endoscopic video and practical requirements to extract keyframes. However, 

due to the hand-crafted features extracted from characteristics of endoscopic image frames, they 

have to set the threshold manually, thus may be not generalized enough. 

Overall, with respect to NR-IQA methods, especially in medical imaging, depending on the 

specific environment and conditions, the metrics for measuring performance need to be set up 

specifically. In terms of medical imaging, most of NR-IQA methods are designed for MRI images, 

therefore it is necessary to propose a new approach for assessing quality for endoscopic images 

that generalized enough. With respect to endoscopic environment, as mentioned above, different 

image regions have different qualities. Therefore, common NR-IQA methods may not be suitable 

for assessing endoscopic images. Inspired by [53], we utilized a two-stage NR-IQA framework for 

quality image from NBI endoscopy cameras that utilize deep neural network (DNN) models. In 

addition, to better separate between two classes with respect to patch-based classification, we apply 

the feature magnitude loss function which introduced in [55]. Our improved model shows 

impressive results both in terms of experimental and practical environment. Furthermore, we also 

proposed the inference speed improvement method by leveraging the parallel computation 

mechanism of Graphics Processing Unit, which reduced inference time significantly compared to 

the original. 

3. Methods: 

Our implementation idea is to evaluate the quality of each frame based on the classification 

problem. However, with each frame, the quality of each image area can be very different (Figure 

3), making it difficult to assess the quality of the entire frame. Therefore, instead of putting the 

entire image through the model, we break the image into small patches, each patch has size of 

128x128, and then perform classification on each of those patches before aggregating to make a 

final assessment for the frame image. Figure 2 shows the general idea of implementing our solution. 

Each frame will be divided into 20 consecutive image patches, each image patch is classified into 

4 groups of characteristics as above, these results will be aggregated to give an assessment of the 

quality of the frame in which class of the 5 classes. Quality: Bad, Poor, Fair, Good, and Excellent. 
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Overall, the whole quality classification framework consists of two key components: Patch-based 

classification and Quality assessment. 

 

 

Figure 2. The diagram of the Endoscope Image Quality Assessment model. 
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Figure 3. Describing uneven image quality across an endoscopic image. 

While the upper left corner of the image is overexposed due to being too close to the light source, 

the lower left corner of the image appears very dark. The area of the image with good quality can 

be considered as the area that occupies about half of the image on the right because the texture on 

the surface can be clearly seen. 

3.1. Convolutional Neural Network (CNNs): 

Convolutional Neural Networks (CNNs) are a class of deep learning models primarily used for 

image recognition and computer vision tasks. They are inspired by the visual processing 

mechanism of the human brain and have proven to be highly effective in handling various image-

related challenges. CNNs consist of multiple layers, including convolutional layers, pooling layers, 

and fully connected layers. The convolutional layers apply filters to the input image, extracting 

local features and detecting patterns such as edges, corners, and textures. The pooling layers reduce 

the spatial dimensions of the feature maps, preserving the most important information while 

reducing computational complexity. The fully connected layers process the high-level features 

learned by the previous layers, enabling the network to make predictions or classifications based 

on the input data. CNNs are trained using large labeled datasets, and the learning process involves 

adjusting the weights of the network to minimize the difference between predicted outputs and 

actual labels. This process is typically done through optimization techniques like gradient descent 

[56]. CNNs have achieved remarkable success in various computer vision tasks, such as image 

classification, object detection, semantic segmentation, and image generation. Due to their ability 

to automatically learn hierarchical representations from data, they have become the backbone of 

many state-of-the-art image processing and computer vision applications. 

There are many pre-trained CNNs that come with various architectures, each having different 

internal layers and techniques. One notable example is GoogLeNet, which introduces the concept 

of Inception Modules. These modules use convolutional filters of different sizes and then 

concatenate the outputs from these different-sized filters to form the input for the next layer. The 

use of Inception Modules allows GoogLeNet to capture information at multiple scales and learn 

different features, making it an important and effective CNN armature for various computer vision 

tasks [57]. In contrast to GoogLeNet, AlexNet follows a different approach and does not use filter 

concatenation. Instead, it utilizes the output of the previous layer as the input for subsequent layers. 
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Mostly in order to solve a complex problem, increasing depth is the trending solution by stacking 

to layers in Deep Neural Networks. The intuition behind adding more layers is that these layers 

progressively learn more complex features. However, simply increasing the depth of the network 

causes the vanishing gradient, and Resnet [58] architecture emerged to solve this problem 

thoroughly. 

3.2. Resnet18: 

Nowadays, deep architectures are becoming trending cause a good approximation of the data is 

not only the goal, but we also need a model capable of generalizing the data. However, increasing 

the network depth is not just simply stacking layers together. When the size of the network 

increases, the vanishing gradient will happen and lead the network’s performance to degrade 

rapidly [58].  To solve the degradation problem of training very deep networks, Kaiming He et al. 

developed ResNet or Residual Network, a deep learning network that has become very popular in 

the field of computer vision. ResNet makes it possible and efficient to train hundreds, even 

thousands of layers of neural networks while still ensuring good performance. ResNet solves this 

problem by adding Shortcuts, also known as Skip Connections, to traverse one or more layers [58]. 

Figure 4 illustrated the idea of skip connections. 

Figure 4. The skip connections in ResNet [58] 

The Skip Connections in between layers combine the outputs of earlier layers with the outputs of 

the layers that are stacked on top of them, and this makes the network’s performance will not 

degrade while stacking layers. Moreover, with this architecture, the upper layers receive 

information in a more direct manner from the lower layers, resulting in a more efficient adjustment 
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of weights. The manifold advantages demonstrated by ResNet in the realm of computer visual 

tasks have rendered it an invaluable asset for our research endeavors. Building upon this 

foundational framework, we shall endeavor to apply this neural network, fortified by a series of 

deliberate and refined structural enhancements, as a robust and versatile solution to effectively 

tackle the complex and multifaceted challenges that confront us in our research domain. In our 

training phase, we opted for the ResNet18 architecture to optimize processing time, a crucial factor 

in our network. The specific architecture details can be found in Figure 5 below. 

Figure 5. Resnet18 architecture [58] 

With the widely use, showing impressive results in many competitions and publications, to balance 

performance and speed, we decided to choose ResNet18 as the patch classification model. In 

addition, we also make some minor architectural improvements to the model to make it work better 

for the IQA problem. 

3.3. Implementation: 

3.3.1. Patch-based classification model: 

There are many factors that can adversely affect or degrade image quality, often depending heavily 

on the surrounding environment. In the domain of gastroscopy, according to [40,41,42,43] and the 

statistics of medical professionals, the quality of each frame is largely influenced by the following 
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4 factors: Brightness, Darkness, Motion blur and High quality. Therefore, patches are divided 

are classified into 4 main groups:  

1. Brightness (Figure 6(a)) due to the light reflection of gastric juice and the light intensity of the 

camera. 

2. Darkness (Figure 6(b)) because the lighting cannot be evenly distributed over the whole scene. 

3. Motion blur (Figure 6(c)) due to the relative motion of the camera and the stomach wall surface. 

This factor accounts for a very large proportion of the endoscopic image. 

4. High quality (Figure 6(d)): Sharp areas, usually only present when relative camera motion and 

stomach surface are low. 

 

 

 Figure 6. The key feature classes affecting NBI endoscopic image quality: (a) Brightness; (b) 

Darkness; (c) Motion blur; (d) High quality. 

To classify the image quality for each small patch, we utilize deep learning models. Convolutional 

neural network (CNN) exploits the structure of the image through local interactions captured by 

convolutions with small filters. Therefore, different layers of the network may contain different 

semantic information, and the deeper into the network, the more complex features are obtained. 

Classification of image quality depends on both low-level features and high-level features of the 

image [27], in other words, the representation of a particular type of distortion may be different at 

each layer in the image in a deep learning network. Therefore, using only features in the final 

convolutional layer may not be enough to predict the quality of an image. Inspired by the 

hierarchical feature extraction strategy in [32], we propose a solution that combines both low-level 

as well as high-level representation at different layers of the network by resizing and concatenating 

    

(a)             (b)                (c)          (d) 
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them, then passing through Global Average Pooling (GAP) and a Fully connected layer (FC) for 

the purpose of returning to the desired size. The architecture diagram is depicted in Figure 7. 

 

Figure 7. The improved AI model architecture for endoscope image patch quality classification. 

As can be seen in Figure 8, the two patches of darkness and high-quality patch images are quite 

similar visually. As a result, this makes the model easy to confuse in distinguishing these two types 

of image patches. Therefore, to improve this problem, inspired by [55], which tried to separate the 

normal and abnormal video snippet by proposing the feature magnitude loss function, in addition 

to only using the loss function for the classification problem, we also use the loss function for the 

deep features of the above two patch types taken from the FC layer utilizing feature magnitudes. 

More specifically, we utilized the feature magnitudes loss that maximizes the separability between 

darkness and high-quality patches.  
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      a) 

 

 

b)  

Figure 8. The relative similarity between high-quality and darkness patches: (a) High-quality 

patch and its corresponding histogram; (b) Darkness patch and its corresponding histogram.  

Given the entire image 𝐼 = {(𝑃𝑖, 𝑦𝑖)}𝑖=1
𝑁 ,  where 𝑁 the total number of patches in an image, 𝑃𝑖 is 

the ith patch and 𝑦𝑖 is the label. The improved network is denoted by 𝑟𝜃,∅ = 𝑓∅(𝑠𝜃(𝑃𝑖)) and return 

a 𝑁-dimensional feature [0,1]𝑇 representing the classification of all patches into 4 labels above, 

with the parameters 𝜃, ∅ defined below. The end-to-end model is training with the total loss: 
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𝑙 = 𝑚𝑖𝑛𝜃,∅ ∑ (1 − 𝛼)𝑙𝑠(𝑠𝜃(𝑃𝑖), 𝑠𝜃(𝑃𝑗), 𝑦𝑖, 𝑦𝑗) + 𝛼𝑙𝑓(𝑓∅(𝑠𝜃(𝑃𝑖)), 𝑦𝑖)

𝑁

𝑖,𝑗=1

, 

where 𝑠𝜃: 𝑃 → 𝑋 is the patch feature extractor (with 𝑋 ⊂ 𝑅𝐷 is pre-computed feature of dimension 

𝐷 from an image patch), 𝑓∅: 𝑋 → [0,1]𝑇 is the patch classifier, 𝛼 is assigned weight for each term, 

𝑙𝑠(. ) denotes a loss function that maximises the separability between the darkness and high-quality 

patches, and 𝑙𝑓 is a loss function to train the patch classifier. The feature magnitude loss function 

can be further defined as: 

𝑙𝑠(𝑠𝜃(𝑃𝑖), 𝑠𝜃(𝑃𝑗), 𝑦𝑖, 𝑦𝑗) = max (0, 𝑚 − 𝑑 (𝑔𝜃(𝑋𝑖), 𝑔𝜃(𝑋𝑗))) 

𝑖𝑓 𝑦𝑖, 𝑦𝑗 ∈ {𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠, 𝐻𝑖𝑔ℎ − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦} 

where m is pre-defined margin, 𝑋𝑖 = 𝑠𝜃(𝑃𝑖)  is the patch feature, 𝑔𝜃  calculates the feature 

magnitude of the patch feature, and 𝑑 represents separability function that computes the difference 

between two feature magnitudes. 

3.3.2. Quality assessment: 

Inspired by [44,45,46] in evaluating patch quality locally, then synthesizing and giving results 

globally, for each frame after scoring the quality for all patches, the aggregation process to evaluate 

the frame quality in 5 levels from low to high: Bad, Poor, Fair, Good and Excellent is performed 

statistically. After looking at the characteristics of Good and Excellent quality images as classified 

by medical professionals, we found that for these images, the high-quality patches are often located 

adjacent horizontally or vertically to each other, forming an area with a lot of medical information 

in it. Therefore, we decided to use the Breadth-first search (BFS) algorithm to search and based on 

the percentage of adjacent high-quality patches to evaluate the quality for the entire frame. The 

percentage of adjacent high-quality patches is defined as follows: 

𝑛 =
𝑁

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒
, 

where n is the percentage of adjacent high-quality patches and N is total number of adjacent high-

quality patches. Similarly, the percentage of patch type remaining is equal to the number of patches 

of that type divided by the total number of patches per image. In addition, we classified the images 
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as Bad and Poor quality based on the percentage of motion blur patches because we found that in 

an endoscopic video, most of the very poor-quality frames were those that were blurred due to the 

relatively fast camera transitions, causing the loss of almost all areas containing medical 

information. Finally, images that are concluded to be Fair quality are classified in cases where the 

camera is stationary or has relatively slow motion, so blurred patches account for a small 

percentage. However, the light source emitted is not evenly distributed over the entire image, 

causing patches of brightness and darkness to dominate and only a small area of high-quality 

patches. Assuming the percentage of each patch type in an image is illustrated in Table 1 below: 

Table 1. The percentage of each patch type in an image. 

 

Then, the quality rating for the entire frame is performed as shown in Table 2: 

Table 2. Quality assessment for the entire frame. 

 

Bad 

 

Poor 

 

Fair 

 

Good 

 

Excellent 

c > 45% 35% ≤ c ≤ 45% c < 35% and 

n < 35% 

35% ≤ n ≤ 55% 

and c < 35% 

n > 55% and 

c < 35% 

 

In general, the factors to evaluate the quality of gastroscopy images are applied as follows: 

- Bad quality image (Bad): If the patch rate is blurred over 45%. 

- Poor quality image, difficult to find medical information (Poor): If the blur rate is from 35% 

to 45%. 

Brightness Darkness Motion blur High-quality 

(adjacent patches) 

a% b% c% n% 
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- Acceptable image quality (Fair): If the patch ratio is blurred below 35% and the high-quality 

patch ratio is below 35%. This is the case when the camera has little movement (less blur) and a 

small number of image areas are still good enough to observe medical information well. 

- Good quality image (Good): If the patches rate of high-quality is from 35% to 55%. 

- Very good quality image (Excellent): If the patches rate of high-quality accounts for 55% or 

higher. 

3.3.3. Inference process: 

To speed up the inference process, instead of classifying each image patch individually (Figure 

9a), we leverage the power of the Graphics Processing Unit (GPU) by after dividing all patches, 

we concatenate all those patches into a single tensor in Pytorch [59] has size: [20, 3, 128, 128], 

where 20 is the total number of patches, 3 is the number of channels RGB and 128x128 is the patch 

size (Figure 9b). 

 

 (a) 
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 (b) 

Figure 9. The inference process: (a) Original way; (b) Proposed way. 

With this improved inference method, the speed of the whole pipeline can be enhanced 

significantly. The time results measurement of two ways of implementing the inference process 

will be shown in detail in section 5. 

4. Data Preparation: 

The original dataset is the private dataset from the medical image database of Viettel Cyberspace 

Center. Specifically, the raw data is a set of endoscopic images extracted from specialized NBI 

cameras in real-world endoscopy cases, with an original size of 720 x 576 (width x height). Since 

the original image data has a black border surrounded (Figure 3), which is not necessary 

information, and to bring it to the valid size to be divisible by the 128x128 size of the patch, we 



            

27 

 

cut off most of the surrounding black border, thus the size of images for training or testing process 

became 640x512. 

 

Figure 10. Endoscopic image after cutting off most of the black border has size of 640x512. 

To be able to train the patch-based classification model, we first crop the image, then divide the 

image into consecutive patches, each patch is 128x128, and then divide it into 4 categories as 

described above under the guidance of medical professionals. Therefore, the entire image will have 

a total of 20 patches. The number of each type is described in Table 3 below: 

Table 3. Dataset used for training patches-based classification model. 

 Brightness Darkness High-quality Motion blur 

Train 205 592 3278 918 

Val 107 212 699 639 

 

Because the initial data is quite imbalanced when the number of patches with high-quality accounts 

for the majority, 6 times more than the number of patches that are darkness and 12 times more than 

the number of patches that are brightness. Therefore, before putting into the training model, we 

use data augmentation methods to bring the amount of data of each label to the balance level. 

Specifically, the data augmentation techniques that we take advantage of are mainly based on 

geometric transformations such as rotation, flip, crop, stretch, etc. and intensity transformations 
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such as gamma correction, contrast change, etc. Finally, we normalize the input to the form (0,1) 

and then return it to mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. After applying 

data augmentation techniques, clearly, the number of each type became much more balanced as 

shown in Table 4: 

Table 4. Dataset after using the data augmentation techniques. 

 Brightness 

(x12) 

Darkness 

(x5) 

High-quality Motion blur 

(x3) 

Train 2460 2960 3278 2754 

Val 107 212 699 639 

 

Figure 11 depicts the number of training dataset before and after applying data augmentation 

techniques. Clearly, the augmented training dataset is much more balanced compared to the 

original.  

 

Figure 11. Demonstrate the quantity of training dataset before and after utilizing augmentation 

techniques. 

 



            

29 

 

5. Results: 

5.1. Patch-based classification model: 

During training, we chose Adam [60] as the optimizer with learning rate = 1e-4 and weight decay 

= 5e-3, batch size = 32. In addition, we also use the learning rate reduction strategy Cosine 

annealing restart to help improve the model's ability to pass local optimal points. Regarding the 

loss function for patch classifier, we choose Cross entropy loss with the hyperparameter 𝛼 = 0.2 

the margin 𝑚 = 15  with respect to feature magnitude learning function. Similar to other 

classification problems, we use measurement methods: accuracy, precision, recall and F1-score. 

The results of the baseline model classification (without using data augmentation techniques, 

multi-feature fusion strategy and feature magnitude learning) for patches are shown in Table 5 

below: 

Table 5. Experimental results of baseline patch-based classification model. 

 

Patches are classified into 4 classes and evaluated according to 4 metrics: Precision, Recall, F1-

score, and Accuracy. From Table 5, we can see that because of the numerical imbalance between 

classes, the results of the baseline approach are clearly unstable. Specifically, although the value 

of recall in the two groups brightness and darkness are significantly high, which are 98.13 and 

93.40 respectively, the precision metric of those is extremely low that are below 89, resulting in a 

remarkably low F1-score. In addition, due to the relative similarity of the two types of patches that 

are darkness and high-quality as mentioned above, the precision of the darkness and the recall of 

the high-quality types are very low, which are 87.61 and 93.13 respectively. In contrast, by using 

data augmentation techniques, multi-feature fusion strategy and feature magnitude learning, the 

patch-based classification results of the improved version can be improved significantly as shown 

in Table 6:  

Class Precision Recall F1-score Accuracy 

Brightness 88.23 98.13 92.92  

95.65 Darkness 87.61 93.40 90.41 

Motion blur 97.53 98.75 98.13 

High-quality 97.89 93.13 95.45 
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Table 6. Experimental results of patch-based classification improved model. 

Class Precision Recall F1-score Accuracy 

Brightness 97.25 99.07 98.15  

97.7 Darkness 92.96 93.40 93.18 

Motion blur 99.06 99.06 99.06 

High-quality 97.84 97.42 97.63 

 

By applying different data augmentation methods, the problem of data imbalance can be partially 

solved, thus significantly improving the results of the precision index in the two groups of 

brightness and darkness patches, which are 97.25 and 92.96 respectively. As a result, the F1-score 

value can be also enhanced to 98.15 and 93.18, showing the importance of numerically balancing 

between types of patches. Moreover, the confusion between the high-quality and darkness types 

can be improved by utilizing the feature magnitude loss function, which increases the recall of 

high-quality type to 97.42. In addition, the improved version has 97.7% with respect to overall 

accuracy, higher than 2% compared to the baseline. In general, with the application of the 

techniques mentioned above, the results of the patch-based classification model have improved 

significantly on almost all indicators. 

Because of the extreme imbalance of the validation set, the overall accuracy may not be reflected 

enough in the effectiveness of the model. Therefore, we plot the F1-score of two version baseline 

and improved patch-based classification model according to four categories to demonstrate the 

enhancement. Figure 12 shows the F1-score of the baseline and improved model. 
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Figure 12. F1-score of the baseline and improved patch-based classification model. 

Specifically, the F1-score of brightness and darkness types increase significantly from 92.92 to 

98.15 and 90.41 to 93.18 respectively. With the rise of F1-score in terms of the brightness type, 

that of the high-quality type of also growths remarkably from 95.45 up to 97.63. From there, we 

can see significant improvements of the patch-based classification model through changes in 

model architecture as well as the loss function. 

Figure 13 illustrates the t-SNE plot of the features extracted of improved Resnet18 model from 

validation set trained using baseline and improved approach. It shows clearly that the improved 

pipeline has better separation between classes than the original one, especially between high-

quality and darkness types. The classification confusion matrix of two approaches calculated from 

the validation set are also in Figure 14 shown below. 
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Figure 13. t-SNE plots of patch-based classification: (a) Baseline model; (b) Improved model. 

From Figure 14, the high-quality type of prediction is most significantly improved. Specifically, 

the error prediction between brightness and high-quality types has been completely resolved by 

reducing the number of falsely predicted brightness patches from 9 samples to 0 samples. 

Especially, the confusion between brightness and high-quality types has also been significantly 

decreased, from 23 samples to 13 samples. In addition, the number of false motion blur predicted 

has decreased significantly from 16 samples down to 5 samples. Therefore, the number of correctly 

predicted high-quality patches was boosted remarkably from 651 to 681. 

 

(a)                         (b) 
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Figure 14. Confusion matrixes of patch-based classification model: (a) Baseline model; (b) 

Improved model. 

 

(a)  

 

(b)  
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5.2. Results in practical environment: 

After building the model for patch classification, we calculate the number of each type and give 

an assessment for the entire frame. Figure 15 below shown a several test results on the practical 

environment: 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure 15. Descriptive results evaluate image quality: (a) Bad; (b) Poor; (c) Fair; (d) 

Good; (e) Excellent. 

As can be seen, for images classified as bad and poor, most of the patches in the image are motion 

blur patches, causing almost all medical information to be lost. With respect to fair images, the 

majority are brightness and darkness patches, with a small number of high-quality patches 

remaining. As shown in Figure 15, the percentage of adjacent high-quality patches is only 25%, 

while that of brightness and darkness patches is 15% and 55% respectively. Finally, for good and 

excellent quality images, the number of motion blur patches is almost zero, and the number of 

high-quality patches is the majority. For instance, for good and excellent images in Figure 15, the 

percentage of adjacent high-quality patches is 40% and 60% respectively. Furthermore, for 

evaluation in the practical environment, we asked medical professionals from Viet Duc and K Tan 

Trieu hospitals to clinically test the results of the model. The conclusion shows that the output 

quality levels are highly correlated to medical professionals’ perception. 

5.3. Inference process: 

Table 7 illustrated the time results measurement of two ways implementing inference process on 

that mentioned above GPU NVIDIA QUADRO RTX 4000: 
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Table 7. Time measurement of the original and the improved way. 

Version Time processing (mean ± 

std) 

Frames per second (FPS) 

Original 0.0848 ± 0.00149  12 FPS 

Proposed 𝟎. 𝟎𝟐𝟏𝟐 ± 𝟎. 𝟎𝟎𝟏𝟑𝟖  48 FPS 

 

By concatenating all the patches into a single tensor, we only need to perform the patch-based 

classification inference once instead of 20 times like the patch-by-patch classification. Therefore, 

by taking the refined way, the inference process of the whole pipeline increases significantly, 

which is four times compared to the original one. 

5.4. Storage efficiency: 

Table 8 illustrates the storage efficiency of the IQA module with F, G, E are the abbreviated 

image quality levels for Fair, Good and Excellent respectively. 

Table 8. Describing the effectiveness of the IQA module in reducing storage capacity. 

 

 

Video  

 

 

Length 

 

Size 

(mb) 

Total 

number 

of 

frames 

 

Quality 

threshold 

Number 

of 

extracted 

frames 

Amount of 

storage 

saved (%) 

 

14-2-

2018Sequence_15-14-

3-228 original.avi 

 

 

 

1m29s 

 

 

123.6 

mb 

 

 

2244 

F, G, E 950 57.66% 

G, E 625 72.15% 

 

E 

 

451 

 

79.90% 

 

Azoulay 

28032018.mp4 

 

 

1m04s 

 

 

40.8 

mb 

 

1623 

F, G, E 298 81.64% 

G, E 237 85.40% 

E 164 89.90% 
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Additionally, to be able to demonstrate the effectiveness of the module in saving storage space 

through the amount of storage saved. The amount of storage saved is calculated by: 

The amount of storage saved = (1 −
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
)  ∗  100 

where the number of extracted frames is taken according to the quality threshold. For instance, if 

the quality threshold is set to F, G, and E, all frames of Fair, Good, and Excellent quality will be 

stored, and the remaining frames of substandard quality will be discarded. Such threshold 

adjustment provides users a certain amount of flexibility. As can be seen from Table 8, with the 

first video, the amount of storage saved ranges from 57.66% to 79.90%, and the second video is 

from 81.64% to 89.90% depending on the quality threshold. Overall, the IQA module not only 

lessens the storage capacity needed but only provides users flexibility according to different 

scenarios. 

6. Conclusion and Future works: 

Given the abundance of medical imaging data nowadays, specifically in the field of gastroscopy, 

endoscopic image quality control plays a fundamental role in improving the overall quality of life 

for individuals. By cleaning and removing unsatisfactory images, image quality control not only 

has benefits in reducing the storage capacity needed in medical capacity but also shortening the 

time required in search the high-quality image, therefore helping to enhance the reviewing process 

and subsequent treatment. In addition, image quality assessment can be considered as supporting 

materials for training and evaluating young surgeons and technicians. In this work, based on the 

characteristics of endoscopic images, we utilized a two-stages approach to assessing the image 

quality using deep learning approaches. Specifically, to estimate the quality of multiple regions, 

first, the image is divided into non-overlap patches and utilized multi-layer features of CNN to 

classify into different categories, then the final quality of the entire image is determined by 

aggregation process, which is based on the statistical method. In addition, we also leveraged the 

feature magnitude to make the patch-based classification model better separating different types 

of patches. Lastly, we introduced an efficient inference method to improve the speed of the whole 

pipeline significantly. By leveraging the improved methods outlined above, we achieve nearly 98% 

overall accuracy for the patch classification model which is highly appreciated by medical 
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professionals. Regarding storage, the IQA module not only decreases the required storage space 

by about 90% but also gives users a great deal of flexibility depending on various scenarios. In 

terms of processing speed, the frame rate of the pipeline reaches 47 FPS on the GPU NVIDIA 

QUADRO RTX4000, ensuring it runs on edge devices. 

Currently, due to the fixed size of patches and non-overlap dividing strategy, it is inevitable that 

patches have quality ambiguity, such as there are some patches that are both high-quality and 

darkness. In the future, we plan to do more research on finding a more effective dividing patches 

strategy to handle this drawback. Additionally, because the output of the module is only evaluated 

by a small number of medical professionals, it may not be reliable enough to test its effectiveness 

in the practical environment. Therefore, we plan to consult with more experts, thereby providing 

a development direction for the product. 
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