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ABSTRACT

Motion Capture (MC) technology, prevalent in film production and virtual reality gaming,

captures and reproduces human skeletal movements. This study seeks to operationalize Motion

Capture in practical settings by employing six HiPNUC accelerometer sensors to forecast the

motion of 18 SMPL skeleton joints. Our primary task involves harnessing the potential of

HiPNUC’s sensors and optimizing the computational engine inspired by Stanford University’s

Yifeng Jiang and their work on ”Transformer Inertial Poser.” Our key accomplishment lies in

the successful integration of HiPNUC’s accelerometer sensors. We have implemented these

sensors, established an Engine ONNX Runtime and streamlined processing times through mul-

tiprocessing. Achieving real-time performance, our system operates at 60 fps on GPUs like

RTX2060 and an impressive 90fps in offline mode on GPUs such as T4 and M40. This level

of efficiency is essential for seamless integration into applications requiring high-performance

motion capture. The adaptation of the Transformer Inertial Poser’s computational engine to our

context ensures precise predictions of SMPL joint movements. This adaptation maximizes the

strengths of HiPNUC’s sensor capabilities, providing a sturdy framework for real-time motion

capture. Additionally, we have developed a data export mechanism through a dedicated socket,

facilitating the seamless transmission of motion data to external applications, including Unity,

Blender, and others. Our system’s versatility ensures compatibility with a variety of creative

and development environments, making it a valuable tool for animators, game developers,

and virtual reality content creators. In conclusion, our research successfully bridges theoretical

advancements and practical implementation in Motion Capture. The integration of six HiPNUC

accelerometer sensors, coupled with an optimized computational engine, delivers high-fidelity

real-time motion capture capabilities. The achieved frame rates on various GPUs highlight

the scalability and efficiency of our system. With the added feature of data export to external

applications, our system not only meets the demands of real-time performance but also opens

avenues for diverse creative applications, reshaping the landscape of motion capture technology.

Keywords: Motion Capture (MoCap), Inertial Measurement Unit (IMU), Human Pose Es-

timation, Transformers, ONNX Runtime, Computing Parallelism.
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1. INTRODUCTION

1.1 Literature review

Currently, tracking to reconstruct the shape and motion of the human body is becoming

increasingly important. Before 2014, the reconstruction of human shape and motion [1] mainly

relied on flex sensors and then the joints were reconstructed through calculations based on

the sensor’s variation values. Since 2014, with the development of Deep Learning, human

pose estimation [2] through Computer Vision has become popular, as illustrated in Figure 1.1.

From 2017, researchers began using inertial sensors to predict body movements. Last June,

researchers in China [3] used 6 IMUs combined with an LSTM network [4] to predict the

SMPL skeleton of the human body.

Fig. 1.1 Setup for Computer Vision (left) and setup with IMU sensors (right).

For prediction using Flex sensors, the accuracy is high but the cost is quite expensive to

invest in and difficult for users to operate. Research on Computer Vision provides high stability

but is limited by the camera’s view and heavily affected by external factors such as lighting or

background. Studies on using inertial sensors for predicting human body shape show relatively

high accuracy. Moreover, the use of inertial sensors has advantages in terms of operating space

and overcoming the barrier of the camera’s viewing angle.

The use of human pose through Computer Vision is mainly for analyzing user behavior

such as user actions analysis and providing notifications, evaluating user workouts and giving

feedback. When using Computer Vision, motion can be recognized as commands to control

devices. Computer Vision also helps to transform motions into movements of 3D characters.
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Research using sensors aimed at virtual environments and large moving spaces will not be

limited by space and angles. They are often used in virtual reality games, as well as interac-

tions in augmented reality. In addition, this field is moving towards creating motion records of

characters for filmmakers.

As previous studies have demonstrated the feasibility of using IMUs to predict human shape,

the accuracy has not yet been high. Research is focusing on improving accuracy through deep

learning models with powerful new architectures such as transformers.

1.2 The necessity of the research

The research aims to increase the accuracy and stability of the model with more advanced ar-

chitectures. In addition, optimizing the speed and performance to run in real-time is also crucial.

The data from IMU sensors fed into the model for prediction has a time series format, which

is often lost in traditional recurrent neural networks [5]. Currently, transformer architecture

with self-attention [6] can help the model retain more information from the past, improving the

model’s learning and inference capabilities. However, the increasing complexity of the model

and the need for more computing power may increase the cost. Therefore, optimizing the engine

to reduce latency in real-time and operating costs is essential. This can allow the model to run

on machines with moderate configurations.

1.3 The feasibility of research

We have built a model based on the transformer architecture with 4 encoder blocks. The

input of the model is data from 6 IMU sensors placed at the pelvis, left arm, right arm, left leg,

right leg and head. Each sensor has 12 values, with 3 values for acceleration and 9 values

for rotation matrix. The output of the model is the estimated velocity of 18 joints and the

corresponding bone shape. The output values will be combined with data from the sensors

to serve as input for the model, allowing the model to have more context for prediction.

The data for training and evaluating the model is exported from the AMASS dataset [7]. The

SMPL skeleton [8] of the data will be the label and the input data will be the acceleration and

Euler angles extracted from the corresponding sensor positions on the body. The final task is
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Fig. 1.2 Idea of processing flow.

optimizing the model from the PyTorch framework. Open Neural Network Exchange (ONNX)

[9] is a powerful and optimized framework for NVIDIA GPUs and here we use RTX2060

Super. ONNX helps reduce the latency of Encoder Only architectures by 2x with FP32 and

2.5x with FP16 on Turing architecture GPUs [10]. We aim to optimize the engine and quantize

the parameters to achieve real-time performance with 90-120 fps.

1.4 Research scope

This research focuses on applying AI to build a system that simplifies the process of creating

motions for virtual characters in the film industry. The system utilizes inertial sensors to record

human motions, which are then analyzed and transformed into realistic movements for virtual

characters. The goal is to optimize the system to run in real-time on a personal computer,

allowing for greater flexibility and ease of use. By automating the motion capture process

with AI technology, filmmakers can save time and resources while still producing high-quality

content.

This research aims to apply many sensor lines to Motion Capture and specifically the Hi299

sensor line first. We build synthesis, transformation, and preprocessing methods for sensors. We

optimize the calculation process to help MoCap run faster on low-GPU hardware and can run

realtime on mid-range hardware. Besides, we also develop output to expand the network and

connect to many applications.
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2. RELATED WORK

2.1 Capturing motion with computer vision

Vision-based motion analysis involves extracting information from sequential images in

order to describe movement [11]. This field dates back to the late 19th century, initiated by

the groundbreaking efforts of Eadweard Muybridge [12], who was among the first to devise

methods for capturing sequences of images. Since then, the field of motion analysis has under-

gone significant evolution, driven by major technological breakthroughs and a growing need for

quicker and more complex methods of capturing movement. These techniques are now applied

in various domains, from assessing human gait in clinical settings [13] to creating animations

in video games [14].

The evolution of motion capture in computer vision has seen significant advancements but

also faces certain challenges [11]. This field has progressed from manual methods to sophisti-

cated systems incorporating computer vision and machine learning. Markerless motion capture

systems use advanced computer vision algorithms to estimate body pose directly from image

data [15, 16]. A number of reviews [17, 18] have been previously published detailing these

developments, targeting specific application areas such as security, forensics and entertain-

ment.These systems are complex, requiring sophisticated camera systems, body models, and

algorithms for pose estimation. While promising, they are still in the developmental stage and

have not yet achieved widespread use in biomechanics with only a small number of companies

providing commercial systems. However, it remains unclear exactly what precision these sys-

tems can achieve in comparison to the other, more established motion analysis systems available

on the market. Certainly, the technology is under rapid development with modern computer

vision algorithms improving the robustness, flexibility and accuracy of markerless systems.
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2.2 Capturing motion with digital signals

In our capstone, we primarily focuses on optimize Inertial Measurement Unit (IMU) sensors

either as the primary or a supplementary input source. Additionally, we explore the application

of Transformer models, specifically the one introduced by Vaswani et al. [6] with version

Transformer Inertial Poser, as they form the foundational basis of our reconstruction approach.

A typical IMU sensor includes an accelerometer measuring 3-axis linear acceleration, a gy-

roscope measuring 3-axis angular velocity, and a magnetometer identifying the vector pointing

Earth’s magnetic north. From these raw signals, sensor fusion algorithms based on Kalman

filter or its extended version are used to provide more robust measures of the orientation [19,

20, 21, 22] [Bachmann et al. 2001; Del Rosario et al. 2018; Foxlin 1996; Vitali et al. 2021].

IMU sensors have been used along with vision-based sensors such as RGB or RGB-D cameras

for motion estimation.

With IMU sensors getting more compact and inexpensive, they have received increasing

attentions from both industry and research communities for a standalone body tracking solution.

Popular commercial products such as Xsens [23] and Rokoko [24] can generate high-quality

human motions ready to be used in real-time game engines. However, requiring a sophisticated

full-body setup with at least 17 IMUs hinders their accessibility to everyday users. Researchers

have therefore proposed body tracking systems with a small number of IMUs sparsely placed

on the body, usually utilizing statistical body models and/or high quality optical mocap data as

prior to mitigate input signals being under-specified. Marcard et al. [25] developed an offline

system (SIP) with only six IMUs, which optimizes poses and the parameters of the SMPL body

model [26] to fit the sparse sensor input. Huang et al.[27] learned a deep neural-net model

(DIP) from a large amount of motion capture data to directly map the IMU signals to poses.

Their model is based on bidirectional recurrent neural networks (BRNN), so the system can run

in an online manner while considering both the past and future sensor inputs with a negligible

latency, outperforming previous non-learning online methods. An ensemble of BRNNs was

further adopted by Nagaraj et al. [28] to improve upon the results. However, the two real-time

solutions mostly focus on reconstructing the local joint motion without global translation. Yi

et al.[29] proposed a new neural model (TransPose) where the progressive upscaling of joint

position estimation showed more accurate pose estimation. The model can additionally generate
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accurate global root motions by combining a supporting-foot heuristics and a small learned deep

network, similar to [30]. Recently, an extension of this system (PIP)[31] has been introduced,

which is concurrent to our paper, where the predicted motions are further optimized to reduce

violations of physics laws [32]. We explore this problem domain with a set of drastically

different techniques, and with much more relaxed assumptions on the environment geometry,

while producing comparable or better reconstruction results.
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3. PROJECT MANAGEMENT PLAN

Table 3.1 Project Timeline

Week Date Project Phase Detail Task Note

1 09/04/2023 Initiation Review the paper and the current model Completed
Set up development environment

2 09/11/2023 Analysis Plan in detail for optimization requirements Completed
Coordinate transformation

3 09/18/2023 Design Design improvements for the model Completed
Solutions for coordinate transformation

4 09/25/2023 Development Coding improvements with ONNX Completed

5 10/02/2023 Development Model development and refinement Completed

6 10/09/2023 Development Finalize coordinate system transformation Completed

7-8 10/16/2023 Testing
Testing of the model

Completed
Bug fixing and performance optimization

9-10 10/30/2023 Evaluation
Evaluate model performance real-time

Completed

11-13 11/13/2023 Report
Prepare report and usage guidelines

Completed

14 04/12/2023 Revision Overall project evaluation Completed
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4. MATERIALS AND METHODS
In this project, we employ six inertial measurement unit (IMU) sensors strategically posi-

tioned on a model character at six key locations: 0 (smallest ID) - pelvis, 1 - left wrist, 2 -

right wrist, 3 - left knee, 4 - right knee, 5 (largest ID) - head. The computer receives data from

these six sensors and utilizes a deep learning model in conjunction with a physics simulation

tool to predict 18 human joints. Subsequently, the output is stored in memory or transmitted in

real-time to graphic software applications such as Unity, Unreal, Blender.

Fig. 4.1 Illustration from input to expected output and connect with other applications.

The project utilizes the Hi299 inertial sensor series with wireless connectivity support from

HiPNUC, featuring six-axis inertial measurement and three-axis magnetic field measurement.

This sensor configuration enables accurate and dynamic tracking of the character’s movements,

facilitating the precise capture of intricate joint motions. The wireless capability enhances

flexibility, allowing for unencumbered movement during data capture sessions.

Fig. 4.2 Hi299 inertial sensor series on hand and dock.
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4.1 Building System Architecture

4.1.1 System Workflow

Flowchart 4.3 describing our Motion Capture System. It outlines the process flow from

sensor data collection to the final update of joint points, involving various data processing

stages, prediction models and calibrate with tools like PyBullet.

Fig. 4.3 System workflow from sensor data to SMPL outputs.

The system starts with sensor values that presumably capture motion data from a real-world

environment. These sensor values are then denoised to improve the quality of the data. The

cleaned data is then converted into rotation matrices and accelerations data, which are crucial

for understanding the orientation and movement dynamics of the captured points. A predictive

model uses the processed data to forecast the new state of joint points. This model is trained

to interpret sensor data and predict movement. The predicted new state of joint points is the

output from the predictive model, detailing the positions of joints in the next frame or time

step. The new state of joint points is then processed by PyBullet, which is a physics engine

used for simulations in robotics and animation. After being processed by PyBullet, the state of

the joint points is updated, which could mean it is refined to be more realistic. The updated

state of the joint points is appended to the history, a log of all the states for the motion capture

system to learn from the sequence. Finally, the output is likely in the form of SMPL (Skinned

Multi-Person Linear model) parameters, which is a widely used model for representing human

bodies in motion in real-time.
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4.1.2 Model Architecture

In this project, we reused a model from TIP [33] with architecture containing transformer

blocks and RNN layer. Transformers are a perfect combination for parallel computation between

states thanks to matrix multiplication by self-attention instead of the sequential model of RNNs.

This significantly increases computation speed when used on GPUs.

Fig. 4.4 Data shape input and output of model.

The proposed model’s input consists of sensory data and character state information. The

sensory data encompasses six rotation matrices and six acceleration vectors, forming a 72-

dimensional vector. Additionally, the mean of acceleration values from the five most recent

states is incorporated, adding 18 dimensions to the input vector.

Character joint states are represented using 131 dimensions. The first three dimensions

encode the root position of the character, while the remaining 128 dimensions capture the

joint angles of 18 joints. Each joint is represented by 6 values, with the first two columns

corresponding of rotation matrix to the fixed point of the joint.

The model’s output is a prediction of the character’s new state, adhering to the same format

as the character state information in the input. To ensure accuracy and compatibility with the

character state representation, the output is calibrated using PyBullet and then appended to the

character joint states for use in subsequent predictions.
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The input of the model is a list of frames with shape=(batch size, n frames, 221) and

the output of model also is a list of frames with shape=(batch size, n frames, 131). Model

has 2 linear layers after input and before output, it is used to perform linear and nonlinear

transformations on the input and output of the model. Inside of the model we have 4 transformer

blocks with 16 heads of multihead attention, attention helps find correlations between states and

helps transform embedding vectors for states more effectively. After transformer blocks and

before the last linear layer is RNN layer, this layer helps model predict output of state n using

information from n-1 state before that.

Figure 4.5 below illustrates the detailed architecture of our model. The total of parameters

used in this model is about 3.5M parameters.

Fig. 4.5 Model architecture with Transformer blocks and RNN layer.
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4.1.3 PyBullet Library

Motion capture are sensitive to drift, significantly compromise the quality and accuracy of

the captured movements. Drift in motion capture refers to the gradual accumulation of errors

over time, resulting in a misalignment of sensor position and orientation data compared to

actual movements. This can be caused by factors such as measurement inaccuracies from the

hardware, sensor instability, or environmental changes. Drift leads to inaccuracies in capturing

movements, making the final simulated output potentially unnatural or inconsistent.

Fig. 4.6 Drift in motion capture

PyBullet can help mitigate this issue by using algorithms to calibrate and reconcile mocap

data with physical models. PyBullet is capable of simulating complex physical interactions

and apply physical constraints to keep movements within realistic. When mocap data is fed

into PyBullet, it can utilize the physical model to predict and correct movements, minimizing

the impact of drift by ensuring that motion adheres to the laws of physics. This improves the

accuracy of motion reconstruction, even when the original mocap data is imperfect.

Fig. 4.7 A 3D articulated model in PyBullet simulation for Mocap.
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4.2 Process Data from IMU Sensors

4.2.1 Read and Merge Raw Data from Sensors

The current project leverages the capabilities of six Inertial Measurement Unit (IMU) sen-

sors developed by HiPNUC to gather user action data. The data acquisition process involves

the utilization of these IMU sensors, each of which transmits information to a USB docking

station connected to our computer. The transmitted data is structured in the form of a packet

comprising six JSON objects. Each JSON object encapsulates key parameters, including GWD,

id, timestamp, acc (acceleration), gyr (gyroscope readings), mag (magnetic field data), euler

(Euler angles), and quat (quaternion values).

The data received on our computer is organized as a set of six JSON packets, each encapsu-

lating the sensor readings. The structure of each JSON packet is defined as follows:

{

’GWD ’: [{’’: 0}],

’id’: [{’’: 0}],

’timestamp ’: [{ ’(s)’: 0.0}],

’acc ’: [{’X’: 0.0, ’Y’: 0.024, ’Z’: 1.012}],

’gyr ’: [{’X’: 0.0, ’Y’: 0.2, ’Z’: 0.0}],

’mag ’: [{’X’: -38, ’Y’: 13, ’Z’: -1}],

’euler ’: [{’Roll ’: 1.27, ’Pitch ’: 0.11, ’Yaw ’: -64.98}],

’quat ’: [{’W’: 0.843, ’X’: 0.01, ’Y’: -0.005, ’Z’: -0.537}]

}

For the specific objectives of this project, our analysis concentrates on three key parameters

within each JSON packet: ’id,’ ’acc,’ and ’quat.’ The ’id’ serves as a unique identifier for

individual sensors, while ’acc’ represents the acceleration readings, and ’quat’ encapsulates

quaternion values, crucial for capturing motion and orientation dynamics. To streamline the

analysis process, the data from all six IMU sensors is integrated into a unified data frame. The

consolidated format of the data frame is as follows:
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{

’acc ’: [acc_0, acc_1, acc_2, acc_3, acc_4, acc_5],

’quat ’: [quat_0, quat_1, quat_2, quat_3, quat_4, quat_5]

}

For each sensor, the acceleration values are represented as an array with three real numbers,

corresponding to the acceleration along the X, Y, and Z axes. The quaternion values are also

represented as an array with four real numbers, denoting the rotation angles of the sensor. These

four values are typically labeled as X, Y, Z, and W. The following charts illustrate the values

captured by sensor 0 (root) .

For each sensor, the acceleration values are represented as an array with three real numbers,

corresponding to the acceleration along the X, Y, and Z axes. The quaternion values are also

represented as an array with four real numbers, denoting the rotation angles of the sensor. These

four values are typically labeled as X, Y, Z, and W. The following charts illustrate the values

captured by sensor 0 (root) .

Fig. 4.8 Sample signal values of sensor 0 following by time series.
Top is value of accelerations and bottom is value of quaternion.
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4.2.2 Signal Denoising Using Kalman Filter

In this project, we employ the Kalman Filter as a robust technique for signal denoising,

particularly in the context of data collected from six IMU sensors. IMU sensors are instrumen-

tal in capturing various aspects of motion and orientation, but their measurements are often

susceptible to noise. The Kalman Filter is well-suited for this task, as it is capable of estimating

the true underlying state of a system by recursively processing noisy measurements. The filter

combines a prediction model, based on the system dynamics, with real-time measurements to

generate an optimal estimate.

Mathematically, the Kalman Filter is represented by the following equations:

Predict Update

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1

Pk|k−1 = AkPk−1|k−1AT
k +Qk x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1)

Pk|k = (I −KkHk)Pk|k−1

Where:

• x̂k|k is the updated state estimate at time k,

• Pk|k is the updated error covariance at time k,

• Ak is the state transition matrix,

• Bk is the control-input matrix,

• uk is the control input,

• Qk is the process noise covariance,

• Hk is the measurement matrix,

• Rk is the measurement noise covariance,

• Kk is the Kalman gain,

• zk is the measurement at time k.
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This application of the Kalman Filter aims to enhance the accuracy and reliability of signal

measurements obtained from the six IMU sensors by effectively mitigating the impact of inher-

ent noise in the sensor data. Figure 4.9 below present acceleration signal of axis Y from root

sensor with blue is raw value and orange is value after using Kalman filter.

Fig. 4.9 Denoising signal of Acceleration of axis Y from root sensor using Kalman filter.

4.2.3 Convert Data from Geographic Coordinate System to Virtual Coor-

dinate System

This section will explain why we must convert data from sensor values in geographic

coordinate system (GCS) to virtual coordinate system (VCS) used in simulation and how we

convert them.

A Geographic Coordinate System is a three-dimensional reference system that locates points

on the Earth’s surface. The Values of sensors are obtained from GCS with three fixed axes: X

axis corresponds to North, Y axis corresponds to West and Z axis corresponds to the upwards.

But in the simulation program, we fixed X axis to indicate the specified front of character, Y

axis corresponds to the left and Z axis corresponds to the upwards. The simplest way, we start

up at T-Pose with the face facing North and GCS will overlap with VCS. But it is difficult to

determine the north direction in actual use. Therefore we need the first phase to determine the

relative orientation of the character in GCS. In this phase we set the X-axis of the sensors to

face the character’s front direction on ground, Z-axis up to sky and value of the sensors to help

define the angle between human direction and North direction.



Final Capstone Project 27

Fig. 4.10 Setup of T-pose in GCS and VCS. At left is the character at T-pose in simulation,
center is human at T-pose and right is set 6 IMU sensors when defining front direction.

We have some conventions:

• V : Virtual coordinate system used in simulation

• G: Geographic coordinate system is base for get IMU values

• I: IMU coordinate system

• R: Rotation matrix

• 0,T, t: State at define front direction, T-pose, and at any time t

V: virtual A: arm I: IMU G: global D: rotation matrix

Matrix global to virtual:

DV =


0 1 0

0 0 1

1 0 0


Rotation matrix of IMU at T Pose:

[ŵt , x̂t , ŷt , ẑT ]
quaternion2matrix−−−−−−−−−−→ DT−I

Rotation matrix of IMU at Pose 1:

[ŵ1, x̂1, ŷ1, ẑ1]
quaternion2matrix−−−−−−−−−−→ D1−I
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Goal:

−→
V = D.

−→
A1 (4.1)

When T Pose we have:

−→
V =

−→
AT = DA−I.

−→
IT (4.2)

When Pose 1 we have:

−→
A1 = DA−I.

−→
I1 (4.3)

In Virtual coordinate:

−→
V = DV .

−→
G (4.4)

In Global coordinate:

−→
G = DT−I.

−→
IT = D1−I.

−→
I1 (4.5)

From (4.2) and (4.4) we have:

DV .
−→
G =

−→
V = DA−I.

−→
IT (4.6)

From (4.5) and (4.6) we have:

DV .DT−I = DA−I (4.7)

From (4.3) and (4.7) we have:

−→
A1 = DV .DT−I.

−→
I1 (4.8)

From (4.1), (4.4), and (4.5) we have:

D.
−→
A1 = DV .D1−I.

−→
I1 (4.9)

From (4.8) and (4.9) we have:

D.DV .DT−I = DV .D1−I (4.10)

Therefore:

D = DV .D1−I.(DV .DT−I)
−1 (4.11)

Formula 4.11 is used to calculate the rotation matrix and compute the acceleration for the

model input.
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In summary, process data from 6 sensors including 2 stages is calibrated and preprocessed.

At the calibrated stage, we get a mean value of 3 second, 3 second for getting Acc and Quat

at Root and 3 second for getting Acc and Quat at T-pose. After that, we find an offset of

accelerations and 2 rotation matrices used to calculate rotation matrices and accelerations of

6 points for input of the model in simulation.

Fig. 4.11 Preprocess data flow from raw data to input data for model prediction.

Raw data is a pack of 6 JSON data including 3 dims of acceleration and 4 dims of quaternion.

After preprocessing, we have a pack of 6 JSON data including 9 dims of rotation matrix after

flatten and 3 dims of acceleration. We will concatenate them to a data frame with 72 dims, the

first 54 dimensions are the concatenation of 6 rotation matrices in order, and the following 18

dimensions are the concatenation of 6 sets of acceleration values in order. Shape of data through

processing data present in Figure 4.8.

Fig. 4.12 Shape of data from raw data to input data for model prediction.
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4.3 Deploy Engine with ONNX Runtime

ONNX, which stands for Open Neural Network Exchange, is an open format for machine

learning models. It’s designed to facilitate engineers and data scientists in transferring models

between different machine learning platforms and optimize the deployment process. We provide

an overview of how ONNX operates and its workflow in my system:

4.3.1 Converting Model from PyTorch to ONNX

Exporting PyTorch Model: Use the torch.onnx.export function to convert the PyTorch

model to ONNX format.

torch.onnx.export(

model=model,

(dummy_input_imu, dummy_input_s),

onnx_path=onnx_path,

dynamic_axes={

’imu_input ’: {1: ’seq_len ’},

’s_input ’: {1: ’seq_len ’}

},

input_names=[’imu_input ’, ’s_input ’],

output_names=[’output ’],

opset_version=14,

export_params=True,

do_constant_folding=True

)

Some parameters of the export function:

• model: The PyTorch model you want to export.

• (dummy input imu, dummy input s): A tuple containing multiple tensors representing

the model’s input.

• onnx path: The path where the model will be saved after conversion.
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• dynamic axes: Specifies dynamic axes for input tensors.

• input names: Names assigned to input parameters.

• output names: Names assigned to the returned values.

• opset version: Specifies the ONNX operator set version to use. In this case, it’s version

14.

• export params: Determines whether to use pretrained weights or not. Set to True to use

pretrained weights.

• do constant folding: Enables constant folding optimization during export, which can

simplify the exported ONNX model.

4.3.2 Using ONNX Runtime for Inference

We use ONNX Runtime, an optimized execution engine, to load the ONNX model. ONNX

Runtime supports multiple platforms and is optimized for various hardware types.

onnxruntime.InferenceSession(

onnx_path,

providers=[’CUDAExecutionProvider ’]

)

• onnxruntime.InferenceSession: Create an inference session.

• onnx path: Path to the ONNX file.

• providers: The execution providers used to perform inference. In this case, we have

specified ’CUDAExecutionProvider’, indicating that we want to use the GPU to acceler-

ate the inference process.
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4.3.3 Optimizing the ONNX Model

Create Float16 Models

Converting a model to use float16 instead of float32 can decrease the model size and improve

performance. There may be some accuracy loss, but in many models the new accuracy is

acceptable.

convert_float_to_float16(

model,

min_positive_val=1e-7,

max_finite_val=1e4,

keep_io_types=False,

)

• model: The ONNX model to convert.

• min positive val, max finite val: Constant values will be clipped to these bounds.

0.0, nan, inf, and -inf will be unchanged.

• keep io types: Whether model inputs/outputs should be left as float32. Set to False to

left as float16.

Graph Optimizations

ONNX Runtime provides various graph optimizations to improve performance. Graph opti-

mizations are essentially graph-level transformations, ranging from small graph simplifications

and node eliminations to more complex node fusions and layout optimizations.

Graph optimizations are divided into three levels:

• Basic Graph Optimizations: These are semantics-preserving graph rewrites which remove

redundant nodes and redundant computation.

• Extended Graph Optimizations: These optimizations include complex node fusions.
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• Layout Optimizations: These optimizations change the data layout for applicable nodes

to achieve higher performance improvements.

ONNX Runtime defines the GraphOptimizationLevel enum to determine which of the afore-

mentioned optimization levels will be enabled. Choosing a level enables the optimizations of

that level, as well as the optimizations of all preceding levels.

Optimization Level Description

ORT DISABLE ALL Disables all optimizations
ORT ENABLE BASIC Enables basic optimizations
ORT ENABLE EXTENDED Enables basic and extended optimizations
ORT ENABLE ALL Enables all available optimizations

Table 4.1 ONNX Runtime Graph Optimization Levels

Quantize ONNX Models (Future Features)

Quantization in ONNX Runtime refers to 8 bit linear quantization of an ONNX model.

During quantization, the floating point values are mapped to an 8 bit quantization space of the

form :val fp32 = scale× (val quantized− zero point)

Where scale is a positive real number used to map the floating point numbers to a quantiza-

tion space. It is calculated as follows:

scale =
data range max−data range min

quantization range max−quantization range min
(4.12)

zero point represents zero in the quantization space. It is important that the floating point zero

value be exactly representable in quantization space. If it is not possible to represent 0 uniquely

after quantization, it will result in accuracy errors.

There are two ways of quantizing a model: dynamic and static. Dynamic quantization is

preferred to use dynamic quantization for transformer-based models. Dynamic quantization

calculates the quantization parameters for activations dynamically. Python API for dynamic

quantization is in the module onnxruntime.quantization.quantize, function quantize -

dynamic().
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4.4 Optimize with Multi-Processor

In the simple system, as outlined in section 4.1.1, processing occurs sequentially, progress-

ing from the beginning to the end of each frame and then onto subsequent time intervals. This

approach results in underutilization of GPU computational time after prediction, as the system

awaits the completion of other processing tasks, as illustrated in Figure 4.13 below.

Fig. 4.13 Normal system workflow.

To maximize GPU computational capabilities, we parallelized computational processes into

independent tasks, necessitating the allocation of additional processors. Follow Figure 4.14,

this approach allows the ”Read and preprocess” phase to seamlessly read and compute upon

data arrivals without waiting for the predict and export processes to conclude. Similarly, the

prediction task runs continuously on the GPU, leveraging preprocessed data from the preceding

phase, eliminating the need to stall for data processing. While this strategy significantly boosts

computational speed, it entails a trade-off by requiring a higher number of processors. This

optimization ensures efficient utilization of GPU resources, enhancing the overall system’s

computational throughput.

Fig. 4.14 System workflow using multi-process.



Final Capstone Project 35

4.5 Scale Up with Multi-Character

Increasing the number of characters, synonymous with augmenting batch size, proves in-

strumental in reducing computation time for the system. This optimization strategy enhances

the efficiency of character-based processes, mitigating computational demands and expediting

overall system performance. The amplified batch size not only streamlines calculations but also

contributes to the system’s scalability, rendering it more adept at handling diverse computational

workloads. This report delves into the impact of character quantity augmentation on batch

size, illustrating its pivotal role in optimizing system efficiency and laying the groundwork

for improved computational capabilities.

Fig. 4.15 Multiples simulations.

Simultaneously, this enhancement enables the system to process multiple characters and

movements concurrently, significantly reducing recording time. The heightened capacity to

handle diverse character interactions and motions concurrently not only optimizes efficiency

but also proves instrumental in expediting the overall recording process.
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5. RESULTS

5.1 Evaluation Datasets

Our model is trained on established AMASS dataset [7], which encompass a variety of

motion types and are matched with verified full-body motion data for comparative analysis.

AMASS encompasses over 40 hours of motion data, covering more than 300 subjects and over

11000 motions, making it richer than previous human motion collections.

Fig. 5.1 AMASS dataset.

To evaluate the model, we evaluate using DanceDB, a large dataset of contemporary dances,

therefore containing unique motion types to any other training dataset. DanceDB is part of

AMASS but the model intentionally keeps it out from training data. Previous works likely did

not include them in training either since they predate DanceDB’s release in AMASS [33].

In our evaluation, we employ common metrics and focus on three models: PyTorch, ONNX

FP32, and ONNX FP16. Additionally, our methodology includes an assessment of each model

across four different frame lengths: 40, 60, 90, and 120 frames. To ensure a comprehensive,

we randomly select 5000 consecutive frames from each motion in the evaluation datasets. This

selection process is crucial to prevent skewing the results with excessively long motions, and to

avoid the evaluation of root translation error at the beginning of motions, which typically start

from a stationary standing position.
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5.2 Quality of Quantization and Input Length

In Figure 5.2, our metrics are mainly based on the comparison between model prediction

results and actual ground-truth.

Fig. 5.2 Compare model results (yellow character) with ground-truth (green character)

• Mean Joint Angle Error (in degrees): Joint angle (represented in axis-angles) difference

between reconstruction and ground-truth, averaged over all joints.

With n joints, and θ recon
i , θ

gt
i represent the reconstructed and ground-truth angles for the

ith joint, then the Mean Joint Angle Error is calculated as equation 5.1:

Mean Joint Angle Error =
1
n

n

∑
i=1

∥∥∥θ
recon
i −θ

gt
i

∥∥∥2

2
(5.1)

• Mean Root-Relative Joint Position Error (in centimeters): Global joint Cartesian posi-

tion difference (Euclidean norm) between the reconstruction and ground-truth by aligning

at the root, averaged over all joints.

If precon
i and pgt

i represent the reconstructed and ground-truth positions of the ith joint

then the error for that joint is the Euclidean distance between these two points. The Mean

Root-Relative Joint Position Error is then the average of these errors across all n joints:

Mean Squared Relative Joint Position Error =
1
n

n

∑
i=1

∥∥∥precon
i − pgt

i

∥∥∥2

2
(5.2)

• Root Error 2s/5s/10s (in meters): Root translation error measured in Euclidean norm

during a continuous period of 2s/5s/10s. Since the formulas are similar, here we only
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present the formulas of Root Error 2s. At each time point within this 2-second interval, if

Rrecon
t and Rgt

t represent the root positions at time t in the reconstructed and ground-truth

motions, respectively, then the difference at time t is:

∆Rt = (Rrecon
t −Rgt

t )
2 (5.3)

Then average these Euclidean norms over all the time points in the 2-second interval. If

you have n time points in your 2-second interval, the Root Error 2s is calculated as:

Root Error 2s =
1
n

n

∑
t=1

∥∆Rt∥ (5.4)

We present our result quantitative metrics on the evaluation dataset in Table 5.1:

Table 5.1 Comparison of model quality on evaluation datasets.

Engine PyTorch ONNX FP32 ONNX FP16

40 60 120 40 60 120 40 60 120

Joint Angle Error 10.008 9.833 5.385 6.609 6.474 6.431 6.604 6.429 6.591
Joint Position Errors 6.144 6.064 3.289 3.370 3.335 3.184 3.358 3.323 3.193
Root Errors in 2s 0.022 0.016 0.025 0.012 0.010 0.011 0.012 0.010 0.011
Root Errors in 5s 0.032 0.017 0.012 0.012 0.013 0.014 0.013 0.014 0.014
Root Errors in 10s 0.047 0.024 0.029 0.011 0.008 0.009 0.011 0.009 0.009

The results indicate that converting from a PyTorch model to an ONNX model does not

degrade the model’s quality. The Joint Angle Error metric is the only indicator showing that the

PyTorch model is performing better in its task. However, across all other metrics, the victory

goes to the ONNX models in both FP32 and FP16 formats. Notably, the ONNX FP16 model

has halved in size, yet its model quality remains reasonably high. This suggests that this model

can be deployed on hardware-constrained devices while still achieving promising results.

The successful conversion from PyTorch to ONNX without substantial quality loss indi-

cates the compatibility and adaptability of the model across different frameworks and hardware

setups. Particularly, the reduced size and maintained performance of the ONNX FP16 model

demonstrate its potential for deployment in resource-constrained environments, opening up

possibilities for its use in scenarios with limited hardware capabilities.
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5.3 Performance on Types of Hardware

We provide a detailed description of each metric below:

• Model runtime (s): The amount of time an AI model takes to process or infer a single

batch of data.

• Engine runtime (s): This measures the performance of the software running model.

• Process speed (FPS): The number of frames that the system can process or display each

second. The formula to calculate Process speed is:

Process speed =
total frames

engine runtime
(5.5)

With the total frames fixed at 5000 frames.

• Memory usage (MB): This refers to the amount of VRAM (Video Random Access Mem-

ory) being utilized.

In Table 5.2, for benchmark performance of engine on types of hardware, we used some

option, with the following specific configuration :

Table 5.2 Hardware information used for benchmark.

GPU Name VRAM TFLOPS CPU cores CPU clock RAM

Tesla T4 16GB 8.14 2 2.5 GHz 12GB
RTX 2060 6GB 6.45 12 4.3 GHz 16GB
Tesla M40 24GB 6.83 48 2.5 GHz 32GB
GTX 1060 4GB 1.86 8 4.0 GHz 16GB

We have presented the results in Table 5.3, Table 5.4, Table 5.5, Table 5.6:
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Table 5.3 Comparison of model performance, benchmark on Tesla T4

Engine
PyTorch ONNX FP32 ONNX FP16

Num of frames 40 60 120 40 60 120 40 60 120

Model runtime (s) 44.1 46.7 53.5 17.8 19.7 28.4 17.7 19.3 27.0
Engine runtime (s) 114.8 126.1 163.7 63.0 74.8 113.8 62.7 74.2 111.5
Process speed (fps) 43.6 39.6 30.5 79.3 66.8 43.9 79.7 67.4 44.8
Memory usage (MB) 172 176 184 152 156 184 156 160 184

Table 5.4 Comparison of model performance, benchmark on RTX 2060 Super

Engine
PyTorch ONNX FP32 ONNX FP16

Num of frames 40 60 120 40 60 120 40 60 120

Model runtime (s) 56.1 58.7 66.2 20.4 25.0 28.7 20.0 23.2 33.2
Engine runtime (s) 89.9 95.1 123.7 47.6 64.0 97.5 49.1 58.0 88.6
Process speed (fps) 55.6 52.6 40.4 105.0 78.1 51.3 101.8 86.2 56.4
Memory usage (MB) 176 180 188 156 160 188 160 164 188

Table 5.5 Comparison of model performance, benchmark on Tesla M40

Engine
PyTorch ONNX FP32 ONNX FP16

Num of frames 40 60 120 40 60 120 40 60 120

Model runtime (s) 52.4 55.5 63.6 21.2 23.4 33.8 21.0 22.9 32.1
Engine runtime (s) 86.1 94.6 122.8 47.3 56.1 85.3 47.1 55.6 83.6
Process speed (fps) 58.1 52.9 40.7 105.8 89.1 58.6 106.3 89.9 59.8
Memory usage (MB) 184 188 200 168 172 200 168 172 200

Table 5.6 Comparison of model performance, benchmark on GTX 1060

Engine
PyTorch ONNX FP32 ONNX FP16

Num of frames 40 60 120 40 60 120 40 60 120

Model runtime (s) 183.4 194.2 222.7 74.2 81.9 118.1 73.5 80.3 112.2
Engine runtime (s) 210.4 225.5 270.1 95.1 108.1 159.4 94.3 106.4 153.5
Process speed (fps) 23.8 22.2 18.5 52.6 46.3 31.4 53.0 47.0 32.6
Memory usage (MB) 220 256 268 210 224 236 212 216 232
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Based on the model performance benchmark tables provided, we can conduct an evaluation

based on the crucial criterion of processing speed (fps - frames per second). This metric is

essential because, to achieve real-time performance, the model must process at least 60 frames

per second.

In Tesla T4, referring to table 5.3, models using ONNX FP32 and ONNX FP16 with frames

of 40 and 60 can demo in real-time with respective speeds of 79.3 and 79.7 fps (ONNX FP32)

and 101.8 and 86.2 fps (ONNX FP16). PyTorch does not meet the real-time requirements in any

case. Similar results also occurred in M40 (table 5.5) and RTX2060 Super (table 5.4). On table

5.6, no case in GTX 1060 achieves the fps threshold for real-time performance. The highest

speed is 53.0 fps with ONNX FP16 at 40 frames.

While encountering the challenge of the ONNX model falling short of reaching 60 fps on the

older GTX1060 device, it can not diminish the value of the conversion. Conversely, on devices

like the Tesla T4, Tesla M40, and particularly the RTX 2060 Super – our targeted device –

they all significantly surpassed the 60 fps threshold. This superiority even extended up to an

impressive 105 fps, showcasing the potency of the ONNX model on hardware.

For an real-time demo, we suggest to utilize the ONNX FP16 model due to its superior

performance in achieving high frame rates across various tests. In terms of hardware, the Tesla

T4, RTX 2060 Super and Tesla M40 GPUs stand out as process speed, with the Tesla M40

slightly edging out in performance at higher frame rates. However, we highly recommend the

RTX 2060 Super as it is more accessible to non-IT professionals. Employing the ONNX FP16

model in conjunction with either the RTX 2060 Super will ensure that the demo not only stable

at 60 fps threshold but also maintains a robust performance buffer to handle more complex tasks

or any additional computational load that may arise during the demonstration. In the future,

if our input devices become more modern and our models become even more optimized, we

believe we can run real-time demo at 120 fps.

With such impressive outcomes, we were exhibiting the project’s real-time capabilities and

confirming the accomplishment of our objectives. Importantly, the ONNX model has proven

its capacity to enhance performance, even on devices considered less advanced. This holds

significant implications for expanding the project’s applicability across various devices and

diverse environments.
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5.4 Hardware Responsiveness Analysis

To evaluate, we benchmarked on the RTX 2060 Super with ONNX FP32 model and number

of frames is 40 when increasing the number of characters to get this as close to a real-time demo

as possible. The results are presented in Table 5.7:

Table 5.7 Model performance when increasing the number of characters.

Num of characters 1 2 4 8

Model runtime (s) 20.35 24.43 29.31 35.17
Engine runtime (s) 47.62 71.43 107.14 160.71
Process speed (fps) 105.0 70.0 46.7 31.1
Memory usage (MB) 184 280 520 960

The model displays optimal efficiency with a single character, achieving a high process

speed of 105 fps and maintaining low memory usage at 184 MB. Doubling the character

count to two results in a slight performance decrease, with a process speed of 70 fps, yet

remaining within real-time processing capabilities. However, as characters increase to four and

eight, the process speed falls significantly below the real-time threshold (46.7 fps and 31.1 fps,

respectively).

A notable observation is the model’s efficient scaling, with the runtime increasing by a

factor of approximately 1.3 to 1.5 when doubling the character count. This scaling behavior

suggests the potential efficiency gains of a shared computation engine for increased batch sizes.

Nevertheless, beyond a certain point, the model encounters diminishing returns, underscoring

the importance of a nuanced approach in character count considerations.

Fig. 5.3 Processing with 2 characters



Final Capstone Project 43

6. DISCUSSIONS

6.1 Application of Motion Capture

Our project not only succeeded in optimizing the Transformer Inertial Poser (TIP) engine

with ONNX Runtime but also went above and beyond by enhancing its usability and versatility.

The native TIP program showcased remarkable real-time performance, achieving 65 fps on the

RTX 3090 GPU, a testament to its prowess in pose estimation. However, the exclusive reliance

on the Ampere architecture limited its accessibility to a broad user base.

To address this challenge, our optimization efforts resulted in a significant performance

boost—TIP now runs 2-3 times faster, making it compatible with a spectrum of older GPUs,

including the Turing architecture (RTX 2000 series, Tesla T4), Pascal architecture (GTX 1000

series, P4 series), and Volta architecture (Tesla M40). This strategic expansion of compatibil-

ity democratizes access to TIP, ensuring that its cutting-edge pose estimation capabilities are

available to users with diverse hardware configurations.

Moreover, our project brings practicality to the forefront by seamlessly integrating the

HiPNUC’s IMU sensor product line. Beyond performance enhancements, this integration in-

troduces a cost-effective solution without compromising accuracy. By doing so, our project

acknowledges the importance of real-world applications, making TIP an economically feasible

choice for various industries.

In a forward-looking move, we implemented a socket-based real-time export feature in

SMPL format. This functionality transforms TIP into a versatile tool, allowing users to connect

with external applications such as Unity, Blender, and VR Chat. The adoption of the SMPL for-

mat ensures compatibility and interoperability, unlocking a multitude of possibilities in virtual

reality experiences, animation, and interactive simulations.

In essence, our project transcends the traditional boundaries of pose estimation. It not only

optimizes performance but strategically aligns TIP with practical needs, broadens its acces-

sibility, and fosters interdisciplinary collaborations through real-time export capabilities. TIP

emerges not just as a cutting-edge technology but as a solution that empowers users across

diverse domains to redefine possibilities in human pose estimation.
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6.2 Future of Motion Capture

While our current project focused on optimizing the speed of the ”Transformer Inertial

Poser” (TIP) engine, the horizon presents exciting possibilities for enhancing both speed and

accuracy. It’s important to note that our optimization efforts concentrated on engine speed, and

we did not make modifications to improve the model’s accuracy. As a result, there are certain

poses that the current model may struggle to estimate accurately.

In the near future, we envision a refinement of TIP’s accuracy by incorporating data from

six IMU sensors and scaling up the number of sensors for each character to a range of 12 to 18

sensors. This expansion aims to provide a more comprehensive and detailed understanding of

the user’s motion, enabling TIP to accurately capture poses that may currently pose challenges.

Beyond sensor augmentation, our future endeavors include integrating Indoor Positioning

Systems (IPS), such as Ultra-Wideband (UWB), to endow characters with absolute positioning.

This feature is particularly valuable for applications in virtual reality (VR) games with expan-

sive spaces or the development of digital museums. Absolute positioning not only enhances

the immersive experience in VR but also opens avenues for the creation of highly detailed

computer-generated imagery (CGI) in various high-resolution applications.

By combining increased sensor density, enhanced accuracy and absolute positioning, we

anticipate elevating TIP to a new standard of precision. This trajectory aligns with the demands

of VR gaming, CGI applications, and innovative projects in the digital realm. The pursuit of ac-

curacy and absolute positioning not only enriches user experiences but also lays the foundation

for pushing the boundaries of what is achievable in the dynamic field of motion capture.

In summary, the future of motion capture with TIP unfolds as a journey toward heightened

accuracy, expanded sensor capabilities, and the integration of absolute positioning technologies,

promising a new era of possibilities in virtual environments and advanced CGI solutions.
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7. CONCLUSIONS
In conclusion, our project has achieved significant milestones in optimizing the ”Trans-

former Inertial Poser” (TIP) engine [33], thereby enhancing its speed and accessibility. The

integration of the HiPNUC IMU sensor product line not only bolstered the cost-effectiveness

of TIP [33] but also broadened its applicability, making advanced pose estimation technology

accessible to a wider audience. The strategic decision to implement ONNX Runtime over

PyTorch played a crucial role in reducing processing time and ensuring compatibility across

various hardware systems. The success of ONNX Runtime in streamlining TIP’s execution

represents a pivotal aspect of our optimization efforts.

Looking forward, our roadmap envisions a two-pronged approach: refining accuracy and

expanding application domains. With more time and additional computational resources, we

propose extending the size of the model to address specific pose scenarios where TIP cur-

rently encounters challenges in accurate estimation. This enhancement involves incorporating

more parameters and features, making TIP more adept at capturing intricate nuances of hu-

man motion. Additionally, our intent is to continue fortifying TIP’s capabilities by addressing

pose-specific challenges through meticulous model refinement and parameter tuning.

Furthermore, our success extends to the seamless integration of multiple characters and

improved connectivity to various applications through the utilization of the SMPL format. The

ability of TIP to handle multiple characters and export in SMPL format not only underscores

its scalability but also opens new possibilities for collaborative ventures and innovative appli-

cations in virtual reality, animation, and beyond. This multifaceted success positions TIP as a

versatile and dynamic solution, ready to meet the demands of diverse applications and future

advancements in the field of motion capture.
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[15] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based human
motion capture and analysis,” Computer Vision and Image Understanding, vol. 104, no.
2-3, pp. 90–126, 2006.

https://doi.org/10.1109/tmech.2013.2269836
https://arxiv.org/abs/1706.03762
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://arxiv.org/pdf/1903.07486.pdf
https://arxiv.org/pdf/1903.07486.pdf
https://doi.org/10.1186/s40798-018-0139-y


Final Capstone Project 47

[16] L. Mündermann, S. Corazza, and T. P. Andriacchi, “The evolution of methods for the
capture of human movement leading to markerless motion capture for biomechanical
applications,” Journal of NeuroEngineering and Rehabilitation, vol. 3, no. 1, 2006.

[17] M. B. Holte, C. Tran, M. M. Trivedi, and T. B. Moeslund, “Human pose estimation
and activity recognition from multi-view videos: Comparative explorations of recent
developments,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 5, pp.
538–552, 2012.

[18] S. X. M. Yang, M. S. Christiansen, P. K. Larsen, T. Alkjær, T. B. Moeslund, E. B.
Simonsen, and N. Lynnerup, “Markerless motion capture systems for tracking of persons
in forensic biomechanics: An overview,” Computer Methods in Biomechanics and
Biomedical Engineering: Imaging & Visualization, vol. 2, no. 1, pp. 46–65, 2013.

[19] E. R. Bachmann, R. B. McGhee, X. Yun, and M. J. Zyda, “Inertial and magnetic posture
tracking for inserting humans into networked virtual environments,” in Proceedings of the
ACM Symposium on Virtual Reality Software and Technology, ser. VRST ’01, 2001, pp.
9–16.

[20] M. B. Del Rosario, H. Khamis, P. Ngo, N. H. Lovell, and S. J. Redmond, “Computationally
efficient adaptive error-state kalman filter for attitude estimation,” IEEE Sensors Journal,
vol. 18, no. 22, pp. 9332–9342, 2018.

[21] E. Foxlin, “Inertial head-tracker sensor fusion by a complementary separate-bias kalman
filter,” in Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium,
1996, pp. 185–194.

[22] R. V. Vitali, R. S. McGinnis, and N. C. Perkins, “Robust error-state kalman filter for
estimating imu orientation,” IEEE Sensors Journal, vol. 21, no. 3, pp. 3561–3569, 2021.

[23] Xsens, “Xsens https://www.xsens.com/,” n d, last visited: 08/26/2022.

[24] Rokoko, “Rokoko https://www.rokoko.com/,” n d, last visited: 08/26/2022.

[25] T. von Marcard, B. Rosenhahn, M. Black, and G. Pons-Moll, “Sparse inertial poser:
Automatic 3d human pose estimation from sparse imus,” Computer Graphics Forum
36(2), Proceedings of the 38th Annual Conference of the European Association for
Computer Graphics (Eurographics), pp. 349–360, 2017.

[26] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “SMPL: A skinned
multi-person linear model,” ACM TOG, vol. 34, no. 6, pp. 248:1–248:16, Oct. 2015.

[27] Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-Moll, “Deep
Inertial Poser: Learning to reconstruct human pose from sparse inertial measurements in
real time,” ACM TOG, vol. 37, no. 6, 12 2018.

[28] D. Nagaraj, E. Schake, P. Leiner, and D. Werth, “An rnn-ensemble approach for real
time human pose estimation from sparse imus,” in Proceedings of the 3rd International
Conference on Applications of Intelligent Systems, ser. APPIS 2020, 2020.

[29] X. Yi, Y. Zhou, and F. Xu, “TransPose: Real-time 3d human translation and pose
estimation with six inertial sensors,” ACM TOG, vol. 40, no. 4, 8 2021.

https://www.xsens.com/
https://www.rokoko.com/


Final Capstone Project 48

[30] D. Rempe, T. Birdal, A. Hertzmann, J. Yang, S. Sridhar, and L. J. Guibas, “Humor:
3d human motion model for robust pose estimation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 11 488–11 499.

[31] X. Yi, Y. Zhou, M. Habermann, S. Shimada, V. Golyanik, C. Theobalt, and F. Xu,
“Physical inertial poser (pip): Physics-aware real-time human motion tracking from sparse
inertial sensors,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2022.

[32] S. Shimada, V. Golyanik, W. Xu, and C. Theobalt, “PhysCap: Physically plausible
monocular 3d motion capture in real time,” ACM TOG, vol. 39, no. 6, 12 2020.

[33] Y. Jiang, Y. Ye, D. Gopinath, J. Won, A. W. Winkler, and C. K. Liu, “Transformer inertial
poser: Real-time human motion reconstruction from sparse imus with simultaneous terrain
generation,” in SIGGRAPH Asia 2022 Conference Papers, ser. SA ’22 Conference Papers,
2022.



Final Capstone Project 49

Appendix

8.1 Rotation Matrices and Rotate Vector

Rotation matrices are fundamental mathematical tools used to represent rotations in n-

dimensional spaces, particularly in three-dimensional space (3D). They play a crucial role in

various fields, including computer graphics, robotics, physics, and engineering.

In the realm of three-dimensional space, the ability to manipulate and transform objects is

fundamental to various fields, ranging from computer graphics to robotics. Rotation, a pivotal

transformation, allows us to reorient objects in space, opening avenues for a multitude of

applications. Central to the mathematics of rotation is the concept of rotation matrices, elegant

mathematical constructs that encapsulate the essence of spatial reorientation.

8.1.1 Rotation Matrix

A rotation matrix is a mathematical tool used to perform rotations in three-dimensional

space. It represents a rotation transformation by describing how the coordinates of points in

space change as a result of the rotation. The elegance of rotation matrices lies in their simplicity

and efficiency in expressing complex spatial transformations.

A 3D rotation matrix is a 3x3 matrix of the form:

R =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


Here, θ represents the angle of rotation. The structure of the matrix allows us to seamlessly

perform rotations around the three axes of the coordinate system (X, Y, and Z).
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8.1.2 Rotate Vector

To rotate a point P(x,y,z) using the rotation matrix R, the rotated point P′ is obtained through

matrix multiplication:

P′ = R ·P

This concise formula embodies the transformative power of rotation matrices, enabling

precise and efficient rotations in three-dimensional space.

8.1.3 Quaternion

In mathematics, the quaternion extends the complex numbers. Quaternions were first de-

scribed by Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in

three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines

in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of

quaternions is noncommutative i× j ̸= j× i.

Quaternions are generally represented in the form:

a+bi+ c j+dk and i2 = j2 = k2 = i jk =−1

where a,b,c, and d are real numbers; whilst i, j, and k are the basic quaternions.

Quaternions are used in pure mathematics, but also have practical uses in applied math-

ematics, particularly for calculations involving three-dimensional rotations, such as in three-

dimensional computer graphics, computer vision, and crystallographic texture analysis. They

can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or

as an alternative to them, depending on the application.

The quaternion representation of the rotation may be expressed as

q = cos
(

θ

2

)
+ sin

(
θ

2

)
(ubi+uc j+udk)

, where θ is the angle of rotation and [ub,uc, and ud] is the axis of rotation.

With quaternion vector [W,X ,Y,Z]
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Fig. 8.1 Present of quaternion vector

q =

(
cos

(
θ

2

)
,sin

(
θ

2

)
a
)
= (w,(x,y,z))

Convert to quaternion to rotation matrix

Rq =


1−2y2 −2z2 2xy−2wz 2xz+2wy 0

2xy+2wz 1−2x2 −2z2 2yz−2wx 0

2xz−2wy 2yz+2wx 1−2x2 −2y2 0

0 0 0 1



8.2 A Skinned Multi-Person Linear Model (SMPL)

SMPL is a realistic 3D model of the human body that is based on skinning and blend shapes

and is learned from thousands of 3D body scans. This site provides resources to learn about

SMPL, including example FBX files with animated SMPL models, and code for using SMPL

in Python, Maya and Unity.

8.2.1 Key Features of SMPL

• Parameterization: SMPL represents the human body through a set of parameters that

control its shape and pose. This allows for compact and efficient storage of 3D data

compared to storing raw mesh vertices.

• Blend Shapes: The model incorporates blend shapes to capture variations in body shape
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Fig. 8.2 Relationship between SMPL and 18 joints. Left is SMPL and right is the skeleton
system with all 18 joints defined.

across different individuals. These blend shapes allow the model to adapt to a diverse

range of body types.

• Skinning: SMPL utilizes skinning to bind the body mesh to a skeleton, enabling realistic

animation and pose deformation.

• Multi-Person: The model can represent multiple people simultaneously, making it suit-

able for applications involving groups or interactions.

8.2.2 Structure of SMPL Data

The SMPL data format typically consists of the following components:

• Template mesh: This is a base mesh representing the average human body shape.

• Blend shape coefficients: These coefficients control the amount of influence each blend

shape has on the final body shape.

• Pose parameters: These parameters specify the rotations of the skeleton joints, deter-

mining the body pose.

• Joint weights: These weights indicate how much influence each joint has on the defor-

mation of nearby vertices.
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