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ABSTRACT

Task-oriented dialogue (TOD) is a system that helps users achieve their goals.
While the task is reviewed and improved regularly, a formal system for industrial
standards has not yet been established. Dialogue state tracking is a sub-task that
involves predicting current dialogue slot values given the conversation and in some
cases, the slots that are being required or informed. Based on a well-documented
schema with instructions for possible slots and intents along with their descriptions,
schema-guided TOD exploits a concrete set of guidelines to add extra context and
perform general zero-shot ability on state tracking. Despite having contextual schema
descriptions, language models hardly keep up with a full TOD dialogue flow. The
TOD system as a whole lacks the mechanics to detect out-of-scope events, decide
when to query the database, and is hardly extensible for further processing. To address
these issues, we propose a full TOD system designed to overcome the listed
weaknesses. Additionally, we experiment with dialogue state tracking, the system’s
first stage, and measure out-of-scope detection effectiveness via user-undefined
actions.

Index Terms—task-oriented dialogue, schema-guided, symbolic
reasoning, open-domain dialogue, dialogue system, schema actions
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I. INTRODUCTION
The ability to work as a guide is essential for AI to support human daily

chores. The TOD system focuses on helping the user achieve their goals by having an
instructive conversation. Unfortunately, in reality, not every utterance is direct and
precise. In general, there are cases where the user might provide the wrong context or
go out of scope of the current context. In the TOD realm, out-of-scope represents
both domain switching and inconsequential conversation. Take customer support; for
example, workers must learn to understand company products and the context of a
situation. Despite the preparation, workers are reactive only to situations within their
knowledge. If the situation is out-of-scope, the worker has to review the guidelines or
pass the session to a specialized department. The goal is to leave no case unsupported,
thus elevating the customer support experience. With human-level consciousness, the
out-of-scope situation is resolvable by utilizing external sources. Handling cases
out-of-scope is a necessity for a TOD system to reach human-level consciousness and
cover all cases.

Mimicking human behavior, the schema-guided method uses domain schema
to understand the conversation. Domain schema provides information such as
descriptions, possible values, slots, and intents. Using the schema as a guideline
helps generalize and yield remarkable performance on state tracking. Yet, only
maintaining the dialogue state is extensible, as the state cuts out the crucial context of
the dialogue, limiting further processes. Additionally, the schema-based method is
incapable of extending or applying unstructured data. To address these issues, the
schema-based system must output a sufficient amount of information and be capable
of handling out-of-scope situations.

In recent years, large language models (LLM) have exponentially grown in
number. Consequently, LLM-based TOD systems introduce end-to-end methods that
dominate academic benchmarks. However, the end-to-end method often suffers from
dramatic domain changes and lengthy input contexts. During inference, lengthy input
dialogue may overwhelm the LLM, leading to poor performance. In Schema-Guided
Dialogue (SGD), a conversation could reach 23 utterances, whereas in an industry
context, the number can be much higher. State tracking consists of sub-tasks, namely,
slot filling, user request slots, and other optional tasks. While in slot filling, the
lengthy conversation as input is inevitable because of the state value extraction. Other
tasks of state tracking can exploit the LLM symbolic method to eliminate
conversation dependency. The symbolic method is a recently developed technique
for more fine-grained control over LLM output.

Previous works proved the symbolic method can improve performance on
language reasoning-related tasks. Traditional deep learning lets the model discover
hidden patterns through implicit exploration. While the symbolic method is more
direct by explicitly stating the pattern via the symbolizing process.
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We propose a hybrid TOD framework that combines schema-guided,
retrieval-augmented, and symbolic. In this approach, the schema is used to guide the
language model and prevent it from going off-track. While the symbolic method acts
as the mechanic to control the system flow. Additionally, the retrieval model is used
to retrieve relevant information from external sources in case of out-of-scope
situations. Notice in the method that we use a single encoder-decoder model for
every state tracking-related task to give the model a wider view of the problem. State
tracking is the most important module of the system as it’s precision directly affects
downstream tasks. We implement and report the results of state tracking with
out-of-scope mechanics. We additionally provide more context to the model with
auxiliary tags and symbolize slot values.

II. RELATEDWORKS

1. Background of Task-oriented dialogue

State tracking traditionally uses encoder architecture as a classifier for every
individual sub-task. Despite comparative performance, encoder-based state tracking
modules are either inefficient or complex [1] [2]. Previously, the encoder for TOD
was categorized as single pass and multipass. FastSGT is a single pass encoder, while
being efficient, the performance is not as impressive as other multipass models. In
encoder architecture, although a pre-trained process is made, researchers use the
model for transfer learning by appending untrained parameters to the model. The
complete model is then fine-tuned for State tracking. Thus, the ability learned during
pre-trained is not fully utilized by the supplemental parameters. Subsequently,
researchers develop in-context learning [3] which utilizes even further grounded
knowledge. In-context learning supports the model by having more explicit context
at different levels. Note that in-context learning is frequently used for text-based
output modality models. Since then, two directions have come up, namely,
end-to-end and modular, both utilizing the transformer deep learning model.
End-to-end TOD systems work by iteratively concatenating the answer from the
previous turn to the context. End-to-end systems suffer from lengthy input, and
accumulative error while facing strong coupling. In software design, modular
approaches are preferred due to the ability for independent improvement. Modular
approaches, alternatively, use transformers only to predict a single stage of TOD-state
tracking. Language models perform excellently on state tracking, even in zero-shot
settings. Unlike previous token-based slot-capturing encoder models, the language
model was pre-trained to perform token prediction, similar to state tracking.
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End-to-end method

SimpleTOD [4] is a single, unified language model capable of all TOD
sub-tasks (dialogue state tracking, action decision, and response generation) using
GPT- 2. With SimpleTOD, inference is a simple, iterative process and uses every
possible context to support prediction. SimpleTOD is inefficient in terms of
computation and is trained with MultiWOZ [5]. MultiWOZ is a multi-domain dataset
with similar domain clusters which is inefficient for zero shot business use cases.
SPACE-3 [6] follows an end-to-end paradigm, but the model includes multiple
decoders for each TOD task. SPACE-3 also applies a multi-task paradigm with a
clear pre-train process. Unlike SPACE-3, SimpleTOD does not have a step between
pre-training and fine-tuning. Alternatively, there is a vast majority of branches to
further improve the performance of end-to-end models. These include enhanced
schema robustness [7] [8], TOD adapter architecture [9], LLM with schema support
[10],…

TOD with open-domain

From the human perspective, the conversation is not only about goal
achievement but also about gaining social support. Thus, preventing tasks from
becoming overwhelming in TOD, recently, gained a significant amount of priority.
UniDS [11] deals with chit-chat by sequentially training a model with chit-chat
situations, then, TOD dataset. Even with open-domain, data is rapidly shifting, and
obsolete data used during training. OPERA [12] introduces knowledge grounding as a
mechanic to accurately reply to open domain utterances, which makes it a robust
solution for both question-answering and TOD tasks. Both successful models and
improvement in dataset [13] suggest open-domains should employ retrieval models
as knowledge validators. Nonetheless, the works mentioned are end-to-end and did
not have a clear mechanism to change between TOD and open-domain.

Language model for state tracking

Language models treat state-tracking problems simply as multi-QA problems.
Given the information about slots and the conversation, the language model can
name all slots available in the conversation along with their corresponding values.
Moreover, only slot filling is not sufficient for further TOD tasks, state tracking with
language model must also do request-inform actions tracking and intent tracking. In
D3ST [14], the given information is the description of the slots and intents. SDT [15]
approach is slightly different from D3ST, the model is given a demonstration process
of state tracking and asked to revise with the real conversation. While SDT
outperformed D3ST, the module is hard to extend because of the compulsory n-shot
learning attribute. Overall, these models are innovative, yet, facing an extreme
challenge: action unification. Across TOD datasets, the actions for the user and
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system on each dataset are different. The follow-up process of state tracking is a
dialogue policy. As a fact, we need a robust set of actions. Still, the actions to get a
robust set of policies. There are prior works addressing the issue by several methods
i.e. unified action dataset [7], and extract action latent space [16] [17]. The unified
action dataset is interpretable but cost-flexible, the contrast happened to extract
action latent space.

Symbolic methods

Humans in some cases can understand problems better when they involve
symbols [18]. [19] experimented with symbolic methods on LLM for mathematics.
Agree on symbols introduces new abstract meaning to the symbols, thus shortening
the explaining process. Several studies suggest symbolic reasoning [20] [21] [22] can
also improve model performance on reasoning tasks. In fact, SDT and D3ST
implicitly use symbolic methods to reach state-of-art performance. In technical terms,
the input and output of the language model involve well-trained tokens, the
probability of one token is not only peer-dependent but highly correlated to the
previous pre-train. By symbolizing tokens, the model can learn to associate tokens
with more general concepts. This, hypothetically, makes the model more likely to
generalize better to new data, even if that data is from a different domain. By using
the symbolic method, AnyTOD [23] combines the language model and flexible
action set by explicitly adding possible actions to the input prompt. Although
AnyTOD performs outstanding on multiple academic datasets, the proposed system
did not mention mechanics due to abnormal situations in the conversation.

2. Background of modern AI

RNNs

Recurrent Neural Networks (RNNs) are a type of neural network architecture
that is particularly well-suited for processing sequential data. Unlike feedforward
neural networks, which process inputs in isolation, RNNs have a built-in feedback
mechanism that allows them to maintain an internal state or memory of past inputs.
This memory enables RNNs to capture dependencies and patterns in sequential data,
making them powerful tools for tasks such as natural language processing, speech
recognition, and time series analysis.
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Figure 1a. Illustration of RNN achitecture
(https://thorirmar.com/post/insight_into_lstm)

The key idea behind RNNs is the concept of recurrence. At each time step, an
RNN takes an input and combines it with the internal state from the previous time
step to produce an output and update its internal state. This feedback loop allows the
RNN to incorporate information from previous inputs and make predictions based on
the context it has learned so far. Mathematically, an RNN can be represented as a
series of interconnected neurons, where each neuron takes an input, produces an
output, and passes its output to the next neuron in the sequence. The output of each
neuron is determined by a combination of the current input and the output of the
previous neuron. This recursive relationship allows the RNN to propagate
information through time. One of the key advantages of RNNs is their ability to
handle variable-length sequences. Unlike traditional feedforward networks, which
require fixed-size inputs, RNNs can process inputs of different lengths by unrolling
the sequence over time. This flexibility makes RNNs well-suited for tasks such as
sentiment analysis, machine translation, and speech recognition, where the length of
the input can vary. However, traditional RNNs suffer from the ”vanishing gradient”
problem, which limits their ability to capture long-term dependencies in sequential
data. When training an RNN using gradient-based methods, the gradients tend to
either explode or diminish exponentially as they propagate through time, leading to
difficulties in learning long range dependencies. To address this issue, several variants
of RNNs have been developed, such as Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU). LSTMs and GRUs are designed to mitigate the
vanishing gradient problem by introducing gating mechanisms that control the flow
of information within the network. These gates determine how much information
from the current input and the previous state should be passed along to the next time
step. By selectively updating and forgetting information, LSTMs, and GRUs can
effectively learn and retain long-term dependencies in the data. RNNs can be trained
using backpropagation through time (BPTT), an extension of the standard
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backpropagation algorithm. BPTT unfolds the recurrent connections in time and
computes the gradients at each time step, allowing the network to learn from past
inputs and update its internal parameters accordingly. The training process involves
minimizing a loss function that measures the discrepancy between the predicted
outputs and the true outputs. In recent years, RNNs have been widely applied in
various domains. In natural language processing, RNNs have been used for tasks
such as language modeling, text generation, and sentiment analysis. In speech
recognition, RNNs have demonstrated their effectiveness in modeling sequential
audio data. RNNs have also shown promise in time series analysis, where they can
capture temporal dependencies and make predictions based on historical patterns.

In conclusion, Recurrent Neural Networks (RNNs) are a class of neural
network architectures that excel at processing sequential data. Their ability to
maintain an internal state and capture dependencies across time makes them
well-suited for a wide range of applications. Despite the challenges associated with
training and the vanishing gradient problem, variants such as LSTMs and GRUs have
significantly improved the performance of RNNs. As research in deep learning
continues to advance, RNNs are likely to remain a fundamental tool for modeling
and understanding sequential data.

CNNs

Convolutional Neural Networks (CNNs) are a powerful class of deep learning
models that have revolutionized the field of computer vision. CNNs are specifically
designed to process and analyze visual data, such as images and videos. They have
proven to be highly effective in tasks such as image classification, object detection,
and image segmentation.
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Figure 1b. Illustration of CNN achitecture
(https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-net

work-architecture/)

The key idea behind CNNs is the concept of convolution. Convolution is a
mathematical operation that involves applying a filter or kernel to an input image to
extract local features. These filters slide over the input image, computing a dot
product between the filter weights and the corresponding pixel values at each
location. The resulting output, known as a feature map, highlights the presence of
specific features in the input image. CNNs consist of multiple layers, each with a
specific purpose. The first layer is the input layer, which receives the raw pixel values
of the image. Typically, the input image is preprocessed by resizing it to a fixed size
and normalizing the pixel values. This ensures that the input is consistent across
different images. The subsequent layers of a CNN are composed of convolutional
layers, pooling layers, and fully connected layers. Convolutional layers are
responsible for learning and extracting local features from the input image. They
consist of multiple filters, each detecting a different feature or pattern. During
training, the CNN automatically learns the optimal filter weights that maximize the
detection of relevant features. Pooling layers are inserted between convolutional
layers to reduce the spatial dimensions of the feature maps. Pooling operations, such
as max pooling, average pooling, or sum pooling, aggregate the information within a
local neighborhood, reducing the computational complexity and extracting the most
important features. After several convolutional and pooling layers, the last part of the
CNN is typically composed of fully connected layers. These layers are similar to
those found in traditional neural networks and are responsible for making the final
predictions based on the extracted features. Fully connected layers combine the
features learned from the previous layers and map them to the output classes or
labels. One of the major advantages of CNNs is their ability to capture spatial
hierarchies of features. The initial layers of the network learn simple and low-level
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features, such as edges and textures, while deeper layers learn more complex and
high-level features, such as shapes and objects. This hierarchical feature extraction
allows CNNs to understand the structure and composition of images, enabling them
to make accurate predictions. To train a CNN, a large annotated dataset is required.
During the training process, the network learns the optimal filter weights and biases
that minimize the difference between the predicted outputs and the true labels. This
optimization is typically done using stochastic gradient descent (SGD) or its variants,
where the gradients of the loss function with respect to the network parameters are
computed and used to update the weights. CNNs have achieved remarkable success
in various computer vision tasks. They have been used for image classification tasks,
such as recognizing objects in images and assigning them to predefined categories.
CNNs have also been employed in object detection, where they not only classify
objects but also localize their positions in the image. Additionally, CNNs are widely
used in image segmentation, which involves dividing the image into meaningful
regions or segments.

In conclusion, Convolutional Neural Networks (CNNs) have revolutionized
computer vision and image analysis. Their ability to automatically learn and extract
relevant features from visual data has made them highly effective in various tasks,
such as image classification, object detection, and image segmentation. With
advancements in deep learning and the availability of large annotated datasets, CNNs
continue to push the boundaries of computer vision and pave the way for new
applications and breakthroughs in the field.

Generative models

Generative deep learning models are a class of neural networks that have the
ability to generate new data samples that are similar to the training data they were
exposed to. These models have garnered significant attention and have shown
remarkable potential in various domains, including image synthesis, text generation,
and music composition.
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Figure 1c. Illustration of GAN achitecture
(https://lilianweng.github.io/posts/2017-08-20-gan)

One popular type of generative model is the Generative Adversarial Network
(GAN). GANs consist of two main components: a generator and a discriminator. The
generator takes random noise as input and generates synthetic samples, while the
discriminator tries to distinguish between the real and synthetic samples. The two
components are trained simultaneously in a competitive manner. The generator aims
to produce samples that are indistinguishable from the real data, while the
discriminator tries to improve its ability to differentiate between real and synthetic
samples. Through this adversarial training process, GANs are able to learn the
underlying distribution of the training data and generate new samples that resemble
the real data. GANs have been successfully applied in various image synthesis tasks,
such as generating realistic-looking images, creating artistic variations, and even
modifying images by changing specific attributes. Another widely used generative
model is the Variational Autoencoder (VAE). VAEs are based on the idea of learning
a latent space representation of the data. The model consists of an encoder that maps
the input data to a lower-dimensional latent space and a decoder that reconstructs the
original data from the latent space representation. The encoder and decoder are
trained together to ensure that the reconstructed samples closely resemble the original
input. VAEs are capable of generating new samples by sampling from the learned
latent space. By exploring different regions of the latent space, it is possible to
generate diverse and novel samples. VAEs have been successfully employed in tasks
such as image generation, text generation, and even generating music. In addition to
GANs and VAEs, there are other generative models that have gained attention in
recent years, such as autoregressive models and flow-based models. Autoregressive
models, such as the PixelCNN and PixelRNN, generate data by modeling the
conditional probabilities of each element in the data given previous elements. These
models have been used for tasks such as image generation and text generation.
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Flow-based models, on the other hand, learn a mapping from a simple distribution
(e.g., a Gaussian) to a complex data distribution. By applying a series of invertible
transformations, these models are able to generate new samples by sampling from the
simple distribution and transforming them through the learned transformations.
Flow-based models have been successful in image generation tasks and have been
used to generate high-quality images. Generative deep learning models have shown
great potential not only in generating realistic and high-quality samples but also in
aiding creative tasks and data augmentation. They have been used in various
applications, such as generating synthetic data for training purposes, generating new
artwork, and even enhancing the capabilities of other machine learning models.
However, generative models still face challenges in training stability, mode collapse
(where the generator produces limited variations of samples), and evaluation metrics.
Research in this area is ongoing to address these challenges and further improve the
capabilities of generative deep learning models.

In conclusion, generative deep learning models have demonstrated impressive
capabilities in generating new and realistic data samples. They have revolutionized
image synthesis, text generation, and music composition, among other domains.
With continued advancements in deep learning and the development of novel
architectures and training techniques, generative models are expected to play an
increasingly important role in creative applications and data generation tasks.

Transformer architecture

The Transformer architecture has emerged as a revolutionary approach to
sequence modeling in the field of natural language processing (NLP). It was first
introduced in the seminal paper ”Attention Is All You Need” by Vaswani et al. in
2017. The Transformer has since become the de-facto standard for various NLP
tasks, including machine translation, language generation, and sentiment analysis.
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Figure 1d. Illustration of Transformer achitecture
(https://machinelearningmastery.com/the-transformer-model)

The key innovation of the Transformer architecture lies in its attention
mechanism. Unlike traditional recurrent neural networks (RNNs) that process
sequential data one element at a time, the Transformer is able to capture
dependencies across the entire sequence simultaneously. This is achieved through
the use of self-attention, also known as scaled dot product attention. In self-attention,
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each element in the input sequence (e.g., a word in a sentence) is associated with
three learned vectors: a query vector, a key vector, and a value vector. The attention
mechanism computes a weighted sum of the value vectors, where the weights are
determined by the compatibility between the query and key vectors. This allows the
model to attend to different parts of the input sequence based on their relevance to the
current element being processed. The Transformer architecture consists of multiple
layers, each containing a multi-head self-attention mechanism and position-wise
feed-forward neural networks. The multi-head attention mechanism allows the model
to jointly attend to different positions in the sequence, capturing different types of
dependencies. The position-wise feed forward networks apply a non-linear
transformation to each position independently, enabling the model to learn complex
interactions between elements. One of the advantages of the Transformer architecture
is its parallelizability. Unlike RNNs, which process sequences sequentially, the
Transformer can process all elements in the sequence in parallel. This makes it
highly efficient, especially when dealing with long sequences. Additionally, the
attention mechanism allows the model to capture long-range dependencies
effectively, which is crucial for tasks such as machine translation. The Transformer
also introduced the concept of positional encoding to account for the order of
elements in the input sequence. Positional encoding is a set of learned embeddings
that are added to the input representation of each element. These embeddings
provide the model with information about the position of each element in the
sequence, enabling it to capture the sequential nature of the data. The success of the
Transformer architecture has been demonstrated across various NLP tasks. In
machine translation, the Transformer has achieved state-of-the-art performance on
multiple language pairs. It has also been applied to tasks such as language modeling,
sentiment analysis, and document classification, consistently outperforming previous
models. Furthermore, the Transformer has had a significant impact beyond NLP. Its
self-attention mechanism has been adapted to other domains, such as computer
vision, where it has been used for tasks like image recognition and object detection.
The Transformer’s ability to capture global dependencies and model complex
interactions has made it a versatile architecture applicable to a wide range of
problems. Despite its success, the Transformer architecture does have some
limitations. One of the main challenges lies in handling very long sequences, as the
self-attention mechanism scales quadratically with the sequence length. Various
techniques, such as hierarchical attention and sparse attention, have been proposed to
address this issue. Additionally, the Transformer’s performance heavily relies on
large-scale pre-training and fine tuning, which requires substantial computational
resources and labeled data.

In conclusion, the Transformer architecture has revolutionized sequence
modeling in NLP. Its attention mechanism enables the model to capture long-range
dependencies and process sequences in parallel, leading to impressive results on
various tasks. The Transformer’s success has spurred further research and
advancements in the field, pushing the boundaries of what is possible in natural
language processing and beyond.
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3. Challenges

Data requirements

Deep learning models need to be trained on large amounts of data in order to
learn complex patterns. This can be a challenge for a number of reasons. Collecting
and labeling large amounts of data for deep learning models can be expensive and
time-consuming. Additionally, some tasks, such as medical diagnosis and fraud
detection, require sensitive data that can be challenging to collect and share.
Furthermore, certain tasks, like natural language processing and machine translation,
necessitate substantial amounts of text data, which may not be readily available for
all languages. In addition to the challenges listed above, deep learning models are
also sensitive to the quality of the training data. If the training data is noisy or biased,
the model will learn to produce noisy or biased predictions.

There are a number of ways to address the challenges of data requirements in
deep learning. Transfer learning is a technique where a pre-trained deep learning
model is used as a starting point for training a new model on a different task. This
approach can reduce the amount of data required to train a new model by leveraging
knowledge learned from pre-trained models on large datasets, allowing for the reuse
of learned features and representations. Data augmentation is a technique where new
training data is created by applying transformations to existing training data. This can
increase the size and diversity of the training data without having to collect new
data. Despite the challenges, deep learning can solve a wide variety of problems. By
using the techniques described above, it is possible to train deep learning models
even with limited data.

Researchers are working on developing new techniques to address the
challenges of data requirements in deep learning. One promising area of research is
data augmentation, which involves generating new training data from existing data.
Another promising area of research is transfer learning, which involves using
pre-trained models to train new models on new tasks.

Interpretability

Interpretability in large language models (LLMs) like GPT-3 is a critical
aspect that refers to our ability to understand and interpret how these models make
their predictions or decisions. It centers around the transparency, comprehensibility,
and explainability of artificial intelligence algorithms. Firstly, transparency denotes
the level of access an observer has to the inner workings of the model. For LLMs,
this is challenging due to their ‘black-box’ structure, where thousands to millions of
parameters are involved in generating outputs. Comprehensibility relates to the
simplicity of understanding the model’s decision-making process. For instance,
linear regression models are highly comprehensible as they use a straightforward
weighted combination of input features. However, LLMs involve complex nonlinear
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dynamics across high-dimensional spaces, making them harder to comprehend.
Explainability pertains to providing understandable reasons for the decisions made by
the model. An interpretable model can provide human-understandable explanations
for why it generated a certain output given a specific input, which is particularly
important in high-stakes domains like healthcare or finance. Currently, understanding
what goes on inside LLMs is a significant challenge due to their complexity and lack
of inherent interpretability. These models are trained on vast amounts of data and
create layers of hidden representations used to generate predictions. The relationships
between these representations and final outputs often appear opaque, even to the
engineers who design and train these models. Various techniques have been
developed to improve the interpretability of such models. Feature importance
analysis, for example, can highlight which inputs the model considers most vital for
its predictions. Visualization tools can show activity within layers of the model
during processing, while natural language explanations can describe the rationale
behind decisions in human language. However, these methods often fall short of
providing full interpretability. They offer glimpses into the model’s operations but do
not fully reveal the intricate web of computations and transformations happening
within. In fields where decisions have significant consequences, understanding why a
model made a certain choice can be crucial. It allows for better error analysis and
debugging, promotes trust, ensures fairness by detecting biases in predictions, and
aids in regulatory compliance. In conclusion, interpretability in LLMs is a complex
subject, essential for the ethical and effective deployment of these models. It’s a
topic of ongoing research with the aim of making AI systems more transparent,
comprehensible, and explainable, thereby aligning them more closely with human
values and standards.

One primary difficulty lies in how LLMs make decisions. Unlike traditional
rule-based systems, where logic is clearly defined and traceable, LLMs are based on
deep learning techniques that involve multiple layers of intricate neural networks.
These networks generate outputs through non-linear computations, making it
challenging to understand or predict their behavior. This opacity, often referred to as
the ”black box” problem, hinders the interpretability of LLMs. Another challenge
arises due to the sheer complexity and size of these models. LLMs, like GPT-3, with
billions or even trillions of parameters, are trained on vast quantities of data. The
exact contribution of each parameter to the output is hard to ascertain, further
complicating interpretability. Moreover, since these models learn from massive
datasets, they might also internalize and reproduce any biases present in the training
data, leading to potential ethical concerns. A third challenge revolves around the
unpredictable nature of LLM responses. Without an understanding of how the model
generates its outputs, there’s a risk of it providing inappropriate or harmful
information. For instance, an LLM may inadvertently generate false or misleading
content if it misinterprets the nuances of a given context, such as sarcasm or cultural
sensitivities. Understanding why an LLM rejects certain inputs while accepting
others can be equally perplexing. For example, when asked similar questions with
minor wording changes, LLMs may provide different answers, reflecting the
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sensitivity to the input phrasing. However, without clear interpretability, it becomes
tricky to explain why such variations occur. Efforts towards enhancing
interpretability include techniques like attention maps, feature importance, and
layer-wise relevance propagation. While helpful, these methods still lack robustness
and may not provide comprehensive insights into the mechanisms of complex
LLMs. In addition, while explainable AI (XAI) techniques aim to increase model
transparency, they often involve a trade-off between performance and interpretability.
Simpler models are easier to interpret but may not provide the desired accuracy or
generalization. Conversely, more complex models offer higher performance but at the
cost of lower interpretability. Addressing interpretability challenges requires
advances in both theoretical understanding and practical tools for probing LLMs.
This involves finding a balance between creating powerful models that can
effectively handle sophisticated tasks and ensuring they remain understandable and
controllable. Ultimately, improving the interpretability of LLMs is crucial for
fostering trust and ensuring their reliable integration into various applications and
systems.

There are, however, several techniques and strategies that researchers are
exploring to improve interpretability in these models.

• Attention Visualization: Attention mechanisms in transformer-based models
like GPT-3 allow the model to ”focus” on different parts of the input when producing
an output. By visualizing these attention weights, we can gain some insight into
which parts of the input the model considers most relevant. However, the
interpretation from these visualizations is not always straightforward due to complex
interactions between different layers and heads in the model.

• Feature Importance Analysis: Techniques like LIME (Local Interpretable
Model-Agnostic Explanations) or SHAP (Shapley Additive exPlanations) can
highlight which parts of the input contribute most strongly to the prediction. These
techniques perturb the input and observe changes in the output, which provides local
interpretability around a particular prediction.

• Probing Tasks: Probing tasks are designed to investigate whether certain
types of information are encoded in the model’s representations. A common approach
is to train a simple classifier, or ’probe’, to predict a specific characteristic using the
model’s intermediate representations as input. This technique helps in understanding
what knowledge the model captures.

• Counterfactual Explanation: Another way of interpreting AI decisions is by
generating counterfactual explanations. A counterfactual explanation describes the
closest possible world where the model’s decision would change, providing insights
into what aspects of the input the model is sensitive to.

• Model Simplification: Some research focuses on simplifying complex LLMs
into smaller, more interpretable models that approximate the original model’s
behavior. While these simplified models may lose some accuracy, they can provide a
better understanding of how the original model works.

• Causal Inference: Causal inference techniques attempt to understand the
cause-effect relationship between input features and output predictions. This can help
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illuminate how changes in specific parts of the input might lead to changes in the
output.

• Transparency through Training: Transparency can also be improved by
incorporating interpretability objectives during training. Techniques such as Rule
Extraction From Trained Neural Networks (RELU) or introducing interpretability
loss terms promote a model that is more interpretable without compromising
performance.

In conclusion, ensuring interpretability in LLMs is not only key to
understanding their decision-making process but also crucial for establishing trust,
especially in high-stakes applications. While none of these techniques provide a
complete solution, they each contribute pieces to the larger interpretability puzzle. As
we continue to refine our methods and develop new ones, our ability to peer inside
these powerful tools will only improve.

Cost of training

The cost of training a deep learning model can be divided into the following
components. Collecting and labeling large amounts of data can be expensive and
time-consuming. Deep learning models require access to powerful computational
resources, such as GPUs, to train effectively. Developing and tuning deep learning
models requires expertise and experience.

There are a number of ways to reduce the cost of training deep learning
models. Transfer learning is a technique where a pre-trained deep learning model is
used as a starting point for training a new model on a different task. This can reduce
the amount of data and computational resources required to train the new model.
Data augmentation is a technique where new training data is created by applying
transformations to existing training data. This can increase the size and diversity of
the training data without having to collect new data. There are a number of efficient
training algorithms that can be used to train deep learning models. These algorithms
can reduce the amount of time and computational resources required to train the
model (e.g. distributed training).

Despite the challenges, deep learning is a powerful tool that can be used to
solve a wide variety of problems. By using the techniques described above, it is
possible to reduce the cost of training deep learning models. Researchers are
working on developing new techniques to reduce the cost of training deep learning
models. One promising area of research is distributed training, which involves
training a deep learning model on multiple machines simultaneously. This can help
to reduce the cost of computational resources.

Bias

Bias in LLMs refers to the tendency of these models to favor certain ideas,
perspectives, or groups over others in a way that can be unjust or unrepresentative.
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This bias typically originates from two main sources: the training data and the model
architecture. The first source of bias, the training data, includes all the text the model
learns from. If this data contains biases—whether explicit or implicit—the model
will likely learn and reproduce them. For example, if a model were trained primarily
on English language data, it might struggle to generate accurate or nuanced responses
in other languages, thus demonstrating a language bias. Furthermore, if the training
data includes stereotyped or prejudiced views, these too could be echoed by the
model. The second source of bias lies within the model architecture itself,
specifically in its design decisions—how it processes input, how it weighs different
pieces of information, etc. For instance, some models utilize attention mechanisms
that prioritize certain parts of an input over others. Depending on how they’re
implemented, such mechanisms could introduce bias by systematically over or
under-representing certain inputs. Bias in LLMs has significant implications. It can
lead to outputs that reinforce harmful stereotypes, discriminate against certain
groups, and misrepresent reality. Moreover, when users interact with biased LLMs,
they may unknowingly internalize the biases present in the model’s responses,
exacerbating societal biases further. Addressing bias in LLMs is a complex but
essential task. It begins with efforts to diversify and balance the training data and
continues with careful consideration of model architecture. In addition, techniques
like bias audits, which involve systematic testing for discriminatory behavior, are
critical. OpenAI, for instance, is committed to reducing both glaring and subtle
biases in its AI models’ responses through research and engineering methods. To sum
up, bias in LLMs is a pervasive issue originating from both training data and model
design. It can lead to problematic outputs that echo societal prejudices and
stereotypes, underscoring the need for ongoing efforts in bias identification,
mitigation, and prevention. As LLMs become more integrated into society,
addressing these biases will only grow in importance.

Bias in LLMs refers to the tendency of these models to favor certain
perspectives, ideologies or demographics over others in their output. This bias often
reflects imbalances in the data sets used to train them. Since these models learn from
large volumes of text data, any biases present in these texts can be absorbed and
reproduced by the models. This can lead to stereotypes, discrimination, or
misrepresentations - all forms of bias that can have serious, real-world impacts. The
first major challenge in dealing with bias in LLMs is detection. It’s difficult to
quantify or measure bias in a model’s output because it’s not always obvious, such as
instances of subtle prejudice or systemic bias. The sheer complexity and opacity of
LLMs pose further difficulties in pinpointing specific areas where bias originates.
Without understanding the source of bias, addressing it effectively becomes
complicated. Secondly, there’s the challenge of defining what constitutes ’bias’.
Opinions can greatly vary on what is considered biased or unbiased content. Striking
the right balance without infringing upon freedom of expression or promoting
censorship represents a tricky dilemma. As LLMs operate globally, harmonizing
diverse cultural norms and values into a universally acceptable ’unbiased’ model is
nearly impossible. A third challenge lies in the mitigation or reduction of bias. Whilst
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retraining models with more balanced data or using techniques like adversarial
training could help, these are time-consuming and technically arduous. Furthermore,
bias is not always straightforward; indirect bias, where seemingly neutral inputs lead
to biased outputs, might persist even after direct bias is addressed. Lastly, ethical
considerations pose a significant challenge. Deciding who gets to define biases, who
has the authority to ’correct’ these biases, and what the consequences might be, are
all deeply ethical questions without clear-cut answers. This can lead to power
imbalances or misuse of these models. In conclusion, bias in LLMs is a complex
issue that requires multidisciplinary efforts to tackle. Research continues to explore
techniques for better bias detection, definition, and mitigation, as well as address the
associated ethical dilemmas. While it may not be possible to completely eradicate
bias from LLMs, it’s crucial to strive towards minimizing its harmful impacts
through transparency, accountability, and continuous dialogue.

Dealing with bias in Large Language Models (LLMs) like GPT-3 is a
multifaceted challenge, requiring a range of techniques to ensure that these models
provide fair, unbiased outputs. Bias can emerge due to the skewed nature of the
training data or the model’s learning mechanisms. One critical technique is ”bias
mitigation during pre-training”. LLMs are trained on vast amounts of text data from
the internet which often include inherent biases. To mitigate this, developers can
curate the training datasets wherever possible to minimize prejudiced content. Such
efforts can be resource-intensive; however, they greatly contribute to reducing the
model’s exposure to biased data. Another technique is ”bias mitigation during
fine-tuning.” Fine-tuning is a process that allows models to learn specific tasks or
adapt to certain domains after pre-training. Developers can use carefully designed
data sets during this stage to ’correct’ some of the biases learned during pre-training.
They can also implement fairness constraints or penalties for biased predictions to
further reduce inherent prejudices. ”Transparent reporting and evaluation” is an
essential part of managing bias. Researchers should transparently communicate about
potential biases in their models. Evaluation metrics crafted explicitly for bias
detection can also be of great value. These measurements can focus on various
aspects, such as studying the model’s behavior across different demographic groups
and assessing whether the model is perpetuating harmful stereotypes. The application
of ”external audits and third-party evaluations” has proven to be fruitful. Independent
audits of AI systems can help identify hidden biases and provide recommendations
for improvement. External audits help counteract confirmation bias and improve the
objectivity of the analysis. ”User customization and control over system behavior”
can empower users to modify a system’s output according to their ethical values
within broad societal limits. This approach recognizes the plurality of ethical
perspectives and respects user autonomy while ensuring the system does not enable
malicious uses. ”Public input on defaults and hard bounds” involves gathering
collective input on the system behavior and defining hard boundaries. Since AI
impacts a wide population, it is crucial for decisions about system behavior to
incorporate perspectives from those who use or are affected by systems. Lastly,
”continuous learning and adaptation” is important. As cultural norms and societal
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values evolve, so too should our understanding of bias, fairness, and fairness metrics.
Therefore, it is essential that techniques for dealing with bias in LLMs incorporate an
element of ongoing learning and evolution. In sum, dealing with bias in LLMs
requires a combination of technical methods and human oversight, involving
pre-training and fine-tuning interventions, transparent reporting, external reviews,
user customization, public inputs, and continuous learning strategies with the aim of
improving fairness and reducing harm.

Controllability

Controllability is a term that encapsulates the power to guide or direct a
system’s behavior in order to achieve specific results. The origin of this term can be
traced back to control theory, a branch of engineering that deals with the behavior of
dynamical systems, where it means the ability to move a system from any initial state
to any desired final state within a finite time interval, typically with the use of input
control functions. In the realm of deep learning models, the concept of controllability
takes on an added layer of importance. It refers to the degree to which an operator,
often a human user or another system, can influence and tailor the outcomes
produced by a model. This influence can be exerted at various stages and levels,
including during the training phase, the data-feeding process, and the design of the
model architecture. Deep learning models, as part of machine learning, are
inherently designed to learn patterns from massive amounts of data and generate
predictions or decisions based on those patterns. Therefore, the ability to control
them implies having mechanisms to guide these predictions toward ethically sound,
practically useful, and situationally appropriate results. The need for controllability in
deep learning is amplified due to a variety of reasons. First are applications where
human intervention is necessary. Although deep learning models have been
successful in automating several tasks, there are areas where they operate in tandem
with humans, requiring a certain level of control. For example, in healthcare, a deep
learning model might assist doctors in diagnosing diseases by analyzing medical
images. However, a doctor must have the ability to override or adjust the model’s
suggestions based on their expertise and the patient’s unique context. Ethical
considerations also necessitate control over deep learning models. As artificial
intelligence continues to permeate all spheres of life, issues related to fairness,
transparency, and privacy have emerged. Ensuring that AI systems do not
inadvertently perpetuate bias or invade privacy requires the ability to steer the
systems’ behavior. Specific constraints, such as legal or regulatory requirements, can
also demand controllability in deep learning. For instance, certain sectors such as
finance or healthcare are bound by stringent regulations related to data handling and
decision-making processes. In these cases, controllability implies having means to
ensure that the operations of deep learning models comply with these norms. In
conclusion, controllability in the context of deep learning systems is more than a
mere technical term. It represents an essential quality that aligns the technology with
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human values, professional judgment, ethical standards, and societal rules. The
ongoing research in explainable AI, fair AI, and human-in-the-loop AI all point
towards an increased emphasis on enhancing the controllability of deep learning
models for their responsible use.

Advancements in artificial intelligence, particularly within the realm of deep
learning, have led to remarkable strides in diverse sectors such as healthcare, finance,
and autonomous vehicles. However, along with these opportunities come significant
challenges, especially concerning model control. Firstly, explainability, or
”interpretability,” is a critical issue. Deep learning models are often termed ”black
boxes'' because it is typically difficult to understand how they arrive at their
decisions. Some models, like convolutional neural networks (CNNs), take thousands
or millions of inputs and apply many layers of computation. Determining which
inputs significantly influenced the output is challenging because the decision making
process gets lost in complex, interconnected mathematical functions. This lack of
transparency hinders trust and broad adoption, especially in sectors where
explainability is legally required or ethically imperative, like healthcare or criminal
justice. Secondly, there’s the challenge of bias and fairness. Deep learning models
learn from data, and if the training data contains biases, the model will likely
reproduce those biases. For instance, facial recognition systems have been shown to
perform unequally across different ethnic groups due to biased training sets. This can
lead to discriminatory outcomes, making it crucial to develop techniques for
identifying and mitigating bias. A third major issue relates to adversarial attacks.
These are designed to mislead models through malicious input, leading to incorrect
outputs. Such attacks pose serious security risks, particularly in sensitive applications
like cybersecurity or autonomous vehicles. Despite numerous defenses proposed,
creating models robust against all forms of adversarial manipulations remains an
open problem. Privacy concerns constitute another significant challenge. Models
trained on sensitive data can inadvertently reveal information about individuals.
Differential privacy techniques are being developed to mitigate this risk, but striking
a balance between utility and privacy protection is intricate. Lastly, the cost and
environmental impact associated with training large scale deep learning models
cannot be ignored. The compute resources needed for state-of-the-art models have
significant carbon footprints and are often beyond the reach of smaller organizations
or researchers, leading to a centralization of AI power. In conclusion, controlling
deep learning models is a multifaceted challenge involving technical, ethical, and
societal aspects. It is imperative that as we advance in our capabilities with these
powerful tools, we also focus on refining control mechanisms to ensure their
transparent, fair, secure, privacy-preserving, and sustainable use. The future impact
of AI on society will largely depend on how effectively we manage these challenges.

Language Learning Models (LLMs) are increasingly being adopted in various
industries due to their impressive ability to mimic human-like conversation and
understanding. However, controlling these models to yield predictable, safe, and user
specific outcomes remains a critical concern for many developers and users. One
fundamental technique is pre-training and fine-tuning. Initially, models are
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pre-trained on a vast corpus of text data, enabling them to understand the structure of
the language. Then, they are fine-tuned on specific datasets related to the task at
hand or incorporating user preferences. This two-step process ensures models align
with general linguistic patterns while also adapting to specific requirements.
However, this alone may not be enough. An emerging practice to control LLMs’
output is reinforcement learning from human feedback (RLHF). In this technique, an
initial model is trained using comparison data – pairs of model outputs ranked by
quality. A reward model is then trained to predict those rankings, which further
trains the model via Proximal Policy Optimization. Through several iterations, the
model can learn more nuanced behavior from intricate feedback. Another approach is
the use of prompts. Since LLMs respond based on the pattern of input they gain,
fine-tuning the prompt structure can effectively guide the model’s responses. For
example, detailed prompts that provide context or questions formulated in a certain
way can elicit more controlled and desired responses. Moreover, specifying external
constraints during interaction with the model offers real-time control. These could
include system-level constraints like banning output of certain types of content,
setting context windows, or user-defined instructions embedded within the input.
Despite these techniques, LLMs may still produce outputs with biases or inaccuracies
inherent in their training data or fail to reject inappropriate requests. To address this,
developers are considering controllable knobs or dials users can adjust to influence
the model’s behavior, such as the degree of creativity or verbosity. Further research
into AI safety is exploring methods like rule-based rewards and Constitutional AI,
where ethical guidelines or specific rules are embedded within the model’s
architecture itself. This can control LLMs by limiting them to function within
predetermined boundaries. As we continue to use and develop LLMs, ensuring they
understand and respect user values becomes paramount. Techniques such as value
learning aim to make LLMs learn and align with the values of their users while
maintaining safety precautions against malicious use. Ultimately, controlling LLMs is
a multifaceted challenge that requires a combination of these techniques. The goal is
to create a balanced system that respects user autonomy and ensures safety, while
continually learning and improving from feedback and interaction. As this field
advances, researchers need to keep iterating on these techniques to ensure the safe
and beneficial use of LLMs.

Controlling deep learning models, especially LLMs, is a challenging yet
critical area of research. While these models offer tremendous capabilities, achieving
controllability is essential to ensure their safe and responsible use. Researchers are
actively exploring various techniques, including fine tuning, guided generation,
rule-based constraints, and human-in-the-loop approaches, to enhance the
controllability of LLMs. By addressing these challenges, we can unlock the full
potential of deep learning models while maintaining control over their outputs.

Hallucination
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Language Learning Models (LLMs) like GPT-3 by OpenAI use machine
learning to understand and generate human language. The concept of ”hallucination”
in LLMs refers to instances where the model generates outputs that seem plausible
but are actually not factual or grounded in reality. This usually happens when the
model makes guesses or assumptions based on patterns it has learned from its
training data, leading to incorrect or completely fabricated information. Hallucination
is a direct result of the fundamental architecture of these models. They do not have
access to real time facts or real-world context beyond what they were trained on. If
an input triggers a learned pattern associated with false information, the model might
generate outputs that reflect this falsehood, hence ’hallucinating’. For instance, an
LLM might generate a sentence claiming that a particular historical figure is still
alive, despite them having passed away years ago. This could be because the model
was trained with data up until a point when the individual was still alive, and it
hasn’t been updated with new data since their passing. Another form of hallucination
can occur when the model generates outputs that are internally consistent and
grammatically correct but are entirely fictitious. For example, it might describe a
fictional scientific theory or event that sounds plausible but doesn’t exist in reality.
These hallucinations are often more difficult to spot because they might not directly
contradict known facts. The concept of hallucination in LLMs poses significant
challenges for the use of these systems, especially in applications where accurate,
fact-based responses are crucial, such as news generation, educational tools, or legal
advice. It underscores the importance of rigorous validation, verification, and
continual updating of training data to ensure the accuracy of generated outputs.
Moreover, it also highlights the need for developing more sophisticated mechanisms
within LLMs to reduce hallucination. This could include more advanced forms of
fact-checking capabilities, the incorporation of real time data updates, or the
development of systems to allow for external fact-checking against a reliable
database. In conclusion, hallucination in LLMs is a complex issue that arises from
these models’ inherent limitations. It’s an area of active research and presents both
technical and ethical challenges for AI developers and users alike.

Language Learning Models (LLMs), like the ones developed by OpenAI,
represent some of the most advanced manifestations of AI. However, they aren’t free
from challenges, one of the prominent ones being dealing with hallucinations or
generating information that isn’t based on the input or training data. Hallucination in
LLMs primarily refers to situations where models generate output that may sound
plausible but are incorrect or unverified. This can range from minor alterations to
completely fabricated facts. Hallucination poses a significant challenge because it can
mislead users and erode trust in the reliability of these systems. It also raises
concerns regarding misinformation, since unchecked hallucinated content could
spread false narratives. Several factors contribute to hallucination in LLMs. Training
data is arguably the most critical element. If the training data includes incorrect or
misleading information, the model will learn and potentially replicate those
inaccuracies. Also, if training data lacks representation of certain types of
information, the model might fill in gaps with hallucinated details. Furthermore,
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deep learning models like LLMs work largely through pattern recognition rather than
understanding, which further exacerbates the hallucination problem. The ambiguous
nature of natural language can also lead to hallucinations. Language is filled with
nuances, context-specific meanings, and interpretive elements, which can be
challenging for LLMs to grasp fully. When presented with ambiguous prompts, these
models may default to producing responses that seem plausible but are not grounded
in facts. Dealing with hallucinations in LLMs calls for novel solutions. One
approach is improving the quality and diversity of training data to ensure the model
has a wide and accurate base to learn from. Ensuring the dataset represents all
necessary aspects of the real world, especially rare events, can help reduce
hallucinations. Another approach is leveraging reinforcement learning from human
feedback. Users can actively point out when the model hallucinates, informing
updates to its training. However, this can be challenging due to the large amount of
data required and potential biases in user feedback. Additionally, researchers are
exploring techniques that incorporate explicit world knowledge into these systems.
Known as knowledge graphs, they provide a structured format for facts that could
serve as a ”fact-checker” for LLMs. Designing safety mitigations, such as allowing
users to flag or downvote incorrect outputs, or integrating internal checks within the
model to cross-verify the information it generates, can also be beneficial. While
we’ve made strides in developing LLMs, dealing with hallucination remains a
significant challenge. It demands rigorous research efforts and better training
methodologies to ensure the trustworthy and responsible deployment of these
advanced AI systems.

Controlling hallucination, or the generation of incorrect and unfounded
information, is a crucial task for large language models (LLMs) like OpenAI’s
GPT-3. Striking a balance between creativity and accuracy in an LLM’s responses
can be complex. Here are some techniques used to control hallucination.

• Fine-tuning: This process involves training the model on a specific dataset
after its initial training. The data used for fine-tuning is typically narrow and selected
to reflect the desired output. For instance, if you want the model to generate accurate
scientific information, you might fine-tune it with a dataset comprising scientific
literature.

• Reinforcement Learning from Human Feedback (RLHF): In RLHF, models
learn to generate better content by interacting with humans. They generate a
response, receive feedback on its quality, and use this information to adjust future
outputs. Through this, models learn to avoid hallucinating information that humans
don’t validate.

• Controlling Generation Temperature: Models like GPT-3 use a parameter
called ’temperature’ during the text generation process. Higher temperature values
lead to more random outputs, while lower values make the output deterministic. By
tuning the temperature, one can control the degree of creativity and potential
hallucination in the model’s responses.

• Prompt Engineering: The design of the input prompt can significantly
influence the model’s output. By asking clear, direct questions and providing
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necessary context, you can guide the model towards producing accurate,
non-hallucinated information. • Using External Fact Checkers: An external
fact-checker, another AI algorithm that verifies the claims made by the LLM, could
be employed. If the fact-checker determines that the LLM is generating false
information, it can signal the LLM to modify its generation process.

• Limiting Output Length: Shorter responses often contain less room for error
or fabrication compared to longer ones. By limiting the output length, the risk of
generating hallucinated information can be reduced.

• Systematic Evaluation and Iterative Refinement: Regularly evaluating the
model’s performance and iteratively refining it based on these evaluations can help
control hallucinations. This might involve both automated evaluation methods and
human evaluations.

In conclusion, controlling hallucination in LLMs is a multifaceted problem
that requires a combination of techniques. These approaches need to be applied
strategically and often in tandem to effectively reduce the occurrence of hallucination
while maintaining the model’s ability to generate useful, creative responses.

4. Language model architecture

Language model architectures play a crucial role in various natural language
processing (NLP) tasks. Three common architectures are encoder, encoder-decoder,
and decoder. Each architecture has its specific use cases, advantages, and
disadvantages.

Differences between Self-attention and Cross-attention

Self-attention, a fundamental component of the transformer architecture, has
revolutionized natural language processing (NLP) by enabling models to capture
long-range dependencies between words and comprehend the overall meaning of a
sentence. This mechanism operates by allowing a model to attend to different
positions within the same input sequence, establishing connections between words
that may be far apart. To understand how self-attention works, consider a sentence
like "The quick brown fox jumps over the lazy dog." When the model processes this
sentence using self-attention, it can learn to associate the words "quick" and "fox,"
even though they are separated by three other words. This ability to capture
long-range dependencies is crucial for tasks like machine translation, where the model
needs to understand the relationships between words across different languages.

While self-attention focuses on relationships within a single sequence,
cross-attention expands the scope by enabling a model to attend to words in two
different input sequences. This mechanism is particularly useful in encoder-decoder
architectures, where the encoder processes the input sequence and the decoder
generates the output sequence. Cross-attention allows the decoder to incorporate
information from the encoder's representation of the input sequence, ensuring that the
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generated output is relevant and consistent with the input. For example, in machine
translation, cross-attention plays a critical role. The decoder, when generating the
translated sentence, can attend to the encoder's representation of the source language
sentence. This allows the decoder to consider the grammatical structure, vocabulary
choices, and overall meaning of the source sentence, leading to more accurate and
natural-sounding translations.

The primary distinction between self-attention and cross-attention lies in the
source of information they utilize. Self-attention draws from a single input sequence,
enabling it to capture long-range dependencies within that sequence. Cross-attention,
on the other hand, bridges the gap between two different input sequences, allowing
the model to compare and contrast them and understand their relationship.

Encoder Architecture

Figure 2a. Illustration of Encoder achitecture
(https://kikaben.com/transformers-encoder-decoder)

An encoder-only architecture consists of a single encoder stack that processes
an input sequence and produces contextualized representations of each token in the
sequence. These representations capture the meaning and relationships between the
tokens in the input, allowing the model to perform various tasks such as classification,
question answering, and summarization. The encoder's self-attention mechanism
allows each token to attend to all other tokens in the input sequence, enabling it to
extract global information and understand the context of each token. The encoder also
includes feed-forward layers that add non-linearity to the representations.

Encoder-only models are particularly effective for tasks that require
understanding and encoding the meaning of an input sequence, such as: (1) Natural



Final Capstone Project 31

Language Understanding (NLU): Tasks like sentiment analysis, topic classification,
and text summarization involve understanding the meaning of an input text and
extracting relevant information. (2) Question Answering (QA): Encoder-only models
can be used to answer questions about a given text passage by first encoding the
passage and then using the encoded representations to answer the question.

Encoder-Decoder Architecture

Figure 2b. Illustration of Encoder-Decoder achitecture
(https://aiml.com/explain-the-transformer-architecture)

The encoder-decoder architecture is the most common transformer
architecture, consisting of an encoder stack followed by a decoder stack. The encoder
processes the input sequence and produces contextualized representations, while the
decoder generates an output sequence based on the encoder's representations and its
own internal state. The decoder's self-attention mechanism allows each token in the
output sequence to attend to all other tokens in the output sequence, ensuring that the
output is coherent and consistent. The decoder also includes feed-forward layers and
an attention mechanism that allows it to attend to the encoder's representations,
allowing it to generate an output that is relevant to the input.

Encoder-decoder models are particularly effective for tasks that require
generating an output sequence based on an input sequence, such as: (1) Machine
Translation (MT): The encoder encodes the source language sentence, and the
decoder generates the corresponding translation in the target language. (2) Text
Summarization: The encoder encodes the input text, and the decoder generates a
shorter summary that captures the main points of the input. (3) Sequence-to-Sequence
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Learning (Seq2Seq): A broad category of tasks where the model learns to transform
one sequence of data into another, such as text-to-speech or speech-to-text translation.

Decoder Architecture

Figure 2c. Illustration of Decoder achitecture
(https://www.researchgate.net/figure/Decoder-Only-Architecture-used-by-GPT-2_fig1

_349521999)

The decoder-only architecture consists of a single decoder stack that generates
an output sequence based on a prefix or an initial context. This architecture is
particularly useful for tasks that require generating creative text formats, such as: (1)
Creative Writing: The decoder can generate poems, code, scripts, musical pieces,
email, letters, etc., based on a given prompt or style. (2) Dialogue Generation: The
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decoder can generate responses to prompts or continue conversations, mimicking
human conversational patterns. (3) Text Generation: The decoder can generate new
text based on a given context or prompt, such as generating product descriptions or
creative text formats.

The decoder-only architecture is gaining popularity due to its simplicity and
effectiveness in generating creative and coherent text. However, it is important to note
that decoder-only models may not be as effective for tasks that require understanding
and encoding the meaning of an input sequence.

In practice, these architectures are often combined and adapted to suit specific NLP
tasks. For example, the trans former architecture, which is widely used in modern
language models, combines the encoder and decoder components to enable
self-attention and capture long-range dependencies.

5. State of the art

ChatGPT

The Chatbot Generalized Pre-training Transformer (Chat-GPT) model is a
groundbreaking development in the field of artificial intelligence (AI), specifically
within natural language processing (NLP). Developed by OpenAI, GPT is a
transformer-based language model that employs machine learning techniques to
generate human-like text. The underlying technology for Chat-GPT is originally
based on the transformer architecture used in the GPT model series, including GPT-1,
GPT-2, and the most recent, GPT-3. Each iteration has expanded on prior models,
vastly increasing the scale and introducing novel training techniques. The transformer
architecture allows the model to handle long-range dependencies in text very
efficiently, something earlier architectures struggled with significantly. Chat-GPT
leverages unsupervised learning during its initial pre-training phase. It learns to
predict the next word in a sentence using a vast amount of internet text data. This
process allows the model to acquire an understanding of grammar rules, facts about
the world, reasoning abilities, as well as various biases present in the data it was
trained on. After pre-training, fine-tuning follows, where the model is further trained
on a dataset curated by humans, which contains demonstrations and comparisons to
guide its responses. This two-step process of pretraining and fine-tuning is crucial to
developing a chatbot like Chat-GPT that can create contextually relevant, nuanced,
and coherent text beyond simply generating disconnected sentences. One key aspect
of GPT-based models is their generality. Instead of creating separate models for
different tasks such as translation, summarization, or sentiment analysis, GPT models
are capable of performing these diverse tasks without task-specific modifications.
The user merely needs to provide prompts to instruct the model what task to perform,
a feature made possible by instruction following capabilities developed through
fine-tuning. While having impressive capabilities, it’s essential to note potential
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issues with Chat-GPT. Its reliance on training data means it can sometimes generate
inappropriate content or manifest biases present in the data. In response, OpenAI has
focused on improving default behavior, enabling user customization within broad
boundaries, and soliciting public input on defaults and hard bounds to prevent
misuse. Looking forward, advancements in AI models like Chat-GPT continue to
push the boundary of what’s possible in machine-human interactions. As we refine
these models, their potential applications across industries - from customer service to
education, entertainment, and beyond - continue to expand. Despite the challenges,
GPT-based models such as Chat-GPT represent a significant leap forward in NLP and
AI at large. They encapsulate the increasingly sophisticated interplay between
technological innovation and societal impact, prompting not only an ongoing effort to
improve technical aspects but also a deeper exploration of ethical and policy
considerations.

FlanT5

Flan-T5, a novel machine learning model introduced after 2021, is an advanced
achievement in the field of Natural Language Processing (NLP). Combining the
strength of two powerful models - Flan and T5 (Text-to-Text Transfer Transformer)
from Google’s research team - Flan-T5 brings new insights to NLP tasks by
leveraging a broader context and generating more accurate results. The core
principle behind T5 was transmuting every NLP problem into a text-to-text task. It
includes tasks like translation (translating Spanish to English), summarization
(transforming long paragraphs into short summaries), sentiment analysis (converting
sentences into positive or negative sentiments), and much more. The T5 model’s
success lies in its simplicity and versatility, allowing it to be used across various NLP
tasks without major modifications. On the other hand, the Flan model represents an
upgrade over traditional transformer models, offering a significant leap in processing
efficiency without compromising on performance. By employing Fast Attention via
positive Orthogonal Random features (FAVOR+), Flan manages to sidestep the issues
confronted by typical attention mechanisms like scaling difficulties associated with
sequence length. This ability makes it particularly suited for handling longer text
sequences. By fusing these two models’ principles, Flan-T5 ushers in new
possibilities for NLP applications. The text-to-text approach of T5, combined with
the efficient handling of longer sequences by Flan, enables this hybrid model to
deliver superior performance across many NLP tasks. This confluence offers a
strong foundation for high-quality language understanding and generation,
particularly useful for tasks like document summarization or legal text interpretation
where context and sequence length become crucial factors. Flan-T5 also excels in
resource-constrained environments. The computational efficiency brought about by
Flan’s adoption of FAVOR+ means that Flan-T5 can perform at its peak even on
devices with limited computing power. This makes it a valuable tool for on-the-go
applications, where high processing power is not always available. Despite its many
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advantages, Flan-T5 isn’t without limitations. It requires extensive training to
perform at its best, making it resource-intensive. Also, it inherits the limitations of
transformer-based models in comprehending some of the subtler nuances of human
language, such as sarcasm or implicit context. In conclusion, Flan-T5 marks a
significant advance in NLP technology by combining the versatility of T5’s
text-to-text approach with the efficiency of Flan’s FAVOR+ attention mechanism.
Although it has certain limitations, its potential applications, especially in
resource-constrained environments and tasks requiring long context understanding,
are immense. As research progresses, future iterations of Flan-T5 promise even more
exciting developments in the realm of NLP.

T5

The T5 (Text-to-Text Transfer Transformer) model, developed by Google
Research, is an innovative approach to machine learning models specialized in
handling language tasks. Unlike most traditional models which are designed with
task-specific architectures, T5 simplifies the process by converting all language
processing tasks into a text-to-text format. What sets T5 apart is its unified
framework that eliminates the need for task-specific modifications, making it more
versatile and efficient than its predecessors. This general-purpose system uses a
standard sequence-to-sequence approach where each task, such as translation or
summary generation, is executed by ”translating” one piece of text into another. At
the heart of T5 is the Transformer architecture, an attention-based model that
employs self-attention mechanisms for predicting tokens in a sequence considering
the full context of input. The Transformer framework allows T5 to handle long-term
dependencies effectively, offering improved results on a wide range of tasks
compared to previous models. Training T5 involves a two-step process: pre-training
and fine tuning. Pre-training leverages unsupervised learning on a large corpus of text
data. Here, the model learns to predict tokens in a sentence, thus acquiring a deep
understanding of language structure and semantics. Then, during fine-tuning, the pre
trained model is adapted to specific tasks using supervised learning on labeled
datasets. One of the key innovations of T5 is its use of Causal Language Modeling
(CLM), a departure from the traditional Masked Language Model (MLM) used by
models like BERT. In CLM, the model is trained to predict the next word in a
sentence, given all previous words, which encourages it to develop a more holistic
understanding of the sentence context, enhancing its fluency and coherence in
generated sentences. T5 also integrates a denoising objective during pre-training,
introducing noise into inputs and training the model to reproduce the original,
noise-free texts. This process improves the generalization capabilities of the
model,making it more robust in handling real-world tasks. The T5 model has
demonstrated superior performance on a variety of benchmarks, including the GLUE
and SuperGLUE language understanding benchmark suites. Its versatility and task
agnostic nature have been a game-changer in natural language processing (NLP),
with its impacts felt across machine translation, summarization, question answering,
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and text classification. However, the T5 isn’t without its drawbacks. Its large-scale
variants require significant computational resources for training and deployment,
making them less accessible for smaller research teams or organizations. Moreover,
like most deep learning models, it’s often seen as a ”black box” due to limited
interpretability of its internal decision processes. Overall, the T5 model represents a
major stride in NLP. It illustrates the power of transfer learning and the potential of
unifying different NLP tasks under one model architecture. As researchers continue
to refine and build upon this technology, we can expect to see even more
sophisticated and capable language models in the future.

LLaMA

The LLaMA (Lifelong Learning Machine) model represents a significant evolution in
artificial intelligence. It embodies a key shift from traditional AI models that
required extensive training and retraining for each new skill or application towards
one that is capable of continuous learning, much like humans do. LLaMa leverages a
concept known as lifelong learning, aiming to create an AI system that can learn from
every interaction, building on past knowledge without forgetting previous lessons.
This is also referred to as overcoming ’catastrophic forgetting’, a common issue in
neural networks where the introduction of new information can lead to the loss of
previously learned data. The model is designed to adapt and evolve its understanding
over time, allowing it to apply learned skills to new situations and tasks. One of the
core principles underpinning LLaMA is the idea of transfer learning. This involves
the model applying knowledge gained in one context to another, different context.
For instance, language skills learned in English could be applied to another language
or mathematical principles could be used to solve physics problems. Such
cross-application of knowledge mirrors human cognitive processes and significantly
increases the model’s efficiency. LLaMA uses meta-learning algorithms which guide
the way the model learns based on its experiences. It tries to figure out not just what
to learn but how to learn it, adjusting its learning methods in response to new
information. Meta-learning is particularly useful when it comes to tasks where the
model has minimal prior exposure, enabling it to rapidly adapt its approach based on
early experiences with the task. Privacy is another crucial aspect of LLaMA. While
it continuously learns from interactions, it is also designed to ensure that this does not
compromise user privacy. It accomplishes this through techniques such as
differential privacy, which allows the model to learn patterns across many users
without identifying specific individuals. Despite its promising potential, the LLaMA
model does present certain challenges. One of the most significant is computational
resources - the model requires substantial processing power and memory to function
effectively. There are also ongoing concerns about its ability to handle complex tasks
and situations without human intervention, as well as issues related to bias and
fairness. In conclusion, LLaMA represents a major step forward in the development
of AI models that can learn and adapt throughout their lifetime, much like humans
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do. Its approach of continuous learning, transfer learning, meta-learning, and privacy
preservation offers promising aspects for both practical applications and further
research.

6. Industry research directions

Instruction Fine Tuning

In recent years, the task of ’instruction following’ has become central to AI
research endeavors. Instruction finetuning is a promising area of investigation that
seeks to augment the language model’s ability to understand and execute complex
task descriptions accurately. This entails training an AI model not only to
comprehend instructions but also to implement them correctly. The goal of current
industry research is to create AI systems that can handle a broader range of tasks,
adapt to new situations more efficiently, and demonstrate improved generalization
skills by effectively interpreting and executing novel instructions. One direction of
research within this niche is focused on data collection methodologies. It involves
the development of vast and diverse datasets comprising varied multi-step
instructions. The end goal is an AI system capable of understanding and applying
directives across different domains, hence enhancing its usability. An example
could be designing conversational agents that follow cooking recipes, assembly
instructions, or guide users through software troubleshooting steps. Another
significant aspect of instruction finetuning studies involves optimizing training
procedures. Researchers are exploring ways to create more sophisticated training
regimes that leverage reinforcement learning, unsupervised learning, and
supervised fine-tuning. For instance, they may use reinforcement learning to
reward the model when it successfully follows instructions, thereby refining its
future performances. Additional focus areas include improving the granularity of
finetuning and developing advanced evaluation metrics. Granularity improvement
involves fine-tuning models at the level of individual neurons or smaller
subnetworks, which could potentially enhance the model’s capacity to learn
specific tasks without disrupting its overall performance. On the other hand,
creating specialized metrics will ensure researchers can accurately measure a
model’s ability to interpret and carry out instructions, thus providing clear
benchmarks for comparison and progress tracking. A promising yet underexplored
avenue is the incorporation of domain-specific knowledge during instruction
finetuning. While most current techniques rely on generic pre-training data,
customizing pretraining with domain oriented information might yield models that
outperform in specialized tasks. Moreover, instruction finetuning can also be
combined with other AI techniques such as meta-learning to create more adaptable
systems that can quickly learn from new instructions. Meta-instruction learning,
where the model is taught how to learn from instructions, could be another
ground-breaking research path. Lastly, making AI models robust and interpretable
is a crucial research direction. It involves creating methods to ensure that models
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don’t misinterpret or overgeneralize instructions, and are capable of providing
clear explanations about their decisions and actions. Overall, instruction finetuning
presents an exciting frontier for industry research. It aligns with the broader goal
of creating AI systems that mirror human-like comprehension and execution
capabilities. The current progress in this area hints at its potential to shape the
future evolution of AI, opening up possibilities for applications in various sectors,
including customer service, software development, healthcare, and many others.
As we continue to explore these prospects, it’s clear that the journey will bring
both challenges and opportunities, but the promise of advancements in Artificial
Intelligence makes it undeniably worth the effort.

Knowledge Grounded

The term ”knowledge-grounded” pertains to a system that leverages vast pools of
information during its operations. In the context of Artificial Intelligence (AI) and
Machine Learning (ML), this refers to models that leverage external knowledge
bases or their internal representations of the world to generate responses or make
decisions. There is an exciting shift in industry research towards
knowledge-grounded approaches, and it’s essential to understand its trajectory. As
we move further into the 21st century, data plays a pivotal role in shaping our
world. The internet has evolved into a colossal repository of information about
almost every conceivable subject. Yet, harnessing this wealth of knowledge
effectively remains a challenge. That’s where knowledge-grounded AI comes into
play. These systems can understand, learn from, and use this vast trove of digital
knowledge to enhance their performance, making them more effective and
efficient. This shift towards knowledge-grounded systems in industry research is
driven by several key factors. Firstly, there’s a growing demand for more
sophisticated AI applications that can handle nuanced tasks, such as customer
service, content moderation, or personalized recommendations. Traditional
machine learning models often fall short in these areas because they lack the
necessary understanding of worldly context. Knowledge-grounded models can fill
these gaps by utilizing information from external sources and applying it to the
task at hand. Secondly, technological advancements have made it easier to store
and process larger amounts of data. This means companies can feasibly build
knowledge-grounded models that draw upon extensive online databases and
encyclopedias. These resources offer a rich source of information that can
significantly improve an AI model’s performance. Moreover, advances in natural
language processing (NLP) technology, neural network architecture, and transfer
learning have enabled machines to understand textual data in more profound ways.
They can now comprehend abstract concepts, identify connections between
different pieces of information, and use this understanding to generate more
accurate, meaningful responses. Yet, with all its potential, the move towards
knowledge-grounded systems is not without challenges. For instance, ensuring that
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AI models can accurately interpret and apply external information in a relevant
context remains a significant hurdle. There’s also the issue of data privacy and
security - given that these systems often rely on large-scale public databases,
ensuring the safe and ethical use of this data is paramount. In conclusion, the
industry research direction is progressively inclining towards knowledge-grounded
AI. With an aim to develop smarter machines that can tap into the internet’s vast
knowledge reserves, organizations are investing heavily in this niche field.
Although challenges exist, the potential benefits of knowledge-grounded models in
enhancing AI capabilities are immense. As we forge ahead, breakthroughs in this
domain will undoubtedly shape the future of AI and machine learning.

Reinforcement Learning with Human Feedback

Reinforcement Learning (RL) has emerged as a potent approach to develop
self-learning systems that can improve their decision-making capabilities over
time. By incorporating human feedback, we can harness the power of RL while
reducing negative side effects and unintentional behavior due to reward
mis-specification and lack of real-world grounding. A significant research
direction in this domain focuses on enabling RL algorithms to comprehend and
incorporate human feedback more effectively. This includes developing
techniques for active query of humans, where an algorithm asks questions during
training to increase its understanding and performance. Additionally, methods are
being developed to allow the system to understand and apply feedback from
multiple sources which may have discrepancies or conflicts. Another key area of
interest is the development of safe exploration strategies. RL agents often learn
through trial and-error, but in many real-world scenarios, errors can lead to
harmful consequences. Innovations in off-policy learning, safe exploration, and
conservative policy updates aim to mitigate risks without hampering the learning
process. The incorporation of inverse reinforcement learning (IRL) into the RL
with human feedback framework is also promising. IRL enables the AI to infer the
underlying values or goals driving human behavior, providing another layer of
context. The challenge lies in evolving models that can handle the complexity and
subtlety of human behavior and adapt these insights in diverse contexts. To
effectively leverage human feedback, it’s crucial to reduce the burden on the
human trainer. Methods such as batch active learning, where queries are grouped
together, and the use of synthetic or simulated feedback generated by other AI
models, are emerging as solutions to this issue. Further research is needed in
dealing with biases that can emerge from human feedback. Humans are not
perfect and their feedback can reflect personal biases or mistakes. Developing
mechanisms to identify and correct for such biases is essential for creating fair and
balanced RL systems. Reward modeling represents another promising research
avenue. Instead of manually specifying a reward function, the idea is to learn it
from human feedback. This could involve approaches where the agent generates its
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own hypotheses about what actions are correct and checks these against human
feedback. The integration of RL with human feedback has far-reaching
implications for industries such as robotics, healthcare, education, and gaming,
where personalized, adaptive decision-making is invaluable. Yet, significant
research challenges remain, including developing more efficient algorithms,
handling sparse and noisy feedback, and ensuring that systems generalize well in
unseen scenarios. In conclusion, Reinforcement Learning with Human Feedback
presents an exciting direction for industry research, capable of bridging the gap
between algorithmic learning and human intelligence. By combining the
problem-solving capabilities of RL with the nuanced understanding provided by
human feedback, we can create AI systems that are both powerful and reliable.
The key lies in developing robust methods for interpreting and integrating human
input while maintaining system safety, fairness, and efficiency.

Symbolic AI Reasoning

Symbolic Artificial Intelligence (AI) reasoning, which focuses on
representing problems and their solutions as symbols, is engaging significant
momentum in the industry. It has the potential to revolutionize various sectors
including healthcare, finance, security, and more. One key direction is the creation
of hybrid AI models where symbolic reasoning is integrated with other AI
paradigms, especially machine learning techniques. While symbolic AI excels at
tasks requiring logical reasoning and explicit knowledge representation, it often
falls short when dealing with noisy, unstructured data. Conversely, machine
learning, a subset of AI that learns from data, is highly effective with such data but
struggles to provide explainability. By combining these approaches, researchers
aim to create an AI system that leverages the strengths of both. Another promising
direction is enhancing explainability and interpretability in AI systems. As AI
permeates more aspects of our daily operations, understanding why AI systems
make certain decisions becomes crucial. Symbolic AI, with its transparent rules
and representations, provides a way forward. The focus is to develop AI systems
that not only make accurate predictions or decisions but also explain their thought
process in a manner understandable to humans. Scalability is another area of focus
in symbolic AI reasoning. Current symbolic systems struggle to scale up and
handle complex, real-world problems. Therefore, efforts are concentrated on
developing more efficient algorithms and architectures for symbol manipulation,
as well as effective methods of pruning unnecessary search space. The application
of symbolic AI in natural language processing (NLP) is another major research
direction. Recent advancements in NLP, largely driven by machine learning
approaches, have significant limitations in terms of understanding the deeper, often
implicit, meanings in human language. Symbolic AI can model the underlying
semantics and context behind words and phrases, offering the potential for a more
nuanced understanding of language. The increasing integration of AI into critical
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infrastructure systems, such as power grids, air traffic control, and healthcare
systems, brings forth the necessity for robustness and reliability in AI systems.
Symbolic AI reasoning, with its inherent ability to follow predefined rules strictly,
can provide deterministic outcomes essential in these high-stakes settings. In
addition, research is also focusing on how to make symbolic AI systems more
adaptable and capable of learning new concepts and rules autonomously. This
involves developing mechanisms for symbolic AI to generate new symbols and
rules from observational data or through interaction with its environment, thus
evolving over time without human intervention. Lastly, there’s rising interest in
using symbolic AI reasoning for ethical decision making. As AI takes on roles
involving significant ethical implications, like autonomous vehicles and judicial
decision support systems, it becomes crucial to represent and reason about ethical
and moral considerations explicitly. Researchers are exploring ways to encode
these principles into symbolic AI systems. Industry research is driving
advancements in symbolic AI reasoning, opening up new possibilities and
applications. These directions elucidate a future where symbolic AI plays a
fundamental role, enabling the creation of AI systems that are not only intelligent
but also transparent, reliable, and ethical.

III. PROJECT MANAGEMENT PLAN

1. Overview

Over the past 14 weeks, our team has embarked on an ambitious journey to develop a
symbolic dialogue system for general domain state tracking. Our approach has been
guided by a deep understanding of the intricacies of symbolic dialogue modeling,
coupled with a commitment to leveraging cutting-edge techniques and methodologies.

Initial Phase: Laying the Foundation (Weeks 1-3)
Our initial efforts focused on establishing a solid foundation for our project. We
immersed ourselves in the vast body of literature related to symbolic dialogue and
general domain state tracking, meticulously examining various methodological
approaches and gaining a comprehensive understanding of the challenges and
opportunities that lay ahead.

Data Acquisition and Preprocessing (Weeks 2-4)
Recognizing the importance of high-quality data, we dedicated significant time and
effort to acquiring and preprocessing the Schema-Guided Dialogue Dataset from
Google. This involved meticulously cleaning and normalizing the data, ensuring its
compatibility with the Flan-T5 architecture, and structuring it to facilitate effective
training.
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Model Selection and Optimization (Weeks 3-7)
With a clear understanding of the task at hand and the available data, we embarked on
the crucial process of selecting and optimizing an appropriate model architecture.
After careful consideration, we chose the Flan-T5 architecture, renowned for its
ability to handle complex and nuanced natural language interactions. We meticulously
fine-tuned the model's parameters, conducting rigorous experiments to assess its
performance on various dialogue tasks.

System Integration and Enhancement (Weeks 8-11)
Our focus shifted towards integrating the optimized Flan-T5 model into a
comprehensive symbolic dialogue system. We addressed any performance
bottlenecks, developed strategies for handling complex dialogue interactions, and
implemented mechanisms for maintaining accurate state tracking across multiple
turns of a dialogue.

Evaluation and Refinement (Weeks 12-14)
To ensure the effectiveness of our system, we conducted thorough evaluations on a
variety of general domain state tracking tasks. We analyzed the system's strengths and
weaknesses, identifying areas for further improvement and refining our strategies
accordingly.
Dissemination of Knowledge (Weeks 13-14)
We documented our findings and contributions in a comprehensive report, outlining
the challenges we faced, the solutions we devised, and the insights we gained
throughout the project. Additionally, we prepared a paper summarizing our work for
presentation at the [Conference Name] scientific conference in Indonesia.
Throughout our journey, we have demonstrated a strong commitment to collaboration
and open communication, fostering a supportive and productive working
environment. We have overcome numerous challenges, embraced new ideas, and
consistently strived for excellence. Our project has not only produced a valuable
contribution to the field of symbolic dialogue modeling but has also enriched our
individual knowledge and skill sets. We are proud of the progress we have made and
look forward to continuing our exploration of this fascinating and ever-evolving
domain.

2. Work Details

Our project, "Symbolic Dialogue for General Domain State Tracking," is divided into
three distinct phases: the foundational research phase, the model development and
training phase, and the ablation study and refinement phase.

Foundational Research Phase (Weeks 1-4)
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- Objective: Establish a comprehensive understanding of the theoretical
underpinnings, related techniques, and relevant data sources for symbolic
dialogue modeling and general domain state tracking.

Tasks:

1. Conduct a thorough literature review to gain a deep understanding of symbolic
dialogue modeling, general domain state tracking, and related techniques,
including natural language processing, machine learning, and artificial
intelligence.

2. Identify and evaluate various methodological approaches for developing and
training symbolic dialogue systems, considering their strengths, weaknesses,
and applicability to the specific task of general domain state tracking.

3. Explore and assess potential data sources, including academic databases,
publicly available datasets, simulated dialogue interactions, and legal
documents with structured information.

4. Analyze the limitations and biases inherent in the available data sources and
develop strategies for mitigating their impact on the model's training and
performance.

Team Members:

● All team members will collaborate on literature review and methodological
exploration.

● Nguyễn Sơn Tùng will focus on identifying and evaluating data sources,
particularly those related to legal domain dialogue.

Model Development and Training Phase (Weeks 5-10)
- Objective: Design, develop, and train a symbolic dialogue system capable of

effectively tracking state across multiple turns of a dialogue in a general
domain setting.

Tasks:

1. Select the most suitable model architecture for the symbolic dialogue system,
considering factors such as computational efficiency, accuracy, and
adaptability to different dialogue contexts.

2. Perform hyperparameter optimization to fine-tune the selected model's
parameters, ensuring optimal performance on the chosen data sources.

3. Implement appropriate training procedures, including data preprocessing,
model initialization, and loss function selection, to effectively train the
symbolic dialogue system.

4. Conduct a series of experiments on a variety of dialogue tasks to assess the
model's performance in tracking state, handling complex interactions, and
generating coherent responses.
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5. Analyze the experimental results to identify strengths, weaknesses, and areas
for improvement in the model's performance.

Team Members:

● Nguyễn Sơn Tùng and Nguyễn Mạnh Tường will collaborate on model
selection and hyperparameter optimization.

● Lê Xuân Tùng will focus on implementing training procedures and conducting
experiments.

Ablation Study and Refinement Phase (Weeks 11-14)
- Objective: Systematically evaluate the impact of individual components of

the symbolic dialogue system through ablation study and refine the model
architecture and training procedures for enhanced performance.

Tasks:

1. Design and execute a comprehensive ablation study, systematically removing
or modifying specific components of the model to assess their contribution to
overall performance.

2. Analyze the results of the ablation study to identify the most significant
components and understand their individual and synergistic effects on the
model's performance.

3. Based on the ablation study findings, refine the model architecture by adding,
modifying, or removing components to enhance its overall performance and
address identified weaknesses.

4. Adapt and refine the training procedures to optimize the model's training
process and ensure effective learning of the refined architecture.

5. Evaluate the performance of the refined model through experiments and
compare it to the original model to assess the effectiveness of the ablation
study-driven refinements.

Team Members:

● Nguyễn Sơn Tùng will focus on designing and executing the ablation study.
● Nguyễn Mạnh Tường will focus on analyzing and interpreting the ablation

study results.
● Lê Xuân Tùng will focus on refining the model architecture and training

procedures based on the ablation study findings.

Task Distribution Table:

Week Team Member Task
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1-4
All team
members

Conduct a comprehensive literature review, explore
various methodologies, and identify potential data
sources suitable for the project.

4
Nguyễn Sơn
Tùng

Thoroughly evaluate the identified data sources,
assessing their quality, relevance, and potential biases.

5-6

Nguyễn Sơn
Tùng and
Nguyễn Mạnh
Tường

Collaboratively select appropriate models for the
project, considering factors such as model complexity,
performance, and compatibility with the chosen datasets.
Optimize hyperparameters for the selected models to
enhance their performance.

7-8 Lê Xuân Tùng

Implement the training procedures for the selected
models, ensuring proper data preparation and model
configuration. Conduct experiments to evaluate the
performance of the trained models under various
conditions.

9-10
All team
members

Analyze the experimental results obtained from the
trained models, evaluating their performance metrics,
identifying patterns, and drawing meaningful
conclusions.

11
Nguyễn Sơn
Tùng

Design an ablation study to identify the key components
that contribute most significantly to the performance of
the selected models.

12
All team
members

Execute the ablation study by systematically removing
or modifying specific components of the models,
observing the impact on their performance.

13
Nguyễn Mạnh
Tường

Analyze the results of the ablation study, assessing the
contribution of each component to the overall
performance of the models.

14 Lê Xuân Tùng

Based on the findings of the ablation study, refine the
model architecture and hyperparameters to improve
performance. Evaluate the refined models to assess the
effectiveness of the improvements.
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Team management software

Effective project execution hinges on a well-coordinated team that can
seamlessly collaborate, manage tasks, and track progress efficiently. To achieve this,
our team employed a carefully selected arsenal of team management software, each
playing a distinct role in streamlining our workflow and ensuring project success.

Notion: A Unified Knowledge Hub for Project Information
Notion, a versatile workspace management tool, served as our central

knowledge base, providing a comprehensive repository for project documentation,
research findings, and team discussions. Its intuitive interface and robust features
allowed us to organize, manage, and access a vast amount of information with ease,
fostering a shared understanding among team members.

● Project Documentation: We maintained a comprehensive project wiki in
Notion, encompassing a detailed project overview, objectives, methodology,
timelines, and progress tracking. This centralized repository ensured that
everyone had easy access to the latest project information, minimizing the
need for repetitive explanations and facilitating informed decision-making.

● Literature Reviews and Shared Research Findings: Notion's collaborative
features facilitated the organization and sharing of literature reviews and
research findings. Each team member could contribute to and access the
reviews, ensuring that everyone was on the same page regarding the relevant
research. This collaborative approach streamlined the research process and
enabled us to leverage each other's expertise effectively.

● Meeting Notes and Action Items: Notion's note-taking capabilities proved
invaluable for capturing meeting notes, action items, and follow-ups. By
centralizing this information in Notion, we ensured that key discussions and
decisions were easily accessible to all team members, promoting
accountability and ensuring that tasks were completed promptly.

Overleaf: Real-time Collaboration for Cohesive Paper Writing
Overleaf, a cloud-based collaborative writing platform, emerged as an

essential tool for coordinating paper writing tasks. Its real-time collaboration features
and intuitive interface allowed multiple team members to work on the same document
simultaneously, streamlining the writing process and ensuring consistency in style and
formatting.

● Real-time Collaboration: Overleaf enabled seamless collaboration, allowing
team members to edit and comment on the paper simultaneously. This
real-time feedback loop facilitated a more efficient writing process, enabling
us to quickly incorporate suggestions and maintain a cohesive writing style.

● Version Control: Overleaf's robust version control system kept track of all
changes made to the document, ensuring that we could easily revert to
previous versions if necessary. This feature proved particularly useful when
addressing conflicting edits or incorporating feedback from external
reviewers.
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● Citation Management: Overleaf's built-in citation management tool simplified
the process of adding and formatting citations. Its integration with various
citation styles and its ability to automatically generate bibliographies saved us
valuable time and effort, ensuring that our paper adhered to strict academic
standards.

ClickUp: Task Management and Project Progress Tracking
ClickUp, a versatile project management tool, played a pivotal role in task

management and project progress tracking. Its intuitive interface and robust features
enabled us to effectively organize tasks, monitor progress, and identify potential
roadblocks.

● Task Management: ClickUp's task management capabilities allowed us to
create, assign, and track tasks with clear deadlines and dependencies. This
granular task management ensured that everyone was aware of their
responsibilities and the overall project timeline, preventing delays and
fostering accountability.

● Progress Tracking: ClickUp's Kanban boards and Gantt charts provided clear
visualizations of project progress, enabling us to identify any potential
bottlenecks or deviations from the planned schedule. This visual
representation of progress facilitated proactive decision-making and allowed
us to take corrective actions when necessary.

● File Sharing: ClickUp's file-sharing functionality eliminated the need for
external file-sharing platforms, streamlining access to project-related
documents. By storing all relevant files within ClickUp, we ensured that
everyone had easy access to the latest versions of documents, reducing
confusion and delays.

The combination of Notion, Overleaf, and ClickUp proved to be an effective
team management strategy for our project. These tools enabled us to organize our
knowledge, collaborate efficiently, track progress, and ultimately deliver a successful
project. By leveraging the strengths of each tool, we fostered a collaborative and
productive work environment, enabling us to overcome challenges and achieve our
project goals.

IV. MATERIALS AND METHODS

1. Materials

In the scope of this capstone, we choose Schema-Guided Dialogue (SGD) as our main
exploration for the experiments. The SGD dataset is a large-scale, multi-domain,
task-oriented dialogue dataset that consists of over 20,000 annotated conversations
between a human and a virtual assistant. These conversations involve interactions
with services and APIs spanning 20 domains, such as banks, events, media, calendar,
travel, and weather. For most of these domains, the SGD dataset contains multiple
different APIs, many of which have overlapping functionalities but different
interfaces, which reflects common real-world scenarios. We adopted SGD instead of
previous datasets (like MultiWoz) for several reasons:
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Largest multi-domain schema-based dataset: The multi-domain nature of the SGD
dataset plays a crucial role in enabling the system to generalize to new domains and
tasks. By exposing the dialogue system to conversations from a wide range of
domains, the system can learn to identify patterns and transferable knowledge that
apply to broader conversational contexts. This ability to generalize is essential for
real-world applications, where users may interact with the system in various domains
and contexts. Moreover, the SGD dataset's multi-domain nature facilitates the
development of domain-agnostic dialogue systems. By training the system on
conversations from multiple domains, it can learn to extract common patterns and
conversational strategies that apply across different domains. This domain-agnostic
approach reduces the need for domain-specific training data, making it more efficient
and cost-effective to deploy dialogue systems in new domains. In summary, the SGD
dataset's large size and multi-domain nature provide a valuable foundation for training
and evaluating robust and generalizable task-oriented dialogue systems. By exposing
the system to a diverse range of conversational contexts, the SGD dataset enables the
system to handle a variety of tasks and interactions, effectively adapt to new domains,
and generalize to broader conversational scenarios.

Schema-guided: The SGD dataset includes schemas that define the structure of the
dialogues, providing a clear and organized representation of the conversation flow.
These schemas outline the expected intents, slots, and relations within each domain,
enabling the dialogue system to better understand the context of the conversation and
track the progression of user goals. This structured representation simplifies the task
of state tracking, ensuring that the system maintains a consistent understanding of the
conversation's purpose and the user's intentions. The schema-guided nature of the
SGD dataset makes it easier to understand and explain the system's decisions. By
aligning the system's actions and responses with the predefined schema, the
decision-making process becomes more transparent and interpretable. This
explainability is crucial for building trust with users and enabling debugging and error
analysis. The SGD dataset is richly annotated with slot values, intent labels, and
dialogue state information. These annotations facilitate supervised learning, providing
the training data necessary for the dialogue system to learn the relationships between
user utterances, intents, and slots. The annotations also enable comprehensive
evaluation, allowing for detailed assessment of the system's performance in various
aspects of dialogue processing, including intent recognition, slot filling, and state
tracking.

Realistic: Exposure to realistic dialogues allows the system to learn the nuances of
human language and the natural flow of conversations. By observing how users
interact with virtual assistants in real-world settings, the system can learn to generate
responses that sound natural, fluent, and contextually appropriate. This ability to
produce natural and engaging responses is crucial for fostering positive user
experiences and building trust in the system. Realistic dialogues capture the
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complexities and challenges of real-world conversations, such as ambiguous
utterances, incomplete information, and unexpected user requests. By training on
these realistic dialogues, the system develops the ability to handle these challenges
effectively. It can learn to identify and resolve ambiguities, infer missing information,
and adapt to unforeseen conversational situations. The SGD dataset's realistic
dialogues encompass a wide range of user interactions, including a variety of
conversational styles, intentions, and goals. This exposure to diverse user interactions
prepares the system to handle the diversity of real-world users and their
communication patterns. It can learn to adapt its responses and behavior to different
personalities, communication styles, and interaction contexts. Realistic dialogues
provide a valuable resource for error detection and analysis. By observing how the
system performs in real-world scenarios, developers can identify areas where the
system struggles and make targeted improvements. This feedback loop is essential for
continuous improvement and ensuring that the system is well-equipped to handle the
complexities of real-world interactions.

Because of being well-annotated, SGD dataset can be used for a variety of tasks,
including:

- Dialogue State Tracking: Tracking the state of the conversation and
maintaining a consistent representation of the user's goals and intentions.

- Intent Recognition: Identifying the user's intent from their utterances.

- Slot Filling: Extracting slot values from the user's utterances.

- Response Generation: Generating appropriate and informative responses to the
user's utterances.

- Policy Learning: Learning policies that guide the dialogue system's actions to
achieve the user's goals.

Overall, the Schema-Guided Dialogue dataset is a valuable resource for developing
task-oriented dialogue systems that are accurate, versatile, and user-friendly.

Research on TOD has predominantly been focusing on developing a single
module or end-to-end LLM. A more unified system is necessary to enhance
overall performance, robustness, and efficiency. LLM is the heart of all the
advancements. But, LLMs are trained with natural language, exposing a massive
downside, ambiguity. Natural language is common in daily conversation. Natural
language is flexible with a vast amount of additional attributes: emotion, context,
... In case of insufficient context, natural language is ambiguous. Humans can
add context by clarifying terms and expressions. Machines, on the other hand,
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are not able to provide context themselves, but depend on external sources.
Programming language is quite the opposite compared to Natural language.
Programming language respects a set of robust syntax. Thus, there is no risk of
mismatch or confusion using a programming language. A simple solution for
TOD is to combine the advantages of these 2 language types, specifically, the
flexibility of Natural language and the disambiguation of Programming
language. We believe a domain-specific language (DSL) for TOD can open a
new era for the TOD system. Behind every human utterance are actions to reach
a target with additional clarification. Breakdown attributes and behavior
significantly simplify downstream task automation.

2. Methods
a. Schema-based Retrieval TOD

These are indeed essential criteria for a task-oriented dialogue system to
effectively assist users in completing their tasks. Let's delve into each requirement in
more detail:

Requirement 1: Schema-based

A schema-based approach provides a well-organized and methodical
framework for the dialogue system to comprehend and effectively address user
requests. This structured and systematic approach ensures that the system possesses
the capability to handle an extensive array of diverse tasks spanning across multiple
domains, as long as these tasks are defined within the specified schema. As elucidated
in the comprehensive literature review, schema-based approaches offer a multitude of
advantages, including but not limited to: (1) Cross-domain applicability, wherein the
system can be seamlessly adapted to cater to various domains by meticulously
defining the appropriate schemas for each specific domain. (2) Facilitation of
structured interaction, whereby the system adeptly guides the user through the given
task by furnishing well-crafted prompts and a wide range of options that are
meticulously crafted based on the defined schema. (3) Mitigation of errors and
reduction of misunderstandings, as the inherent structured nature of the schema
ensures that the conversation remains focused on the task at hand, thereby
significantly minimizing the occurrence of errors and misunderstandings that may
arise during the interaction process.

Requirement 2: Out-of-scope aware

Real-world conversations can often be complex, characterized by frequent
context switching and the inclusion of irrelevant information. To ensure a seamless
and productive dialogue experience, a dialogue system must possess the ability to
adeptly navigate and manage these situations. Firstly, the system should employ
robust context switching detection mechanisms, enabling it to recognize instances
when the user deviates from the current task and assess the relevance of the diversion.
This entails the system's capacity to discern whether the user's shift in context is
pertinent to the ongoing conversation or not. Secondly, in cases where the context
proves to be irrelevant, the system should exhibit a polite and considerate approach,
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acknowledging the diversion without causing any disruption to the flow of the
conversation. It should gracefully guide the user back to the primary task at hand,
ensuring that the interaction remains focused and productive. Finally, when the
context is deemed relevant, the system should possess the capability to seamlessly
incorporate it into the ongoing task, if applicable. This involves leveraging the
pertinent context to enhance the task execution or, if necessary, providing additional
information to further enrich the user's understanding. By effectively addressing
context switching and handling irrelevant information, the dialogue system can
maintain a natural and engaging conversation, fostering a more efficient and
satisfying user experience.

Requirement 3: Extendable

A modular and extensible design serves as a cornerstone for the evolution and
advancement of individual components within the dialogue system, while ensuring
the overall system remains unaffected. This inherent flexibility is paramount for
fostering continuous improvement and adaptability in response to evolving
requirements and technological advancements. Firstly, the modular design empowers
developers to create and enhance specific modules independently, enabling them to be
developed, tested, and updated in isolation from other components. This not only
expedites the development process but also facilitates easier maintenance, as
modifications or optimizations can be focused on specific modules without
necessitating extensive changes to the entire system. Such modularity enhances the
system's scalability, making it easier to incorporate new features or address specific
functionality requirements without compromising the stability or integrity of the
system as a whole. Moreover, the extensible nature of the design allows for seamless
substitution of modules with improved or alternative versions. This means that as
novel technologies or more efficient algorithms emerge, individual modules can be
replaced or upgraded without disrupting the core functionality of the system. This
adaptability ensures that the dialogue system can leverage the latest advancements in
natural language processing, machine learning, or any other relevant field, without
requiring a complete overhaul of the entire system architecture. By embracing
component substitution, the dialogue system can continuously evolve and incorporate
cutting-edge innovations, ultimately resulting in improved performance, enhanced
user experience, and increased system efficiency.

Taking into consideration these criteria, we present an in-depth overview of a
minimal Task-Oriented Dialogue (TOD) system consisting of five essential
components. The first component, State Tracking (1), plays a crucial role in
distinguishing between in-domain information and out-of-scope actions. Particularly
in zero-shot settings, where the system is required to handle tasks not explicitly
defined in the schema, out-of-scope actions are identified by their absence in the
schema. Component (1) serves as the natural language interface for downstream
systems and must effectively maximize the information extracted from user
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utterances. It is designed to extract slot values directly from user inputs, even in the
presence of misspellings or abbreviations, ensuring accurate understanding and
processing.

In a similar vein, Intent Detection (2) operates in tandem with (1), revealing
both the user's intent and the associated slots through the actions expressed in the
dialogue. This component utilizes a similar mechanism as (1) to extract relevant
information, leveraging the actions specified in the schema. The Dialogue Policy (3)
serves as the core decision-making component of the system. It reacts to each action
generated by (1) and interacts with the underlying database. It is important to note that
(1) does not check for word faultiness, necessitating an extension to address entity
linking and ensure accurate information retrieval.

The database, informed by the refined conversation context, is responsible for
querying and retrieving relevant information. Each item within the database contains a
field that leads to unstructured data documents, enabling comprehensive and
contextually-rich responses. The output of the Dialogue Policy (3) consists of abstract
actions that guide the response generation process and provide additional item
context.

Components (4) and (5), Item-based Response Generation and
Document-based Response Generation, respectively, can both be implemented as
Language Models (LLMs). However, (4) utilizes prompted item attributes, while (5)
relies on knowledge documents [24]. This approach follows the guidelines outlined in
REML (Reference to Explicit Memory and Latent Memory) [24]. Additionally,
Component (4) utilizes an RLHF (Reinforcement Learning from Human Feedback)
approach in conjunction with the LLM model, using prompts provided by the schema
to generate responses.

To visualize the system architecture, refer to Figure 3, which provides a
detailed visual representation of the individual components and their interconnections.
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Fig. 3. Overview of TOD system with retrieval capability. (1) capture user utterances
to return abstracted actions, slot values, and undefined actions. (2),triggered under
undefined actions condition, to examine whether new intent is formed. In case new
intent, we restart the flow with the new intent’s schema. If the schema is not enough
to respond, (5) utilize document-based information to provide a more accurate and
knowledgeable response. Supposing state tracking (1) catches no abnormality,
dialogue policy (3) uses actions and slot values to interact with external storage. (3)
supplies item-based information for (4) or document-based for (5).

b. State tracking In-depth fine-tuning
A symbolized schema in combination with symbolized output forces the

model to adapt seamlessly to changes from the schema and understand the DSL
coding syntax. The in-depth fine-tuning process refers to the TOD DSL adapting
process. By convention, regular fine-tuning refers to training the model with data of
the new domain. After the action, the model can perform notably well on fine-tuned
tasks. In-depth fine tuning includes data from all relative sub-tasks during the
fine-tuning process, thus, the model is allowed to learn the basis of the problem, not
just one aspect. As defined in the prior section, state tracking splits a user’s natural
utterance into two parts: behaviors and attributes. Action are behaviors while slot
values are attributes. We design multiple tasks for the model to adapt independently
to each part. From observation, behavior spans throughout the dialogue and attribute
is temporary in a few dialogue turns. The reactive model understands the user
behavior and can decide on response actions without knowing any attribute. For
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example, after the user is informed of all required slots, the system can decide to
query the database without being aware of any slot value. In terms of efficiency,
breakdown behavior, and attribute benefits transformer architecture. Actions and
states of one turn can easily be detected with affordable input length, and then stored
in long-term storage. The decomposition eliminates the need for the complete
conversation as input.

Breaking down complex tasks into smaller, more manageable subtasks can
significantly enhance the learning efficiency and performance of deep learning
models. This decomposition approach offers several advantages. By dividing a
complex task into smaller components, the model is presented with less intricate
relationships and patterns to learn at once. This simplification reduces the overall
cognitive load on the model, making the learning process more manageable and
efficient. Additionally, each subtask can be tailored to specific aspects of the overall
problem, allowing the model to focus its learning efforts on the most relevant features
and relationships. This targeted approach leads to a deeper understanding of each
subtask and strengthens the model's overall representation of the problem.

Modular Development: The concept of modular development plays a crucial
role in the construction of a task-oriented dialogue system, as it allows for the
breakdown of the overall task into smaller, more manageable modules. By
decomposing the task into distinct components, developers can focus on the
independent development and testing of each module, promoting flexibility and
facilitating advancements in the field. This modular approach empowers researchers
to explore and experiment with various architectures and training techniques for each
subtask, leading to the discovery of more effective and optimized solutions. The
modular development methodology enables researchers to delve into the intricacies of
each component, honing in on specific challenges and exploring novel approaches to
address them. For instance, researchers may experiment with different neural network
architectures, such as recurrent neural networks (RNNs), transformer models, or
graph neural networks, to determine the most suitable architecture for a particular
module. Moreover, researchers can apply diverse training techniques, including
supervised learning, reinforcement learning, or even transfer learning, to improve the
performance and robustness of individual modules. The modularity aspect provides
researchers with the freedom to iterate and refine each module independently, without
impacting the overall system's functionality. This agility allows for rapid prototyping,
as researchers can experiment with various ideas and iterate on different components,
leading to incremental improvements over time. It also encourages collaboration
within the research community, as researchers can share and compare their module
implementations, fostering an environment of knowledge exchange and collective
advancement. Additionally, the modularity of the development process promotes code
reusability, as researchers can encapsulate the logic and functionality of each module
into separate software components. This reusability not only enhances the efficiency
of development but also enables easier maintenance and future extensions.
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Researchers can leverage existing modules or adapt them for other dialogue systems,
reducing redundancy and accelerating the development cycle.

Improved Generalization: Through the process of learning to solve smaller,
well-defined subtasks, the model acquires a more profound understanding of the
underlying principles and patterns that govern the problem domain. This focused
learning approach equips the model with a generalized knowledge that extends
beyond specific instances, enabling it to adapt to new situations and effectively
generalize its understanding to previously unseen data. By breaking down the problem
into smaller subtasks, the model can concentrate on mastering the intricacies of each
component, gradually building a comprehensive understanding of the problem
domain. This targeted learning allows the model to discern the fundamental patterns,
relationships, and dependencies that exist within the data, thereby establishing a solid
foundation of knowledge. As the model gains proficiency in solving these
well-defined subtasks, it acquires a deeper intuition for the problem at hand. This
generalized knowledge acquired through subtask learning provides the model with a
robust framework for handling new situations and unseen data. It equips the model
with a repertoire of learned concepts, enabling it to draw upon its understanding of the
underlying principles to make informed predictions and decisions in novel scenarios.
By leveraging the patterns and principles it has learned, the model can extrapolate
from its existing knowledge to generate meaningful responses or take appropriate
actions in previously unencountered contexts. Moreover, the process of learning
smaller subtasks fosters a more interpretable and explainable model. By focusing on
specific problem facets, the model's internal representations can be analyzed and
understood more effectively. This interpretability allows researchers and developers to
gain insights into how the model is learning and reasoning, enabling them to provide
explanations or make improvements based on this understanding. Furthermore, the
ability to generalize knowledge across subtasks enhances the model's adaptability to
changes or variations within the problem domain. As new data or scenarios emerge,
the model can leverage its foundational understanding to quickly adapt and make
accurate predictions or decisions. This adaptability is particularly valuable in dynamic
or evolving environments where the model needs to continuously learn and adapt to
new information.

Error Localization and Correction: The decomposition of a task into smaller
subtasks offers a significant advantage when it comes to error identification and
debugging within a complex system. By breaking down the task into its constituent
components, errors can be more easily localized and traced back to specific subtasks.
This localization capability enables developers to engage in targeted debugging and
make improvements to individual components, ultimately leading to the development
of more robust and accurate solutions. When errors occur in a complex system, the
ability to pinpoint their origin is paramount for efficient troubleshooting. By
decomposing the task into modular subtasks, each with its unique set of
responsibilities, the system's behavior and output can be analyzed at a granular level.
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This fine-grained examination allows developers to isolate the subtask or component
that is responsible for the error, reducing the overall complexity of the debugging
process. The localization of errors to specific subtasks simplifies the debugging
workflow by providing a clear starting point for investigation. Developers can focus
their efforts on the identified subtask, thoroughly examining its input, output, and
internal processes. This targeted approach allows for a more efficient allocation of
resources, as debugging efforts can be concentrated on the specific component where
the error originated. Furthermore, the localization of errors facilitates a deeper
understanding of the system's behavior and performance. By closely examining the
interactions and outputs of individual subtasks, developers can gain insights into the
specific challenges and limitations faced by each component. This understanding
helps in identifying common error patterns, uncovering potential bottlenecks, and
refining the design and implementation of the subtasks to minimize future errors. The
targeted debugging and improvement of individual components not only enhance the
overall accuracy of the system but also contribute to its overall robustness. By
addressing errors at the subtask level, developers can iteratively refine and optimize
each component, ensuring that they perform their intended functions reliably. This
iterative process of debugging and improvement leads to a more stable and resilient
system, capable of handling a wide range of scenarios and inputs without
compromising its performance.

Scalability: The process of breaking down a task into smaller modules not
only facilitates error identification and debugging but also offers significant
advantages when it comes to scaling the model to handle larger and more complex
problems. By decomposing the task into modular subtasks, the model gains flexibility
and adaptability, enabling it to address new challenges without the need for a
complete overhaul of the architecture. As the complexity and scale of a problem
increase, it becomes essential to ensure that the model can effectively handle the
additional demands. By breaking down the task into smaller modules, each with its
specific functionality, the overall system can be designed in a way that allows for
easier scalability. New subtasks can be added or existing ones can be modified
without disrupting the entire architecture, providing a more efficient and sustainable
approach to tackling larger and more complex problems. The modular nature of the
system allows for seamless integration of new subtasks to address emerging
challenges. When faced with new requirements or novel problem domains, developers
can introduce additional subtasks that cater to these specific needs. This modular
expansion minimizes the impact on the existing architecture, as the new subtask can
be integrated into the system without requiring substantial modifications to the
already established components. This adaptability enables the model to evolve and
grow alongside the problem domain, ensuring its continued relevance and
effectiveness. Furthermore, the ability to modify individual subtasks within the
modular framework provides a powerful mechanism for fine-tuning the model's
capabilities. As new insights are gained or improvements are identified, developers
can refine or replace specific subtasks to enhance the model's performance. This
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targeted modification allows for incremental improvements without disrupting the
overall system, enabling a more agile and iterative development process. The
scalability afforded by the modular design also extends to computational resources.
By breaking down the task into smaller subtasks, the computational requirements can
be distributed and optimized, allowing for efficient utilization of available resources.
This scalability is particularly valuable when dealing with resource-intensive tasks or
when operating in resource-constrained environments. It ensures that the model can
handle larger and more complex problems without overwhelming the computational
infrastructure.

As in figure 4, we introduce two new tags into the existing tags system
from previous papers: target acts and dependencies. Targetacts represent the user’s
intent, while dependencies represent the actions that must happen to achieve the
target acts. We provide additional undefined actions in both user acts and system
acts to assist out-of-scope detection. We later refer to models trained with new tags
as IFSTxtags. We believe that being explicit aids the system in deciding the next
actions.

Our ultimate goal is to guide the model through an overview idea of TOD.
We focus on 3 sub-tasks: see Appendix

• Slot filling. The model focuses on multiple QAs to describe the current
state of the dialogue, including available slots with their values. Params and
Conversations are given as input.

• Action tracking. Given action-related tags and an utterance, the model
must point out what actions are in the utterance. The goal is to guide the model to
the foundation of schema actions and practice utterance simplification. The task is
applied for both system and user utterances.

• Next action prediction. Traditionally, the Conversation is utilized to
recommend the next actions. To plan out for the next move, the system only needs
to know abstractly what the conversation is about. Instead of overwhelming the
model with a bunch of irrelevant context, we use the dialogue History and
action-related tags to propose the next action.

Previously, AnyTOD suggested action as a recommendation to achieve a
zero-shot dialogue policy. Still, standard SGD actions are not sufficient to fully
represent dialogue policy. We create new actions to the schema, namely, ”inform
undefined”, ”request undefined”, and ”query <domain> api”. The query action
suggestion is redundant because it can be triggered by Dialogue policy under some
condition fulfillment. Yet, the model should know the whole process of TOD.
Such redundancy also allows hooks for future work on fully automated Dialogue
policy. Likewise, undefined actions are important. The undefined actions are the
mechanic to examine the relevance between utterances and the schema. Any action
not following the schema is categorized as undefined. Not only operate as the
controller for detecting domain switching, but these actions provide tremendous
context for learning action nuance. A conversation may consist of multiple
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domains. Previous domain turns consist of previous domain actions that ought to
be clarified for training and inference. During training, we transform all previous
domain request actions into requests undefined, similar to inform actions. The
number of undefined actions match the map one-to-one with in-domain action.
Plus, query actions, depending on domain schema, are removed in case of
out-of-scope. These transformations are casual ways for the model to learn
out-of-scope context. In the inference phase, the model is expected to explain a
few last turns as both state and actions are accumulative and can be stored in
memory.
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Fig. 4. State tracking example. The underlined components are an example of input and
output state tracking.

Moreover, both inbound and outbound information apply the symbolic
method. Action names and parameter names symbolization allow training dataset
synthesis. With different schema descriptions from SGD-X and symbolized names,
the model is capable of learning the exact conversation with multiple domain
schemas. Through schema diversification, we aim to gain better generalization.
Remark while randomizing ids, we put each tag content in the ascending order.
Pix2Seq[25] suggests random output sequence ordering yields the best
performance as the regressive model can fix its mistake in later tokens. Yet, we
respect single input single output diagrams and leave the discovery for future
research. Additionally, language models are known to easily get hallucinations
given specific context. The language model for TOD is not an exception. We
introduce randomization to slot values across the training dataset, later referred to
as IFSTXrand. Random slot values are chosen and symbolized for both in output
and the input conversation. We believe this would impact the model to learn more
about the surrounding context instead of the meaning of the slot value itself.

c. Model

In the realm of task-oriented dialogue systems, encoder-decoder models like
T5 hold an advantage over decoder-only architectures when it comes to state tracking.
This advantage stems from the inherent design principles and capabilities of
encoder-decoder models. Let's delve into the key factors that contribute to their
superiority in state tracking tasks. First, T5-like models are more flexible in terms of
input and output format.Encoder-decoder models, including T5, are trained on
massive datasets of structured text and code. This exposure to structured input and
output sequences equips these models with the ability to effectively handle the stateful
nature of task-oriented dialogues. They can efficiently track the state of the
conversation, maintaining consistency across multiple turns. Secondly, T5 utilizes
cross-attention with separate encoding and decoding, lessening lengthy context loss.
The encoder-decoder architecture clearly separates the processes of understanding the
input context and generating the output response. This separation allows for the
implementation of state tracking mechanisms within the decoder component. The
decoder can explicitly maintain and update state information based on the
conversation history, enabling effective state tracking. Encoder-decoder models like
T5 incorporate sophisticated attention mechanisms that empower the model to focus
on both the current input and the preceding conversation history. This ability to
selectively attend to relevant information is crucial for state tracking, as it allows the
model to maintain a coherent understanding of the task and the user's intentions.
Lastly, the T5 family, especially flan-T5, has distinguished fine-tuning capabilities for
Domain Adaptation. T5 possesses the ability to be fine-tuned on specific task-oriented
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dialogue datasets. This fine-tuning process further enhances its state tracking
capabilities by adapting the model to the specific domain and task requirements. As a
result, T5 can track state more effectively in a wider range of task-oriented dialogue
scenarios.

In essence, the combination of structured input and output processing, clear
separation of encoding and decoding, sophisticated attention mechanisms, and
fine-tuning capabilities makes encoder-decoder models like T5 better suited for state
tracking in task-oriented dialogue systems compared to decoder-only architectures.
These factors enable T5 to effectively maintain contextual awareness, track the
conversational flow, and generate consistent and relevant responses throughout the
dialogue. Therefore, we believe T5 is the best architecture to serve state tracking.

d. Metrics
Out-of-scope, in schema-guided TOD, is the situation when the schema is

no longer enough to handle the situation (e.g. domain switching and open domain).
SGD consists of multi domain dialogues. When an action is not represented in the
schema but exists in user utterance, the system detects a domain switch. Those
actions are classified as user-undefined actions. User undefined actions F1
(UUAF1) are the key metrics to influence out-of-scope effectiveness. After
investigation, UUAF1 works best when tracked at each turn instead of each
undefined action within a turn. Each turn outcome is:

outcome = ( Positive for undefined action in turn Negative for other case
(1) For each dialogue, F1 is calculated using outcome of each turn 1. Recall F1
formula is

F1 = Precision × Recall Precision + Recall

. Then, we work out UUAF1 as the average of all dialogue F1. We track
undefined action availability within a turn and calculate the F1 score across the
dialogue. In the scope of this research, evaluation metrics for model performance
are joint goal accuracy for slot filling, action F1 (AF1) for action tracking, system
action F1 (SaF1) for next action prediction, and UUAF1 for out-of-scope detection.
These metrics are inspired by AnyTOD, yet, there are technical differences. First,
the action F1 score includes both user action tracking and system user tracking.
Second, SaF1 records system queries and informs actions, instead of capturing all
SGD actions. We track only essential actions to focus on modular performance,
other actions are the responsibility of Dialogue Policy. For SaF1 and AF1,
outcome for each turn is:
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outcome = ( Positive for predict actions match label actions Negative for
other case (2)

Joint Goal Accuracy (JGA) is the common metric for slot filling calculation,
and also the hardest metric which utilizes Fuzzy string matching. Fuzzy string
matching, also known as approximate string matching, is a technique for finding
strings that match a given pattern approximately rather than exactly. This is useful
for tasks such as spell checking, autocompletion, and natural language processing,
where it is often important to find matches even when the input strings contain
typographical errors or other minor variations. Common fuzzy string method is
Levenshtein distance. This algorithm measures the minimum number of edits
(insertions, deletions, or substitutions) required to transform one string into another.
The lower the Levenshtein distance between two strings, the more similar they are.
For each slot in a turn, the match slot value is then passed through a fuzzy string
matching and multiplied together. The score is then averaged for all turn in the
dialogue, which is the metric value itself.

Metrics Task Description

UUAF1 User undefined
action

detection

F1 score dialogue wise, if the prediction
consist of at least 1 undefined action,

counted as positive

AF1 Action
detection

F1 score dialogue wise, counted as a
match only when all actions matched

SAF1 Next action
prediction

F1 score dialogue wise, counted as a
match only when all actions matched

JGA Slot filling Accuracy accounted dialogue wise,
mean of all turns, calculate using fuzzy

string matching

The difference in estimation between UUAF1 and group AF1, SaF1 shown
at 1 and 2 respectively.
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V. EXPERIMENTS AND RESULTS

1. Result

Model JGA Seen JGA Unseen

SDT-seq T5 1.1 XXL 95.8 86.4

AT T5 1.1 Base 89.9 62.4

AT T5 1.1 XXL 94.8 82.2

IFSTXtags_Xrand Base 77.9 61.1

- Xtags 78.4 63.9

- Xtags_Xrand 77.2 60.7

IFSTXtags_Xrand Large 85.4 72.2

- Xtags 86.6 75.0

- Xtags_Xrand 85.1 72.3
Table 1 JGA ON SGD TEST SET. RESULT OF AT AND SDT-SEQ ARE INFERRED FROM [23]
[15]

Despite having a simple dialogue flow, we experimented with SGD and
SGD-X. We believe a more complex workflow should be divided into downstream
components. We use the flan-T5 series for experiments [26]. flan-T5 differs from
previous T5 versions in that it was instruction fine-tuned and able to follow
instructions. All models are trained on 4 tasks mentioned above under in-depth
fine-tuning (IFST). Models utilize Huggingface trainer API with learning rate 5e-
4, batch size 2048, and max step 3000. During in-depth fine tuning, we noticed both
validation and training loss drop more significantly with larger batch size. In
hypothesis, a larger batch size allows the model to generalize better. We attempt to
provide additional prompts for each task, but it is not reflected in the evaluation
result.
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Model UUAF1 All AF1 All SaF1 Seen SaF1 Unseen

AT T5 1.1 Base - - 89.8 86.1

AT T5 1.1 XXL - - 91.3 88.9

IFSTXtags_Xrand Base 85.7 66.3 85.9 82.1

- Xtags 85.4 65.2 82.3 79.6

- Xtags_Xrand 85.6 65.2 81.9 79.5

IFSTXtags_Xrand Large 93.2 81.2 89.4 88.2

- Xtags 85.7 66.3 85.9 82.1

- Xtags_Xrand 85.5 65.7 86.2 82.2

Table 2 UUAF1, SAF1, AF1 ON SGD TEST SET. RESULTS OF AT ARE INFERRED FROM [23].
NOTICE SAF1 MEASURED IN IFST KEEPS TRACK OF SYSTEM QUERY AND INFORM
ACTIONS ONLY

Table II describes our result on action metrics. Notice our SaF1 and
AnyTOD SaF1 are quite different as our metric only captures query and informs
actions of the system. IFST result, even though lower than state-of-the-art, we offer
the mechanic for downstream task operation. IFST achieves high UUAF1, this is
the first stage to reach open-domain and multi-domain agents. While our main
contribution is the TOD system, our State tracking performance is not as qualified
compared to previous works. One conjecture might be due to model sizes which,
in theory, are not large enough to have emergent ability [27] [28].

Table 2 and 1 suggest having more explicit tags greatly boost the model's
ability to predict next actions in trade-off with a slight reduction of slot filling
ability. The result is foreseeable as next actions evaluation consist of only query
and inform actions; while new tags particularly created to support query action
prediction. Simultaneously, randomizing slot values slightly increase slot filling
performance but does not harm action ability. One hypothesis is because these
random tokens are not regularly seen during training. Therefore, modification of
random tokens does not lead to changes of other general tokens.
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VI. CONCLUSIONS AND DISCUSSION
By using symbolic methods, the TOD system can be made more robust,

efficient, and interpretable than traditional machine learning-based dialogue systems.
IFST gained the ability to define user out-of-scope activities at the sacrifice of little
slot-filling performance. We propose a novel framework for the TOD system to work
inter-operately with the retrieval augmented system. We also introduce and report the
result of the mechanic to track out-of-scope actions for state tracking via action
schema.

In this paper, we presented a task-oriented dialog system based on a
pre-trained language model. Our system results demonstrate the effectiveness of
detecting out-of-scope, while being able to generalize well to new domains, without
the need for additional training. There are a few limitations to our study. First, we
evaluated our system on the SGD dataset, which may not be representative of all
real-world task-oriented dialog systems. Second, our system is still under
development, and there is room for improvement in terms of task completion
performance and efficiency. In future work, we plan to evaluate our system with SGD
in combination with the open domain and provide a broader ablation study of state
tracking.

Discussion

In this capstone project, we explored the potential of symbolic dialogue for
general domain state tracking (TOD). We developed a novel TOD system that utilizes
symbolic methods to effectively track the state of the conversation in task-oriented
dialogues. Our system employs the flan-T5 encoder-decoder model, which is
fine-tuned on the Schema-Guided Dialogue (SGD) dataset.

Our experiments demonstrated that the proposed TOD system achieves
promising results on various evaluation metrics, including joint goal accuracy (JGA),
action F1 (AF1), system action F1 (SaF1), and user-undefined action F1 (UUAF1).
The system exhibits strong performance in handling out-of-scope actions, indicating
its ability to adapt to unexpected situations that deviate from the predefined schema.

The symbolic approach offers several advantages for TOD compared to
traditional machine learning-based methods. Symbolic representations provide a more
explicit and interpretable representation of the dialogue state, making it easier to
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reason about the conversation flow and track user intentions. Additionally, symbolic
methods are less prone to data biases and can generalize better to unseen situations.

Our work contributes to the advancement of TOD by demonstrating the
effectiveness of symbolic methods in this domain. We propose a novel framework for
integrating symbolic TOD with retrieval-augmented systems to enhance the overall
performance of task-oriented dialogue systems. Furthermore, we introduce a new
metric, UUAF1, to evaluate the system's ability to detect and handle out-of-scope
actions.

Future Directions

Future research directions include:

Improving state tracking performance: Explore techniques to enhance the
system's ability to track complex conversation states and handle ambiguous situations.

Investigating different symbolic representations: Evaluate the effectiveness of
alternative symbolic representations, such as first-order logic or semantic graphs, for
TOD.

Developing explainable TOD systems: Design methods to make TOD systems
more transparent and explainable, enabling users to understand the system's reasoning
and decision-making processes.

Integrating TOD with other dialogue system components: Explore ways to
integrate TOD with other dialogue system components, such as dialogue policy and
natural language generation, to create more cohesive and comprehensive dialogue
systems.

Evaluating TOD in real-world applications: Conduct extensive evaluations of
TOD systems in real-world scenarios to assess their practical applicability and
effectiveness in various user interactions.

By addressing these future directions, we can further advance the development
of robust, efficient, and interpretable TOD systems that can effectively support users
in achieving their goals through task-oriented dialogues.
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VIII. APPENDIX
1. Domain transition examples
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2. Task breakdown example

“[params] p9=how many days the transfer will take; p11=the amount to transfer to the
recipient; p34=type of user's bank account: checking or savings 34a) checking 34b)
savings; p104=amount of money in selected account; p109=name of the person
receiving the transfer; p114=type of account to send to 114a) savings 114b) checking

[useracts] u5=user inform p11; u17=user inform p34; u29=user inform p114;
u30=user thank; u40=user deny the offer; u47=user want to getaccountbalance;
u59=user select item; u86=user goodbye; u123=user want to transfermoneytouser;
u207=user inform undefined information; u209=user request p9; u228=user inform
p109; u229=user request alternative items; u244=user request undefined information;
u257=user agree to the offer

[sysacts] s14=request p11; s47=offer user transfermoneytouser; s50=offer user p34;
s53=request p34; s57=ask user if they need anything more; s61=goodbye user;
s64=inform undefined information; s88=query transfermoneytouser api; s100=ask to
confirm value of p109; s135=notify failure; s158=query getaccountbalance api;
s162=ask to confirm value of p114; s241=ask to confirm undefined information;
s242=notify success; s252=offer user p104; s272=inform number of items satified
user; s279=inform p9; s281=request undefined information; s294=ask to confirm
value of p34; s307=request p109; s314=ask to confirm value of p11

[dependencies] s50, s100, s294, s314, u5, u17, u228 -> s88; u17 -> s158 [targetacts]
s158

[conversation] [user] i am taking a trip, can you help me reserve my ticket please.
[system] sure, i would love to. which city will you be visiting? do you know what city
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and date you will be departing from? [user] yes, i'm flying new york to las vegas on
monday next week. what can you find? [system] if you like american airlines, they
have a 6:50 pm with 1 layover for $287 per ticket. [user] would i arrive the same day
or the day after? [system] your flight will depart and arrive on the same date. [user] if
i go with this flight, where would i be flying out of and where will i arrive? [system]
your departure airport is jfk international airport and arrival would be at mccarran
international airport. [user] i see. i would like to hear more options. what does delta
airlines have for economy seating prices? [system] delta airlines has 1 flight departing
at 3 pm with 1 layover for $328 per person. [user] hold that thought, let's go and
check my savings account balance please.“

A output example:

“[states] p34=savings

[history] u207; s281, s281, s281; u207, u207, u207; s64, s64, s64, s64; u244; s64;
u244, u244; s64, s64; u207, u207, u229; s64, s64, s64, s64, s64; u17, u47, u59

[nextacts] s158”

We break it down to 4 different tasks:

- Slot filling (1)
- User action detection (2)
- System action detection (3)
- Next action prediction (4)

(1)

Input

“[instructions] What are the dialogue state given [params] and [conversation]

[params] p9=how many days the transfer will take; p11=the amount to transfer to the
recipient; p34=type of user's bank account: checking or savings 34a) checking 34b)
savings; p104=amount of money in selected account; p109=name of the person
receiving the transfer; p114=type of account to send to 114a) savings 114b) checking

[useracts] u5=user inform p11; u17=user inform p34; u29=user inform p114;
u30=user thank; u40=user deny the offer; u47=user want to getaccountbalance;
u59=user select item; u86=user goodbye; u123=user want to transfermoneytouser;
u207=user inform undefined information; u209=user request p9; u228=user inform
p109; u229=user request alternative items; u244=user request undefined information;
u257=user agree to the offer

[conversation] [user] i am taking a trip, can you help me reserve my ticket please.
[system] sure, i would love to. which city will you be visiting? do you know what city
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and date you will be departing from? [user] yes, i'm flying new york to las vegas on
monday next week. what can you find? [system] if you like american airlines, they
have a 6:50 pm with 1 layover for $287 per ticket. [user] would i arrive the same day
or the day after? [system] your flight will depart and arrive on the same date. [user] if
i go with this flight, where would i be flying out of and where will i arrive? [system]
your departure airport is jfk international airport and arrival would be at mccarran
international airport. [user] i see. i would like to hear more options. what does delta
airlines have for economy seating prices? [system] delta airlines has 1 flight departing
at 3 pm with 1 layover for $328 per person. [user] hold that thought, let's go and
check my savings account balance please.“

Output

“[states] p34=savings”

(2)

Input

“[instructions] What are the system last actions given [params], [useracts] and
[conversation]

[params] p9=how many days the transfer will take; p11=the amount to transfer to the
recipient; p34=type of user's bank account: checking or savings 34a) checking 34b)
savings; p104=amount of money in selected account; p109=name of the person
receiving the transfer; p114=type of account to send to 114a) savings 114b) checking

[conversation] [user] hold that thought, let's go and check my savings account balance
please.“

Output

“[useracts] u17, u47, u59”

(3)

“[instructions] What are the user last actions given [params], [systemacts] and
[conversation]

[params] p9=how many days the transfer will take; p11=the amount to transfer to the
recipient; p34=type of user's bank account: checking or savings 34a) checking 34b)
savings; p104=amount of money in selected account; p109=name of the person
receiving the transfer; p114=type of account to send to 114a) savings 114b) checking

[sysacts] s14=request p11; s47=offer user transfermoneytouser; s50=offer user p34;
s53=request p34; s57=ask user if they need anything more; s61=goodbye user;
s64=inform undefined information; s88=query transfermoneytouser api; s100=ask to
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confirm value of p109; s135=notify failure; s158=query getaccountbalance api;
s162=ask to confirm value of p114; s241=ask to confirm undefined information;
s242=notify success; s252=offer user p104; s272=inform number of items satified
user; s279=inform p9; s281=request undefined information; s294=ask to confirm
value of p34; s307=request p109; s314=ask to confirm value of p11

[conversation] [system] delta airlines has 1 flight departing at 3 pm with 1 layover for
$328 per person.“

A output example:

“[systemacts] s64, s64, s64, s64, s64;”

(4)

“[instructions] What are the next actions system should take in response to the
conversation

[params] p9=how many days the transfer will take; p11=the amount to transfer to the
recipient; p34=type of user's bank account: checking or savings 34a) checking 34b)
savings; p104=amount of money in selected account; p109=name of the person
receiving the transfer; p114=type of account to send to 114a) savings 114b) checking

[useracts] u5=user inform p11; u17=user inform p34; u29=user inform p114;
u30=user thank; u40=user deny the offer; u47=user want to getaccountbalance;
u59=user select item; u86=user goodbye; u123=user want to transfermoneytouser;
u207=user inform undefined information; u209=user request p9; u228=user inform
p109; u229=user request alternative items; u244=user request undefined information;
u257=user agree to the offer

[sysacts] s14=request p11; s47=offer user transfermoneytouser; s50=offer user p34;
s53=request p34; s57=ask user if they need anything more; s61=goodbye user;
s64=inform undefined information; s88=query transfermoneytouser api; s100=ask to
confirm value of p109; s135=notify failure; s158=query getaccountbalance api;
s162=ask to confirm value of p114; s241=ask to confirm undefined information;
s242=notify success; s252=offer user p104; s272=inform number of items satified
user; s279=inform p9; s281=request undefined information; s294=ask to confirm
value of p34; s307=request p109; s314=ask to confirm value of p11

[dependencies] s50, s100, s294, s314, u5, u17, u228 -> s88; u17 -> s158 [targetacts]
s158

[conversation] [user] i am taking a trip, can you help me reserve my ticket please.
[system] sure, i would love to. which city will you be visiting? do you know what city
and date you will be departing from? [user] yes, i'm flying new york to las vegas on
monday next week. what can you find? [system] if you like american airlines, they
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have a 6:50 pm with 1 layover for $287 per ticket. [user] would i arrive the same day
or the day after? [system] your flight will depart and arrive on the same date. [user] if
i go with this flight, where would i be flying out of and where will i arrive? [system]
your departure airport is jfk international airport and arrival would be at mccarran
international airport. [user] i see. i would like to hear more options. what does delta
airlines have for economy seating prices? [system] delta airlines has 1 flight departing
at 3 pm with 1 layover for $328 per person. [user] hold that thought, let's go and
check my savings account balance please.“

A output example:

“[nextacts] s158”


