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Abstract—In the field of image and video colorization, the
existing research employs a CNN to extract information from
each video frame. However, due to the local nature of a kernel, it
is challenging for CNN to capture the relationships between each
pixel and others in an image, leading to inaccurate colorization.
To solve this issue, we introduce an end-to-end network called
Vitexco for colorizing videos. Vitexco utilizes the power of the
Vision Transformer (ViT) to capture the relationships among all
pixels in a frame with each other, providing a more effective
method for colorizing video frames. We evaluate our approach
on DAVIS datasets and demonstrate that it outperforms the state-
of-the-art methods regarding color accuracy and visual quality.
Our findings suggest that using a ViT can significantly enhance
the performance of video colorization.

Index Terms—image colorization, video colorization, exemplar-
based, vision transformer

I. INTRODUCTION

Image colorization has long been an exciting topic for re-
searchers, with numerous techniques being applied to achieve
more realistic and colorful results. With the development of
image colorization, attention has turned to video colorization.
However, colorizing black-and-white videos is more challeng-
ing than colorizing black-and-white images due to the need to
maintain consistency frame-by-frame, preventing colors from
changing dramatically between adjacent frames. Recurrent
networks are well-suited to this task, and many studies have
utilized this framework for video colorization in conjunction
with CNN [1] to extract information from each video frame.
However, the local property of CNN’s kernel, which cannot
maintain relationships between pixels that are too far apart
in each frame, may result in incorrect colorization when two
objects with a strong relationship are far apart in a frame.
The introduction of the ViT [2] has solved this problem. In
this paper, we introduce an end-to-end network called Vitexco
for colorizing videos which can make the model maintain
the relationships between pixels. Additionally, we explore the
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Fig. 1. The result of colorizing images using different methods. a) Ground
truth b) Grayscale c) Zhang et al. [3], d) Victoria et al. [4] e) Our Vitexco

effectiveness of the ViT in improving the accuracy of video
colorization and compare its results with other approaches.
We also examine how different hyper-parameters affect the
performance of the ViT in video colorization. The main
contributions of this work are summarized below:

• We introduce a network architecture that incorporates a
ViT [2] backbone and complementary subnetworks to
extract information from each video frame, improving
colorization outcomes.

• We create a high-quality dataset for training the model
with a large diversity of things, people, colors, and others.
This dataset is a combination of Hollywood2, ImageNet-
1k, and extra videos that we collected from Pixabay.

The rest of this paper is structured as follows. The related
work is presented in Section II. The proposed methodologies
are presented in Section III. Sections IV and V present and
analyze the preliminary results. Finally, the conclusion and
potential future work are concluded and listed in Section VI.



II. RELATED WORK

A. Interactive Colorization

One of the earliest and most straightforward methods for
colorization was using user-provided hints [5]–[7]. These hints
could be color points, strikes, or scribbles. The underlying
principle of this method was based on the assumption that
pixels that were in proximity to one another and thus belonged
to the same object would share similar colors. The hints
could be local and global [8], which were fed into an overall
network; some models leveraged ViT [9] and used user instruc-
tion to colorize images. Although this method was relatively
simple, it had proven effective in producing colorized images
and videos. However, user-guided methods were unsuited for
video colorizing tasks due to the significant human effort
and aesthetic skills required to produce colorful images. The
complexity of these techniques necessitated a considerable
investment of time and resources, which may have needed
to be more practical for video colorization projects.

B. Exemplar-based colorization

Another method involved transferring colors from a ref-
erence image to the target grayscale image. The reference
image was selected based on its semantic similarity to the
grayscale image. This approach could also be applied to video
colorization by colorizing each frame individually. However,
this method could lead to flickering issues if not implemented
carefully. To address this problem, researchers introduced
various architectures to improve the quality of colorized video.
Deep exemplar-based Video colorization [10] consisted of 2
subnetworks: the similarity subnetwork and the colorization
subnetwork. The recurrent mechanism was applied inside the
colorization subnetwork to ensure consistency between adja-
cent frames. BiSTNet [11] created a Bidirectional Temporal
Fusion Block for better results in transferring colors from
reference images to video frames.

C. Fully Automatic Colorization

One way to colorize grayscale images was through train-
ing a deep neural network to learn the mapping. Several
approaches have been proposed, including the use of Con-
volutional layers to encode and decode the input grayscale
image, as demonstrated in [12], [13]. Other methods [4], [14]
employed GAN to generate the color images. Recently, [15]
applied Swin Transformer [16] instead of CNN for a better
result in colorizing images because it outperformed traditional
CNN in computer vision tasks. However, this method had
several challenges, including the need for a large dataset
and a deep network, making training difficult. Additionally,
the model might have generalized poorly to new images,
mainly if the training dataset was limited. Another limitation
of this approach was that the resulting colorization might not
have been easily customized. Unlike exemplar-based methods,
which allowed users to specify the desired color of specific
objects or regions, the deep learning approach was less flexi-
ble. Therefore, it might not have been suitable for applications
requiring customized colorization.

III. METHODOLOGY

This section outlines the overall Vitexco network for train-
ing video colorization. We begin by introducing the Corre-
spondence Subnet A as an information extractor. We then
describe the Colorization subnet B, the primary component
responsible for the colorization process. Lastly, we provide an
overview of the losses utilized in this study.

Vitexco is built on top of Deep Exemplar-based Video Col-
orization [10] with the improvement of integrating the ViT [2]
to capture all relationships between pixels in each frame.
To improve the relationships between individual pixels and
the rest of the image, Vitexco incorporates a Correspondence
subnet that utilizes a ViT backbone. Instead of relying on the
VGG19 [2] as in [10], we introduce a Feature Transform block.
To simplify the colorization process for each video frame,
we utilize the LAB color space and adjust only the A and
B channels, which provide distinct advantages.

A. Vitexco

Figure 2 illustrates the overall architecture of our Vitexco.
Let X l = {xl

0, x
l
1, x

l
2, ..., x

l
T−1} denote a grayscale video,

where xl
t ∈ RH×W×1 represents the frame at time t, H ×W

indicates the size of each frame, and T is the total number
of frames in the video. Our goal is to generate a color video
X̂ lab = {x̂lab

0 , x̂lab
1 , x̂lab

2 , ..., x̂lab
T−1} where x̂lab

t ∈ RH×W×3

represents the frame at time t in the LAB color space. Each
xl
t has a reference image ylab ∈ RH×W×3 used to guide the

coloring process. To obtain the reference image, we compare
the video’s grayscale image with the image in the ImageNet
dataset [17] to measure their similarity. Vector features are
extracted from both images using ViT, and their similarity is
computed using cosine similarity. The reference image with
the highest similarity score is chosen as the best match. After
the best reference image is selected, both inputs are converted
to the LAB color space for colorization. In this color space,
the l channel represents lightness, the a channel represents the
red/green value, and the b channel represents the blue/yellow
value.

To begin colorization, we pass the grayscale video X l

through a Correspondence subnet frame-by-frame. The Cor-
respondence subnet aligns the reference image ylab to each
video frame based on semantic similarity. The output of the
Correspondence subnet consists of the warped color W and
a confidence map M, which measures the reliability of the
correspondence between the reference image and the current
frame. Although this method creates a base color for the
image, the accuracy of the color warping may vary across
different regions of the image, and it does not utilize any
information from the previous frame.

To overcome the issue above, we employ the Colorization
Subnet to select the well-matched colors and propagate them
properly. The network takes in four inputs: the grayscale input
xl
t, the warped color map W and the confidence map M, and

the colorized previous frame xlab
t−1. Through this process, we

can achieve more accurate and visually appealing colorizations
for the video frames.



Fig. 2. Overall architecture of the network. (HW is the multiplication of W - width and H - height of the video frame)

B. Correspondence subnet

ViT backbone: After choosing the reference image with
the highest semantic similarity to a video frame using the pre-
trained ViT, the gray-scale video frame xl

t followed by a refer-
ence image ylab are passed through the Correspondence subnet
to build the semantic correspondence between them. In Deep
Exemplar-based Video Colorization [10], Zhang et al. used
a VGG19 pre-trained on image classification. However, for
better information extraction from video frames, we propose
using ViT [2] pre-trained on image classification.

To leverage the features of the ViT, we make modifications
to the Correspondence Subnet [10]. Specifically, we replace
the input feature maps from 5 layers of the VGG19 pre-
trained model with the 5 token embeddings of the ViT. This
allows us to take advantage of the ViT features and improve
the network’s performance for video colorization. However,
the Colorization Subnet requires various input features that
may differ in size and shape. This presents a challenge when
integrating the ViT output from the Correspondence Subnet.

Feature Transform Subnet: To address the issue men-
tioned above, we develop a Feature Transform Subnet, which
aims to transform the ViT output features to match the
subsequent subnet’s input features. Figure 3 illustrates the
feature transform, which consists of five decoder models. Each
decoder model contains upsampling layers. Using these layers
facilitates the transformation of features to learn the intrinsic
characteristics of the video frame.

Overall, our Correspondence Subnet employs the ViT to
produce a correlation matrix M ∈ RHW×HW , which is more
efficient than the Correspondence subnet in [10] that utilizes
VGG19 features.

C. Colorization subnet

This subnet gets the output from the Correspondence Sub-
net. More specifically, the network receives four inputs: the
gray-scale video frame xl

t, the warped color map W , the
confidence map M and the predicted previous frame x̂lab

t−1.
We call this subnet B and have the formula:

x̂lab
t = B(xl

t,A(xl
t, y

lab)|x̂lab
t−1, y

lab) (1)

D. Losses

1) L1 Loss: This loss function calculates the differences in
color between the colorized frame x̂lab

t and the correspond-
ing ground truth frame xlab

t . Minimizing this loss helps the
video prediction model generate more accurate predictions that
closely resemble the original video frames.

LL1 = ||x̂lab
t − xlab

t ||1 (2)

2) Adversarial Loss: Incorporated as a constraint in the
video colorization process to enhance the realism of the
colorized videos. In line with the approach adopted in Deep
Exemplar-based Video Colorization [10], a video discriminator
is employed instead of an image discriminator. This decision is
motivated by the observation that flickering in colorized videos
can be easily detected compared to real videos. Using a video
discriminator, the model can learn to colorize videos while
minimizing the flickering issue. This approach effectively
improves the quality and visual fidelity of the colorized videos.

LG
adv = E(x̂t−1,x̂t)(D(x̂t−1, x̂t)− E(xt−1,xt)D(xt−1, xt)− 1)2

+E(xt−1,xt)(D(xt−1, xt)− Ex̂t−1,x̂t
D(x̂t−1, x̂t) + 1)2

(3)



Fig. 3. The architecture of Feature Transform subnet.

3) Perceptual Loss: First introduced in [18] for neural style
transfer. It quantifies the dissimilarity between the high-level
characteristics of 2 images, such as edges, textures, and shapes.
This helps the neural network learn how to transform an image
into another with the desired features. We use this loss to
make the output perceptually plausible. This loss penalizes
the semantic difference of the predicted frame x̂t and the
correspondent ground truth frame xt

Lperc = ||ϕL
x̂ − ϕL

x ||22 (4)

where ϕ represents the output feature of the Feature Transform
block in the Correspondence subnet.

4) Contextual Loss: Contextual Loss measures the dif-
ference between the high-level characteristics of 2 images,
considering the context of the entire image and edges, textures,
and shapes. In [19], the contextual loss was used to train a neu-
ral network to transfer the style of one image to another while
preserving the overall structure and meaning. Given the ability
to compare contextual meaning between a video frame and a
reference image, the Contextual Loss is suitable for encourag-
ing the colors in the predicted frame x̂t to be similar to those
in the corresponding reference image. We first compute the
cosine similarity dL(i, j) between each pair of feature tensors
ϕL
x (i) and ϕL

x (j) and d̂L(i, j) = dL(i, j)/(minkd
L(i, k) + ϵ)

where ϵ = 1e− 5. We have the formula for contextual loss:

AL(i, j) = softmax
j

(
1− d̂L(i, j)/h

)
(5)

where i, j represents the indices of feature tensor in the output
features of the Feature Transform Subnet and bandwidth
parameter h = 0.1.

5) Temporal Consistency Loss: A temporal consistency
loss [20] is incorporated into the colorization process to

account for temporal coherence in video colorization. This loss
function explicitly penalizes color changes that occur along the
flow trajectory. By incorporating this constraint, the model can
ensure that the color changes in the video frames are consistent
over time, thereby improving the overall visual quality and
coherency of the colorized video. This approach is particularly
effective in addressing flickering in video colorization tasks, as
it encourages the model to produce smoother and more natural-
looking color transitions. To reinforce temporal consistency
in our model, we utilize the DeepFlow algorithm [21] to
incorporate the optical flow information of each pair and
method [22] to generate an occlusion mask. By leveraging
these flow and mask components, we calculate the loss and
improve the overall visual quality of our output.

Ltemp = ||mt−1 ⊙Wt−1,t(x̂
lab
t−1)−mt−1 ⊙ x̂lab

t || (6)

where Wt−1,t denotes the flow from xt−1 to xt, mt−1 is the
mask and ⊙ denotes Hadamard product operation.

6) Smoothness Loss: This loss was also introduced in [10]
to encourage spatial smoothness. In video colorization tasks, it
is often assumed that neighboring pixels of the predicted frame
x̂t should have similar color values if they have similar colors
in the corresponding ground truth frame. This loss function
is incorporated into the colorization process to enforce this
constraint. It is the difference between a pixel’s color and the
color of its 8-connected neighborhood. By minimizing this
loss, the color transitions in the video frames are smooth,
thereby improving the overall visual quality of the colorized
video. This approach is particularly effective in producing
natural-looking color transitions and reducing the occurrence
of color artifacts in the colorized video.

Lsmooth =
1

N
Σc∈{a,b}Σi(x̂

c
t(i)− Σj∈N(i)wi,j x̂

c
t(j)) (7)



where N is the number of samples in a training step.
7) Overall Loss: We combine all the losses to create the

final loss that we want to optimize

L = λL1LL1 + λadvLadv + λpercLperc + λctxLctx

+λtempLtemp + λsmoothLsmooth

(8)

where λ is the weight of each loss function.

IV. IMPLEMENTATION DETAIL

Dataset: The study employs the Hollywood2 dataset for
training [23], which is filtered to exclude low-quality and
black-and-white videos, resulting in a corpus of 337 videos.
We added 111 high-quality videos from Pixabay to diversify
the data categories. Every video is sampled every 2 frames,
averaging 55 frames per video. From these frames, we obtain
an average of 54 pairs per video, each consisting of two
consecutive frames annotated as the previous frame and the
current frame. With each pair, we query the five most similar
images from the ImageNet dataset [17]. To obtain that, we first
extract embeddings of all the images in the ImageNet dataset
using the ViT model [2] and store them in the database. Then,
we compare the extracted embedding of the current frame
to all the embeddings of the ImageNet dataset [17] using
cosine similarity scores and retrieve the five highest scores.
As a result, we obtained 24,609 samples for training. We use
the DAVIS dataset [24] for evaluation and prepare additional
information for the dataset as we do for the training dataset.

Hyper-parameters: We use tiny version of ViT [2]. The
weights of the losses in our model were set as follows: λL1 =
2.000, λadv = 0.200, λperc = 0.005, λctx = 0.500, λtemp =
0.020, and λsmooth = 5.000. We employ an AdamW optimizer
with a learning rate of 1× 10−5 and β1 = 0.500, β2 = 0.999
for both the generator and discriminator. Using the gradient
accumulation technique, the model was trained for 100,000
iterations (steps) with a batch size of 4. The model is trained
on 2 GPU NVIDIA RTX 4090 for increasing training speed.

V. EXPERIMENTS

Evaluation metrics: The evaluation of the performance of
our model is challenging since the aesthetic appeal of a col-
orized picture or video is subjective and cannot be objectively
quantified. Nonetheless, we conducted several assessments
to gauge the proficiency of our model. We employ various
standard metrics for evaluation, including:

• Peak Signal-to-Noise Ratio (PSNR) for estimating the
ratio between the maximum possible intensity of images
to the error in color estimation.

• Structural Similarity Index Measure (SSIM) [25] for
indicating the similarity between two images related to
structural information.

• Learned Perceptual Image Patch Similarity (LPIPS) [26]
accounting for the distance between two images regarding
human perception.

We apply these metrics on each video frame-by-frame and
then calculate the average to get the final result.

TABLE I
COMPARISON WITH OTHER MODELS

Models PSNR ↑ SSIM ↑ LPIPS ↓
Iizuka et al. [27] 23.88 0.947 0.176
Zhang et al. [3] 22.57 0.947 0.106
Zhang et al. [8] 24.88 0.949 0.116
Su et al. [28] 25.65 0.951 0.082
Lei et al. [12] 25.98 0.967 0.172
Liu et al. [29] 26.34 0.962 0.175

Iizuka et al. [30] 27.03 0.964 0.057
Zhang et al. [10] 28.64 0.972 0.041

Our Vitexco 28.88 0.979 0.042

Input Reference Result Ground truth

Fig. 4. Video frame predictions

Results: In our research, we aim to evaluate the perfor-
mance of the proposed model on the DAVIS dataset. The eval-
uation results in Table I demonstrate our model’s promising
performance. Although it does not outperform all state-of-the-
art models in every metric, our model still belongs to the group
of highest-performing models. The visible results of our model
are displayed in Figures 1 and 4. Our model produces special
colorization, resulting in realistic images and good saturation.

VI. CONCLUSION

This study presents the first transformer-based video col-
orization algorithm that surpasses previous models based
on CNN. Our approach achieves temporal consistency and



generates realistic effects in video colorization. However, the
metrics used in this research are not natively designed for
video generating evaluation and human aesthetic assessments.
In future work, we intend to enhance the architecture of our
model by employing attention methods, particularly in the
correspondence and colorization subnets. We may also use
Stable Diffusion on the Colorization Subnet for more realistic
images and videos. Besides that, we may apply the Swin
Transformer [16] instead of the Vanilla ViT [2] architecture
as the encoder for taking advantage of the shifted windows
mechanism.
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