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ABSTRACT

The field of image-based virtual try-on endeavors to generate realistic images of individuals

adorned in specific clothing items. Traditional approaches address this task by independently

warping the clothing item to conform to the person’s body and generating a segmentation

map of the individual wearing the item. Unfortunately, this sequential operation often results

in misalignment between the warped clothes and the segmentation map, introducing artifacts

in the final synthesized image. Additionally, the lack of information exchange between the

warping and segmentation generation stages leads to pixel-squeezing artifacts, particularly

near clothing regions occluded by body parts. To overcome these challenges, this study intro-

duces a novel try-on condition generator, unifying the warping and segmentation generation

stages. A newly proposed feature fusion block facilitates information exchange, mitigating

misalignment and pixel-squeezing artifacts. Furthermore, the incorporation of discriminator

rejection filters ensures the accuracy of segmentation map predictions, enhancing the overall

performance of virtual try-on frameworks. Experimental results on a high-resolution dataset

showcase the effectiveness of the proposed model in addressing misalignment and occlusion,

surpassing baseline models. Code is available at https://github.com/ntad27/AIP490.

Keywords: Deep Learning (DL), Computer Vision (CV), High-Resolution Virtual Try-

On, Misalignment-Free, Occlusion-Handling

https://github.com/ntad27/AIP490
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1 INTRODUCTION

In the ever-evolving landscape of digital commerce, the escalating significance of online

shopping has propelled technological innovations aimed at enhancing the overall customer

experience. A key advancement in this realm is the emergence of virtual try-on technologies,

poised to revolutionize the way consumers engage with fashion and make informed purchase

decisions. At the heart of this transformative experience lies the virtual try-on task, a sophis-

ticated process designed to seamlessly transpose a chosen clothing item onto an individual,

effectively simulating how the garment would appear when worn.

It’s noteworthy that within the domain of virtual try-on methodologies, a distinction emerges

between 3D-based approaches, relying on intricate 3D measurements of garments [1, 2, 7,

17], and the more streamlined image-based virtual try-on methods [4, 11, 13, 16, 18, 20,

22, 21], which constitute the focal point of our exploration. While both paradigms share

the overarching goal of providing users with a lifelike preview of clothing items, the shift to

image-based techniques introduces a layer of simplicity and accessibility. Image-based virtual

try-on uniquely necessitates only a garment and a person image, eliminating the need for

complex 3D garment measurements. This strategic shift towards image-centric approaches

not only streamlines the virtual try-on process but also makes it more feasible for widespread

and practical real-world applications.

In dissecting the intricacies of image-based virtual try-on, it becomes evident that certain

stages play a pivotal role in shaping the final outcomes. Notably, the explicit consideration

of segmentation maps has become a common thread among many methodologies [4, 11, 13,

16, 18, 20, 22, 21]. Previous studies underscore the importance of employing a dedicated

warping module to align the clothing image with the person’s body, ensuring a seamless

integration that reflects a true-to-life representation. Furthermore, the predictive power of

segmentation maps in guiding the generation process is crucial, as it aids in delineating re-

gions to be generated and those to be preserved, a factor that gains increasing significance

with higher image resolutions.

In essence, the fusion of these sophisticated techniques not only exemplifies the cutting-edge

nature of virtual try-on technologies but also emphasizes a commitment to making these in-

novations practical and applicable in real-world scenarios. As researchers delve deeper into

refining and optimizing image-based virtual try-on methodologies, the aim is not only to en-
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rich the customer’s online shopping experience but also to usher in a new era of interactive

and immersive digital commerce, where users can confidently visualize and personalize their

fashion choices before making a purchase.

In tackling the intricacies of virtual try-on tasks, preceding research endeavors have in-

corporated an explicit warping module designed to meticulously align the clothing image

with the contours of the individual’s body. This strategic inclusion is pivotal in ensuring a

harmonious integration of the selected attire onto the person. Furthermore, a noteworthy

advancement in the virtual try-on domain is observed through the adoption of a predictive

segmentation map for the final image. This innovative approach serves a dual purpose by

not only mitigating the complexities associated with image generation but also by providing

a guiding framework for the layout of the person and demarcating regions to be generated

versus those to be preserved [18].

The significance of the segmentation map becomes more pronounced as one delves into

higher image resolutions, amplifying its role as a critical component in the overall virtual

try-on pipeline. This meticulous consideration of segmentation maps is a common thread

among various image-based virtual try-on methodologies, as evidenced by the incorporation

of such stages in the processes outlined by notable studies [11, 13, 18, 16, 19, 20, 22]. The

outputs derived from the warping and segmentation map generation modules wield substan-

tial influence over the ultimate virtual try-on outcomes, underscoring the pivotal role played

by these stages in refining and enhancing the realism and accuracy of the final results. Thus,

by strategically interweaving these components into the fabric of virtual try-on frameworks,

researchers aim to not only push the boundaries of technological innovation but also to yield

outputs that resonate seamlessly with real-world applications and user expectations.

Within the realm of virtual try-on frameworks, a persistent challenge has emerged, particu-

larly in systems characterized by the incorporation of warping and segmentation generation

modules. This challenge manifests as misaligned regions, wherein discrepancies between the

warped clothes and the segmentation map create what is commonly referred to as misalign-

ment. The deleterious consequences of misalignment are readily apparent, with artifacts

compromising the perceptual quality of the final result, a concern that becomes particularly

pronounced at higher resolutions.

The adverse impact of misalignment is evident in how it gives rise to noticeable artifacts

within specific regions of the virtual try-on output. These artifacts, ranging from distor-
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tions to irregularities, significantly diminish the fidelity of the simulated clothing experience,

impinging on the intended immersive and realistic presentation. The ramifications are par-

ticularly noteworthy in scenarios where the virtual try-on is executed at elevated resolutions,

exacerbating the perceptual detriments.

A crucial insight into the root cause of misalignment lies in the operational independence of

the warping module and the segmentation map generator. Operating in silos, these compo-

nents lack a seamless exchange of information, a factor that contributes significantly to the

persistence of misalignment issues. Despite recent efforts, exemplified by a notable study

attempting to mitigate artifacts in misaligned regions, the existing methodologies fall short

of providing a comprehensive solution to the misalignment problem.

As the virtual try-on landscape continues to evolve, addressing and resolving the misalign-

ment challenge becomes pivotal for advancing the field. A holistic approach that fosters

synergy between the warping module and the segmentation map generator is imperative, ne-

cessitating a paradigm shift from their current disjointed operation. Researchers are actively

engaged in exploring innovative solutions that foster information exchange between these

modules, seeking to eradicate misalignment and enhance the perceptual quality of virtual

try-on results across varying resolutions.

In summary, the persistent misalignment issue within virtual try-on frameworks underscores

the ongoing quest for refinement and optimization in this dynamic field. While recent studies

have made strides in mitigating artifacts, a comprehensive resolution to the misalignment

problem remains an elusive goal, motivating researchers to delve deeper into collaborative

strategies between key modules to usher in a new era of seamless and artifact-free virtual

try-on experiences.

In the intricate landscape of virtual try-on frameworks, the challenges persist, and a note-

worthy issue stemming from the information disconnection between two pivotal modules has

garnered significant attention. This particular concern gives rise to what is termed as pixel-

squeezing artifacts, which have notable ramifications for the overall quality of the virtual

try-on output.

Pixel-squeezing artifacts come to the forefront, prominently visible in scenarios where body

parts occlude the intended garment. The detrimental impact on the results is evident in

the form of distortions and visual inconsistencies, leading to a compromised virtual try-on
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experience. The root cause of pixel-squeezing artifacts lies in the excessive warping of clothes

near occluded regions, stemming from the lack of effective information exchange between the

warping and segmentation map generation modules.

The absence of a seamless communication channel between these critical components hinders

the ability to adapt the virtual try-on system to complex real-world scenarios, limiting its

applicability and practicality. This issue becomes particularly pronounced when attempting

to simulate varied poses and configurations of the person images. The constraints introduced

by pixel-squeezing artifacts impede the versatility of virtual try-on applications, making it

challenging to deploy these systems seamlessly in real-world contexts.

Efforts to address the pixel-squeezing artifact challenge are integral to advancing the ef-

ficacy of virtual try-on frameworks. Researchers are actively engaged in exploring innovative

solutions that foster a more cohesive exchange of information between the warping and seg-

mentation map generation modules. The aim is to rectify the distortions introduced near

occluded regions, thus broadening the spectrum of possible poses and scenarios that can be

accommodated within the virtual try-on paradigm.

In the grander scheme of virtual try-on research and development, acknowledging and tack-

ling issues like pixel-squeezing artifacts signifies a commitment to enhancing the realism,

adaptability, and utility of these technologies. As these challenges are navigated, the poten-

tial for virtual try-on to seamlessly integrate into diverse real-world applications becomes

more tangible, fostering a future where virtual fashion exploration aligns seamlessly with the

dynamic and ever-evolving landscape of fashion and e-commerce.

In our continuous pursuit to address and overcome the challenges inherent in virtual try-

on frameworks, we introduce a pioneering solution in the form of a novel try-on condition

generator. This innovative module is designed to harmonize the warping and segmentation

generation components, offering a unified approach to seamlessly predict both the warped

garment and the accompanying segmentation map. The key breakthrough lies in the simulta-

neous prediction of these elements, ensuring perfect alignment and eliminating misalignment

issues that have plagued previous methodologies.

The proposed try-on condition generator stands as a transformative advancement, not only

eradicating misalignment but also adeptly handling occlusions introduced by body parts in

a natural and intuitive manner. By predicting the warped garment and segmentation map



15

in tandem, our framework introduces a level of coherence that significantly enhances the

overall fidelity and realism of virtual try-on outputs.

A cornerstone of our approach is the capacity to effectively handle occlusions, a persis-

tent challenge in virtual try-on scenarios, especially when the clothing is partially obscured

by various body parts. The unified predictions of the try-on condition generator empower

the system to navigate and adapt seamlessly to such occlusions, preserving the accuracy and

visual appeal of the virtual try-on results.

Extensive experimentation validates the efficacy of our proposed framework, showcasing

its ability to not only handle occlusions and misalignment but also to deliver state-of-the-

art results, particularly on high-resolution datasets such as 1024×768. This comprehensive

evaluation, conducted both quantitatively and qualitatively, underscores the robustness and

superiority of our solution in comparison to existing methodologies.

As the virtual try-on landscape continues to evolve, our contribution marks a significant

step towards a more refined and realistic virtual try-on experience. The integration of the

proposed try-on condition generator not only mitigates existing challenges but also sets a

new standard for the capabilities of virtual try-on frameworks, demonstrating their potential

to provide highly accurate, visually compelling, and versatile outputs. Through our inno-

vative approach, we aspire to pave the way for a future where virtual try-on technologies

seamlessly integrate into diverse applications, enhancing the overall user experience in the

realms of fashion, e-commerce, and beyond.
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2 RELATED WORK

2.1 Image-based Virtual Try-On

Embarking on the intricacies of image-based virtual try-on, the overarching goal is to generate

a visually coherent person image adorned with a specified target clothing item, leveraging

a pair of input images comprising clothes and a person. The evolution of recent virtual

try-on methodologies [11, 13, 16, 18, 19, 20, 22] unveils a common structural framework,

typically comprising three distinct modules: 1) the segmentation map generation module,

2) the clothing warping module, and 3) the fusion module. This three-tiered architecture

collaboratively orchestrates the transformation from input images to a seamlessly integrated

virtual try-on output.

The initial stage, the segmentation map generation module, serves as the foundation for

subsequent processes. This module generates a segmentation map that delineates different

regions of the person image, providing a structural roadmap for the subsequent stages of

the virtual try-on pipeline. Following this, the clothing warping module takes center stage,

leveraging the segmentation map to guide the transformation of the target clothing onto the

person image. This strategic alignment ensures that the virtual try-on results maintain a

realistic and anatomically accurate representation, laying the groundwork for a compelling

user experience.

The fusion module, a pivotal component in the virtual try-on methodology, emerges as the

synthesis hub where intermediate representations, such as the warped clothes and segmen-

tation maps generated in previous stages, are harnessed to produce the final photo-realistic

images. This critical stage involves the amalgamation of these representations, orchestrating

a harmonious blend that captures the nuances of texture, shading, and contours, ultimately

yielding a visually convincing virtual try-on outcome.

While the existing virtual try-on methods have made significant strides, the emphasis on

these three modular stages underlines the importance of a systematic and coherent approach

to tackle the complexities inherent in the task. As technology continues to advance, re-

searchers are actively engaged in refining and optimizing each module, exploring innovative

techniques to enhance the realism, accuracy, and applicability of virtual try-on systems across

diverse scenarios.
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By dissecting the virtual try-on pipeline into these distinct modules, the research community

aims to not only address current challenges but also to pave the way for future advancements.

The quest for more sophisticated, adaptive, and user-centric virtual try-on solutions remains

ongoing, fueled by the collective endeavor to seamlessly integrate this technology into the

fabric of everyday experiences, revolutionizing the way we interact with and perceive fashion

in the digital realm.

2.2 High-Resolution Virtual Try-On with Misalignment and Occlusion-

Handled Conditions

Given a reference image-person with dimension (3 x H x W) of a person and a cloth image

also in the same dimension as the image-person (H and W denote the image height and

width, respectively), the goal is to synthesize an image (3 x H x W) of a person in person-

image wearing the shirt in cloth-image, where the pose and the body shape of person-image

maintained. Following the training procedure of VITON [11], the author trained the model

to reconstruct image-person from a clothing-agnostic person representation and cloth-image

that person is wearing already. The clothing-agnostic person representation eliminates any

clothing information in image-person, and it allows the model to generalize at test time when

an arbitrary clothing image is given.

The framework is composed into two stages: 1) a try-on condition generator, 2) a try-on

image generator. Given the clothing-agnostic person representation and cloth-image and

produces the segmentation map simultaneously. The generator deforms does not create any

misalignment or pixel -squeezing artifacts. Afterward, the try-on image generator synthe-

sizes the final try-on result using the outputs of the try-on condition generator. At test

time, the author applied discriminator rejection that filters out incorrect segmentation map

predictions.
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Figure 1: Overview of the author’s framework (HR-VITON)

Pre-Processing. In the pre-processing step, the author obtained a segmentation map

S ∈ LH×W of the person, a clothing mask cm ∈ LH×W , and a pose map P ∈ R3×H×W with

the off-the-shelf models [9, 10], where L is a set of integers indicating the semantic labels. For

the pose map P, they utilized a dense pose [10], which maps all pixels of the person regions

in the RGB image to the 3D surface of the person’s body. For the clothing-agnostic person

representation, they employed a clothing-agnostic person image Ia and a clothing-agnostic

segmentation map Sa as those of VITON-HD [19].

2.2.1 Try-On Condition Generator

In this stage, the author aim to generate the segmentation map Ŝ of the person wearing the

target clothing item c and deform c to fit the body of the person. A warped clothing image

Îc and a generated segmentation map Ŝ are used as the conditions for the try-on image

generator.
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Figure 2: The detailed architecture of the try-on condition generator

The try-on condition generator consists of two encoders and four fusion blocks, and each

encoder is composed of five residual blocks. The features of the last residual blocks are

concatenated and passed to a 3x3 convolutional layer, which generates the first flow map of

the flow pathway. Also, the last feature of the segmentation encoder is used as the input

of the segmentation pathway (i.e., seg pathway) after passing through two residual blocks.

The author employed two multi-scale discriminators for the conditional adversarial loss. The

visualization of the try-on condition generator architecture is in Figure 2.

Loss Functions. The author used the pixel-wise cross-entropy loss £CE between predicted

segmentation map Ŝ and S. Additionally, L1 loss and perceptual loss are used to encour-

age the network to warp the clothes to fit the person’s pose. These loss functions are also

directly applied to the intermediate flow estimations to prevent the intermediate flow maps

from vanishing and improve the performance. Formally, £L1 and £V GG are as follows:

£L1 =
∑3

i=0wi ·
∥∥∥W (cm, Ffi)− Sc

∥∥∥
1
+
∥∥∥Ŝc − Sc

∥∥∥
1
,
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£V GG =
∑3

i=0 wi · ϕ (W (c, Ffi) , Ic) + ϕ
(
Îc, Ic

)
,

where wi determines the relative importance between each terms.

£TV is a total-variation loss to enforce the smoothness of the appearance flow:

£TV =
∥∥∥∆Ff4

∥∥∥
1

They found that regularizing only the last appearance flow Ff4 is vital in learning the flow

estimation at coarse scales. Totally, the try-on condition generator is trained end-to-end

using the following objective function:

£TOCG = λCE£CE +£cGAN + λL1£L1 +£V GG + λTV£TV ,

where £cGAN is conditional GAN loss between Ŝ and S, and λCE, λL1, and λTV denote the

hyper-parameters controlling relative importance between different losses. For £cGAN , we

used the least-squared GAN loss [6].

During the training of the try-on condition generator, the model predicts Îc, Ŝc and Ŝ

at 256x192 resolution. In the inference phase, before forwarding the try-on image generator,

the segmentation map and the appearance flow obtained from the try-on condition gener-

ator are upscaled to 1024x768. The author down-sampled the inputs for the discriminator

of the try-on condition generator by a factor of 2 to increase the receptive field. In addi-

tion, the author applied a dropout [3] to the discriminator to stabilize the training. For

hyper-parameters they used, λCE, λV GG and λTV are set to 10, 10 and 2, respectively. The

batch sizes for training the try-on condition generator and image generator are set to 8 and

4, respectively. They trained each module for 100,000 iterations. The learning rates of the

generator and the discriminator of the try-on condition generator are set to 0.0002.

2.2.2 Try-On Image Generator

In this stage, the author generate the final try-on image Î by fusing the clothing-agnostic

image Ia, the warped clothing image Îc, and the pose map P, guided by Ŝ. The try-on

image generator consists of a series of residual blocks, along with upsampling layers. The
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residual blocks use SPADE [15] as normalization layers whose modulation parameters are

inferred from Ŝ. Also, the input (Ia, Îc, P) is resized and concatenated to the activation

before each residual block. They trained the generator with the same losses used in SPADE

and pix2pixHD [14].

Figure 3: The detailed architecture of the try-on image generator

The detailed architecture of the try-on image generator as shown in Figure 3. The gener-

ator is composed of a series of residual blocks with upsampling layers, and two multi-scale

discriminators are employed for the conditional adversarial loss. Spectral normalization [12]

is applied to all the convolutional layers.

To train the try-on image generator, the author utilized the same losses used in SPADE

[15] and pix2pixHD [14]. Specifically, their full objective function consists of the conditional

adversarial loss, and the feature matching loss. Formally, the objective function is as follows:

£TOIG = £TOIG
cGAN + λTOIG

V GG £TOIG
V GG + λTOIG

FM £TOIG
FM , where £TOIG

cGAN , £
TOIG
V GG , and £TOIG

FM denote

the conditional adversarial loss, the perceptual loss, and the feature matching loss [14],

respectively. The author used λTOIG
V GG and λTOIG

FM for hyper-parameters controlling relative

importance between different losses. For £TOIG
cGAN , they employed the Hinge loss [5]. λTOIG

V GG

and λTOIG
FM are set to 10. The learning rates of the generator and the discriminator of the

try-on image generator are set to 0.0001 and 0.0004, respectively. The author adopted the

Adam optimizer with β1=0.5 and β2=0.999 for both modules.
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2.2.3 Discriminator Rejection

The author proposed a discriminator rejection method to filter out the low-quality segmenta-

tion map generated by the try-on condition generator at the test time. In the discriminator

rejection sampling [8], the acceptance probability for an input x is

paccept(x) =
pd(x)
Lpg(x)

,

where pd and pg are the data distribution and the implicit distribution given by the generator,

and L is a normalizing constant. As they used the least-squares GAN loss, the optimal

discriminator is derived as follows:

D∗(x) = pd(x)
pd(x)+pg(x)

Afterward, the acceptance probability can be represented using the discriminator D(x):

paccept(x) =
D(x)

L(1−D(x))
,

Where the equality is satisfied only if D = D∗. L is written as follows:

L = max
a

D(x)
(1−D(x))

,

which is intractable. In practice, they constructed x from the segmentation map and input

conditions (i.e., P, Sa, c, and cm) and obtain L using the entire training dataset. The

discriminator rejection enables us to filter out the incorrect segmentation maps faithfully.
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3 PROJECT MANAGEMENT PLAN

Table 1: Project Management Plan.

Week Task name Owner Note

1 - Start researching the topic All 3 members

- Collecting papers and projects related

to the topic

- Researching which try-on clothes

models are having the best accuracy

2 - Choose the best 3 models All 3 members

- Learning the overall architecture of

each model

- Try running 3 models again on what

is provided

3 - Choose HR-VITONmodel as the orig-

inal model to improve

All 3 members

- Rerun all HR-VITON data and eval-

uate it compared to the results stated

in the paper

4 - Find the limitations of HR-VITON

model

All 3 members

- Researching and find solutions for

each of those limitations

- Determine the limits of HR-VITON

model

5 - Research methods for preprocessing

data of HR-VITON model (not pro-

vided by the author)

All 3 members

- Research frameworks and libraries au-

thor used for the HR-VITON model

6 - Upgrade the TensorFlow version of

the Human Parse part from 1.15 to 2.0

Tin

- Learn other methods to improve pre-

processing data

Duy + Thach
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- Add Remove background to prepro-

cessing data

Duy + Thach

7 - Research and improve the preprocess-

ing results of the Human Parse section

Tin

- Retrain HR-VITON model over 1000

steps

Thach

- Use the method of Remove back-

ground for the Cloth Mask part

Duy

8 - Draw the overall architectural dia-

gram of the HR-VITON model

Tin + Thach

- Visualize the results of each layer Tin + Thach

- Research and understand the math-

ematical formulas the author uses to

process the HR-VITON model

- Research and learn the metrics used

to evaluate accuracy

Duy

9 - Together with the teacher, research

methods to optimize the model

All 3 members

- Collect additional necessary datasets

10 - Retrain the model over 1000 steps

after applying different optimization

methods

Tin

- Test the model based on trained

weight set

Thach

- Learn how to build websites and demo

apps

Duy

- Come up with an idea to create a

demo platform for the model

Duy

11 - Train again on full steps model after

optimization

Tin

- Test the model based on the set of

weights after training

Thach

- Start writing reports Duy

12 - Build web, app demo Tin + Thach

- Continue writing report Duy

13 - Edit and complete web, app demo Tin + Thach
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- Edit and complete report Duy

14 - Review knowledge and complete de-

fense presentation slides

All 3 members

- Present the topic to the council
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4 MATERIALS AND METHODS

4.1 Data Preparation

For the experiments, we use the original high-resolution virtual try-on dataset introduced

by VITON-HD [19] and the pre-processed one provided by HR-VITON [23]. The dataset

contains 13,679 frontal-view women and top clothing image pairs with the resolution of the

images being 1024x768. The dataset was split into a training and a test set with 11,647 and

2,032 pairs, respectively.

4.2 Data Pre-Processing

According to the explanation from the authors, at least 6 steps are needed for getting all

the required inputs of the model. We’ve added one more pre-processing step and modified

other steps in order to get better try-on results.

4.2.1 Remove Background

This is our additional step to improve the model’s accuracy. We used the transparent-

background library to remove the background of both cloth-image and person-image. De-

tails are available at https://github.com/plemeri/transparent-background. The figure below

shows some results of the original images after this step.

Figure 4: Remove Background Results

https://github.com/plemeri/transparent-background
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4.2.2 OpenPose

OpenPose is an open-source library for real-time multi-person keypoint detection and pose

estimation. It was developed by the Carnegie Mellon University Perceptual Computing Lab

and later supported by the OpenPose project. The primary goal of OpenPose is to detect the

2D positions of body joints (keypoints) in images or video frames, representing the human

pose.

We used this library to get the keypoints of person’s left, right hand in the person-image;

and a skeleton map of that person. See the below figure for some results.

Figure 5: OpenPose Results

4.2.3 DensePose

DensePose is a computer vision project and model developed by Facebook AI Research

(FAIR) that focuses on dense human pose estimation. Dense pose estimation involves map-

ping every pixel in an image to a corresponding 3D surface on the human body. In simple

terms, it aims to provide a detailed understanding of the pose and surface geometry of the

human body in images or videos.

Figure 6: DensePose Results



28

4.2.4 Cloth Mask

At this step, the author used a model from CarveKit to get the shape of the clothing item

from cloth-image. After checking the author’s pre-processed dataset again, we found out

that the CarveKit model didn’t get the right shape of the clothing item. So we decided to

use the same library as the Remove Background step to process. The figure below shows the

difference between our method and the authors.

Figure 7: Cloth Mask Comparison

4.2.5 Human Parse

Just like the author, we also used CIHP PGN to get the parse map from image-person which

contains 20 unit values from 0 to 19. However, the author used an older version using Tensor-

Flow 1.15 running on Python 3.7, so we updated it to TensorFlow 2.0 running on Python 3.8.

CIHP PGN stands for Context-aware Instance Part Grouping Network. It is a deep learning

method for semantic part segmentation, instance-aware edge detection, and instance-level

human parsing. It was developed by Engineering-Course and presented at the European

Conference on Computer Vision (ECCV) in 2018.

CIHP PGN is built on top of TensorFlow and is designed to be efficient and accurate. It

uses a novel context-aware instance part grouping mechanism to group together related parts

of an object. This mechanism helps to improve the accuracy of the segmentation and edge

detection tasks.

CIHP PGN has been evaluated on several benchmark datasets and has achieved state-of-

the-art results. It is a promising method for human parsing and has the potential to be

applied to a wide range of other computer vision tasks.

https://github.com/OPHoperHPO/image-background-remove-tool
https://github.com/Engineering-Course/CIHP_PGN
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Figure 8: Human Parsing Results

4.2.6 Parse Agnostic

In this step and the Human Agnostic we used the original image-person, the parse map from

Human Parse and the person’s keypoints to process.

Figure 9: Parse Agnostic Results
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4.2.7 Human Agnostic

Figure 10: Human Agnostic Results

4.3 Training Metrics

4.3.1 Generator Loss

”Generator Loss” or ”G Loss” in a Generative Adversarial Network (GAN) model is the loss

associated with the generator. The goal of the generator is to create new data that closely

resembles real data. To measure the discrepancy between real and generated data, a loss

function is employed.

The Generator Loss typically consists of multiple components, such as Adversarial Loss,

Image Loss, and other terms depending on the model design. Here is a general representation

of the Generator Loss:

Generator Loss = GAN Loss + Other Loss Terms

GAN Loss. The GAN Loss often relies on the Cross Entropy Loss, measuring the gener-

ator’s ability to ”fool” the discriminator. Specifically, if D is the probability that a sample

is real, and G is the probability that a sample is generated by the generator, the GAN Loss

can be expressed as: GAN Loss = -log(D(G(z))), where z is a random input vector for the
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generator.

Other Loss Terms. Other components of the Generator Loss may include Image Loss

to ensure similarity to real data, regularization components like L1 or L2 loss to control

model complexity, and other terms depending on specific problem requirements.

In summary, the Generator Loss sets up an optimization problem where the generator pro-

duces data that deceives the discriminator while keeping this data close to real data. Opti-

mizing the Generator Loss leads to an effective generator model that generates high-quality

new data.

4.3.2 L1 cloth Loss

The L1 cloth Loss, similar to many loss functions in machine learning, is a part of the model

training process designed to measure the difference between the model’s predictions and the

actual data in the context of clothing or fashion images.

L1 Norm. L1 cloth Loss typically uses the L1 norm, also known as the Manhattan Norm.

The formula for calculating the L1 norm between two vectors a and b is:

L1 norm(a, b) =
∑

i

∣∣∣ai − bi

∣∣∣,
in the case of L1 cloth loss, a and b could be two vectors containing pixel values of the actual

and predicted images, respectively.

L1 cloth Loss Formula. The formula calculates the average absolute difference between

the pixel values of the actual and predicted images over the entire image.

L1 cloth Loss = 1
N

∑N
i=1

∣∣∣Ireali − Ifakei

∣∣∣,
where N is the number of pixels in each image, Ireali is the corresponding pixel value in the

actual image at position i, Ifakei is the corresponding pixel value in the predicted image at

position i, the
∣∣∣...∣∣∣ denotes the absolute value.

Significance. L1 cloth Loss measures the ”magnitude” of the difference between the actual
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and predicted images. In this way, the model is trained to minimize this difference dur-

ing training, leading to the generation of predicted images that closely resemble the actual

images. L1 cloth Loss is often used in generative models for fashion or clothing images to

ensure that the generated images match well with the real images.

4.3.3 Visual Geometry Group Loss

Visual Geometry Group (VGG) Loss is frequently utilized in the training process of machine

learning models, particularly in generative image models, to quantify the disparity between

the features of generated images and real images.

VGG Loss. In the context of VGG Loss, a specialized model known as the VGG model,

initially trained for image classification into different classes, is employed. However, in this

scenario, we leverage it as a feature extractor. Crucially, we do not use the VGG model for

classification, instead we utilize the averaged features extracted from selected layers.

VGG Loss Computing Formula. The formula for VGG Loss is often expressed as follows:

VGG Loss =
∑

i wi · 1
Ni

∑
j

∥∥∥ϕi

(
Irealj

)
− ϕi

(
Ifakej

)∥∥∥2

2
,

where i is the index of the layers we are interested in from the VGG model, wi is the weight

applied to each layer, Ni is the number of features in layer i, ϕi

(
Irealj

)
and ϕi

(
Ifakej

)
are

features extracted from layer i of the actual images and the corresponding predicted image,

the
∥∥∥...∥∥∥2

2
is the square of the L2 norm between the features.

Significance. VGG Loss gauges the similarity between features extracted from real and

predicted images. Utilizing features at a high level ensures that the most crucial features for

image recognition are preserved and optimized during model training. VGG Loss is com-

monly employed in generative models for fashion or clothing images to guarantee that the

generated images closely resemble the real images.

4.3.4 Total Variation Loss

Total Variation (TV) Loss is often employed during the training of generative image models

to reduce noise and enhance the smoothness of generated images.
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TV Loss. TV Loss is designed to diminish variability within an image, promoting the

creation of smoother and more continuous images. This helps to mitigate noise and generate

smoother images.

TV Loss Computing Formula. The formula for TV Loss for an image I can be expressed

as follows:

TV Loss(I) =
∑

i,j

(
∥Ii+1,j − Ii,j∥2 + ∥Ii,j+1 − Ii,j∥2

)
,

where Ii,j denotes the pixel value at position (i,j) in the image, the ∥...∥2 represents the L2

norm, or Euclidean norm, signifying the Euclidean distance, i+1, j and i,j+1 correspond to

neighboring positions in the horizontal and vertical directions.

Significance. TV Loss helps reduce noise in images by aiming to minimize the variability

between adjacent pixels. This facilities the creation of images with continuous and unin-

terrupted characteristics, suitable for applications requiring smooth and continuous image

generation.

4.3.5 Cross Entropy (CE)

In the context of the clothing swapping problem, Cross Entropy (CE) Loss is commonly

used to measure the level of ”surprise” between the real image of the model and the image

generated by the model. Below is a detailed analysis and explanation of how Cross Entropy

Loss is applied in this problem.

CE Loss. The CE Loss between the real image (Ireal) and the generated image (Ifake)

can be expressed by the following formula:

CE Loss(Ireal, Ifake) = −
∑

i,j Ireal(i,j) − log
(
Ifake(i,j)

)
,

where i and j represent pixel positions in the image, Ireal(i,j) is the pixel value at position

(i,j) in the real image, and Ifake(i,j) is the corresponding pixel value in the generated image.
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Significance. The goal of the model is to generate an image (Ifake) that closely resem-

bles the real image (Ireal). CE Loss measures the difference between the real pixel values

and the predicted pixel values. If a pixel has a high value in the real image but is predicted

with low probability by the model, the CE Loss will be high. In the clothing swapping prob-

lem, CE Loss helps the model learn how to generate clothes with colors, styles, and details

that closely match the real images. This loss supports the training process by optimizing

the model parameters to minimize the discrepancy between the real and generated images.

4.3.6 GGAN

In the context of a Generative Adversarial Network (GAN) model, GGAN is commonly un-

derstood as a component of the loss function for the generator (G).

Adversarial Loss. In a GAN model, there are two main components: the generator (G)

and the discriminator (D). GGAN is a part of the optimization objective for the generator.

The task of G is to generate new data to closely resemble real data, thereby deceiving the

discriminator.

Adversarial Loss Computing Formula. The Adversarial Loss function often relies on

CE Loss and measures the ability of the discriminator to be fooled by the generator. If D is

the probability that a sample is real, and G is the probability that a sample is generated by

G, the formula for GGAN can be expressed as follows:

GGAN = -log(D(G(z))),

where z is a random vector used to generate new data by G, and D(G(z)) is the probability

that the discriminator evaluates the sample as real.

Significance. GGAN measures the ability of the generator to produce data that the dis-

criminator cannot distinguish from real data. The goal is to make G generate data that

”deceives” D effectively. GGAN is a crucial part of the generator’s loss function during GAN

training. Optimizing GGAN implies improving the ability to generate data that the discrim-

inator cannot differentiate effectively. The formula above can be integrated into the overall

loss function for the generator during GAN training.
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4.3.7 Discriminator Loss

In the context of a GAN model, ”loss D” refers to the loss associated with the discriminator.

The main task of the discriminator is to distinguish between real and generated data by the

generator.

Loss D. In GANs, the discriminator loss typically consists of two components: the loss

from discriminating real data and the loss from discriminating generated data. The goal of

the discriminator is to maximize this loss to accurately distinguish between real and gener-

ated data.

Loss D Computing Formula. The general formula for the discriminator loss if often

expressed as follows:

Loss D = -(log(D(data)) + log(1-D(G(z)))),

where D(data) is the probability that the discriminator evaluates a sample as real, G(z) is

the data generated by the generator from a random vector z, 1-D(G(z)) is the probability

that the discriminator evaluates a sample as fake (generated data).

Significance. The discriminator loss measures its ability to distinguish between real and

generated data. The objective is to maximize this loss to make the discriminator increasingly

accurate. The formula above represents the general discriminator loss during GAN training.

4.3.8 Dreal in GAN

”Dreal” in a GAN model represents the probability that the discriminator evaluates a sample

as real data, indicating that it belongs to the real dataset.

What is Dreal? ”Dreal” is a representation of the probability that the discriminator consid-

ers a sample as real, and it is a crucial part of the GAN training process. In the context of

the GAN problem, this is the probability that the discriminator correctly evaluates a sample

as belonging to the real dataset.

Dreal Computing Formula. The probability ”Dreal” is typically calculated using the prob-
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ability provided by the discriminator for a sample from real-world data (D(data)). The

detailed formula is:

Dreal = D(data),

where Dreal is the probability that a sample is evaluated as real by the discriminator, D(data)

is the probability that the discriminator evaluates a sample as real from real-world data.

Significance. The probability ”Dreal” plays a crucial role in GAN training as it serves

as a quality indicator for the discriminator. Maximizing this probability helps ensure that

the discriminator can effectively recognize and distinguish real data from data generated by

the generator. The equation above represents the probability of real data (Dreal) in the GAN

model and is a critical factor in the training process to enhance the model’s performance.

4.3.9 Dfake in GAN

What is Dfake? ”Dfake” is a representation of the probability that the discriminator con-

siders a sample as fake, meaning it is generated by the generator rather than belonging to the

real dataset. In the GAN model, ”Dfake” evaluates the degree of fakeness of the generated

data.

Dfake Computing Formula. The probability ”Dfake” is typically calculated using the

probability provided by the discriminator for a sample generated (D(G(z))), where z is the

random vector used to generate data. The detailed formula is:

Dfake = D(G(z)),

where Dfake is the probability that a sample is evaluated as fake by the discriminator,

D(G(z)) is the probability that the discriminator evaluates a sample as fake from generated

data.

Significance. ”Dfake” is a crucial indicator in GAN training as it assesses the discriminator’s

ability to distinguish between real and generated data.
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4.4 Evaluation Metrics

4.4.1 Structural Similarity Index Measurement (SSIM)

The Structural Similarity Index Measurement (SSIM) is a method for analyzing image qual-

ity, designed to measure the structural similarity between two images. The main formula for

SSIM is:

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y),

where l(x,y) is the luminance factor, c(x,y) is the contrast factor, s(x,y) is the structure factor.

Specifically, each factor is calculated as follows:

Luminance (l(x,y)):

l(x,y) = 2·µx·µy+C1

µ2
x+µ2

y+C1
,

where µx and µy are the mean values of x and y respectively, and C1 is a constant to avoid

division by zero.

Contrast (c(x,y)):

c(x,y) = 2·σx·σy+C2

σ2
x+σ2

y+C2
,

where σx and σy are the standard deviations of x and y respectively, and C2 is a constant.

Structure (s(x,y)):

s(x,y) = σxy+C3

σx·σy+C3
,

where σxy is the covariance between x and y, and C3 is a constant.

The constant C1, C2, and C3 are used to avoid division by zero and adjust the sensitiv-

ity of the SSIM index. Typically, their values are chosen to ensure the sensitivity of SSIM

to small changes in images.
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4.4.2 Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a common metric used to measure the difference between

predicted and actual values in machine learning and statistics. The primary significance of

MSE lies in quantifying the magnitude of errors and providing an overall view of a model’s

predictive performance.

Squared Difference. MSE measures the squared difference between each predicted and

actual value. Squaring enhances the influence of large errors, particularly useful when con-

cerned with significant deviations.

Meaningful Average. MSE averages the squared difference across the entire dataset, pro-

ducing a single value representing the average difference between predicted and actual values.

Square Unit. MSE has units in the square of the unit of the measured variable (e.g.,

if the measurement is in thousands of dollars, MSE will be in thousands of square dollars).

MSE Computing Formula. The formula to calculate MSE between two datasets Y and

Ŷ is:

MSE(Y,Ŷ ) = 1
n

∑n
i=1

(
Yi − Ŷi

)2

,

where n is the number of samples in the dataset, Yi is the actual value at sample i, Ŷi is the

corresponding predicted value at sample i.

Pros and Cons.

• Pros: MSE focuses on large errors, making it suitable for problems where significant

deviation matter.

• Cons: MSE is sensitive to outliers, as squaring them increases their contribution to the

overall value.
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4.4.3 Learned Perceptual Image Patch Similarity (LPIPS)

Learned Perceptual Image Patch Similarity (LPIPS) is a metric designed to measure the

similarity between two images based on human perception. It focuses on comparing small

patches of images rather than the overall similarity of the entire image.

Patch-wise Comparison. LPIPS concentrates on comparing each patch of two images

instead of comparing the entire images. This approach simulates how humans typically per-

ceive and compare images.

Perceptual Features. LPIPS models often use Convolutional Neural Networks (CNNs) to

extract perceptual features from small image patches. These features are often related to

the structure, color, and other factors in the image that humans commonly recognize.

Learned Weights. The model’s weights are trained to optimize the similarity between

patches. These weights are used in the computation process to evaluate the similarity be-

tween patches. Typically, these weights are learned from training data to reflect human

perception.

Applications and Usage.

• Image Quality Assessment: LPIPS is commonly used to assess image quality and

compare the performance of different image generation models.

• Image Generation Models: In image generation tasks, LPIPS can be used to measure

the perceptual similarity between generated images and real images.

• Model Comparison and Selection: LPIPS helps in comparing and selecting models

based on their ability to reproduce important perceptual features recognized by hu-

mans.

LPIPS Computing Formula. The main formula of LPIPS can be expressed as the

weighted sum of the differences between perceptual features of two patches:

LPIPS(x,y) =
∑

i wi · ϕi(x) · ϕi(y),
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where x and y are two patches to be compared, ϕi(x) and ϕi(y) are the perceptual features

of patch x and y, wi is the weight of the i-th feature.

Summary. LPIPS is a multidimensional and perceptual metric that measures the simi-

larity between images from a human perspective. Focusing on small image patches helps it

authentically reflect how we perceive and evaluate images.

4.4.4 Inception Score Mean (IS mean)

Inception Score (IS) is a metric commonly used to evaluate the quality of generated images in

the field of generative models, especially in the context of Generative Adversarial Networks

(GANs).

Inception Score Mean (IS mean). The IS mean, or Inception Score Mean, is a vari-

ation of the Inception Score that provides a mean value across multiple generated samples.

The Inception Score is commonly defined as follows:

IS(G) = exp (Ex∼G [DKL (P (y|x) ||P (y))]),

where G is the generative model, x is a generated image, y is the class label predicted by

the Inception model, P (y|x) is conditional class distribution, and P(y) is the marginal class

distribution.

Individual Image Quality. The quality of an individual image is often measured by

the maximum predicted class probability. Let Pmax(y|x) be the maximum class probability

for an image x. Higher Pmax(y|x) indicates higher quality.

Diversity Across Images. The diversity is assessed by calculating the entropy of the

class probabilities across all generated images:

H(P(y—G)) = −
∑

x

∑
y P (y|x)log2(P (y|x))

IS mean Computing Formula. For N sets of generated images G1, G2,..., GN , the

IS mean is calculated as the mean of the individual Inception Scores:
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ISmean = 1
N

∑N
i=1 IS(Gi)

Interpretation of IS mean. A higher IS mean indicates that the generative model con-

sistently produces sets of images that are both of high quality and diverse.

4.4.5 Inception Score - Standard Deviation (IS std)

For IS std, we incorporate the measure of uniformity (variability) of the Inception scores. It

provides information about the level of fluctuation or non-uniformity among the Inception

Scores for each image.

IS std Computing Formula. To calculate IS std, first compute the Inception Score for

each image in the generated dataset. Then, calculate the standard deviation of these Incep-

tion scores. The detailed formula can be expressed as follows:

IS std = std(IS(generated images)),

where IS std is the Inception Score - Standard Deviation, std is the standard deviation func-

tion, IS(generated images) is the Inception Score calculated for the entire set of generated

images.

Significance. IS std measures the level of variability in quality and diversity among the

generated images. If IS std is low, it may indicate that the generator produces images with

relatively stable quality and diversity. Conversely, a high IS std may indicate unevenness in

quality and diversity among the images.
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5 RESULTS

5.1 Experiments

As mentioned before, we tried running the model again based on the data that was processed

by our method. There have been a few cases with better results when running on data

provided by the author. The figures below show the difference between the original HR-

VITON [23] model and ours.

Figure 11

Figure 12
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Figure 13

We also re-ran the evaluation metrics and got results approximately the same as the author’s.

HR-VITON Ours

SSIM 0.82591 0.821920

MSE 0.050458 0.051742

LPIPS 0.230576 0.229801

IS mean 3.189770 3.227256

Table 2: Metrics Comparison

5.2 Optimization

The primary objective of this part is to optimize HR-VITON [23]model specifically, we

perform the optimizer in try-on condition generator section. The reason why we only focus

on the try-on condition generator, because during the research process, we found this part

to be the most important part of the entire project cause the outputs of this step are the

shirt shape after being redrawn to fit the person, so choosing this part to optimize will gave

the most direct and obvious impact on the entire model architecture. We have verified the

changes ideals by retraining the entire model and checking the output metrics over 1000

steps and have obtained a preliminary assessment as follows:
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Figure 14: Score testing on 1000 steps

The figure above shows the results of testing some optimization ideals by changing a flew

layers and editing some hyper parameters. After a preliminary evaluation, we conducted

to see if the newly output are more beautiful and detailed than original structure and was

concluded that using LeakyReLU would gave a better results and get higher evaluation

metrics than the original.

Figure 15: ReLU vs LeakyReLU

The reason choosing LeakyReLU, LeakyReLU is often chosen over ReLU in machine learning

model design because it addresses the ”dying ReLU” issue by allowing for small negative

values. LeakyReLU is also more flexible in handling negative values and may help reducing

the risk of over-fitting. That lead to the encoder blocks can extract lots of pixel than using

ReLU at the activation function.
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Figure 16: Retrain 1000 steps on original model

Figure 17: Retrain 1000 steps with LeakyReLU
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5.3 Training on pre-train checkpoints

Initially, we planned to retrain the entire model from scratch with the input datas are image-

person and cloth-image provided by the author and remaining input such as DensePose,

OpenPose, etc. taken from our pre-processing steps and put all required parts and start

retraining model from scratch. However, during the process we encountered a problem of

not having enough hardware to be able to retrain with the same settings as the author gave

us. The solution we offer to solve this problem is that instead of retraining from scratch we

will train on the pre-train checkpoints provided by the author on 3000 steps per turn. The

figure below shows our results.

Table 3: 30000 steps training loss

STEP loss G L1 cloth VGG TV CE G GAN loss D D real D fake

3000 2.5698 0.0284 0.7785 0.3755 0.0248 0.5085 1.0031 0.4998 0.5033

6000 2.2659 0.0188 0.7176 0.3109 0.0211 0.5274 1.0061 0.5272 0.4790

9000 2.2266 0.0206 0.7617 0.3033 0.0170 0.4821 1.0225 0.4819 0.5406

12000 2.1098 0.0148 0.5683 0.3503 0.0161 0.5311 1.0070 0.5249 0.4821

15000 2.2145 0.0169 0.7119 0.3292 0.0177 0.4989 1.0180 0.4979 0.5201

18000 2.1277 0.0193 0.7142 0.3147 0.0216 0.3756 1.0685 0.3825 0.6860

21000 2.2928 0.0154 0.7064 0.3628 0.0121 0.5863 1.0319 0.5852 0.4467

24000 2.3089 0.0164 0.7624 0.3172 0.0164 0.5846 1.0217 0.5815 0.4401

27000 2.0604 0.0139 0.6622 0.3350 0.0133 0.4565 1.0187 0.4618 0.5569

30000 1.9883 0.0107 0.5643 0.3667 0.0135 0.4491 1.0431 0.4471 0.5960
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Table 4: Retrain 30000 steps results

STEP SSIM MSE LPIPS IS mean

3000 0.812811 0.054265 0.241237 3.108629

6000 0.813482 0.053982 0.239779 3.124469

9000 0.813805 0.053811 0.2389 3.128264

12000 0.812789 0.05404 0.240045 3.265919

15000 0.822069 0.052957 0.229872 3.265919

18000 0.82195 0.053811 0.226971 3.293342

21000 0.815857 0.051024 0.237209 3.294366

24000 0.816077 0.052957 0.236621 3.305738

27000 0.822359 0.053132 0.236827 3.310482

30000 0.822001 0.053142 0.235957 3.311385

Figure 18: Compare evaluation metrics
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Figure 19: Compare results between the original, 1000 steps and 30000 steps

5.4 Fail case analysis

During the process of training HR-VITON [23]model to generate images of clothing item on

the person’s body, some specific problems appeared, causing unexpected results during the

image generation process. Below is a detailed descriptions of these issues:

• Incomplete display of both arms due to poor generation results: One signif-

icant challenge the model is facing is its inability to generate sufficiently high-quality

images that display both arms of the model. This may result from inaccuracies in

the image generation process, possibly stemming from the model’s failure to learn the

complex relationships between different parts of the body.

• Inability to handle the length of the try-on shirt: Another issue is the model’s

incapacity to adapt to variations in the shape and length of the try-on shirt. If the

model is ineffective in mapping the relationship between the model’s body shape and

the necessary length of the shirt, the generated results may not accurately reflect the

clothing effect on the body.

• Poor quality of input images: An important challenge faced during the deployment

of the model is the low quality of the input images. If the images are of low quality,

containing noise or blur, the model will struggle to learn essential features of both the

clothing and the model’s body.
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– Noise and blur degrade performance: If the input images contain noise or are

blurry, the model will encounter difficulties in detecting and accurately reproduc-

ing the details of the clothing and the body. This can lead to the generation of

low-quality images that do not reflect the real-world state accurately.

– Insufficient information: Low-quality images may also result in the loss of crucial

information, reducing the model’s capability to learn the complex relationships

between the try-on clothes and the model.

Figure 20: Bad cases: (1) Missing body parts, (2) Person’s shirt too long, (3) Cannot handle

dress, jacket, etc.
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6 DISCUSSIONS

6.1 Experimental Results

Over the past 14 weeks, we have conducted error testing, tested the data set and the original

input processing steps that the author gave us, and retested the input processing steps we

gave. I did it myself then also tried optimizing the model in the try-on conditions section

and got some positive results when running the test on the image created after running the

test with the processing steps. Our input processing results show that the generated image

has a few points better than the original result of the original image. However, because the

time was only 14 weeks, our optimization was not completely completed, specifically we only

had enough time to test the optimization by only being able to retrain with 30,000 steps is

only 1/10 of the author’s, so our optimization evaluation is not very good, but with some

results compared to the author’s, we also provide some positive evidence for the optimization

step. ours. We also built a website for demos, but the total running time is still quite slow

because to be able to run the final result, the image will have to go through a few initial

processing steps.

6.2 User Interaction and Adaptability

A significant strength of our virtual try-on system lies in its natural and flexible user inter-

action. Users can seamlessly try on various clothing items without altering their primary

image, enhancing the overall online shopping experience. The system demonstrated versa-

tility in adapting to different types of clothing, spanning from formal wear to athletic attire,

making it a comprehensive and adaptable virtual fitting room.

6.3 Challenges and Future Enhancements

Although some initial steps have been taken to improve the quality of the images produced,

some challenges have also been identified, as mentioned above in some cases where the input

images are bad or some If parts such as hands are obscured, the image processing steps do

not provide the necessary conditions to be included in the main model, so the image created

will not be of good quality. or jacket,... will also affect the performance of the entire model.
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7 CONCLUSIONS

Through running and experimenting over a period of 14 weeks, we have seen the good

points and limitations of the model as mentioned above. Some directions for development

to improve image quality that we suggest are to continue letting the model learn with the

optimization we gave above and continue to go deeper into the try-on part. conditions

generator to be able to change the mathematical part that the author researched in creating

the image of the shirt after being redrawn to fit the model while continuing to research on

improving the application part to be able to reduce get runtime to optimize system resources.

In the future, if we have the opportunity, we will continue to test models for other types of

clothing such as pants, skirts, dresses, jackets, etc.
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