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ABSTRACT 
 

With the rapid development trend of the fashion e-commerce industry, people are 

purchasing most of their items online and are spending more on them, especially fashion 

items, since browsing different styles and categories of clothes is easy with just a few 

mouse clicks. However, with the convenience that online shopping provides, customers 

tend to worry about how the image of a particular fashion item on the website will fit them. 

Additionally, retailers tend to automate sales steps with AI technology gradually. Hiring 

models or photo studios to advertise products takes a lot of time and money for fashion 

retailers. To solve this problem, 3D virtual fitting technologies have been created, but the 

difficulty of measuring the depth of clothing and body shape takes more time than 2D 

images. In this project, we build a virtual fitting system using Deep Learning technology 

with input from 2D images of people trying on clothes. Our product undergoes two key 

phases: initially integrating the HR-VTON and GPVTON virtual try-on methods with 

DressCode and VITON HD datasets, aiming to present high-fidelity visual representations 

of garments. The meticulous preprocessing of user-provided data involves six structured 

steps followed by established methodologies. Addressing challenges in the Openpose step, 

including finger keypoint loss, requires a comprehensive reiteration of the Human Parse 

for the DressCode dataset. Experiments with low-resolution images prompted 

reassessment, substituting resolution enhancement with StableSR after SRGAN phrase 

generation. Efforts to balance realism and fidelity lead to meticulous crafting of user 

interaction aspects, integrating interface and backend functionalities for a virtual dressing 

room with super high-resolution image upscaling. These measures aim to enhance user 

experiences within the project's scope. The preprocessing phase refined Densepose and 

Agnostic steps for improved detail integration into the Try-on model. Challenges in the 

HR-VITON method, generating fixed-resolution and low-sharpness images, lead to the use 

of StableSR for resolution augmentation, surpassing input image resolution. The Virtual 

Dress Room offers "Virtual Dressing" and "Upscaling Resolution" features, allowing users 

to virtually dress models and flexibly adjust image resolution based on preferences. 

 

Additional Keywords: Deep Learning, Virtual Try-on, Image Super Resolution. 
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1. INTRODUCTION  

1.1 Motivation 

 

     Nowadays, people are purchasing most of their items online and are spending more on 

them, especially fashion items, since browsing different styles and categories of clothes is 

easy with just a few mouse clicks. Despite the convenience that online shopping provides, 

customers tend to worry about how a particular fashion item image on the website will fit 

them. 

 

 
Figure 1. Illustration of the benefits of dressing for models without having a photoshoot 

studio 

 

Research shows that shoppers who use dressing seven times more likely to make a purchase 

than those who buyer without. Not only that, but if the customer has a good experience 

with a sales assistant in the dressing rooms, they can buy up to three times as many items 

in one transaction. Recent surveys of Vue.ai have shown that retailers are 3x more likely 

to buy products when shown on models most representative to them, with a 23% uplift in 

average order value and an increase of 11.5% in returns. This tool is completely driven by 

AI and is taking us to a point where an average shopper considers a virtual dressing room 

to be roughly equivalent in quality to the physical experience, which is shown in Figure 1. 

Unlike a regular eCommerce experience, the Virtual Dressing Room gives shoppers an 

opportunity to become their own stylists and put together different looks and visual outfits 

on models on a screen from anywhere in the world. Product imagery is a vital component 

of retail e-commerce. These images help shoppers visualize what they may look like in 

person and on them. 75% of online retailer rely on product photos when deciding on a 

potential purchase. However, hiring models to take photos is costly for sellers. 
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Figure 2. Example Virtual Dressing Room Platform (Vue.ai) 

According to Vue.ai [1] in the US, product photos on models usually cost up to $500 for a 

single look, and in some cases, even more AI can save up to over 75% on photoshoot costs 

AI helps remove the need for many processes and resources required in traditional 

photoshoots. It removes a lot of the associated costs, making building product imagery a 

lot cheaper than what retailers have known till now AI can build product imagery five times 

faster than traditional processes. By reducing the number of processes and people involved, 

AI can build on-model product photos much faster than existing methods. This helps 

retailers go live with the products on their e-commerce site and start selling sooner. In 

short, virtual dressing rooms (Figure 3) not only bring value to shoppers but also help 

sellers cut out the costly process of hiring models to take product photos. 

 

Therefore, there is an urgent need to provide a quick and simple solution for virtual try-

ons. Instead of using 3D information such as depth and structure for images, we believe 

simply relying on a regular 2D photo is the most convenient and quick way to satisfy this 

need. 

 

1.2 Related works 
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1.2.1 Virtual Try-on 

Recent advances in the field of visual modeling have shown significant potential to drive 

revolutionary changes across a variety of fields. In particular, Generative Adversarial 

Networks (GANs), specifically networks that exploit architecturally efficient ways such as 

StyleGAN or more recent versions such as Diffusion Models, have highlighted advances 

noteworthy set in image synthesis. Realistic image ,in the field of human synthesis, the 

methods considered ,popular mainly use frameworks based largely on the ,StyleGAN 

model [2] [3] [4] [5] to yield the synthesis results are remarkably accurate. For example, 

StyleGAN-Human [6] focuses on three key factors considered important to achieve 

superior human synthesis [6] [7] dataset intensity, dispersion measure of data and data 

uniformity. At the same time, approaches such as InsetGAN [7] combine perfectly with the 

output from various pre- and post-trained GANs, specifically targeted at generating disjoint 

anatomical segmentations. virtual environments are based on visual representations of the 

entire human body. Differentiated modeling dominates virtual testing methods, which are 

largely image-based [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21], 

following a strict two-phase generation framework. These methods automatically adjust 

the processing of garments from inventory to fit the desired shape, then it searches and 

aggregates the output by combining the detailed adjusted garment with a reference version. 

Due to the direct correlation between the changing and deforming quality of the garment 

and the degree of authenticity in the output products, another aspect that also contributes 

is important regarding the development of tissues. This deformation module can be 

accommodated within a comprehensive framework. Some previous methods [9] [11] [15] 

[19] [20] [21] make good use of neural networks to be able to infer sparse control points to 

provide conditions. Adjust clothing in the target's image. Thus, making it possible to allow 

correction of clothing deformations. In contrast, alternative methods choose to estimate [8] 

[10] [12] [13] [14] maps for buoyant flows [22] to model truly heterogeneous deformations, 

lightening Shows the relative pixel position in the source image to each corresponding 

pixel in the target image. This approach, somewhat unlike techniques adapted based on 

Thin Plate Splines (TPS), directly predicts dense correspondence for each pixel, capturing 

extremely complex deformations efficiently. results compared to higher clarity. 

 

1.2.2 Image Super Resolution 

Recent investigations have shifted the focus from explicit preferences to exploring 

preferences as implicit, finding enhanced performance in domains with marked differences 

[23] pioneered the use of semantic segmentation probability maps as a tuning mechanism 

and guide for Super Resolution (SR) in feature space. Subsequent research efforts [24] [25] 

[26] [27] [28] [29] [30] have made quite liberal and extensive use of pre-trained Generative 

Adversarial Networks (GANs) [23] [25] [27] [28] to explore relevant high-resolution latent 

spaces derived from low-resolution inputs. Although these previous methods and 

approaches have proven to be adequate, the amount of implications they use is often 

tailored to specific situations, such as categories. is believed to be limited or facial imagery, 
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limiting the ability to generalize to complex real-world retention-first SR tasks [24] [26] 

[30]. Potential priors that can be given as alternatives in the field of orthogonal SR include 

the combination of decomposers and Vector Quantized Generated Adversarial Networks 

(VQGANs) [31] [32] [33]. However, these methods have limitations due to incomplete 

prior representation or inaccurate feature alignment, thus yielding output results of 

unsatisfactory quality. However, profound advances in Super Resolution (SR) imaging 

[34] [35] [31] have yielded impressive results [32], that can effectively minimize these 

shortcomings. previously encountered in this field. 

 

1.3 Objectives and Contributions 

In this project, we underwent two distinct development phases. Initially, our focus revolved 

around integrating and deploying the HR-VTON virtual try-on method in conjunction with 

the DressCode 80G and VITON HD 12G datasets. This strategic endeavor aimed to 

facilitate the presentation of high-fidelity visual representations of garments. The 

preprocessing of user-provided data and clothing samples, preceding their input into the 

system's model, comprised a meticulously orchestrated sequence of six structured steps. 

These steps were meticulously delineated within the confines of the established 

methodology outlined in the respective literature. Additionally, our efforts extended to 

addressing challenges encountered during the Openpose step, particularly in instances 

where the keypoint on the finger was lost. This situation necessitated a comprehensive 

reiteration of the Human Parse for the DressCode dataset. Our exploration of the HR-

VTON method encompassed experiments involving low-resolution images. This prompted 

a reassessment of the image enhancement stage subsequent to GAN-based phrase 

generation, resulting in the substitution of the resolution enhancement facet with StableSR. 

Moreover, to ensure a nuanced balance between realism and fidelity, we meticulously 

crafted the user interaction facet of our endeavor. This encompassed the design and 

integration of both interface and backend functionalities for the virtual dressing room, 

incorporating image upscaling capabilities utilizing super high resolution.  

These measures served as a testament to our comprehensive approach aimed at enhancing 

user experiences within the scope of this project. 

 

● In this project we are going to build the Virtual Dress Room application is 

equipped with two key features: "Virtual Dressing” allows users to dress the model 

virtually. The "Upscaling Resolution" feature enhances flexibility in resolution for 

both input and output images, catering to user preferences. 

 

● Through the evaluation process, we selected two methods with high performance, 

HR-VITON and GP-VITON, for the application. The preprocessing phase of input 
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data, we further refined both the Dense Pose and Agnostic steps components to 

enhance their level of detail before integrating them into the Try-on model. 

 

● The GAN model method is applied within the HR-VITON. However, the up-

sampling stage in this method generates images with fixed resolution and lacks high 

sharpness. Because, the SRGAN method exhibits a weakness in preserving 

perceptual information during upscaling procedures. To address these issues, 

StableSR is employed to augment resolution, offering customization to a higher 

resolution than the input image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. APPLICATION ARCHITECTURE 

2.1 System Architecture 

 

2.1.1 Architecture Overview   
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Figure 4. Proposed architecture 

 

As shown in Figure 3, the system architecture is divided into two main parts: the user 

interface (front-end) and the (back-end) side. 
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The user interface we designed includes integrated modules that make it easy to design 

user interface components and define display layout requirements: 

 

• Login Module: allows the use of authentication and authorization features to review 

request authentication from user access. 

 

• The Page Definition Module : is responsible for the specific interface, logic, and 

API configurations for the components considered in the Virtual Dressing Room 

website. 

 

• Form Viewer : used to detail conventions for user interfaces that can facilitate 

viewing, creating, deleting, and changing information; is a CRUD operation. 

 

• The List Viewer : takes care of displaying tabular data. And the view component 

templates list all HTML components and subsequent custom components. 

 

 

Back-end handles all data operations and technical and AI server management. 

 

● ORM Module: Helps map data records in the database management system to object 

form, serving to map API pre-process data for each model. 

 

● Virtual Try-on Module: Generate images from try-on model on the AI server, then 

return the result as images.  

 

● Image Upscaling Module: Upscaling image resolution from the super resolution 

model in the AI server 

 

● Change Models and Clothes Images Module: Allows users to change input models 

and clothes images. Data uploaded has been processed and saved in the database 

serving the Virtual-Tryon module and upscaling module. 

 

● Virtual Try-on API : Includes uploading model images, uploading clothing images, 

downloading try-on images, and converting input images to base64 format. 

 

● Image Upscaling API : Includes uploading images, downloading images from super 

resolution model, and converting input images to base64 format. 
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● Databases : Are used for storing, maintaining, and accessing any sort of data. It can 

be relational, non-relational or customized. 

 

 
Figure 5. Pipeline of the Virtual Dressing Room application 

The Virtual Dressing Room Application follows a defined pipeline in Figure 4. Initially, 

users upload the model and clothing images. Subsequently, the exception module 

scrutinizes the input format; if it aligns with (.JPG or .PNG) image formats, the data 

proceeds to the Pre-processing module. Within this module, the data undergoes a six-step 

preprocessing phase before being archived in the database. The Virtual Dressing Feature 

retrieves the processed data from the database, leveraging a deep learning model to 

generate and display image results on the screen. At this juncture, users are presented with 

three options: first, if content with the image, they can progress to the post-processing step, 

converting it to optional (.JPG or .PNG) formats for download. Secondly, if unsatisfied 
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with the image's resolution, users may utilize the Upscaling Image Feature to enhance 

resolution before downloading the image. The final option enables users to upload low-

resolution images; the system increases the resolution, integrates it into the virtual dressing 

feature, and subsequently provides a downloadable final image after post-processing. 

 

2.1.2 Data Processing Module 

 

 
Figure 6. Data Processing Flow 

The processing of user uploaded data is described in Figure 5. Initially, the user's photo 

will be checked to see if it is the valid resolution, if not, the photo will be adjusted to the 
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appropriate size. After that, human images will go through three methods to process the 

data: Human Parse, Densepose and Human Pose Detection. These three methods of 

processing person images are independent of each other at this step. Also in this step, the 

garment image will pass through the Tracer-B7 model to generate an image called "cloth-

mask", which separates the garment from the background of the image. Then, the results 

of the above are gathered for the next step including two methods Human Agnostic and 

Garment Agnostic, returning images showing the areas of the body identified to wrap new 

clothes when the image goes through the try-on model. After the entire above process, the 

original image along with the results obtained will be pushed into the database, to make it 

more convenient for use. 

 

2.1.3 Virtual Dressing Room Feature  

 

 
Figure 7. Virtual Dressing Room Feature Flow 

 

Initially, when the user presses the virtual dressing button, the virtual dressing feature 
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retrieves the processed data from the database, leveraging a deep learning model to 

generate and display image results on the screen. Then the images in the database will go 

through the Try-on Condition Generator Module to generate model images, and the clothes 

will be processed according to the conditions. The image is then passed through the Try-

on Image Generator Module to attach warping clothing images to the model. Then, users 

are presented with two options: first, if they are content with the image, they can progress 

to the post-processing step, converting it to optional (.JPG or .PNG) formats for download, 

or they can return to the image selection step. shirts and models to continue to choose from. 

Secondly, if unsatisfied with the image's resolution, users may utilize the Image Super 

Resolution Module to enhance resolution before downloading the image or may return to 

the step of selecting clothes and models to continue try-on show in Figure 6. 

 

2.1.4 Upscaling Image Feature 

 
Figure 8. Upscaling Image Feature Flow 

At first, the user presses the virtual dressing button, and then the data is uploaded from the 

input image. The image undergoes a check for format exceptions. If it complies with the 
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format (.JPG or .PNG), it proceeds to the encoder module for processing. The image is 

transformed into vector encoder format. Subsequently, in the diffusion step, the image 

module undergoes spatial feature transformation (SFT) and noise addition as per the 

diffusion mechanism. Following this, in the denoising module, the image is denoised using 

the U-Net diffusion mechanism, enhancing its resolution while decoding and retaining 

crucial photo information. The Decoder Module computes the decoder and generates the 

resultant image. Afterwards, the image is saved in the database before potential download 

for virtual dressing purposes, if required by the user. Finally, the higher resolution image 

can be downloaded in two size options: x2 and x4, compared to the original image, based 

on the user's preferences from the image download module show in Figure 7.  

 

2.2 Model Application Overview   

2.2.1 Data Processing Implementation  
 

 
Figure 9. Overview of a VITON-HD [10] 

The primary objective is to enable our system to efficiently process and produce high-

quality photos, irrespective of their source. To accomplish this, we have developed a multi-

step preprocessing procedure. We advise that photos ideally exhibit a well-lit background 

with distinct edges delineating the background from the subject (human or garment).  

 

In order to achieve the goal that create a synthetic image of the same model wearing target 

garment, where their details are preserved, human pose estimation accounts for the largest 

proportion in the entire procedure.  
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Figure 10. Input and output of detecting human key points 

 

We use Openpose [36] to detect human key points on the input image, which will be 

returned as a JSON file consisting of a set of key points whose ordering is related to the UI 

output as the image accompanies in Figure 9. Variations in human poses lead to different 

deformations of clothing, and the pose format output we chose is BODY_25, so the 

computed pose of a person is represented as coordinates of 25 key points.  

 

Along with Openpose, PGN [37] is a deep learning method for semantic part segmentation, 

instance-aware edge detection, and instance-level human parsing built on top of 

Tensorflow. The PGN is trained and evaluated on the Crowd Instance-Level Human 

Parsing (CIHP) Dataset for instance-level human parsing. We applied that CIHP_PGN 

model, which is shown in Figure 10,  in our preprocessing procedure for the purpose of 

recognizing each semantic part (e.g., arms, legs, clothes).  
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Figure 11. Input and output of recognizing semantic parts 

For the pose map, we used Densepose [38] to generate dense pose estimation, which maps 

all pixels of the person's regions in the RGB image to the 3D surface of the person’s body, 

which is shown in Figure 11.  

 

For getting the same image as VITON-HD dataset, we changed “alpha” from 0.7 to 1 and 

“inplace” is set to False in “DensePoseResultsFineSegmentationVisualizer” class from file 

densepose_results.py when initialized that class. Garment processing is also a critical part 

in the procedure, and we use the Tracer-B7. 

 
Figure 12. Input and output of dense pose estimation 
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segmentation network, which is contained in the CarveKit framework, for high-quality 

background removal. 

 
Figure 13.  Input and output of cloth mask generation 

At the end, as shown in Figure 13, we use parsing images and JSON files with key points 

to compute Parse Agnostic and Human Agnostic according to parse labels and 

corresponding body parts.  

 
Figure 14. Qualitative result of data processing with upper-clothes 
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Each garment requires a different set of labels; for example, the upper-cloth requires the 

head, hair, and lower body to be left intact. Leveraging insights from the above steps, we 

have extended our capabilities by developing two specialized pipelines dedicated to the 

processing of lower-clothes and dresses data. Our new processing pipelines’ results can be 

found in Appendix. 

 

2.2.2 Virtual Try-on Model Inference 
 

With the Virtual Dressing Room Feature module Virtual Try-on, we apply the HR Viton 

method composed of two stages: Try-on Condition Generator and Try-on Image Generator 

which is shown in Figure 14 .The Try-on Condition Generator aims to produce a 

segmentation map serving as conditions for the Try-on Image Generator. Extracted features 

are directed into the decoder's feature fusion blocks, where feature maps from distinct 

pyramids merge to predict the segmentation map and the flow required for garment image 

warping. 

 
 

Figure 15. Overview of the proposed method (HR-VITON) 

Following this phase, the HR Viton technique's Try-on Image Generator functions to 

produce the ultimate test image, designated as I. This generation process involves 

amalgamating the clothing-agnostic image 𝐼𝑎, the deformed clothing image 𝐼𝑐 , and the 

pose map P, guided by 𝑆̂. The test image generator comprises a sequence of residual blocks 

complemented by up-sampling layers. These blocks incorporate SPADE [39] as a 

normalization layer, modulating parameters derived from 𝑆̂. The authors adopt identical 

loss functions as those utilized in SPADE [39] and pix2pixHD [40]. Additionally, the 

authors introduce a discriminative technique aimed at sieving out the low-quality 

segmentation map generated by the test condition generator during test instances. The 

acceptance probability for input x is delineated as: 
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                                          𝑃 𝑎𝑐𝑐𝑒𝑝𝑡(𝑥) =
𝑃𝑑(𝑥)

𝐿𝑃𝑑(𝑥)
                                               (1) 

Where Pd and Pg are the data distribution and the implicit distribution given and considered 

by the reconstructor with L being the normalization constant. When the author uses the loss 

of least squares GAN, this discriminator is considered as the optimal treatment which is 

derived as follows:              

 

                                               𝐷(𝑥)
∗ =

𝑃𝑑(𝑥)

𝑃𝑑(𝑥)+𝑃𝑔(𝑥)
                                                 (2) 

 

The probability of acceptance can be expressed using the discriminator D(x):  

 

                                              𝑃 𝑎𝑐𝑐𝑒𝑝𝑡(𝑥) =
𝐷(𝑥)

𝐿(1−𝐷(𝑥))
                                        (3) 

 

This equality only shows that it is satisfied if D = D∗. L is written as follows (4) In practice, 

the author constructed x from the feature of the segment map and the input consideration 

conditions (i.e. P, Sa, c and cm) and obtained L by use the entire data set.      

                                 

                                                  𝐿 = max
𝑥

𝐷(𝑥)

(1−𝐷(𝑥))
                                                 (4) 

 

2.2.3 Method of Upscaling Image for Try-on  

 

 
Figure 16. The detailed of Upscaling Stage of the Try-on Image Generator (HR-VITON) 

The generator consists of a series of residual blocks adjusted with upsampling layers which 



  Capstone |FPT University 

24 
 

are then divided into two multi-scale discriminators used for the considered conditional 

adversarial loss. Spectral normalization [19] is applied and adjusted to accommodate all 

relevant convolutional layers. The method used is similar to the loss applied and adapted 

by the author in the SPADE [39] and pix2pixHD [40] methods. Specifically, their super-

complete objective functions mentioned by the author include adversarial loss with specific 

conditions, perceptual loss, and loss with appropriate characteristics, which is shown in 

Figure 15. However, during inference, we found that pix2pixHD GAN does not perform 

well in generating Image Upscaling results. Therefore, we export the Try image upgrade 

method using StableSR, which is shown in Figure 16. 

 
Figure 17. Framework of StableSR 

The StableSR method requires fine-tuning a time-aware encoding module that appears to 

have been integrated into the existing Stable Diffusion Model (depicted in Figure 16). This 

simple yet powerful design takes advantage of the ultra-wide diffusion inherent to super-

resolution (SR) imaging. To more precisely control and tune the generation process, an 

additional encoder is considered and integrated to extract multi-scale features {𝐹𝑁} 𝑛=1
𝑁  

from the features recognized from the image LR is impaired. This refinement process 

covers a wide range of issues including the use of features in combination with Spatial 

Feature Transfer (SFT) layers, leading to the establishment of a trainable model. These 

extracted features were used to completely match the intermediate feature maps {𝐹𝑑𝑖𝑓
𝑛 } 𝑛=1

𝑁  

of the redundant blocks in Steady The diffusion framework requires the use of 

transformations that have in [23]: 

 

                            𝐹̂𝑛
𝑑 = (1 + 𝛼𝑛) ⊙ 𝐹𝑑

𝑛 + 𝛽𝑛; 𝛼𝑛, 𝛽𝑛 = ℳ0
𝑛(𝐹𝑛)                        (5) 

 

In this framework, αn and βn represent affine parameters, while 𝑀θ
𝑛represents a compact 
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network consisting of several convolutional layers. The subscript 'n' describes the spatial 

scale attributed from U-Net architecture [41] nested within the Steady Diffusion 

framework. After that, the diffusion pattern remains unchanged.  

 

                                             𝐹𝑚 = 𝐹𝑑 + 𝒞(𝐹𝑒; 𝐹𝑑; 𝜃) × 𝑤                                      (6) 

 

The author introduces the Controllable Feature-Wise (CFW) module, which changes the 

Fm feature modulation by combining additional Fe information from LR features and Fd 

features from the established decoder. Through an adjustable 'w' factor, the CFW module 

facilitates a balance between quality and fidelity. Taking advantage of the autoencoder's 

latent space, using encoder features to adjust corresponding decoder features in Steady 

Diffusion enhances fidelity.                    

 
Figure 18. The proposed super resolution method with StableSR for Try-on Image 

Generator 

The use of a time-aware encoder allows to achieve promising recovery results without 

having to modify the pre-established synthesis model, thus proactively reducing training 

costs. Minimizing and predicting training costs becomes possible. Additionally, a 

progressive ensemble sampling strategy has been built to overcome fixed size limitations 

in pre-trained diffusion models, allowing adaptability to solutions of varying sizes. 

Addressing the loss of fidelity that arises from the inherent randomness of the diffusion 

model involves the use of a controllable feature pack module, allowing users to adjust 

quality in real time versus fidelity by adjusting scalar values during inference. different. A 

comprehensive evaluation of our approach, using both synthetic and real benchmarks, 

highlights its superiority over existing state-of-the-art methods. 

 

3. SYSTEM DESIGN & IMPLEMENTATION  

 

The Odoo Framework [42] stands out as a robust and flexible platform tailored for 

application development, offering a wide array of tools and functionalities necessary for 

creating complete business solutions. Its prowess particularly shines in e-commerce, 

providing robust capabilities that empower businesses to establish and manage online 
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stores. Python is the primary language within the Odoo framework for backend 

development and is extensively employed in defining models, implementing business 

logic, and crafting customizations. With its lucid syntax and extensive standard library, 

Python is an optimal choice for constructing intricate and scalable e-commerce 

applications. 

 
Figure 19. System deployment architecture 

Various enterprises, including Faber-Castell, Danone, and Luxe Decor, harness the potent 

capabilities of Odoo-ecommerce to fashion and oversee their online retail platforms. 

Within your specific design, the Odoo server seamlessly integrates PostgreSQL [43] as its 

foundational database, incorporating it seamlessly into the overarching architecture. 

Moreover, the Odoo service establishes seamless communication with an AI model, 

generating responses that are subsequently transmitted to the frontend. Developed using 

HTML, CSS, and JavaScript, the frontend interacts with the Odoo service through a direct 

RESTful API integration. This API acts as a conduit, facilitating smooth and efficient 

communication between the frontend and the Odoo service. Such an approach enhances 

the system's functionality and user experience by enabling seamless data retrieval, 

manipulation, and other interactions between the two components. 

 

3.1 Backend 



  Capstone |FPT University 

27 
 

Odoo employs the Model-View-Controller (MVC) architectural pattern to manage requests 

and interact with data, leveraging the Python programming language for its construction. 

The backend communicates with an AI model service, facilitating the integration of 

artificial intelligence into the system. This integration is enabled through a rapid API that 

streamlines communication with the AI model. Responsible for processing logic, data 

management, and offering APIs to the frontend, the backend also manages the storage and 

preprocessing of image data for AI models. This effort aims to decrease processing time 

by executing preprocessing tasks on the image data before passing it to the primary AI 

model for processing.  Explore the functionality of the Try-On API .  

Table 1. API Web Application 

API Method URL Description 

Dashboard try-on Post /try-on 
Returns list products, models, and 

test function dressings. 

Open upscale Post /upscale-image 
Opens the interface for users to 

upload photos and upscales image 

Upon a user's selection of a model image and a product, the system triggers the Try-On 

API. This action involves retrieving the preprocessed images of both the model and the 

product, subsequently invoking the AI Service API. The preprocessed images serve as 

inputs for the AI Service API, which then returns the result—a visualization of the try-on 

effect—displayed on the interface for the user's evaluation.  

Table 2. API Model AI 

API Method URL Description 

Dressing clothes Post /process_image 
Receives input images of models and 

outfits and returns fitting results 

Upscale image Post /upscaleImage 

It takes as input an image and an 

upscale parameter, and the returned 

data is the image after being upscaled 

This seamless fusion of the Try-On API and the AI Service API empowers users to make 
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informed decisions about their desired products and visualize how they would appear when 

worn. Similarly, the system engages the Upscale API when a user chooses an image. Before 

presenting the result to the user, the system utilizes the AI Service's Upscale API. its 

resolution. The selected image undergoes processing via AI algorithms, enhancing its 

quality or increasing .The system retrieves the processed data from the Upscale API, 

presenting an improved version of the chosen image to the user. 
 

3.2 Frontend 

 
Figure 20. Flow chart in the application 

 

The front-end of the system is developed using the core technologies of HTML, CSS, and 

JavaScript (JS). These technologies form the foundation for building interactive and user-
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friendly interfaces. In particular, JavaScript plays a significant role in handling user actions, 

and the front-end relies extensively on the Document Object Model (DOM) API for 

manipulating elements and responding to user interactions. The front-end built on the core 

layout of Odoo, with the inheritance of user management and product management 

functionalities, brings convenience and ease of use to system administrators and users 

alike. CSS is used in front-end development in Odoo to control the visual aspects of the 

user interface. Responsive design techniques are employed to create interfaces that adapt 

to different screen sizes, ensuring a consistent experience across mobile devices in Figure 

19.  

 
Figure 21. Flow chart in try-on function 

When accessing the system, users can directly access the upscale function, where they can 

select photos in an existing folder or upload new photos and then perform the upscale 

function. And users can download the returned results image. When accessing the system, 

users can access the fitting room. After selecting the outfit and model and trying on the 

outfit, the user can continue to perform the upscale function from the resulting image. And 
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the result after upscaling allows downloading. In the virtual fitting room function, as shown 

in Figure 20, users can view models' photos and outfits. It is allowed to change photo 

models and outfits based on photo data available on the system and photos uploaded by 

users. After each outfit selection, the fitting results are returned immediately. 

 

Below is the actual user interface in Figure 21 and 22 : 

 
Figure 22. User interface of Virtual Dressing Room 

 

 
Figure 23. User interface of Upscale Image 
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3.4 Communication 

 
Table 3. Communication types 

Types Communication Description 

Client-server 
RESTful HTTP request and 

response 

Almost all client-server requests 

and responses 

Odoo server - 

AI server 
Fast API 

All requests from the backend call 

to the AI service. 

 

There are two types of communication, client-server, and Odoo server - AI server. In Table 

3, we attempted to summarize the used technologies as follows.  

 

4. EXPERIMENT AND EVALUATION  

4.1 Experiment Settings 

 

With the goal of gaining an objective view to compare the capabilities that match the 

resources and efficiency we desire, we have collected and installed models as well as data 

sets, details of which can be consulted. Refer to tables 4, 5 and 6. 

 

Table 4. Information of datasets that we collected and used to test 

Source Dataset 
Number of 

Images 

Image Size 

(pixels) 
Image Type 

VITON-HD [9]  VITON-HD 1024 2032 1024 x 768 JPG 

DressCode [38] 

Lower-clothes ~900 

512 x 384 PNG Upper-clothes ~800 

Dresses ~900 

 

To ensure smooth functionality, our application incorporates over 2800 model photos and 

an equivalent number of upper-clothes. Approximately 2000 images are sourced from the 

VITON HD dataset (1024 x 768), covering various upper-clothing types, while the rest 

come from the DressCode dataset (512 x 384). All images, including persons and garments, 
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are in .JPG format for streamlined processing and data consistency. Additionally, we've 

gathered around 900 images each for dresses and lower-clothes from DressCode (512 x 

384) to enhance application diversity. In selecting a model for Feature Upscaling, we tested 

two approaches—StableSR for Stable Diffusion and BSRGAN for GANs. Our objective 

is to upscale images from our dataset (512 x 384) by a factor of 2, optimizing for limited 

resources and application requirements. 

 

Table 5. Experiment settings of upscaling models 

Model Approach Framework GPU Platform 

Image 

Size 

(Input) 

Upscaling 

Factor 

StableSR 

[44] 

Stable 

Diffusion 
FastAPI 

A100 
Google 

Colab 

512 x 384 2 

RTX 4090 Vast.ai 

Real – 

ESRGAN 

[45]  GANs - T4 
Google 

Colab 
BSRGAN 

[46] 

 

When conducting experiments with try-on models, our goal is to ensure stable output while 

optimizing the available resources. Details regarding the configurations we employ are 

listed in Table 6. 

 
Table 6. Experiment settings of try-on models 

Model Framework GPU Platform 

VITON HD - T4 Google Colab 

HR VITON Flask API 
RTX 3090 

Vast.ai 
RTX 4090 

GP VTON Fast API 
RTX 3090 

RTX 4090 

 

 

4.2 Experimental Comparison 

 

4.2.1 Upscaling Feature Metrics Comparison 
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We compare models based on Structural Similarity (SSIM) in (7) and Learned Perceptual 

Image Patch Similarity (LPIPS) aims to evaluate the ability to retain image structure and 

assess the degree of perceptual similarity between two images. The SSIM index is 

calculated on various windows of an image. The measure between two windows x  and y 

of common size N x N is:  

  

                                                                 (7)        

 

With: 

• µx : the pixel sample mean of x 

• µy : the pixel sample mean of y 

• σ2
x : the variance of x  

• σ2
y : the variance of y 

• σxy : the covariance of x and y 

• c1 = (k1L)2, c2 = (k2L)2  two variables to stabilize the division with weak 

denominator 

• L is the dynamic range of the pixel-values (typically this is 2#bits per pixel – 

1) 

• k1 = 0.01 and k2 = 0.03 by default 

 

The Learned Perceptual Image Patch Similarity (LPIPS) metric is a method used to assess 

the perceptual similarity between two images. It is designed to capture the human visual 

perception of image quality and is particularly useful in evaluating the performance of 

image processing algorithms, such as image compression or image generation models.  

 

Table 7. Qualitative results when comparing models on common benchmarks 

Dataset Metrics 
Real – 

ESRGAN 
BSRGAN StableSR 

VITON HD 512 

SSIM↑ 0.6422 0.6120 0.8173 

LPIPS↓ 0.3397 0.3652 0.1907 

DressCode 

SSIM↑ 0.7683 0.7840 0.8609 

LPIPS↓ 0.2043 0.2173 0.1367 
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Table 8. Quantitative results when comparing Models on other benchmarks [44] [45] [46] 

Dataset Metrics BSRGAN 
Real – 

ESRGAN+ 
Stable SR 

DIV2K Valid 

CLIP-IQA ↑ 0.5246 0.5276 0.6771 

MUSIQ ↑ 61.19 61.05 65.92 

RealSR 

CLIP-IQA ↑ 0.5114 0.4495 0.6234 

MUSIQ ↑ 63.28 60.36 65.88 

DRealSRSS 

CLIP-IQA ↑ 0.5091 0.4515 0.6357 

MUSIQ ↑ 57.16 54.26 58.51 

 

The LPIPS metric is often used in computer vision and image processing research to 

evaluate the visual quality of generated images or to compare the performance of different 

algorithms. It provides a quantitative measure of how well the perceptual qualities of two 

images match, taking into account factors like color, texture, and structure. We measured 

two parameters SSIM and LPIPS on images using StableSR, our chosen method, and we 

got the results SSIM ≈ 0.8173 and LPIPS ≈ 0.1907 when using RTX 4070 on Vast.ai, 

consumed over 18GB of VRAM and 23GB of RAM and took us nearly 38s to process one 

image each. Besides SSIM and LPIPS, we would like to incorporate additional metrics to 

compare the capabilities of the models, which are CLIP-IQA [47] and MUSIQ [48].  

 

4.2.2 Upscaling Feature Models Cost Comparison 

 

With Vast.ai, we rented the two most commonly used GPUs in many Deep Learning 

problems, which are RTX-3090 and RTX-4090. They all have 24GB of VRAM and we 

always set the memory (storage) used during use on Vast.ai to 80GB, all with CUDA 12.2 

installed. Due to security policies and installation difficulties, BSRGAN and Real - 

ESRGAN are not currently being measured on Vast.ai GPUs. 
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Table 9. Synthesize the running time of the models 

 Time cost per image (seconds) 

Hardware BSRGAN StableSR  Real-ESRGAN 

CPU (Hugging Face) 137 - - 

T4 (Google Colab) 1,02 - 5,7 

RTX-3090 (Vast.ai) - 64 - 

RTX-4090 (Vast.ai) - 38 - 

A100 (Google Colab) 0,82 62 1,1 

 

With Google Colab, we tried using their free GPUs, which are T4 and V100, but the VRAM 

of both did not meet the applicability of StableSR model as well as BSRGAN (CUDA out 

of memory error). So, we turned to their high-end GPU, the A100 with 40GB of VRAM 

and also 80GB of storage. 

 

4.2.3 Try-on Feature Models Comparison 

 

We use the same metrics we used in Upscaling Feature to evaluate to evaluate the ability 

to retain image structure and assess the degree of perceptual similarity between two images. 

 

Table 10. Quantitative results when comparing models on benchmarks [9] [16] [49]. 

Dataset Metrics VITON HD HR VITON GP VTON 

VITON-HD 512 
SSIM↑ 0.843 0.878 0.8939 

LPIPS↓ 0.076 0.061 0.0799 

VITON-HD 1024 
SSIM↑ 0.873 0.892 0.8946 

LPIPS↓ 0.077 0.065 0.173 

DressCode Upper 
SSIM↑ - 0.8642 0.8866 

LPIPS↓ - 0.1132 0.0729 
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We used the published data of HR-VITON [16] and GP-VTON [49] to evaluate try-on 

models in order to show correlation comparisons based on scales for different datasets, 

which are VITON-HD 512 x 386, VITON-HD 1024 x 768 and DressCode Upper-clothes 

type. In the case of VITON-HD, we have not yet found appropriate DressCode data 

preprocessing for the model, so we do not have VITON-HD results on this data set. In 

addition, in the case of GP-VTON with the VITON-HD dataset of size 1024 x 768, since 

the information published in the paper is not sufficient to conclude, we have measured the 

SSIM and LPIPS of GP-VTON on VITON-HD 1024 dataset with results listed in Table 10. 

 

The evaluation of the HR-VITON model's running time on the VITON-HD 1024 x 768 

dataset yielded a noteworthy observation. Unlike GP-VTON and VITON-HD models, HR-

VITON exhibited a 5 - 6 seconds extension in execution time. This discrepancy is attributed 

to the chosen evaluation method involving API calls. The model's prolonged runtime is 

primarily due to additional time spent reading data from requests and modifying outputs, 

making it crucial to consider these nuances when comparing execution times across 

different models. The results can be found at Table 11. 

 

Table 11. Synthesize the running time of the models 

 Time cost per execution (seconds) 

Hardware VITON HD HR VITON  GP VTON 

RTX-3090 (Vast.ai) 6 ± 2  18 ± 5 8 ± 5 

RTX-4090 (Vast.ai) 4 ± 2 13 ± 5 5 ± 3 

 

 
 

4.3 Results 
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Figure 24. Qualitative comparison of Upscaling models (1) 

 

 
 

Figure 25. Qualitative comparison of Upscaling models (2) 
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Figure 26. Qualitative comparison of Upscaling models (3) 

 

Figure 27. Qualitative comparison of Upscaling models (4) 
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Figure 28. Qualitative comparison of Try-on models on VITON-HD dataset 

 

 
 

 

Figure 29. Qualitative comparison between before and after using StableSR for VITON 

HD result on VITON-HD 1024 dataset 
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Figure 30. Qualitative comparison between before and after using StableSR for HR 

VITON result on VITON-HD 1024 dataset 

 
Figure 31. Qualitative comparison between before and after using StableSR for GP-VTON 

result on DressCode dataset 
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StableSR, despite its extended execution time, stands out for producing images of 

unparalleled sharpness and realism. This remarkable visual fidelity comes at the cost of 

computational efficiency, setting it apart from the swifter but less visually striking GAN 

models show in Figure 23-26. Our experiments reveal a compelling interplay between 

execution time and image quality, underscoring the diverse applications each model may 

be best suited for. Within the realm of Try-on models, the dynamics between GP-VTON 

and HR-VITON unveil intriguing insights. Despite GP-VTON's meticulous attention to 

clothing details during the "warping" process, the emphasis on garment processing 

unintentionally reduces the ability to retain person’s details . In addition, with high-

resolution (Ex: over scale 1024) images GP-VTON does not produce satisfactory results 

shown in Figure 27. This contrasts with HR-VITON, which adeptly strikes a harmonious 

balance between clothing and model image processing. The result is a synthesis of detailed 

garments and faithfully preserved person’s details, contributing to a more comprehensive 

and aesthetically pleasing outcome. 

 

Our findings prompt a deeper consideration of model attributes beyond mere execution 

time, urging practitioners to weigh the trade-offs inherent in each design. While StableSR 

excels in producing visually stunning images, its prolonged runtime may necessitate 

strategic implementation. Similarly, the nuanced differences between GP-VTON and HR-

VITON prompt a thoughtful selection based on the specific requirements of the application 

at hand. When combining the Try-On feature and the Upscaling feature, the result is high-

resolution photos that still retain maximum details of clothes and people, which is shown 

in Figure 29-30. This combination will help users' experience be raised to a new level every 

time they want to see themselves in new clothes. 

 

5. CONCLUSION  

 

This project involves the construction of a virtual fitting system employing Deep Learning 

technology and utilizing 2D images depicting individuals trying on attire. The 

developmental process of our product encompasses two pivotal phases. Initially, it 

integrates the HR-VTON and GPVTON virtual try-on methodologies with the DressCode 

and VITON HD datasets, aiming to present highly detailed visual representations of 

garments. The methodical preprocessing of user-provided data comprises six structured 

steps adhering to established methodologies. Addressing challenges encountered during 

the Openpose step, notably the loss of finger keypoints, necessitates a comprehensive 

reiteration of the Human Parse for the DressCode dataset.  
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Experiments conducted with low-resolution images prompted a reassessment, replacing 

resolution enhancement with StableSR subsequent to SRGAN phrase generation. The 

endeavor to strike a balance between realism and fidelity led to the meticulous crafting of 

user interaction facets, culminating in the seamless integration of interface and backend 

functionalities to create a virtual dressing room capable of super high-resolution image 

upscaling. These measures are aimed at enhancing user experiences within the scope of 

this project. The preprocessing phase has refined both Densepose and Agnostic steps to 

ensure improved integration of detail into the try-on model. Challenges encountered within 

the HR-VITON method, particularly in the generation of fixed-resolution and low-

sharpness images, prompted the adoption of StableSR for resolution augmentation, thereby 

surpassing input image resolution. Our evaluation comparing StableSR and SRGAN 

demonstrates the superiority of the StableSR method in the super resolution stage for try-

on images. The Virtual Dress Room provides "Virtual Dressing" and "Upscaling 

Resolution" features, empowering users to virtually dress models and flexibly adjust image 

resolution to suit individual preferences.  

 

However, concerning the future trajectory of this work, challenges persist in the runtime 

of StableSR models when upscaling large images, resulting in considerable time 

consumption. Additionally, the considerable GPU hardware requirements for all models 

necessitate further optimization for practical application. Further preprocessing methods 

are deemed necessary to align input images with the model's specifications. Furthermore, 

there is an intention to enhance the preprocessing component of the GP-VTON method 

within the virtual try-on module, with the objective of augmenting the performance 

pertaining to the virtual try-on problem. Consequently, future research endeavors will be 

directed towards addressing these aforementioned issues to enable the handling of such 

challenges. 
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APPENDIX 
 

 
Figure 32. Qualitative results of preprocessing lower-clothes 

 
Figure 33. Qualitative results of preprocessing dresses 
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Table 12. List of labels that we used to preprocess new image 

Label  Name 

0 Background 

1 Hat 

2 Hair 

3 Glove 

4 Sunglasses 

5 Upper-clothes 

6 Dress 

7 Coat 

8 Socks 

9 Pants 

10 Tosor-skin 

11 Scarf 

12 Skirt 

13 Face 

14 Left-arm 

15 Right-arm 

16 Left-leg 

17 Right-leg 

18 Left-shoe 

19 Right-shoe 

 


