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ABSTRACT 

Instead of conventional searches on websites, there is a trend of creating chatbots 

to ask and answer questions with customers, increasing interaction and customer 

experience. In this work, we present a chatbot system in the financial sector. 

Chatbots working with customers handle the website platform, customers can 

note the development of an exciting, great quality platform leading to more 

conversions and outstanding leads. This is especially true for businesses that need 

to attract many customers. Chatbots can provide instant information and answer 

users questions quickly, helping them access information effectively. Chatbots 

can create intuitive and enjoyable interactive experiences that help attract and 

maintain customer interest. This article presents the collaborative design between 

the Langchain framework and large language models (LLMs) such as ChatGPT, 

LLaMA....Large language models have demonstrated great potential in natural 

language processing tasks in the financial sector. Langchain framework is 

deployed on many projects, helping to significantly reduce time and costs. The 

chatbot system helps people access information faster. Normally, searching for 

financial information takes about 7-10 seconds, while the chatbot system 

extracting information takes about 3-5 seconds. Stockscan.io is a website in this 

field. In the financial sector, it is also a test case to test the system. The chatbot 

system can be applied to fields beyond finance and can be further improved. 

Keyword: ChatBot AI, Large Language Model, RAG, Langchain, US stock    
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I. INTRODUCTION 

1.1 Problem 

In this article, we will build an AI Chatbot system for websites about US stocks. 

First of all, we will learn about the applications and benefits of chatbots in 

businesses described in Fig.1. Chatbots offer businesses numerous applications 

and advantages. They enhance customer experience by providing instant support 

and guidance, optimizing customer support processes and reducing operational 

costs. Additionally, chatbots serve as effective marketing tools, engaging 

customers and promoting products. Their interactions also yield valuable insights 

into customer behavior, enabling businesses to refine strategies and make 

informed decisions. Automation, a vital need for every business, is addressed as 

chatbots contribute to automating customer care work, particularly crucial in the 

fast-paced and dynamic stock market environment. The growing necessity for 

chatbots is emphasized, especially considering the limited availability of 

specialized systems for the stock market. Hence, owning a chatbot system 

becomes a significant advantage, enhancing the business's market position and 

attracting more users to the business. In essence, integrating chatbots into 

business strategies improves competitiveness, streamlines operations and adapts 

to the dynamic demands of the modern business landscape. 

Website stock is a website that provides information about the stock market, stock 

prices, market indices, economic news and other financial services. Stock 

websites often provide tools for investors and traders to track and analyze market 

data, making smart investment decisions. Building a chatbot website offers 

several significant advantages. Firstly, it enhances customer experience. 

Secondly, it saves time as chatbots can handle multiple requests simultaneously, 

operating 24/7 to improve service quality. Thirdly, incorporating Chatbot AI adds 

an interesting feature, increasing the attractiveness of your website and attracting 

more customers by delivering valuable stock market information.  
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Fig.  1. Benefits of chatbot for business 

1.2 Related work 

Cheonsu Jeong technical leader for ai automation platform at Samsung [1] using 

an enterprise data-based LLM application architecture using large language 

models, a retrieval-augmented generation (RAG) algorithms models, OpenAI's 

GPT, Google's Bert, AI chatbots have great power in answering questions using 

internal data. Myeong-Ha Hwang. et al [2] using Rasa, NLU natural language 

processing tool, this AI chatbot includes 1506 sentences, about 51 intents daily 

conversion and has an efficiency of 0.82. Yeon Seonwoo. et al [3] using SQuID-

BM25/DPR, SQuID-RePAQ/DPR natural language processing tool. The 

performance of BM25 and RePAQ are 64.07% and 64.34% on NQ and 61.73% 

and 59.10% on TriviaQA. Department of computer science and engineering 

school of computing Sathyabama [4] built a full stack chatbot system with Google 

API, the system includes back end and front end, in the back end there will be a 

system chatbot that can search from the database and respond to data from Google 

API.  

Isabelle Augenstein. et al [5] using large language models (LLMs), such as 

OpenAI's ChatGPT, Microsoft's Bing Chat, and Google's Bard, Face to Face with 

the largest language models that are highly effective in answering questions that 

have many challenges to face. Deussom Djomadji Eric Michel college of 
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technology university of buea department of electrical and electronic engineering. 

et al [6] using integrated natural language processing (NLP) technology, creating 

a conversational agent for the supervision of security events using SIEM tools. 

Ahmad Abdellatif. et al [7] using NLU machine-learning algorithms, Rasa, 

integrating natural language processing (NLP) technology, Med. TimeToAnswer 

of the chatbot is 14.8s and has an accuracy of 0.7. Adith Sreeram A S. et al [8] 

using LangChain and Large Language Model, chatbot uses data from PDF with 

strong conversation answerability. 

Hana  Demma  Wube. et al [9] In the study conducted, 6% of the participants 

refrained from utilizing chatbots, citing reasons such as 40% lacking access to the 

necessary technology. Additionally, the research revealed that 76% of the 

interviewees expressed dissatisfaction with the bank chatbot technology, while 

24% reported satisfaction. Zhiyu Chen. et al [10] the utilization of RoBERTa in 

studying and analyzing the performance of current pre-trained models in complex 

and specialized domains was undertaken. With a BERT-based retriever, the study 

achieved an 89.66% recall for the top 3 retrieved facts and a 93.63% recall for the 

top 5. In comparison, using TF-IDF resulted in an 82.91% recall for the top 5 

facts. Qianqian Xie. et al [11] leveraging large language models (LLMs), we 

demonstrated the efficacy of FinMA across diverse financial tasks. This 

highlights the potential of domain-specific instruction tuning for large language 

models within the financial domain. The results indicate promising performance, 

with FinMA 7B achieving 0.86%, FinMA 30B reaching 0.87% and FinMA 7B-

full also achieving 0.87%. Rudi Setiawan. et al [12] instruction fine-tuning yields 

notable performance enhancements, with improvements of 4.6%, 24.0% and 

9.0% observed in MTEB, billboard and prompt retrieval, respectively. Notably, 

in various task categories, Instructor-Large (335M) demonstrates substantial 

improvements over GTR-Large, particularly in text evaluation (24.0%), prompt 

retrieval (9.0%) and classification tasks (7.3%). 

James C. L. Chow. et al [13] leveraging LLMs and IBM Watson, we have 

developed a real-time bot dedicated to disseminating healthcare knowledge to the 

public. To further enhance the chatbot's performance and provide an improved 

conversational experience, several improvements have been proposed. These 

include the incorporation of additional features like language translation or text-

to-speech conversion, exploration of alternative conversational approaches for 

more effective knowledge transfer and integration of ChatGPT into the system. 

These enhancements aim to offer a more versatile and user-friendly healthcare 
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knowledge dissemination platform. Shamane Siriwardhana. et al [14] introduced 

a novel extension of RAG called RAG-end2end and conducted an evaluation 

using three datasets from diverse domains (COVID-19, News and 

Conversations). The results demonstrate that RAG-end2end achieves substantial 

performance improvements across all three domains compared to the original 

RAG implementation. Shuo Li. et al [15] we introduced a novel strategy that 

applies conformal prediction to retrieval-augmented question answering. 

Additionally, we employed Bayesian optimization to effectively select 

hyperparameters for the global test, aiming to maximize the overall performance 

of the system, resulting in an impressive coefficient of determination (Cov) of 

0.92. Nura Esfandiari. et al [16] we introduced a novel model that combines 

cWGAN and transformer architecture. The outcomes substantiated the 

superiority of our proposed model over state-of-the-art approaches, as evidenced 

by significant improvements in bleu4, rouge-l, f-measure and meteor metrics. 

Leveraging the capabilities of cWGAN and the transformer model, the proposed 

model excels in generating precise, semantically relevant and human-like 

answers. 

Jiangtong Li. et al [17]  Developing CFGPT for a Chinese financial assistant 

involves utilizing a large language model, CFDataQA, comprising 12 thousand 

instances and 6 million tokens specifically designed for question-answering. The 

effectiveness of our CFLLM-ins-7B model is demonstrated across various 

financial tasks, highlighting the significant potential of domain-specific 

continued pretraining and supervised fine-tuning of large language models within 

the financial domain. Hugo Touvron. et al [18] the article comprehensively covers 

all aspects of Llama-2, providing a thorough understanding of its key elements. 

It delves into topics such as the definition of Llama-2, its model architecture, the 

training process encompassing pre-training and supervised tuning, as well as 

aspects related to model safety. This inclusive coverage ensures readers gain a 

holistic insight into the Llama-2 model and its various components. Kim 

Martineau [19] wrote this article on IBM Research's blog that gives us an 

overview of the RAG method and its functions, thereby drawing out the 

advantages and disadvantages of this method. Jiawei Chen. et al [20] the 

assessment focused on four key capabilities of retrieval augmented generation in 

LLMs: noise robustness, negative rejection, information integration and 

counterfactual robustness. 

 

https://research.ibm.com/blog?author=kim-martineau
https://research.ibm.com/blog?author=kim-martineau
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1.3 Objective and Contribution 

In this project, our primary objectives include gaining knowledge about chatbots 

and associated technologies, as well as acquiring practical experience in building 

chatbots. Our secondary goal is to construct a specialized chatbot tailored for the 

US stock market, with a specific focus on the website stockscan.io. The 

overarching and desired aim of our team is to create a chatbot architecture that 

can serve as a reference for others, facilitating the implementation of chatbots on 

similar websites. The flexibility of our architecture allows it to be adapted to any 

website and we have chosen stockscan.io as a test case. To enhance the quality of 

responses, we employ text generation models, ensuring not only richness in 

answers but also maintaining data accuracy. This multifaceted approach aligns 

with our vision of creating a versatile and effective chatbot solution. 

II. SYSTEM ARCHITECTURE AND REQUIREMENT 

2.1 Chatbot system architecture overview 

The architecture of the chatbot system is bifurcated into two primary components: 

the user interface (front-end) and the back-end (refer to Fig. 2). Users can inquire 

about information regarding the US stock sector on the website's front-end and 

the back-end chatbot system processes these queries, delivering responses 

displayed on the same website's front-end. Various frameworks like Gradio, 

Streamlit, Chanlit, etc., can be employed in the front-end to construct user 

interfaces for machine learning and computer vision models. Alternatively, a 

custom front-end can be developed using popular front-end frameworks such as 

Node.js and JavaScript. The front-end comprises essential components like input 

boxes, output boxes, submit buttons, clear buttons, undo buttons and retry 

buttons. The back-end encompasses a Retrieval-Augmented Generation (RAG) 

module that handles data gathering, preprocesses data, embeds data, manages 

databases and includes a self-update module alongside the Large Language 

Model (LLM) module. The front-end is equipped with built-in modules that 

define the display layout. 

● Interface components module includes input component which is the user 

part, output component, retry components, undo components, clear 

components. 
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● Sharing and Embedding module is share or embed directly on your 

website. 

 

Fig. 2. General chatbot architecture 

The backend handles all data operations and technical. 

● Data Gathering and Preprocessing module takes care of collecting data 

from the website and processing it so that it can be included in the 

embedded module in various ways such as US stock API or Websocket 

from the website. 

● Embedding module transforms textual data into vectors, utilizing 

embedding models from platforms such as Hugging Face or GPT. 
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● Vectors Database module is a form of  NoSQL storage that stores data in 

multi-dimensional vector form, employing solutions like Chroma DB, 

Faiss and others. It can be implemented as a local storage solution or 

integrated with cloud storage platforms such as Pinecone. 

● Self-update module takes care of updating stock prices that change over 

time into the database. 

● Response generation module to answer user questions in context based on 

database data including paid model APIs such as GPT 3.5, GPT4 or open 

source LLMs on hugging face such as: llama2, zephyr. 

2.2 System Requirements  

The system has two main group permissions. Group 1 will be Sysadmin and group 

2 will be Users. Sysadmin with the right to manage the database containing data 

and the right to edit information so that the chatbot can answer according to the 

admin's wishes. Users have the right to manipulate chatbots to find information 

they need to know. Below is Table 1 giving a summary of the system's functions. 

Table 1. Functional requirements  

Group permissions Content 

Sysadmin 

R.1 Dataset Management: update, add and fix  

R.2 
System Configurations Management: 

create, update and version control 

Users R.3 Customize by Sysadmin 

Section 2 described numerous required functional requirements and elements in 

UI. Almost frontend and backend modules are standardized. The proposed tool 

needs to use design analysis for integration and interoperability. The next 

section will discuss this issue. 
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III.  SYSTEM DESIGN AND IMPLEMENTATION 

3.1 System design 

 

Fig. 3. RAG module chatbot AI system 

The primary challenge addressed and a pivotal aspect of this project revolves 

around the utilization of the Retrieval-Augmented Generation (RAG) method 

(refer Fig .3). RAG is a method introduced by researchers from Meta AI. RAG is 

a combination of the information retrieval component with text generation 

models. This approach plays a crucial role in enhancing the performance of AI 

chatbots, specifically those based on Large Language Models (LLMs). RAG 

involves integrating external sources of knowledge to augment the internal 

representation of information within the LLM generated responses. Implementing 

RAG within an LLM-based question-answering system yields two key 

advantages. Firstly, it ensures the model's access to the latest and most reliable 

facts. Secondly, it provides users with transparency by enabling them to access 

the model's sources. This transparency allows users to verify the accuracy of the 

model's claims, instilling trust in the system. 

To provide a comprehensive overview of the advantages and disadvantages of 

chatbots employing the RAG method, we will present a table delineating these 

aspects. Besides the advantages, there will be disadvantages of the RAG method 

as shown in Table 2. The simple structure of the RAG method will be represented 

as The questions raised and processed by LLM will then be searched for answers 

to that question based on our base knowledge. 
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Table 2. Advantages and disadvantages of RAG  

Advantage Disadvantage 

High level of information security. 

 

Crafting responses for every 

conceivable question a customer 

might ask required a significant 

amount of time. 

This diminishes the likelihood of an 

LLM inadvertently disclosing sensitive 

data or generating inaccurate or 

misleading information through 

'hallucination.' 

 

Updating streams is difficult and time 

consuming. 

Implementing RAG has the potential to 

reduce the computational and financial 

burdens associated with operating 

LLM-powered chatbots within an 

enterprise environment. 

In the absence of accounting for a 

particular scenario, the chatbot lacked 

the capability to improvise. 

Based on Fig. 3. This comprehensive set of system design combines the 

LangChain framework for orchestration, LangChain modules for data extraction 

and segmentation, the US stock API and WebSocket for data gathering and 

processing, llmrails/ember-v1 for embedding models, ChromaDB for self-update 

and vector databases, TheBloke/Llama-2-13b-Chat-GPTQ for a powerful 

language model and Gradio for the user experience/user interface (UX/UI). 

Together, these components create a sophisticated AI system designed to meet 

diverse and complex needs. 

● Orchestration Framework: LangChain 

● Data Extraction and Segmentation: LangChain 

● Data Gathering and Processing: Utilizing the US stock API and WebSocket 

● Embedding Model: llmrails/ember-v1 

● Self-update Module: ChromaDB 
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● Vector Databases: ChromaDB 

● Large Language Model (LLM): TheBloke/Llama-2-13b-Chat-GPTQ 

● UX/UI : Gradio 

Our project's orchestration framework uses the Langchain framework. Langchain 

is an extremely hot framework in recent times. It was created to harness the power 

of large language models (LLM) such as ChatGPT, LLaMA, etc., to develop real-

world applications. Despite being developed just over a year ago (since October 

2022) and continuously updated daily, Langchain has received tremendous 

interactions on GitHub, boasting more than 70K stars. This is equivalent to the 

star count of another legendary framework in deep learning, PyTorch, which 

achieved this recognition after more than six years of dedicated development and 

effort. Langchain is a framework that allows your application to take advantage 

of additional information from many other 3rd party data sources such as Google, 

Notion, Facebook... as well as providing components that allow the use of 

language models in many different real-life situations. We can imagine 

Langchain as a bridge between the language model and third-party applications 

as  follows in Fig. 4. 

 

 Fig .4. Langchain Framework Flow 

There are two main advantages of the langchain framework: 

● Provides diverse components: LangChain provides a variety of 

components necessary for interacting with language models. These 

components are designed to be easy to use, extend and customize for many 

different problems. 
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● Providing chains for specific use-cases: A chain is understood as a series 

of components paired together in a certain order so that real-life use cases 

can be solved. The use-cases that langchain provides are virtual assistants, 

document-based Q&A, chatbots, support for querying table data, 

interaction with APIs, text feature extraction and text evaluation, text 

summary. 

The langchain itself does not contain models but it will contain interfaces to help 

interact with the model more easily, Models can be saved on OpenAI's system, 

Hugging Face.... Prompt templates: Recently we have heard of the concept of 

prompt engineering, which means techniques for writing prompts for the 

language model so that it can correctly answer the problems we want the language 

model to perform. A prompt template is simply a piece of text that includes 

instructions, requirements and examples to include in the language model and it 

can receive input as parameters passed by the user.  

Text Embedding Model: Simply put, embedding is a representation of a piece of 

text. It will be represented by a vector with a fixed number of dimensions, for 

example 128 dimensions. The closer two vectors are, the more similar they are in 

semantics or content. Langchain allows us to connect to different types of 

embedding models called Embedding providers (OpenAI, Cohere, Hugging Face, 

etc). And currently the strongest embeddings model in the MTEB leaderboard 

proposed by Hugging Face is the llmrails/ember-v1 model. So we have used it, 

you can completely change this model because the model will be improved over 

time. We highly recommend that you use the most powerful model so that your 

system can find the most accurate answer.  

To have a base knowledge for the chatbot system, we use Chroma DB. Chroma 

DB is an open source, AI-native embedded database that aims to simplify the 

process of creating LLM applications by making knowledge, facts and skills 

connectable to LLM – as well as to avoid illusion. Chroma DB has many 

important features such as: querying, filtering, density estimation, update and 

more. In particular, the Langchain framework fully supports Chroma DB. 

With LangChain as Our project's Orchestration framework, we can use many 

different LLM models, especially the most powerful LLM models today such as 

GPT 4, LLama-2, ... However, after considering Table 3 we have chosen the LLM 

'TheBloke/Llama-2-13b-Chat-GPTQ' that fits our case study as well as this 
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chatbot system. This is the LLaMa-2 model that has been refined thanks to 

TheBloke and can be used for commercial purposes. In short, LLaMa-2 is the 

next version of LLaMa - a large language model created by Facebook AI 

Research and their team of engineers. This model is architecturally similar to 

LLaMa but adds data, improves quality and adds new optimization methods to 

achieve higher performance. Below is a comparison between LLAMA2 and 

GPT4 models in Table 3. 

Table 3.  Comparison between GPT-4 and LLAMA-2 

 GPT-4  LLAMA-2 

Types of data (text, 

sound, images, etc.) 

GPT-4 can handle more 

types of data 

LLAMA-2 can handle 

less types of data 

Data security Low security High security 

Cost Expensive Free 

Save resources Lower Higher 

Speed Slower Faster 

The effectiveness of the final helpfulness and safety reward models is evaluated 

across a varied array of human preference benchmarks. Notably, our model 

undergoes fine-tuning on the collected data, distinguishing it from the other 

baselines presented in Fig. 5.  

 

Fig. 5. Reward model results(Hugo Touvron, Louis Martin, Kevin Stone.et al. 

Llama 2: Open Foundation and Fine-Tuned Chat Models.  2023. pp12) 

The process commences with the pretraining of Llama 2, leveraging publicly 

accessible online sources. Subsequent to this phase, we generate an initial 

iteration of Llama 2-Chat by employing supervised fine-tuning. The model then 

undergoes iterative refinement using Reinforcement Learning with Human 
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Feedback (RLHF) methodologies, specifically incorporating rejection sampling 

and Proximal Policy Optimization (PPO). It is imperative during the RLHF stage 

to accumulate iterative reward modeling data in tandem with enhancing the model 

to ensure the reward models remain within distribution, as illustrated in Fig. 6. 

 

Fig .6. Training of Llama 2-Chat(Hugo Touvron.et al. Llama 2: Open 

Foundation and Fine-Tuned Chat Models.  2023. pp5) 

In terms of data collection for the chatbot system's base knowledge, we use 

websocket to collect stock prices and restful API for financial data. First let's get 

to websocket, it is a TCP-based transport protocol used to establish and maintain 

a two-way connection between a client and server through a single connection. It 

allows real-time data transmission and continuous interaction between client and 

server, without the need to establish a new connection each time new data needs 

to be sent or received. 

The protocol has two parts: handshake and data transfer. Initially, the client sends 

a request to initiate a websocket connection to the server, the server checks and 

returns the results accepting the connection. Then the connection is created and 

the sending process data can be taken, the main data is the Ws frames. Therefore, 

we use this technique for this project, helping the chatbot to continuously update 

stock prices in the most accurate way. More specifically, we use the Socket.io 

library. Table 4 that is about the advantages and disadvantages of Websocket. 
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Table 4. Advantages and Disadvantage of Websocket 

Advantages Disadvantage 

Fast connection at fewer overheads 
The functionality may not be 

supported if the browser does not 

fully comply with HTML5 

standards. 

Request/response streaming in real-time It doesn't support edge caching 

High performance Possibility of Certain Security 

Risks 

As mentioned above, collecting financials data will use Restful API. RESTful 

API (Representational State Transfer) is a software architecture designed to 

create web services based on REST principles. REST is an architectural style 

specifically designed for web-based distributed systems. It is distinguished by its 

emphasis on simplicity, scalability and seamless interoperability between 

applications. In RESTful APIs, everything considered a resource, such as objects 

or data, has a unique identifier (URI). For example, a resource can be a product, 

a user, or anything you want to perform an operation on. RESTful API uses HTTP 

methods (GET, POST, PUT, DELETE) to perform operations on resources. For 

example, you can use the GET method to get information about a resource, POST 

to create a new resource, PUT to update a resource and DELETE to delete a 

resource. 

Resource data, typically expressed as JSON or XML, about the current state of 

the resource. Resources can have many different states and can be changed via 

HTTP operations. The REST model is stateless, meaning that every request from 

the client must include all the information needed to serve that request. The server 

does not need to save the client's state between requests. 

To build the chatbot system we used Google colab Pro to deploy the code. Google 

Colab Pro is the premium version of the Google Colaboratory service. It offers 

several benefits and expanded features compared to the free version of Google 

Colab. Here are some important points about Google Colab Pro: 
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In Google Colab Pro, you have more powerful GPU and TPU usage than in the 

free version. This is especially useful for machine learning and heavy number 

crunching tasks. In the free version, you have a limit on GPU usage time. 

However, with Colab Pro, you can use GPU and TPU continuously and without 

a time limit. If you do not use google colab pro type A100 GPU, you can use 

Ubuntu server with hardware including 30GB drive, 30GB GPU RAM, 30GB 

system RAM. 

Finally, the interface of the chatbot we used for this project is Gradio. Gradio UI 

is an open source library used to create intuitive and interactive user interfaces 

(UIs) for applications and machine learning models. Here are some important 

features of Gradio UI: Gradio UI is designed to be simple and easy to use. Gradio 

UI supports input data types such as text, images, audio, video and allows visual 

results to be displayed in a variety of formats. 

Gradio UI can integrate with machine learning models built with TensorFlow, 

PyTorch, Scikit-learn, and other libraries. You can connect your machine learning 

model to Gradio UI in just a few lines of code. Gradio UI allows you to create 

realistic applications with support for webcams and microphones to make the user 

interface more interactive. 

3.2 Implementation 

Python is chosen as the programming language for its widespread use in AI 

development, leveraging its diverse libraries and frameworks. The Google Colab 

Pro environment, equipped with a substantial V100 gpu, 70GB drive or more 

drive, gpu ram at least 16GB and system ram greater than 40GB, provides a robust 

platform for the development and deployment of the AI chatbot system. The 

development environment for building the AI chatbot system platform is 

structured as follows: 

● Operating System: Google Colab Pro 

● Central Processing Unit (CPU): Not explicitly mentioned, but assumed to 

be part of the Google Colab Pro environment. 

● GPUs (Graphics Processing Units): at least 16GB 

● Random Access Memory (RAM): greater than 40GB 

● Programming Language: Python 
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Install the necessary libraries for the project including the Ubuntu virtual 

machine, the Langchain framework will be the coordination framework for the 

project, Chroma DB will be the place to store the vector store and other necessary 

libraries. 

!pip install -qqq torch==2.1.0  

!pip install -qqq langchain==0.0.266  

!pip install -qqq chromadb==0.4.5  

!pip install -qqq xformers==0.0.20  

!pip install -qqq sentence_transformers==2.2.2  

!pip install -qqq InstructorEmbedding==1.0.1  

!pip install -qqq websocket-client  

!pip -qqq install gradio  

!pip install -qqq python-engineio==3.14.2 python-socketio==4.6.0  

!wget -q 

https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.1/auto_gptq-

0.4.1+cu118-cp310-cp310-linux_x86_64.whl  

!pip install -qqq auto_gptq-0.4.1+cu118-cp310-cp310-linux_x86_64.whl  

!sudo apt-get install poppler-utils 

 

import torch from auto_gptq  

import AutoGPTQForCausalLM from langchain  

import HuggingFacePipeline, PromptTemplate  

from langchain.chains import RetrievalQA  

from langchain.embeddings import HuggingFaceInstructEmbeddings  

from langchain.text_splitter import RecursiveCharacterTextSplitter  

from langchain.document_loaders import DirectoryLoader, TextLoader  

from langchain.vectorstores import Chroma  

from transformers import AutoTokenizer, TextStreamer, pipeline  

import locale  

import re  

import requests  

import json  

import time from datetime  

import datetime DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" 

First, we implement the library necessary for the project. Data collection is very 

important in building AI chatbots. Here we need to collect data and build a dataset 

according to the Us stock market sector from the website US stock. We use 

Websocket methods to collect the current price of the stock because the stock 
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changes every second. In addition, we can use the API Restful to collect the data 

we need to collect in website US stock. 

After collection, the data will be in json file format and this data will be assigned 

to the “Dataset.txt” file that we have created to create semantics from this data. 

For example, follow this format to get the current price of stock “Current price of 

{Symbol} is {current_price}.”. Following this, a dataset containing current stock 

prices will be gathered using statements like "Current price of AAPL is 177.97". 

Additionally, datasets pertaining to financial data and option data will be created 

in alignment with the system's requirements. After collecting data into txt files 

such as: Option.txt, Price.txt, Financials_data.txt, load the txt files into 

documents. After collecting data, we will read the data as a txt file. 

def load_documents():  

      loader = DirectoryLoader('/content/Data', glob="*.txt",       

      loader_cls=TextLoader)  

     documents = loader.load()  

     return documents 

docs = load_documents()  

Dividing the files into text chunks is a crucial step, particularly for embeddings. 

When a user poses a question, the system seeks precise numerical information for 

the answer. The effectiveness of this process depends on the nature of the data 

and the specific requirements of the task at hand. 

def split_text_into_chunks(documents):  

     text_splitter = RecursiveCharacterTextSplitter(chunk_size=70,  

     chunk_overlap=0)  

     text_chunks = text_splitter.split_documents(documents)  

     return text_chunks 

text_chunks = split_text_into_chunks(docs)  

The subsequent step involves embedding each of the paragraphs using the model 

(llmrails/ember-v1). Embeddings play a crucial role in mapping any text to a low-

dimensional dense vector, offering utility in tasks such as retrieval, classification, 

clustering and semantic search. Additionally, these embeddings can be utilized in 

vector databases for Large Language Models and stored in a vector store. In this 

context, Chroma DB serves as the designated vector store for our purposes. 
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def create_embeddings():  

     embeddings = HuggingFaceInstructEmbeddings( 

     model_name="llmrails/ember-v1", model_kwargs={"device": DEVICE} )  

     return embeddings  

 

def create_vector_store(text_chunks, embeddings):  

      db = Chroma.from_documents(text_chunks, embeddings,                                                               

      persist_directory="db")          

      return db 

db = create_vector_store(text_chunks, embeddings)  

After embedding the data, we store it in Chroma DB, which serves as a vector 

database to form the base knowledge for the chatbot system. Initially, we must 

persist this Chroma DB so that the chatbot can respond to questions based on this 

foundational knowledge. However, it is necessary to update the base knowledge 

because some data may change. For example, stock prices in the U.S fluctuate 

every second, forcing us to use websockets to collect real-time data. This enables 

us to keep the base knowledge up-to-date, ensuring the chatbot can provide 

accurate responses to inquiries about the ever-changing stock prices. 

After retrieving data in real time, putting it into a txt file, we will read and process 

the data, divide it into appropriate parts and update. Updating based on the id and 

change data of the US stock price, we will determine the id of the vector to update 

in the database and change the document of that vector with the document of the 

US stock price in real time. 

while(True): 

    loader = DirectoryLoader('/content/drive/MyDrive/data', glob="*.txt", 

loader_cls=TextLoader) 

    documents1 = loader.load() 

    text_chunks1 = split_text_into_chunks(documents1) 

    list_id=db1.get(offset=906227,limit=50)['ids'] 

    if list_id: 

      for i in range(len(text_chunks1)): 

          db1.update_document(document_id=list_id[i], 

document=text_chunks1[i]) 

As for the system part we can see in Figure 3, in the LLM part we use 

TheBlocke/Llama-2-13-B-chat-GPTQ to be able to generate answers word to 

users. This repo contains GPTQ model files for Meta's Llama 2 13B-chat.  
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Next we will format the model's output using the prompt. The prompt will help 

guide the model to the required and appropriate output format for the user. Here 

we aim for an answer that is helpful, respectful and honest. In cases where the 

question is unreasonable or illogical, the model should explain why instead of 

answering incorrectly. When the model doesn't know the answer, it should admit 

this instead of trying to give wrong information. 

 

DEFAULT_SYSTEM_PROMPT = """ You are a helpful and respectful 

assistant committed to providing honest responses. Your answers should be 

positive, safe, and free from harmful or inappropriate content.  

If a question is unclear or factually incorrect, your approach is to explain the 

issue rather than providing inaccurate information. If you don't know the 

answer, you refrain from sharing false information.. """.strip()  

def generate_prompt(prompt: str, system_prompt: str = 

DEFAULT_SYSTEM_PROMPT) -> str:  

    return f""" 

   [INST] <<SYS>>  

   {system_prompt}  

   <</SYS>>  

   {prompt} [/INST]  

   """.strip() 

 

def create_llms_model():  

     model_name_or_path = "TheBloke/Llama-2-13b-Chat-GPTQ"  

     tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,  

use_fast=True)  

     model = AutoGPTQForCausalLM.from_quantized( model_name_or_path,     

revision="gptq-4bit-32g-actorder_True", 

     use_safetensors=True,  

     trust_remote_code=True,  

     inject_fused_attention=False,  

     device=DEVICE,  

     quantize_config=None, )  

     return model, tokenizer 
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SYSTEM_PROMPT = "Use the following pieces of context to answer the 

question at the end. If you don't know the answer, just say that you don't 

know, don't try to make up an answer."  

template = generate_prompt(  

   """  

{context}  

Question: {question}  

""",  

   system_prompt=SYSTEM_PROMPT, ) 

 

Next we convert the text into numbers and configure text generation using the 

NLP model. Specific parameters include: "Text-generation": pipeline type, 

indicates you are using model to generate text, "model" NLP model used to 

generate text, "tokenizer" used to convert text to number for the model, 

"max_new_tokens" limits the number of new tokens created in a reply. If 

exceeded, the answer may be truncated. The "temperature" parameter defines the 

level of creativity of the answer. Low values (close to 0) produce more specific 

answers, while high values (e.g. 1) produce more creative answers. The "top_p" 

parameter governs the selection of tokens based on probability . This value limits 

token selection based on probability until the total probability exceeds this value, 

the "repetition_penalty" parameter governs the repetition of tokens in the answer. 

We create a configuration to use Hugging Face's NLP model to generate text with 

custom parameters such as creativity level, token count limit and other parameters 

to control the text generation process . 

 

streamer = TextStreamer(tokenizer, skip_prompt=True, 

skip_special_tokens=True)  

text_pipeline = pipeline(  

  "Text-generation", 

   model=model,  

   tokenizer=tokenizer,  

   max_new_tokens=3096,  

   temperature=0,  

   top_p=0.95,  

   repetition_penalty=0.9,  

   streamer=streamer, )  

llm = HuggingFacePipeline(pipeline=text_pipeline, 

model_kwargs={"temperature": 0}) 
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Next we load, split the text, process the data, represent the text data as arithmetic 

vectors and save them in vector storage and build a process for retrieving 

information and answering questions based on document content. 

 

qa_chain = RetrievalQA.from_chain_type(  

  llm=llm,  

  chain_type="stuff",  

  retriever=db.as_retriever(search_kwargs={"k": 2}),   

  return_source_documents=True,  

  chain_type_kwargs={"prompt": prompt}, ) 

 

We used Gradio to build a user interface for a chatbot, allowing users to ask 

questions and receive answers from the chatbot through an intuitive interface. 

 

import gradio as gr  

def predict(message, history):  

return qa_chain1(message)['result']  

demo = gr.ChatInterface(  

     fn=predict,  

     title = 'ChatBot US_Stock StockScan.io'  

)  

demo.launch(share=True) 

 

Finally, in the part of integrating chatbot software with the website, we use gradio 

as interfaces. Gradio provides features for sharing your machine learning model 

interfaces with others so there are two ways to integrate gradio on your website. 

The first way is "Embed Gradio UI with iframe", step 1 is to create an HTML bar 

in the website, step 2 in that HTML embed the <iframe> tag to embed Gradio UI 

into the website. 

 

<iframe src="https://your-gradio-url" width="500" 

height="500"></iframe> 

 

The second way to integrate Gradio into your website can be using Ajax 

technology. It is an abbreviation for the phrase "Asynchronous JavaScript and 

XML". This is a web programming technique that allows data to be transmitted 

and received from the server without reloading the entire web page. Ajax helps 

increase user experience by making websites faster and more flexible. Step 1 also 
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creates an HTML bar in the website, step two uses Ajax to communicate with 

Gradio UI. Finish part 3 and continue to part 4 case study showing you how to 

apply the AI chatbot system to specific case studies. 

 

var xhr = new XMLHttpRequest(); 

    xhr.open('GET', 'https://your-gradio-url', true); 

    xhr.onload = function() { 

        if (xhr.status === 200) { 

                var gradioUI = xhr.responseText;         

                document.getElementById('gradio-container').innerHTML = 

gradioUI; 

            } 

        }; 

    xhr.send(); 

IV. CASE STUDY AND DISCUSSION 

4.1 Stockscan.io US stock chatbot case 

Line Century is a company related to US stocks, they have a website Stockscan.io 

which is a website about the stock market in the US, it includes many functions, 

all functions are built around stocks in the US. The company asked us to build a 

chatbot to answer questions about information related to US stocks on the website 

stockscan.io to help increase the customer experience so they can experience the 

service in an enjoyable way. The functions are listed below described in Table 5. 

Table 5. Component of the website stockscan.io US stock 

Stockscan.io Function 

Watch list Table list includes (stock name, company name, price, 

%1D, volume, market cap..) over time (need to buy web 

package) 

Top list List of top 5 stocks that increase or decrease over time 

(today, 1 week, 1 month, 6 month), list of top 5 penny 

stocks, OTC. 
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Stock Calculator Calculate average stock price, calculate profit and loss of 

stock investment. 

Option Table list includes (stock code name, call/put order, strike, 

price, change, %change, volume) 

Financial Financial data by each company (chart format) including 

(revenue, net income, cash flow, eps, debt to equity ratio) 

Price History Historical price list by time (daily, weekly, monthly), by 

year, table includes (date, high, low, high-low, volume, 

%change) 

After reviewing the functions of a US stock website, we need to learn about what 

customers are interested in the US stock market field when accessing the website, 

thereby providing the main answering functions of the chatbot for a website. 

According to the experts of the website, customers will be interested in the current 

price of stocks, the option function of the website, key stats of stocks and financial 

data (revenue, net income, cash flow, eps, debt to equity ratio ) described in Table 

6. 

Table 6. Data parameters needed by the stockscan.io  

Data parameters Define 

Stocks The capital raised by a business or corporation through the 

issue and subscription of shares. 

Current Price Current price of stock  

Revenue Revenue is the result of regular business activities, 

computed by multiplying the average sales price by the 

quantity of units sold. 

Net income Net income (NI) is determined by subtracting expenses, 

interest and taxes from revenues. 

Cash flow The cash or cash-equivalent that a company receives or 

disburses as payments to creditors. 

EPS Earnings per share (EPS) is computed by dividing a 

company's profit by the total number of outstanding shares 

of its common stock. 
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D/E The Debt-to-Equity (D/E) ratio evaluates a company's total 

liabilities in relation to its shareholder equity, providing 

insights into the degree of reliance on debt. 

Here we need to collect data and build a dataset according to the Us stock market 

sector from the Stockscan.io. In addition, we can use the API Restful to collect 

the data we need to collect data in website US stock: financial data(Revenue, Net 

Income, Cash Flow, EPS, D/E). Then attach them to the available dataset and 

save it as a txt file. Example gathering data about financial data in Stockscan.io: 

def financial_data(url, exchange_slug, symbol):  

   data = { 'exchange_slug': exchange_slug,  

           'symbol': symbol }  

   response = requests.post(url, json=data)  

   if response.status_code == 200:  

     try:  

         result = response.json() 

         return result  

     except json.JSONDecodeError as e:  

         return None else:  

urls = [ “Your URL”] 

exchange_slugs = ["NASDAQ"] # Add more exchanges if needed  

symbols = ["AAPL"] # Add more symbols if needed  

result_filenames = { urls[0]: "Revenue.txt", urls[1]: "Net-Income.txt", urls[2]: 

"Cash-Flow.txt", urls[3]: "EPS.txt", urls[4]: "DTER.txt" }  

financials_labels = ["Revenue", "Net Income", "Cash Flow", "EPS", 

"DTER"]                                                                                                                                                                                                                                                                                                                                                                                        
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In addition to collecting data using RestfulAPI, in the price part of the stock code, 

we use websocket to collect stock prices and it will be continuously updated so 

that the chatbot can give reasonable results. 

sio = socketio.Client(logger=True, engineio_logger=True) 

@sio.on('connect') 

def on_connect(): 

    sio.emit("RealTimeAvgPriceSubAdd", { 

        'subs': listcoins 

    }) 

@sio.on('avg_price_update') 

def handle_global_price_update(data): 

               if all(symbol in coin_prices for symbol in listcoins): 

              with open('/content/drive/MyDrive/data/prices.txt', 'w') as txt_file: 

                for symbol, price in coin_prices.items(): 

                  txt_file.write(f"Current price of {symbol} stock is {price}$\n") 

@sio.on('disconnect') 

def disconnect(): 

    print('Disconnected') 

sio.connect(url='Your WSS URL', transports=['websocket']) 

Finally, we apply section 3.2. Implementation above to build an AI chatbot for 

the website stockscan.io described in Fig .7. There are a few questions users can 

ask the chatbot such as: "Revenue of AAPL in Q2 of 2023?" to ask about financial 

data of Apple company, "Current price of AAPL?" to ask about Apple's current 

stock price, etc. Answers will be given by the chatbot in about 3-5 seconds. 
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Fig .7. Stockscan.io Chatbot  

4.2 Discussion 

In this part, after building an AI chatbot for stockscan.io, we tried many question 

sets to test this chatbot. The answers are highly accurate when the questions are 

related to the data in Table 6 and the information of the functions that the chatbot 

can answer mentioned in section 4.1. This AI chatbot is being used to answer 

2000 US stock tickers and has the performance of being able to answer each 

question within a period of 3-5s. Other performances will be mentioned in Table 

7.  

Table 7. Performance of chatbot AI stockscan.io replied 2000 US stock 

 

 Execution Time (m) 

Data gathering 60m 

Training LLM(TheBloke/Llama-2-

13b-Chat-GPTQ)  

5m 

Embedding and Save vector to 

chroma db 

120m 

Update vector 50 stock  0.05m – 0.08m → 3s – 5s 

Answer question 0.05m – 0.08m → 3s – 5s 
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Nevertheless, there are instances where the chatbot's comprehension and 

accuracy are compromised, particularly when questions are not presented in the 

expected format. It is crucial to phrase questions in a specific manner for optimal 

results. For instance, the chatbot can successfully respond to inquiries like 

"Revenue of AAPL in Q2 of 2023", but may struggle with non-standard formats 

such as "Revenue of APPLE now" due to a lack of understanding. This limitation 

arises from the absence of question and answer formats like "Revenue of APPLE 

now" in our training dataset. 

 

There are many ways to solve this problem, but we will give 2 ways to solve the 

problem above. The first way is that you can use more powerful embedding 

models, more powerful LLM models related to text generation to finetune your 

data set like GPT-4, LLAMA2-70b-chat-hf,..etc. You can improve your chatbot 

quickly, but the cost issue is something you need to consider because it costs a 

lot of money when used for small businesses. The second way is to create a larger 

answer data set with a more diverse format. This way you need to clearly 

understand your data and depend on the requirements of the business. 

V. CONCLUSION AND PERSPECTIVES 

In the endeavor to develop an AI chatbot tailored for a US stock website, we laid 

the groundwork with the RAG method and the Langchain framework. This 

foundational chatbot exhibits proficiency in addressing inquiries related to US 

stocks, encompassing functionalities such as retrieving current prices, providing 

financial data. Specifically designed for small-sized businesses, this platform 

aims to elevate the overall customer experience. 

 

Throughout the project implementation, my team gained valuable insights into 

well-established chatbot creation technologies like Rasa and explored tools 

facilitating code-free chatbot development, utilizing prominent large language 

models such as Botpress and Stack AI. Additionally, delving into the creation of 

a chatbot for the US stock industry enriched our understanding of various 

concepts within this domain. 

 

However, it's crucial to recognize that this marks only the foundational structure 

of the chatbot system. There exists ample room for refinement and enhancement, 

allowing the chatbot to handle a broader array of questions and deliver more 

robust responses. Furthermore, there is potential to introduce novel features, such 
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as investment advisory support. By leveraging data and statistics, the chatbot can 

provide valuable investment advice, assisting customers in gaining a deeper 

understanding of their investment options. 

 VI. REFERENCES  

1. Cheonsu Jeong. A Study on the Implementation of Generative AI Services 

Using an Enterprise Data-Based LLM Application Architecture. 

2309.01105.pdf. 2023. 

2. Myeong-Ha Hwang, Jikang Shin, Hojin Seo, Jeong-Seon Im, Hee Cho. 

ChatRPA: Open Source-Based Conversational Chatbot System for Robotic 

Process Automation. 2022. 

3. Yeon Seonwoo, Juhee Son, Jiho Jin, Sang-Woo Lee, Ji-Hoon Kim , Jung-

Woo Ha, Alice Oh. Two-Step Question Retrieval for Open-Domain QA. 

2205.09393v1.pdf. 2022. 

4. Jeppiaar Nagar, Rajiv Gandhi Salai, Chenna. Herbivicus: A full stack 

website with chatbot and google API. 2021. 

5. Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy 

Chakraborty. Factuality Challenges in the Era of Large Language Models. 

2310.05189v2.pdf. 2023. 

6. Deussom Djomadji Eric Michel College of Technology University of Buea 

Department of Electrical and Electronic Engineering. Design and 

Implementation of a Chatbot for the Supervision of Security Events 

(SIEM).2023. 

7. Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem. 

Emad Shihab Challenges in Chatbot Development: A Study of Stack 

Overflow Posts. October 5–6, 2020. 

8. Adith Sreeram A S, Pappuri Jithendra Sai. An Effective Query System 

Using LLMs and LangChain. June 2023. 

9. Hana  Demma  Wube, Sintayehu Zekarias Esubalew,  Firesew  Fayiso 

Weldesellasie and  Taye Girma Debelee. Text-Based Chatbot in Financial 

Sector: A Systematic Literature Review. 2022. 

10.  Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, 

Dylan Langdon, Reema Moussa , Matt Beane. FINQA: A Dataset of 

Numerical Reasoning over Financial Data. 2109.00122v3.pdf. 2021. 

11.  Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, 

Alejandro Lopez-Lira, Jimin Huang. PIXIU: A Large Language Model, 

https://arxiv.org/ftp/arxiv/papers/2309/2309.01105.pdf
https://www.researchgate.net/publication/360461505_ChatRPA_Open_Source-Based_Conversational_Chatbot_System_for_Robotic_Process_Automation
https://www.researchgate.net/publication/360461505_ChatRPA_Open_Source-Based_Conversational_Chatbot_System_for_Robotic_Process_Automation
https://arxiv.org/pdf/2205.09393v1.pdf
https://sist.sathyabama.ac.in/sist_naac/documents/1.3.4/b.e-cse-batchno-1.pdf
https://arxiv.org/pdf/2310.05189v2.pdf
https://www.researchgate.net/publication/371720589_Design_and_Implementation_of_a_Chatbot_for_the_Supervision_of_Security_Events_SIEM
https://www.researchgate.net/publication/371720589_Design_and_Implementation_of_a_Chatbot_for_the_Supervision_of_Security_Events_SIEM
https://rabeabdalkareem.github.io/files/6-abdellatif_msr2020.pdf
https://rabeabdalkareem.github.io/files/6-abdellatif_msr2020.pdf
https://www.researchgate.net/publication/372529063_An_Effective_Query_System_Using_LLMs_and_LangChain
https://www.researchgate.net/publication/362395727_Text-Based_Chatbot_in_Financial_Sector_A_Systematic_Literature_Review
https://arxiv.org/pdf/2109.00122v3.pdf


  

 

Capstone | FPT University 

32 

Instruction Data and Evaluation Benchmark for Finance. 

2306.05443v1.pdf. 2023. 

12.  Rudi Setiawan, Rossi Iskandar, Nadilla Madjid, Ridwan Kusumawardan. 

Artificial Intelligence-Based Chatbot to Support Public Health Services in 

Indonesia. 2022. 

13.  James C. L. Chow , Valerie Wong , Leslie Sanders, Kay Li. Developing 

an AI-Assisted Educational Chatbot forRadiotherapy Using the IBM 

Watson Assistant Platform.IBM Watson Assistant. 2023. 

14.  Shamane Siriwardhana, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, 

Suranga Nanayakkara. Improving the Domain Adaptation of Retrieval 

Augmented Generation (RAG) Models for Open Domain Question 

Answering. 2210.02627v1.pdf. 2023. 

15.  Shuo Li, Sangdon Park, Insup Lee, Obsert Bastani. TRAC: Trustworthy 

Retrieval Augmented Chatbot. 2307.04642v1.pdf.2023. 

16.  Nura Esfandiari , Kourosh Kiani  , Razieh Rastgoo. A Conditional 

Generative Chatbot using Transformer Model. 2306.02074.pdf.2023. 

17.  Jiangtong Li, Yuxuan Bian, Guoxuan Wang, Yang Lei, Dawei Cheng, 

Zhijun Ding, Changjun Jiang. CFGPT: Chinese Financial Assistant with 

Large Language Model. 2309.10654v2.pdf. 2023. 

18.  Hugo Touvron, Louis Martin, Kevin Stone. Llama 2: Open Foundation 

and Fine-Tuned Chat Models. Llama 2.  2023.  

19.   Kim Martineau: What is retrieval-augmented generation?.RAG. 2023. 

20.  Jiawei Chen, Hongyu Lin, Xianpei Han, Le Sun. Benchmarking Large 

Language Models in Retrieval-Augmented Generation. 2309.01431v1.pdf. 

2023. 

https://arxiv.org/pdf/2306.05443v1.pdf
https://online-journals.org/index.php/i-jim/article/view/36263/13999
https://online-journals.org/index.php/i-jim/article/view/36263/13999
https://www.mdpi.com/2227-9032/11/17/2417
https://arxiv.org/pdf/2210.02627v1.pdf
https://arxiv.org/pdf/2307.04642v1.pdf
https://arxiv.org/ftp/arxiv/papers/2306/2306.02074.pdf
https://arxiv.org/pdf/2309.10654v2.pdf
https://scontent.fhan17-1.fna.fbcdn.net/v/t39.2365-6/10000000_662098952474184_2584067087619170692_n.pdf?_nc_cat=105&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=ai5Sz-xGRjkAX_KHKUO&_nc_ht=scontent.fhan17-1.fna&oh=00_AfAEwW5Y6NUJSWLUtCJ3Lv5uhk1_kyWCJX4xEH2pZ8Z_5Q&oe=656C6CFF
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://arxiv.org/pdf/2309.01431v1.pdf

