

Bachelor of Computer Science

Hoa Lac Campus - FPT University

2023

Graduation Thesis Final Report

Developing a Chatbot Using Machine

Learning: A Case Study for US Stock Market

US_STOCK_TEAM

Group Member

Nguyen Ngoc Toan HE151313

Nguyen Thanh Dat HE151345

Nguyen Thai Bao HE151059

Supervisor MSE. Le Dinh Huynh

A thesis submitted in partial fulfillment of the degree of

BSc.(Hons.) in Artificial Intelligence with the supervisor of MSE.

Le Dinh Huynh

Capstone | FPT University

1

ACKNOWLEDGEMENT

We extend our heartfelt gratitude to our research mentor, Mr. Huynh, for

affording us the invaluable opportunity to engage in research and for providing

unwavering guidance throughout this endeavor. His dynamism, visionary

insights, sincerity and motivation have been a profound source of inspiration for

us. Under his tutelage, we learned the methodologies essential for conducting

research and presenting our work clearly. In addition to our mentor, we would

like to express our gratitude to our friends at FPT University for their steadfast

support, patience and camaraderie. Our sincere appreciation also extends to FPT

University for fostering an exceptional environment that contributed significantly

to our development over the four years of our studies. Last, but certainly not least,

we want to acknowledge the unwavering support of our caring and loving

families. Their encouragement provided great comfort and solace during

challenging times.

Capstone | FPT University

2

ABSTRACT

Instead of conventional searches on websites, there is a trend of creating chatbots

to ask and answer questions with customers, increasing interaction and customer

experience. In this work, we present a chatbot system in the financial sector.

Chatbots working with customers handle the website platform, customers can

note the development of an exciting, great quality platform leading to more

conversions and outstanding leads. This is especially true for businesses that need

to attract many customers. Chatbots can provide instant information and answer

users questions quickly, helping them access information effectively. Chatbots

can create intuitive and enjoyable interactive experiences that help attract and

maintain customer interest. This article presents the collaborative design between

the Langchain framework and large language models (LLMs) such as ChatGPT,

LLaMA....Large language models have demonstrated great potential in natural

language processing tasks in the financial sector. Langchain framework is

deployed on many projects, helping to significantly reduce time and costs. The

chatbot system helps people access information faster. Normally, searching for

financial information takes about 7-10 seconds, while the chatbot system

extracting information takes about 3-5 seconds. Stockscan.io is a website in this

field. In the financial sector, it is also a test case to test the system. The chatbot

system can be applied to fields beyond finance and can be further improved.

Keyword: ChatBot AI, Large Language Model, RAG, Langchain, US stock

Capstone | FPT University

3

CONTENTS

ACKNOWLEDGEMENT .. 1

ABSTRACT ... 2

CONTENTS ... 3

I. INTRODUCTION ... 4

1.1 Problem .. 4

1.2 Related work ... 5

1.3 Objective and Contribution ... 8

II. SYSTEM ARCHITECTURE AND REQUIREMENT 8

2.1 Chatbot system architecture overview 8

2.2 System Requirements ... 10

III. SYSTEM DESIGN AND IMPLEMENTATION 11

3.1 System design .. 11

3.2 Implementation ... 18

IV. CASE STUDY AND DISCUSSION .. 25

4.1 Stockscan.io US stock chatbot case ... 25

4.2 Discussion .. 29

V. CONCLUSION AND PERSPECTIVES 30

VI. REFERENCES .. 31

Capstone | FPT University

4

I. INTRODUCTION

1.1 Problem

In this article, we will build an AI Chatbot system for websites about US stocks.

First of all, we will learn about the applications and benefits of chatbots in

businesses described in Fig.1. Chatbots offer businesses numerous applications

and advantages. They enhance customer experience by providing instant support

and guidance, optimizing customer support processes and reducing operational

costs. Additionally, chatbots serve as effective marketing tools, engaging

customers and promoting products. Their interactions also yield valuable insights

into customer behavior, enabling businesses to refine strategies and make

informed decisions. Automation, a vital need for every business, is addressed as

chatbots contribute to automating customer care work, particularly crucial in the

fast-paced and dynamic stock market environment. The growing necessity for

chatbots is emphasized, especially considering the limited availability of

specialized systems for the stock market. Hence, owning a chatbot system

becomes a significant advantage, enhancing the business's market position and

attracting more users to the business. In essence, integrating chatbots into

business strategies improves competitiveness, streamlines operations and adapts

to the dynamic demands of the modern business landscape.

Website stock is a website that provides information about the stock market, stock

prices, market indices, economic news and other financial services. Stock

websites often provide tools for investors and traders to track and analyze market

data, making smart investment decisions. Building a chatbot website offers

several significant advantages. Firstly, it enhances customer experience.

Secondly, it saves time as chatbots can handle multiple requests simultaneously,

operating 24/7 to improve service quality. Thirdly, incorporating Chatbot AI adds

an interesting feature, increasing the attractiveness of your website and attracting

more customers by delivering valuable stock market information.

Capstone | FPT University

5

Fig. 1. Benefits of chatbot for business

1.2 Related work

Cheonsu Jeong technical leader for ai automation platform at Samsung [1] using

an enterprise data-based LLM application architecture using large language

models, a retrieval-augmented generation (RAG) algorithms models, OpenAI's

GPT, Google's Bert, AI chatbots have great power in answering questions using

internal data. Myeong-Ha Hwang. et al [2] using Rasa, NLU natural language

processing tool, this AI chatbot includes 1506 sentences, about 51 intents daily

conversion and has an efficiency of 0.82. Yeon Seonwoo. et al [3] using SQuID-

BM25/DPR, SQuID-RePAQ/DPR natural language processing tool. The

performance of BM25 and RePAQ are 64.07% and 64.34% on NQ and 61.73%

and 59.10% on TriviaQA. Department of computer science and engineering

school of computing Sathyabama [4] built a full stack chatbot system with Google

API, the system includes back end and front end, in the back end there will be a

system chatbot that can search from the database and respond to data from Google

API.

Isabelle Augenstein. et al [5] using large language models (LLMs), such as

OpenAI's ChatGPT, Microsoft's Bing Chat, and Google's Bard, Face to Face with

the largest language models that are highly effective in answering questions that

have many challenges to face. Deussom Djomadji Eric Michel college of

Capstone | FPT University

6

technology university of buea department of electrical and electronic engineering.

et al [6] using integrated natural language processing (NLP) technology, creating

a conversational agent for the supervision of security events using SIEM tools.

Ahmad Abdellatif. et al [7] using NLU machine-learning algorithms, Rasa,

integrating natural language processing (NLP) technology, Med. TimeToAnswer

of the chatbot is 14.8s and has an accuracy of 0.7. Adith Sreeram A S. et al [8]

using LangChain and Large Language Model, chatbot uses data from PDF with

strong conversation answerability.

Hana Demma Wube. et al [9] In the study conducted, 6% of the participants

refrained from utilizing chatbots, citing reasons such as 40% lacking access to the

necessary technology. Additionally, the research revealed that 76% of the

interviewees expressed dissatisfaction with the bank chatbot technology, while

24% reported satisfaction. Zhiyu Chen. et al [10] the utilization of RoBERTa in

studying and analyzing the performance of current pre-trained models in complex

and specialized domains was undertaken. With a BERT-based retriever, the study

achieved an 89.66% recall for the top 3 retrieved facts and a 93.63% recall for the

top 5. In comparison, using TF-IDF resulted in an 82.91% recall for the top 5

facts. Qianqian Xie. et al [11] leveraging large language models (LLMs), we

demonstrated the efficacy of FinMA across diverse financial tasks. This

highlights the potential of domain-specific instruction tuning for large language

models within the financial domain. The results indicate promising performance,

with FinMA 7B achieving 0.86%, FinMA 30B reaching 0.87% and FinMA 7B-

full also achieving 0.87%. Rudi Setiawan. et al [12] instruction fine-tuning yields

notable performance enhancements, with improvements of 4.6%, 24.0% and

9.0% observed in MTEB, billboard and prompt retrieval, respectively. Notably,

in various task categories, Instructor-Large (335M) demonstrates substantial

improvements over GTR-Large, particularly in text evaluation (24.0%), prompt

retrieval (9.0%) and classification tasks (7.3%).

James C. L. Chow. et al [13] leveraging LLMs and IBM Watson, we have

developed a real-time bot dedicated to disseminating healthcare knowledge to the

public. To further enhance the chatbot's performance and provide an improved

conversational experience, several improvements have been proposed. These

include the incorporation of additional features like language translation or text-

to-speech conversion, exploration of alternative conversational approaches for

more effective knowledge transfer and integration of ChatGPT into the system.

These enhancements aim to offer a more versatile and user-friendly healthcare

Capstone | FPT University

7

knowledge dissemination platform. Shamane Siriwardhana. et al [14] introduced

a novel extension of RAG called RAG-end2end and conducted an evaluation

using three datasets from diverse domains (COVID-19, News and

Conversations). The results demonstrate that RAG-end2end achieves substantial

performance improvements across all three domains compared to the original

RAG implementation. Shuo Li. et al [15] we introduced a novel strategy that

applies conformal prediction to retrieval-augmented question answering.

Additionally, we employed Bayesian optimization to effectively select

hyperparameters for the global test, aiming to maximize the overall performance

of the system, resulting in an impressive coefficient of determination (Cov) of

0.92. Nura Esfandiari. et al [16] we introduced a novel model that combines

cWGAN and transformer architecture. The outcomes substantiated the

superiority of our proposed model over state-of-the-art approaches, as evidenced

by significant improvements in bleu4, rouge-l, f-measure and meteor metrics.

Leveraging the capabilities of cWGAN and the transformer model, the proposed

model excels in generating precise, semantically relevant and human-like

answers.

Jiangtong Li. et al [17] Developing CFGPT for a Chinese financial assistant

involves utilizing a large language model, CFDataQA, comprising 12 thousand

instances and 6 million tokens specifically designed for question-answering. The

effectiveness of our CFLLM-ins-7B model is demonstrated across various

financial tasks, highlighting the significant potential of domain-specific

continued pretraining and supervised fine-tuning of large language models within

the financial domain. Hugo Touvron. et al [18] the article comprehensively covers

all aspects of Llama-2, providing a thorough understanding of its key elements.

It delves into topics such as the definition of Llama-2, its model architecture, the

training process encompassing pre-training and supervised tuning, as well as

aspects related to model safety. This inclusive coverage ensures readers gain a

holistic insight into the Llama-2 model and its various components. Kim

Martineau [19] wrote this article on IBM Research's blog that gives us an

overview of the RAG method and its functions, thereby drawing out the

advantages and disadvantages of this method. Jiawei Chen. et al [20] the

assessment focused on four key capabilities of retrieval augmented generation in

LLMs: noise robustness, negative rejection, information integration and

counterfactual robustness.

https://research.ibm.com/blog?author=kim-martineau
https://research.ibm.com/blog?author=kim-martineau

Capstone | FPT University

8

1.3 Objective and Contribution

In this project, our primary objectives include gaining knowledge about chatbots

and associated technologies, as well as acquiring practical experience in building

chatbots. Our secondary goal is to construct a specialized chatbot tailored for the

US stock market, with a specific focus on the website stockscan.io. The

overarching and desired aim of our team is to create a chatbot architecture that

can serve as a reference for others, facilitating the implementation of chatbots on

similar websites. The flexibility of our architecture allows it to be adapted to any

website and we have chosen stockscan.io as a test case. To enhance the quality of

responses, we employ text generation models, ensuring not only richness in

answers but also maintaining data accuracy. This multifaceted approach aligns

with our vision of creating a versatile and effective chatbot solution.

II. SYSTEM ARCHITECTURE AND REQUIREMENT

2.1 Chatbot system architecture overview

The architecture of the chatbot system is bifurcated into two primary components:

the user interface (front-end) and the back-end (refer to Fig. 2). Users can inquire

about information regarding the US stock sector on the website's front-end and

the back-end chatbot system processes these queries, delivering responses

displayed on the same website's front-end. Various frameworks like Gradio,

Streamlit, Chanlit, etc., can be employed in the front-end to construct user

interfaces for machine learning and computer vision models. Alternatively, a

custom front-end can be developed using popular front-end frameworks such as

Node.js and JavaScript. The front-end comprises essential components like input

boxes, output boxes, submit buttons, clear buttons, undo buttons and retry

buttons. The back-end encompasses a Retrieval-Augmented Generation (RAG)

module that handles data gathering, preprocesses data, embeds data, manages

databases and includes a self-update module alongside the Large Language

Model (LLM) module. The front-end is equipped with built-in modules that

define the display layout.

● Interface components module includes input component which is the user

part, output component, retry components, undo components, clear

components.

Capstone | FPT University

9

● Sharing and Embedding module is share or embed directly on your

website.

Fig. 2. General chatbot architecture

The backend handles all data operations and technical.

● Data Gathering and Preprocessing module takes care of collecting data

from the website and processing it so that it can be included in the

embedded module in various ways such as US stock API or Websocket

from the website.

● Embedding module transforms textual data into vectors, utilizing

embedding models from platforms such as Hugging Face or GPT.

Capstone | FPT University

10

● Vectors Database module is a form of NoSQL storage that stores data in

multi-dimensional vector form, employing solutions like Chroma DB,

Faiss and others. It can be implemented as a local storage solution or

integrated with cloud storage platforms such as Pinecone.

● Self-update module takes care of updating stock prices that change over

time into the database.

● Response generation module to answer user questions in context based on

database data including paid model APIs such as GPT 3.5, GPT4 or open

source LLMs on hugging face such as: llama2, zephyr.

2.2 System Requirements

The system has two main group permissions. Group 1 will be Sysadmin and group

2 will be Users. Sysadmin with the right to manage the database containing data

and the right to edit information so that the chatbot can answer according to the

admin's wishes. Users have the right to manipulate chatbots to find information

they need to know. Below is Table 1 giving a summary of the system's functions.

Table 1. Functional requirements

Group permissions Content

Sysadmin

R.1 Dataset Management: update, add and fix

R.2
System Configurations Management:

create, update and version control

Users R.3 Customize by Sysadmin

Section 2 described numerous required functional requirements and elements in

UI. Almost frontend and backend modules are standardized. The proposed tool

needs to use design analysis for integration and interoperability. The next

section will discuss this issue.

Capstone | FPT University

11

III. SYSTEM DESIGN AND IMPLEMENTATION

3.1 System design

Fig. 3. RAG module chatbot AI system

The primary challenge addressed and a pivotal aspect of this project revolves

around the utilization of the Retrieval-Augmented Generation (RAG) method

(refer Fig .3). RAG is a method introduced by researchers from Meta AI. RAG is

a combination of the information retrieval component with text generation

models. This approach plays a crucial role in enhancing the performance of AI

chatbots, specifically those based on Large Language Models (LLMs). RAG

involves integrating external sources of knowledge to augment the internal

representation of information within the LLM generated responses. Implementing

RAG within an LLM-based question-answering system yields two key

advantages. Firstly, it ensures the model's access to the latest and most reliable

facts. Secondly, it provides users with transparency by enabling them to access

the model's sources. This transparency allows users to verify the accuracy of the

model's claims, instilling trust in the system.

To provide a comprehensive overview of the advantages and disadvantages of

chatbots employing the RAG method, we will present a table delineating these

aspects. Besides the advantages, there will be disadvantages of the RAG method

as shown in Table 2. The simple structure of the RAG method will be represented

as The questions raised and processed by LLM will then be searched for answers

to that question based on our base knowledge.

Capstone | FPT University

12

Table 2. Advantages and disadvantages of RAG

Advantage Disadvantage

High level of information security.

Crafting responses for every

conceivable question a customer

might ask required a significant

amount of time.

This diminishes the likelihood of an

LLM inadvertently disclosing sensitive

data or generating inaccurate or

misleading information through

'hallucination.'

Updating streams is difficult and time

consuming.

Implementing RAG has the potential to

reduce the computational and financial

burdens associated with operating

LLM-powered chatbots within an

enterprise environment.

In the absence of accounting for a

particular scenario, the chatbot lacked

the capability to improvise.

Based on Fig. 3. This comprehensive set of system design combines the

LangChain framework for orchestration, LangChain modules for data extraction

and segmentation, the US stock API and WebSocket for data gathering and

processing, llmrails/ember-v1 for embedding models, ChromaDB for self-update

and vector databases, TheBloke/Llama-2-13b-Chat-GPTQ for a powerful

language model and Gradio for the user experience/user interface (UX/UI).

Together, these components create a sophisticated AI system designed to meet

diverse and complex needs.

● Orchestration Framework: LangChain

● Data Extraction and Segmentation: LangChain

● Data Gathering and Processing: Utilizing the US stock API and WebSocket

● Embedding Model: llmrails/ember-v1

● Self-update Module: ChromaDB

Capstone | FPT University

13

● Vector Databases: ChromaDB

● Large Language Model (LLM): TheBloke/Llama-2-13b-Chat-GPTQ

● UX/UI : Gradio

Our project's orchestration framework uses the Langchain framework. Langchain

is an extremely hot framework in recent times. It was created to harness the power

of large language models (LLM) such as ChatGPT, LLaMA, etc., to develop real-

world applications. Despite being developed just over a year ago (since October

2022) and continuously updated daily, Langchain has received tremendous

interactions on GitHub, boasting more than 70K stars. This is equivalent to the

star count of another legendary framework in deep learning, PyTorch, which

achieved this recognition after more than six years of dedicated development and

effort. Langchain is a framework that allows your application to take advantage

of additional information from many other 3rd party data sources such as Google,

Notion, Facebook... as well as providing components that allow the use of

language models in many different real-life situations. We can imagine

Langchain as a bridge between the language model and third-party applications

as follows in Fig. 4.

 Fig .4. Langchain Framework Flow

There are two main advantages of the langchain framework:

● Provides diverse components: LangChain provides a variety of

components necessary for interacting with language models. These

components are designed to be easy to use, extend and customize for many

different problems.

Capstone | FPT University

14

● Providing chains for specific use-cases: A chain is understood as a series

of components paired together in a certain order so that real-life use cases

can be solved. The use-cases that langchain provides are virtual assistants,

document-based Q&A, chatbots, support for querying table data,

interaction with APIs, text feature extraction and text evaluation, text

summary.

The langchain itself does not contain models but it will contain interfaces to help

interact with the model more easily, Models can be saved on OpenAI's system,

Hugging Face.... Prompt templates: Recently we have heard of the concept of

prompt engineering, which means techniques for writing prompts for the

language model so that it can correctly answer the problems we want the language

model to perform. A prompt template is simply a piece of text that includes

instructions, requirements and examples to include in the language model and it

can receive input as parameters passed by the user.

Text Embedding Model: Simply put, embedding is a representation of a piece of

text. It will be represented by a vector with a fixed number of dimensions, for

example 128 dimensions. The closer two vectors are, the more similar they are in

semantics or content. Langchain allows us to connect to different types of

embedding models called Embedding providers (OpenAI, Cohere, Hugging Face,

etc). And currently the strongest embeddings model in the MTEB leaderboard

proposed by Hugging Face is the llmrails/ember-v1 model. So we have used it,

you can completely change this model because the model will be improved over

time. We highly recommend that you use the most powerful model so that your

system can find the most accurate answer.

To have a base knowledge for the chatbot system, we use Chroma DB. Chroma

DB is an open source, AI-native embedded database that aims to simplify the

process of creating LLM applications by making knowledge, facts and skills

connectable to LLM – as well as to avoid illusion. Chroma DB has many

important features such as: querying, filtering, density estimation, update and

more. In particular, the Langchain framework fully supports Chroma DB.

With LangChain as Our project's Orchestration framework, we can use many

different LLM models, especially the most powerful LLM models today such as

GPT 4, LLama-2, ... However, after considering Table 3 we have chosen the LLM

'TheBloke/Llama-2-13b-Chat-GPTQ' that fits our case study as well as this

Capstone | FPT University

15

chatbot system. This is the LLaMa-2 model that has been refined thanks to

TheBloke and can be used for commercial purposes. In short, LLaMa-2 is the

next version of LLaMa - a large language model created by Facebook AI

Research and their team of engineers. This model is architecturally similar to

LLaMa but adds data, improves quality and adds new optimization methods to

achieve higher performance. Below is a comparison between LLAMA2 and

GPT4 models in Table 3.

Table 3. Comparison between GPT-4 and LLAMA-2

 GPT-4 LLAMA-2

Types of data (text,

sound, images, etc.)

GPT-4 can handle more

types of data

LLAMA-2 can handle

less types of data

Data security Low security High security

Cost Expensive Free

Save resources Lower Higher

Speed Slower Faster

The effectiveness of the final helpfulness and safety reward models is evaluated

across a varied array of human preference benchmarks. Notably, our model

undergoes fine-tuning on the collected data, distinguishing it from the other

baselines presented in Fig. 5.

Fig. 5. Reward model results(Hugo Touvron, Louis Martin, Kevin Stone.et al.

Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023. pp12)

The process commences with the pretraining of Llama 2, leveraging publicly

accessible online sources. Subsequent to this phase, we generate an initial

iteration of Llama 2-Chat by employing supervised fine-tuning. The model then

undergoes iterative refinement using Reinforcement Learning with Human

Capstone | FPT University

16

Feedback (RLHF) methodologies, specifically incorporating rejection sampling

and Proximal Policy Optimization (PPO). It is imperative during the RLHF stage

to accumulate iterative reward modeling data in tandem with enhancing the model

to ensure the reward models remain within distribution, as illustrated in Fig. 6.

Fig .6. Training of Llama 2-Chat(Hugo Touvron.et al. Llama 2: Open

Foundation and Fine-Tuned Chat Models. 2023. pp5)

In terms of data collection for the chatbot system's base knowledge, we use

websocket to collect stock prices and restful API for financial data. First let's get

to websocket, it is a TCP-based transport protocol used to establish and maintain

a two-way connection between a client and server through a single connection. It

allows real-time data transmission and continuous interaction between client and

server, without the need to establish a new connection each time new data needs

to be sent or received.

The protocol has two parts: handshake and data transfer. Initially, the client sends

a request to initiate a websocket connection to the server, the server checks and

returns the results accepting the connection. Then the connection is created and

the sending process data can be taken, the main data is the Ws frames. Therefore,

we use this technique for this project, helping the chatbot to continuously update

stock prices in the most accurate way. More specifically, we use the Socket.io

library. Table 4 that is about the advantages and disadvantages of Websocket.

Capstone | FPT University

17

Table 4. Advantages and Disadvantage of Websocket

Advantages Disadvantage

Fast connection at fewer overheads
The functionality may not be

supported if the browser does not

fully comply with HTML5

standards.

Request/response streaming in real-time It doesn't support edge caching

High performance Possibility of Certain Security

Risks

As mentioned above, collecting financials data will use Restful API. RESTful

API (Representational State Transfer) is a software architecture designed to

create web services based on REST principles. REST is an architectural style

specifically designed for web-based distributed systems. It is distinguished by its

emphasis on simplicity, scalability and seamless interoperability between

applications. In RESTful APIs, everything considered a resource, such as objects

or data, has a unique identifier (URI). For example, a resource can be a product,

a user, or anything you want to perform an operation on. RESTful API uses HTTP

methods (GET, POST, PUT, DELETE) to perform operations on resources. For

example, you can use the GET method to get information about a resource, POST

to create a new resource, PUT to update a resource and DELETE to delete a

resource.

Resource data, typically expressed as JSON or XML, about the current state of

the resource. Resources can have many different states and can be changed via

HTTP operations. The REST model is stateless, meaning that every request from

the client must include all the information needed to serve that request. The server

does not need to save the client's state between requests.

To build the chatbot system we used Google colab Pro to deploy the code. Google

Colab Pro is the premium version of the Google Colaboratory service. It offers

several benefits and expanded features compared to the free version of Google

Colab. Here are some important points about Google Colab Pro:

Capstone | FPT University

18

In Google Colab Pro, you have more powerful GPU and TPU usage than in the

free version. This is especially useful for machine learning and heavy number

crunching tasks. In the free version, you have a limit on GPU usage time.

However, with Colab Pro, you can use GPU and TPU continuously and without

a time limit. If you do not use google colab pro type A100 GPU, you can use

Ubuntu server with hardware including 30GB drive, 30GB GPU RAM, 30GB

system RAM.

Finally, the interface of the chatbot we used for this project is Gradio. Gradio UI

is an open source library used to create intuitive and interactive user interfaces

(UIs) for applications and machine learning models. Here are some important

features of Gradio UI: Gradio UI is designed to be simple and easy to use. Gradio

UI supports input data types such as text, images, audio, video and allows visual

results to be displayed in a variety of formats.

Gradio UI can integrate with machine learning models built with TensorFlow,

PyTorch, Scikit-learn, and other libraries. You can connect your machine learning

model to Gradio UI in just a few lines of code. Gradio UI allows you to create

realistic applications with support for webcams and microphones to make the user

interface more interactive.

3.2 Implementation

Python is chosen as the programming language for its widespread use in AI

development, leveraging its diverse libraries and frameworks. The Google Colab

Pro environment, equipped with a substantial V100 gpu, 70GB drive or more

drive, gpu ram at least 16GB and system ram greater than 40GB, provides a robust

platform for the development and deployment of the AI chatbot system. The

development environment for building the AI chatbot system platform is

structured as follows:

● Operating System: Google Colab Pro

● Central Processing Unit (CPU): Not explicitly mentioned, but assumed to

be part of the Google Colab Pro environment.

● GPUs (Graphics Processing Units): at least 16GB

● Random Access Memory (RAM): greater than 40GB

● Programming Language: Python

Capstone | FPT University

19

Install the necessary libraries for the project including the Ubuntu virtual

machine, the Langchain framework will be the coordination framework for the

project, Chroma DB will be the place to store the vector store and other necessary

libraries.

!pip install -qqq torch==2.1.0

!pip install -qqq langchain==0.0.266

!pip install -qqq chromadb==0.4.5

!pip install -qqq xformers==0.0.20

!pip install -qqq sentence_transformers==2.2.2

!pip install -qqq InstructorEmbedding==1.0.1

!pip install -qqq websocket-client

!pip -qqq install gradio

!pip install -qqq python-engineio==3.14.2 python-socketio==4.6.0

!wget -q

https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.1/auto_gptq-

0.4.1+cu118-cp310-cp310-linux_x86_64.whl

!pip install -qqq auto_gptq-0.4.1+cu118-cp310-cp310-linux_x86_64.whl

!sudo apt-get install poppler-utils

import torch from auto_gptq

import AutoGPTQForCausalLM from langchain

import HuggingFacePipeline, PromptTemplate

from langchain.chains import RetrievalQA

from langchain.embeddings import HuggingFaceInstructEmbeddings

from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.document_loaders import DirectoryLoader, TextLoader

from langchain.vectorstores import Chroma

from transformers import AutoTokenizer, TextStreamer, pipeline

import locale

import re

import requests

import json

import time from datetime

import datetime DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"

First, we implement the library necessary for the project. Data collection is very

important in building AI chatbots. Here we need to collect data and build a dataset

according to the Us stock market sector from the website US stock. We use

Websocket methods to collect the current price of the stock because the stock

Capstone | FPT University

20

changes every second. In addition, we can use the API Restful to collect the data

we need to collect in website US stock.

After collection, the data will be in json file format and this data will be assigned

to the “Dataset.txt” file that we have created to create semantics from this data.

For example, follow this format to get the current price of stock “Current price of

{Symbol} is {current_price}.”. Following this, a dataset containing current stock

prices will be gathered using statements like "Current price of AAPL is 177.97".

Additionally, datasets pertaining to financial data and option data will be created

in alignment with the system's requirements. After collecting data into txt files

such as: Option.txt, Price.txt, Financials_data.txt, load the txt files into

documents. After collecting data, we will read the data as a txt file.

def load_documents():

 loader = DirectoryLoader('/content/Data', glob="*.txt",

 loader_cls=TextLoader)

 documents = loader.load()

 return documents

docs = load_documents()

Dividing the files into text chunks is a crucial step, particularly for embeddings.

When a user poses a question, the system seeks precise numerical information for

the answer. The effectiveness of this process depends on the nature of the data

and the specific requirements of the task at hand.

def split_text_into_chunks(documents):

 text_splitter = RecursiveCharacterTextSplitter(chunk_size=70,

 chunk_overlap=0)

 text_chunks = text_splitter.split_documents(documents)

 return text_chunks

text_chunks = split_text_into_chunks(docs)

The subsequent step involves embedding each of the paragraphs using the model

(llmrails/ember-v1). Embeddings play a crucial role in mapping any text to a low-

dimensional dense vector, offering utility in tasks such as retrieval, classification,

clustering and semantic search. Additionally, these embeddings can be utilized in

vector databases for Large Language Models and stored in a vector store. In this

context, Chroma DB serves as the designated vector store for our purposes.

Capstone | FPT University

21

def create_embeddings():

 embeddings = HuggingFaceInstructEmbeddings(

 model_name="llmrails/ember-v1", model_kwargs={"device": DEVICE})

 return embeddings

def create_vector_store(text_chunks, embeddings):

 db = Chroma.from_documents(text_chunks, embeddings,

 persist_directory="db")

 return db

db = create_vector_store(text_chunks, embeddings)

After embedding the data, we store it in Chroma DB, which serves as a vector

database to form the base knowledge for the chatbot system. Initially, we must

persist this Chroma DB so that the chatbot can respond to questions based on this

foundational knowledge. However, it is necessary to update the base knowledge

because some data may change. For example, stock prices in the U.S fluctuate

every second, forcing us to use websockets to collect real-time data. This enables

us to keep the base knowledge up-to-date, ensuring the chatbot can provide

accurate responses to inquiries about the ever-changing stock prices.

After retrieving data in real time, putting it into a txt file, we will read and process

the data, divide it into appropriate parts and update. Updating based on the id and

change data of the US stock price, we will determine the id of the vector to update

in the database and change the document of that vector with the document of the

US stock price in real time.

while(True):

 loader = DirectoryLoader('/content/drive/MyDrive/data', glob="*.txt",

loader_cls=TextLoader)

 documents1 = loader.load()

 text_chunks1 = split_text_into_chunks(documents1)

 list_id=db1.get(offset=906227,limit=50)['ids']

 if list_id:

 for i in range(len(text_chunks1)):

 db1.update_document(document_id=list_id[i],

document=text_chunks1[i])

As for the system part we can see in Figure 3, in the LLM part we use

TheBlocke/Llama-2-13-B-chat-GPTQ to be able to generate answers word to

users. This repo contains GPTQ model files for Meta's Llama 2 13B-chat.

Capstone | FPT University

22

Next we will format the model's output using the prompt. The prompt will help

guide the model to the required and appropriate output format for the user. Here

we aim for an answer that is helpful, respectful and honest. In cases where the

question is unreasonable or illogical, the model should explain why instead of

answering incorrectly. When the model doesn't know the answer, it should admit

this instead of trying to give wrong information.

DEFAULT_SYSTEM_PROMPT = """ You are a helpful and respectful

assistant committed to providing honest responses. Your answers should be

positive, safe, and free from harmful or inappropriate content.

If a question is unclear or factually incorrect, your approach is to explain the

issue rather than providing inaccurate information. If you don't know the

answer, you refrain from sharing false information.. """.strip()

def generate_prompt(prompt: str, system_prompt: str =

DEFAULT_SYSTEM_PROMPT) -> str:

 return f"""

 [INST] <<SYS>>

 {system_prompt}

 <</SYS>>

 {prompt} [/INST]

 """.strip()

def create_llms_model():

 model_name_or_path = "TheBloke/Llama-2-13b-Chat-GPTQ"

 tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,

use_fast=True)

 model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,

revision="gptq-4bit-32g-actorder_True",

 use_safetensors=True,

 trust_remote_code=True,

 inject_fused_attention=False,

 device=DEVICE,

 quantize_config=None,)

 return model, tokenizer

Capstone | FPT University

23

SYSTEM_PROMPT = "Use the following pieces of context to answer the

question at the end. If you don't know the answer, just say that you don't

know, don't try to make up an answer."

template = generate_prompt(

 """

{context}

Question: {question}

""",

 system_prompt=SYSTEM_PROMPT,)

Next we convert the text into numbers and configure text generation using the

NLP model. Specific parameters include: "Text-generation": pipeline type,

indicates you are using model to generate text, "model" NLP model used to

generate text, "tokenizer" used to convert text to number for the model,

"max_new_tokens" limits the number of new tokens created in a reply. If

exceeded, the answer may be truncated. The "temperature" parameter defines the

level of creativity of the answer. Low values (close to 0) produce more specific

answers, while high values (e.g. 1) produce more creative answers. The "top_p"

parameter governs the selection of tokens based on probability . This value limits

token selection based on probability until the total probability exceeds this value,

the "repetition_penalty" parameter governs the repetition of tokens in the answer.

We create a configuration to use Hugging Face's NLP model to generate text with

custom parameters such as creativity level, token count limit and other parameters

to control the text generation process .

streamer = TextStreamer(tokenizer, skip_prompt=True,

skip_special_tokens=True)

text_pipeline = pipeline(

 "Text-generation",

 model=model,

 tokenizer=tokenizer,

 max_new_tokens=3096,

 temperature=0,

 top_p=0.95,

 repetition_penalty=0.9,

 streamer=streamer,)

llm = HuggingFacePipeline(pipeline=text_pipeline,

model_kwargs={"temperature": 0})

Capstone | FPT University

24

Next we load, split the text, process the data, represent the text data as arithmetic

vectors and save them in vector storage and build a process for retrieving

information and answering questions based on document content.

qa_chain = RetrievalQA.from_chain_type(

 llm=llm,

 chain_type="stuff",

 retriever=db.as_retriever(search_kwargs={"k": 2}),

 return_source_documents=True,

 chain_type_kwargs={"prompt": prompt},)

We used Gradio to build a user interface for a chatbot, allowing users to ask

questions and receive answers from the chatbot through an intuitive interface.

import gradio as gr

def predict(message, history):

return qa_chain1(message)['result']

demo = gr.ChatInterface(

 fn=predict,

 title = 'ChatBot US_Stock StockScan.io'

)

demo.launch(share=True)

Finally, in the part of integrating chatbot software with the website, we use gradio

as interfaces. Gradio provides features for sharing your machine learning model

interfaces with others so there are two ways to integrate gradio on your website.

The first way is "Embed Gradio UI with iframe", step 1 is to create an HTML bar

in the website, step 2 in that HTML embed the <iframe> tag to embed Gradio UI

into the website.

<iframe src="https://your-gradio-url" width="500"

height="500"></iframe>

The second way to integrate Gradio into your website can be using Ajax

technology. It is an abbreviation for the phrase "Asynchronous JavaScript and

XML". This is a web programming technique that allows data to be transmitted

and received from the server without reloading the entire web page. Ajax helps

increase user experience by making websites faster and more flexible. Step 1 also

Capstone | FPT University

25

creates an HTML bar in the website, step two uses Ajax to communicate with

Gradio UI. Finish part 3 and continue to part 4 case study showing you how to

apply the AI chatbot system to specific case studies.

var xhr = new XMLHttpRequest();

 xhr.open('GET', 'https://your-gradio-url', true);

 xhr.onload = function() {

 if (xhr.status === 200) {

 var gradioUI = xhr.responseText;

 document.getElementById('gradio-container').innerHTML =

gradioUI;

 }

 };

 xhr.send();

IV. CASE STUDY AND DISCUSSION

4.1 Stockscan.io US stock chatbot case

Line Century is a company related to US stocks, they have a website Stockscan.io

which is a website about the stock market in the US, it includes many functions,

all functions are built around stocks in the US. The company asked us to build a

chatbot to answer questions about information related to US stocks on the website

stockscan.io to help increase the customer experience so they can experience the

service in an enjoyable way. The functions are listed below described in Table 5.

Table 5. Component of the website stockscan.io US stock

Stockscan.io Function

Watch list Table list includes (stock name, company name, price,

%1D, volume, market cap..) over time (need to buy web

package)

Top list List of top 5 stocks that increase or decrease over time

(today, 1 week, 1 month, 6 month), list of top 5 penny

stocks, OTC.

Capstone | FPT University

26

Stock Calculator Calculate average stock price, calculate profit and loss of

stock investment.

Option Table list includes (stock code name, call/put order, strike,

price, change, %change, volume)

Financial Financial data by each company (chart format) including

(revenue, net income, cash flow, eps, debt to equity ratio)

Price History Historical price list by time (daily, weekly, monthly), by

year, table includes (date, high, low, high-low, volume,

%change)

After reviewing the functions of a US stock website, we need to learn about what

customers are interested in the US stock market field when accessing the website,

thereby providing the main answering functions of the chatbot for a website.

According to the experts of the website, customers will be interested in the current

price of stocks, the option function of the website, key stats of stocks and financial

data (revenue, net income, cash flow, eps, debt to equity ratio) described in Table

6.

Table 6. Data parameters needed by the stockscan.io

Data parameters Define

Stocks The capital raised by a business or corporation through the

issue and subscription of shares.

Current Price Current price of stock

Revenue Revenue is the result of regular business activities,

computed by multiplying the average sales price by the

quantity of units sold.

Net income Net income (NI) is determined by subtracting expenses,

interest and taxes from revenues.

Cash flow The cash or cash-equivalent that a company receives or

disburses as payments to creditors.

EPS Earnings per share (EPS) is computed by dividing a

company's profit by the total number of outstanding shares

of its common stock.

Capstone | FPT University

27

D/E The Debt-to-Equity (D/E) ratio evaluates a company's total

liabilities in relation to its shareholder equity, providing

insights into the degree of reliance on debt.

Here we need to collect data and build a dataset according to the Us stock market

sector from the Stockscan.io. In addition, we can use the API Restful to collect

the data we need to collect data in website US stock: financial data(Revenue, Net

Income, Cash Flow, EPS, D/E). Then attach them to the available dataset and

save it as a txt file. Example gathering data about financial data in Stockscan.io:

def financial_data(url, exchange_slug, symbol):

 data = { 'exchange_slug': exchange_slug,

 'symbol': symbol }

 response = requests.post(url, json=data)

 if response.status_code == 200:

 try:

 result = response.json()

 return result

 except json.JSONDecodeError as e:

 return None else:

urls = [“Your URL”]

exchange_slugs = ["NASDAQ"] # Add more exchanges if needed

symbols = ["AAPL"] # Add more symbols if needed

result_filenames = { urls[0]: "Revenue.txt", urls[1]: "Net-Income.txt", urls[2]:

"Cash-Flow.txt", urls[3]: "EPS.txt", urls[4]: "DTER.txt" }

financials_labels = ["Revenue", "Net Income", "Cash Flow", "EPS",

"DTER"]

Capstone | FPT University

28

In addition to collecting data using RestfulAPI, in the price part of the stock code,

we use websocket to collect stock prices and it will be continuously updated so

that the chatbot can give reasonable results.

sio = socketio.Client(logger=True, engineio_logger=True)

@sio.on('connect')

def on_connect():

 sio.emit("RealTimeAvgPriceSubAdd", {

 'subs': listcoins

 })

@sio.on('avg_price_update')

def handle_global_price_update(data):

 if all(symbol in coin_prices for symbol in listcoins):

 with open('/content/drive/MyDrive/data/prices.txt', 'w') as txt_file:

 for symbol, price in coin_prices.items():

 txt_file.write(f"Current price of {symbol} stock is {price}$\n")

@sio.on('disconnect')

def disconnect():

 print('Disconnected')

sio.connect(url='Your WSS URL', transports=['websocket'])

Finally, we apply section 3.2. Implementation above to build an AI chatbot for

the website stockscan.io described in Fig .7. There are a few questions users can

ask the chatbot such as: "Revenue of AAPL in Q2 of 2023?" to ask about financial

data of Apple company, "Current price of AAPL?" to ask about Apple's current

stock price, etc. Answers will be given by the chatbot in about 3-5 seconds.

Capstone | FPT University

29

Fig .7. Stockscan.io Chatbot

4.2 Discussion

In this part, after building an AI chatbot for stockscan.io, we tried many question

sets to test this chatbot. The answers are highly accurate when the questions are

related to the data in Table 6 and the information of the functions that the chatbot

can answer mentioned in section 4.1. This AI chatbot is being used to answer

2000 US stock tickers and has the performance of being able to answer each

question within a period of 3-5s. Other performances will be mentioned in Table

7.

Table 7. Performance of chatbot AI stockscan.io replied 2000 US stock

 Execution Time (m)

Data gathering 60m

Training LLM(TheBloke/Llama-2-

13b-Chat-GPTQ)

5m

Embedding and Save vector to

chroma db

120m

Update vector 50 stock 0.05m – 0.08m → 3s – 5s

Answer question 0.05m – 0.08m → 3s – 5s

Capstone | FPT University

30

Nevertheless, there are instances where the chatbot's comprehension and

accuracy are compromised, particularly when questions are not presented in the

expected format. It is crucial to phrase questions in a specific manner for optimal

results. For instance, the chatbot can successfully respond to inquiries like

"Revenue of AAPL in Q2 of 2023", but may struggle with non-standard formats

such as "Revenue of APPLE now" due to a lack of understanding. This limitation

arises from the absence of question and answer formats like "Revenue of APPLE

now" in our training dataset.

There are many ways to solve this problem, but we will give 2 ways to solve the

problem above. The first way is that you can use more powerful embedding

models, more powerful LLM models related to text generation to finetune your

data set like GPT-4, LLAMA2-70b-chat-hf,..etc. You can improve your chatbot

quickly, but the cost issue is something you need to consider because it costs a

lot of money when used for small businesses. The second way is to create a larger

answer data set with a more diverse format. This way you need to clearly

understand your data and depend on the requirements of the business.

V. CONCLUSION AND PERSPECTIVES

In the endeavor to develop an AI chatbot tailored for a US stock website, we laid

the groundwork with the RAG method and the Langchain framework. This

foundational chatbot exhibits proficiency in addressing inquiries related to US

stocks, encompassing functionalities such as retrieving current prices, providing

financial data. Specifically designed for small-sized businesses, this platform

aims to elevate the overall customer experience.

Throughout the project implementation, my team gained valuable insights into

well-established chatbot creation technologies like Rasa and explored tools

facilitating code-free chatbot development, utilizing prominent large language

models such as Botpress and Stack AI. Additionally, delving into the creation of

a chatbot for the US stock industry enriched our understanding of various

concepts within this domain.

However, it's crucial to recognize that this marks only the foundational structure

of the chatbot system. There exists ample room for refinement and enhancement,

allowing the chatbot to handle a broader array of questions and deliver more

robust responses. Furthermore, there is potential to introduce novel features, such

Capstone | FPT University

31

as investment advisory support. By leveraging data and statistics, the chatbot can

provide valuable investment advice, assisting customers in gaining a deeper

understanding of their investment options.

 VI. REFERENCES

1. Cheonsu Jeong. A Study on the Implementation of Generative AI Services

Using an Enterprise Data-Based LLM Application Architecture.

2309.01105.pdf. 2023.

2. Myeong-Ha Hwang, Jikang Shin, Hojin Seo, Jeong-Seon Im, Hee Cho.

ChatRPA: Open Source-Based Conversational Chatbot System for Robotic

Process Automation. 2022.

3. Yeon Seonwoo, Juhee Son, Jiho Jin, Sang-Woo Lee, Ji-Hoon Kim , Jung-

Woo Ha, Alice Oh. Two-Step Question Retrieval for Open-Domain QA.

2205.09393v1.pdf. 2022.

4. Jeppiaar Nagar, Rajiv Gandhi Salai, Chenna. Herbivicus: A full stack

website with chatbot and google API. 2021.

5. Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy

Chakraborty. Factuality Challenges in the Era of Large Language Models.

2310.05189v2.pdf. 2023.

6. Deussom Djomadji Eric Michel College of Technology University of Buea

Department of Electrical and Electronic Engineering. Design and

Implementation of a Chatbot for the Supervision of Security Events

(SIEM).2023.

7. Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem.

Emad Shihab Challenges in Chatbot Development: A Study of Stack

Overflow Posts. October 5–6, 2020.

8. Adith Sreeram A S, Pappuri Jithendra Sai. An Effective Query System

Using LLMs and LangChain. June 2023.

9. Hana Demma Wube, Sintayehu Zekarias Esubalew, Firesew Fayiso

Weldesellasie and Taye Girma Debelee. Text-Based Chatbot in Financial

Sector: A Systematic Literature Review. 2022.

10. Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova,

Dylan Langdon, Reema Moussa , Matt Beane. FINQA: A Dataset of

Numerical Reasoning over Financial Data. 2109.00122v3.pdf. 2021.

11. Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng,

Alejandro Lopez-Lira, Jimin Huang. PIXIU: A Large Language Model,

https://arxiv.org/ftp/arxiv/papers/2309/2309.01105.pdf
https://www.researchgate.net/publication/360461505_ChatRPA_Open_Source-Based_Conversational_Chatbot_System_for_Robotic_Process_Automation
https://www.researchgate.net/publication/360461505_ChatRPA_Open_Source-Based_Conversational_Chatbot_System_for_Robotic_Process_Automation
https://arxiv.org/pdf/2205.09393v1.pdf
https://sist.sathyabama.ac.in/sist_naac/documents/1.3.4/b.e-cse-batchno-1.pdf
https://arxiv.org/pdf/2310.05189v2.pdf
https://www.researchgate.net/publication/371720589_Design_and_Implementation_of_a_Chatbot_for_the_Supervision_of_Security_Events_SIEM
https://www.researchgate.net/publication/371720589_Design_and_Implementation_of_a_Chatbot_for_the_Supervision_of_Security_Events_SIEM
https://rabeabdalkareem.github.io/files/6-abdellatif_msr2020.pdf
https://rabeabdalkareem.github.io/files/6-abdellatif_msr2020.pdf
https://www.researchgate.net/publication/372529063_An_Effective_Query_System_Using_LLMs_and_LangChain
https://www.researchgate.net/publication/362395727_Text-Based_Chatbot_in_Financial_Sector_A_Systematic_Literature_Review
https://arxiv.org/pdf/2109.00122v3.pdf

Capstone | FPT University

32

Instruction Data and Evaluation Benchmark for Finance.

2306.05443v1.pdf. 2023.

12. Rudi Setiawan, Rossi Iskandar, Nadilla Madjid, Ridwan Kusumawardan.

Artificial Intelligence-Based Chatbot to Support Public Health Services in

Indonesia. 2022.

13. James C. L. Chow , Valerie Wong , Leslie Sanders, Kay Li. Developing

an AI-Assisted Educational Chatbot forRadiotherapy Using the IBM

Watson Assistant Platform.IBM Watson Assistant. 2023.

14. Shamane Siriwardhana, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana,

Suranga Nanayakkara. Improving the Domain Adaptation of Retrieval

Augmented Generation (RAG) Models for Open Domain Question

Answering. 2210.02627v1.pdf. 2023.

15. Shuo Li, Sangdon Park, Insup Lee, Obsert Bastani. TRAC: Trustworthy

Retrieval Augmented Chatbot. 2307.04642v1.pdf.2023.

16. Nura Esfandiari , Kourosh Kiani , Razieh Rastgoo. A Conditional

Generative Chatbot using Transformer Model. 2306.02074.pdf.2023.

17. Jiangtong Li, Yuxuan Bian, Guoxuan Wang, Yang Lei, Dawei Cheng,

Zhijun Ding, Changjun Jiang. CFGPT: Chinese Financial Assistant with

Large Language Model. 2309.10654v2.pdf. 2023.

18. Hugo Touvron, Louis Martin, Kevin Stone. Llama 2: Open Foundation

and Fine-Tuned Chat Models. Llama 2. 2023.

19. Kim Martineau: What is retrieval-augmented generation?.RAG. 2023.

20. Jiawei Chen, Hongyu Lin, Xianpei Han, Le Sun. Benchmarking Large

Language Models in Retrieval-Augmented Generation. 2309.01431v1.pdf.

2023.

https://arxiv.org/pdf/2306.05443v1.pdf
https://online-journals.org/index.php/i-jim/article/view/36263/13999
https://online-journals.org/index.php/i-jim/article/view/36263/13999
https://www.mdpi.com/2227-9032/11/17/2417
https://arxiv.org/pdf/2210.02627v1.pdf
https://arxiv.org/pdf/2307.04642v1.pdf
https://arxiv.org/ftp/arxiv/papers/2306/2306.02074.pdf
https://arxiv.org/pdf/2309.10654v2.pdf
https://scontent.fhan17-1.fna.fbcdn.net/v/t39.2365-6/10000000_662098952474184_2584067087619170692_n.pdf?_nc_cat=105&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=ai5Sz-xGRjkAX_KHKUO&_nc_ht=scontent.fhan17-1.fna&oh=00_AfAEwW5Y6NUJSWLUtCJ3Lv5uhk1_kyWCJX4xEH2pZ8Z_5Q&oe=656C6CFF
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://arxiv.org/pdf/2309.01431v1.pdf

