
Developing a Chatbot
Using Machine Learning:

A Case Study for US Stock Market
AIP490_G15

AIP490-G15

US_STOCK_TEAM

Group Member Nguyen Thanh Dat HE151345

Nguyen Ngoc Toan HE151313

Nguyen Thai Bao HE151059

Supervisor MSE. Le Dinh Huynh

Table of Contents

Introduction

System Architecture and
Requirements

System Design

Implementation

0502

03

0401

06

Case Study and Discussion

Conclusion

I. Introduction

User experiment
 improvement

Customer care
improvement

Purchase process
simplification

1.1 Problem

We will build an AI Chatbot system. We will learn about chatbot, the applications and
benefits of chatbots in businesses.

Service integration
 opportunity

Resource saving Personalized
 service

1.2 Related Work

We searched for ways to build a chatbot system that could respond using our data. There are several
methods of using chatbot creation technologies without using code.

1.3 Objectives and Contribution

Engage in continuous learning about US stock
technologies and sectors.

Build a chatbot for a website in the US
stock domain.

Assist people in exploring our team's chatbot as
a reference for building chatbots across various
similar websites.

2

3

1

II. System Architecture
and Requirement

Front-end: Users can ask for information
related to the field they are looking for.

Back-end: chatbot system processes these
queries, delivering responses displayed on the
same website's front end.

2.1. System Architecture

● Interface Components Module: includes input
component which is the user part, output component,
retry components, undo components, clear components.

● Sharing and Embedding Module: Share or embed
directly on your website.

FRONT END

BACK END

● Data Gathering and Preprocessing module
● Embedding module
● Vectors Database module
● Self-update module
● Response generation module

2.2. System Requirement

45K

Group permissions Content

Sysadmin

R.1 Dataset Management: update, add and fix

R.2 System Configurations Management: create, update,
and version control

Users R.3 Customize by Sysadmin

III. System Design

3. System Design

3. System Design

● Orchestration Framework: LangChain
● Data Extraction and Segmentation: LangChain
● Data Gathering and Processing: Utilizing the US stock API and WebSocket
● Embedding Model: llmrails/ember-v1
● Self-update Module: ChromaDB
● Vector Databases: ChromaDB
● Large Language Model (LLM): TheBloke/Llama-2-13b-Chat-GPTQ
● UX/UI : Gradio

3. System Design
Langchain is a framework that helps you not only interact with major language models but also allows your
application to take advantage of additional information from many other 3rd party data sources such as Google,
Notion, Facebook.

3.1 System Design

Chroma DB is an open source, AI-native embedded database that aims to simplify the process of creating LLM
applications by making knowledge, facts and skills connectable to LLM – as well as to avoid illusion.

3. System Design

3. System Design

GPT - 4 LLAMA-2

Types of data
(text, sound,
images, etc.)

GPT-4 can handle more types of
data

LLAMA-2 can handle
less types of data

Data security Low security High security

Cost Expensive Free

Save resources Low High

Faster Slow Fast

3. System Design

Advantages Disadvantage

Easy to Understand and Implement Limited Scalability

Easy Interoperability Interactive Mode is Slower than gRPC

Easy Integration Security Depends on Proper Setup

As mentioned above, collecting financials data will use Restful API.

3. System Design

Advantages Disadvantage

Two-way communication Lack of Support on Some
Environments

High performance Difficult Confidentiality

Send real-time data Possibility of Certain Security Risks

Websocket is a TCP-based transport protocol used to establish and maintain a two-way
connection between a client and server through a single connection.

3. System Design
Finally, the interface of the chatbot I used for this project is Gradio. Gradio UI is an open source library used
to create intuitive and interactive user interfaces (UIs) for applications and machine learning models.

IV. Implementation

4. Implementation

● Operating System: Google Colab Pro
● Graphics Processing Units: at least 16GB
● Random Access Memory: greater than 40GB
● Programming Language: Python

4. Implementation

Install the necessary libraries for the project such as: Langchain
framework, Chroma DB, Pytorch, Websocket, Gradio.

4. Implementation

def load_documents():
 loader = DirectoryLoader('/content/Data', glob="*.txt", loader_cls=TextLoader)
 documents = loader.load()
 return documents
docs = load_documents()

We use Websocket, Restful API methods to collect the current price change per second of stocks and
other data on US stock website. After collecting data, we will read the data as a txt file.

4. Implementation

def split_text_into_chunks(documents):
 text_splitter = RecursiveCharacterTextSplitter(chunk_size=70,
 chunk_overlap=0)
 text_chunks = text_splitter.split_documents(documents)
 return text_chunks
text_chunks = split_text_into_chunks(docs)

Dividing the files into text chunks is a crucial step, particularly for embeddings. When a user poses a
question, the system seeks precise numerical information for the answer.

4. Implementation

def create_embeddings():
 embeddings = HuggingFaceInstructEmbeddings(
 model_name="llmrails/ember-v1", model_kwargs={"device": DEVICE})
 return embeddings
def create_vector_store(text_chunks, embeddings):
 db = Chroma.from_documents(text_chunks, embeddings,
 persist_directory="db")
 return db
db = create_vector_store(text_chunks, embeddings)

The subsequent step involves embedding each of the paragraphs using the model (llmrails/ember-v1).
Embeddings play a crucial role in mapping any text to a low-dimensional dense vector.

4. Implementation

while(True):
 loader = DirectoryLoader('/content/drive/MyDrive/data', glob="*.txt",
 loader_cls=TextLoader)
 documents1 = loader.load()
 text_chunks1 = split_text_into_chunks(documents1)
 list_id=db1.get(offset=906227,limit=50)['ids']
 if list_id:
 for i in range(len(text_chunks1)):
 db1.update_document(document_id=list_id[i],
document=text_chunks1[i])

This enables us to keep the base knowledge up-to-date, ensuring the chatbot can provide accurate
responses to inquiries about the ever-changing stock prices.

4. Implementation

def create_llms_model():
 model_name_or_path = "TheBloke/Llama-2-13b-Chat-GPTQ"
 tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
 use_fast=True)
 model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
 revision="gptq-4bit-32g-actorder_True",
 use_safetensors=True,
 trust_remote_code=True,
 inject_fused_attention=False,
 device=DEVICE,
 quantize_config=None,)
 return model, tokenizer

In the LLM part we use TheBlocke/Llama-2-13-B-chat-GPTQ to be able to generate answers word to users.

4. Implementation

SYSTEM_PROMPT = "Use the following pieces of context to answer the
question at the end. If you don't know the answer, just say that you don't
know, don't try to make up an answer."
template = generate_prompt(
 """
{context}
Question: {question}
""",
 system_prompt=SYSTEM_PROMPT,)

Next we will format the model's output using the prompt. The prompt will help guide the model to the
required and appropriate output format for the user.

4. Implementation

text_pipeline = pipeline(
 "Text-generation",
 model=model,
 tokenizer=tokenizer,
 max_new_tokens=3096,
 temperature=0,
 top_p=0.95,
 repetition_penalty=0.9,
 streamer=streamer,)
llm = HuggingFacePipeline(pipeline=text_pipeline,
model_kwargs={"temperature": 0})

Next we convert the text into numbers and configure text generation using the NLP model. Generate text
with custom parameters such as creativity level, token count limit, and other parameters to control the
text generation process.

4. Implementation

qa_chain = RetrievalQA.from_chain_type(
 llm=llm,
 chain_type="stuff",
 retriever=db.as_retriever(search_kwargs={"k": 2}),
 return_source_documents=True,
 chain_type_kwargs={"prompt": prompt},)

Next, we build a process for retrieving information and answering questions based on the document content.

4. Implementation

import gradio as gr
def predict(message, history):
return qa_chain1(message)['result']
demo = gr.ChatInterface(
 fn=predict,
 title = 'ChatBot US_Stock StockScan.io'
)
demo.launch(share=True)

We used Gradio to build a user interface for a chatbot, allowing users to ask questions
and receive answers from the chatbot through an intuitive interface.

4. Implementation

<iframe src="https://your-gradio-url" width="500" height="500"></iframe>

Finally, in the part of integrating chatbot software with the website, we use gradio as interfaces, Gradio
provides features for sharing your machine learning model interfaces with others so there are two ways
to integrate gradio on your website.

V. Case Study And
Discussion

5.1 Stockscan.io US stock chatbot case
Line Century is a company related to US stocks, they have a website Stockscan.io which is a website
about the stock market in the US.

StockScan.io Function

Watch list Table list includes (stock name, company name, price, %1D,
volume, market cap..) over time (need to buy web package)

Top list List of top 5 stocks that increase or decrease over time (today, 1
week, 1 month, 6 month), list of top 5 penny stocks, OTC

Option Table list includes (stock code name, Call/Put order, Strike,
Price, Change, %Change, Volume)

Financial Financial Data by each company (chart format) including
(revenue, net income, Cash flow, EPS, Debt to Equity Ratio)

Price History Historical price list by time (daily, weekly, monthly), by year,
table includes (Date, high, low, high-low, volume, %change)

5.1 Stockscan.io US stock chatbot case

Data
parameters

Define

Stock The capital raised by a business or corporation through the issue and subscription of shares.

Current Price Current price of stock.

Revenue Revenue is the result of regular business activities, computed by multiplying the average
sales price by the quantity of units sold.

Net income Net income (NI) is determined by subtracting expenses, interest, and taxes from revenues.

Cash flow The cash or cash-equivalent that a company receives or disburses as payments to creditors.

EPS Earnings per share (EPS) is computed by dividing a company's profit by the total number of
outstanding shares of its common stock.

D/E The Debt-to-Equity (D/E) ratio evaluates a company's total liabilities in relation to its
shareholder equity, providing insights into the degree of reliance on debt.

5.1 Stockscan.io US stock chatbot case
In addition, we can use the API Restful to collect the data we need to collect data in website US stock:
financial data(Revenue, Net Income, Cash Flow, EPS, D/E).

def financial_data(url, exchange_slug, symbol):
 data = { 'exchange_slug': exchange_slug,
 'symbol': symbol }
 response = requests.post(url, json=data)
 if response.status_code == 200:
 try:
 result = response.json()
 return result
 except json.JSONDecodeError as e:
 return None else:
urls = [“Your URL”]
exchange_slugs = ["NASDAQ"] # Add more exchanges if needed
symbols = ["AAPL"] # Add more symbols if needed
result_filenames = { urls[0]: "Revenue.txt",
 urls[1]: "Net-Income.txt",
 urls[2]: "Cash-Flow.txt",
 urls[3]: "EPS.txt",
 urls[4]: "DTER.txt" }
financials_labels = ["Revenue", "Net Income", "Cash Flow", "EPS", "DTER"]

5.1 Stockscan.io US stock chatbot case
In the price part of the stock code, we use websocket to collect stock prices, and it will be continuously
updated so that the chatbot can give reasonable results.

sio = socketio.Client(logger=True, engineio_logger=True)
@sio.on('connect')
def on_connect():
 sio.emit("RealTimeAvgPriceSubAdd", {
 'subs': listcoins
 })
@sio.on('avg_price_update')
def handle_global_price_update(data):
 if all(symbol in coin_prices for symbol in listcoins):
 with open('/content/drive/MyDrive/data/prices.txt', 'w') as txt_file:
 for symbol, price in coin_prices.items():
 txt_file.write(f"Current price of {symbol} stock is {price}$\n")
@sio.on('disconnect')
def disconnect():
 print('Disconnected')
sio.connect(url='Your WSS URL', transports=['websocket'])

5.1 Stockscan.io US stock chatbot case
Finally, we apply section Implementation above to build an AI chatbot for the website stockscan.io.

This AI chatbot is being used to answer 2000 US stock tickers and has the
performance of being able to answer each question within a period of 3-5s.

5.2 Discussion

Execution Time (m)

Data gathering 60m

Training
LLM(TheBloke/Llama-2-13b-Chat-GPTQ)

5m

Embedding and Save vector to chroma db 120m

Update vector 50 stock 0.05m - 0.08m → 3s -5s

Answer question 0.05m - 0.08m → 3s -5s

VI. Conclusion

Engage in continuous
learning about US stock
technologies and sectors.

Develop a chatbot to
provide assistance and
guidance to users.

Build a chatbot for the
stockscan.io website.

1 2 32 31

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Thank for
listening!

Do you have any questions?

nguyenngoctoan2001bn@gmail.com
nguyenthanhdat020501@gmail.com

bao24901qaz@gmail.com

Please keep this slide for attribution

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/
mailto:nguyenngoctoan2001bn@gmail.com
mailto:nguyenthanhdat020501@gmail.com
mailto:bao24901qaz@gmail.com

